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Abstract

If the influence diagram (ID) depicting a Bayesian game is common knowledge

to its players then additional assumptions may allow the players to make use

of its embodied irrelevance statements. They can then use these to discover a

simpler game which still embodies both their optimal decision policies. How-

ever the impact of this result has been rather limited because many common

Bayesian games do not exhibit sufficient symmetry to be fully and efficiently

represented by an ID. The tree-based chain event graph (CEG) has been devel-

oped specifically for such asymmetric problems. By using these graphs rational

players can make analogous deductions, assuming the topology of the CEG as

common knowledge. In this paper we describe these powerful new techniques

and illustrate them through an example modelling a game played between a

government department and the provider of a website designed to radicalise

vulnerable people.

Keywords: Adversarial risk; Bayesian game theory; chain event graph; decision

tree; influence diagram; parsimony

1. Introduction

There are two principal conceptual difficulties in applying results from Bayesian

game theory in a number of domains. Firstly, whilst it might be plausible for a
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player to know the broad structure of an opponent’s utility function when that

opponent is subjective expected utility maximizing (SEUM), for a player to

also believe that she knows the exact quantitative form of that utility function

or the precise formulation of the distribution of its attributes is less plausible.

Secondly, as for example [15] has pointed out, however compelling our beliefs

are that an opponent’s rationality should induce her to be SEUM, in practice

most people simply are not. So any application of a theory which starts with

this assumption is hazardous. These issues induced [13] to suggest giving up on

the rationality hypothesis entirely and instead modelling the opponent simply

in terms of her past behaviour.

However others have perservered with rationality modelling by addressing

these real modelling challenges more qualitatively. For example [24] suggested

a way to address the first difficulty described above. We can continue to model

successfully provided that the conditional independences associated with vari-

ous hypotheses and the attributes of each player’s utility function are common

knowledge, but we do not need that the players know the quantitative forms of

others’ inputs. This framework developed from methods for simplifying influ-

ence diagrams (IDs) [10, 28], described first in [19] and then [23]. When players

are all SEUM, substantive conclusions can sometimes be made concerning those

aspects of the problem upon which a rational opponent’s decision rules might

depend. This in turn allows players to determine ever simpler forms for their

own optimal decision rules. So models can be built which at least respect some of

the structural implications of rationality hypotheses before being embellished

with further structure gleaned from behavioural data, or the bold assumption

that an opponent’s quantitative preferences and beliefs can be fully quantified

by everyone. Even the second criticism of a Bayesian approach outlined above

is at least partially addressed, since the methods need only certain structural

implications of SEUM to be valid, not that all players are SEUM.

In this way game theory can therefore be used not to fully specify the quan-

titative form of a competitive domain but simply to provide hypotheses about

the likely dependence structure that rationality assumptions might imply for
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such models. These models can then be embellished with further historical

quantitative information using the conventional Bayesian paradigm.

It has been possible to demonstrate the efficacy of the approach when mod-

elling certain rather domain-specific applications, but it has proved rather lim-

ited in scope [24, 26]. One problem is that the structure of many games cannot

be fully and effectively represented by an ID (see for example [4, 5, 17]). Usually

the underlying game tree is highly asymmetric and so the symmetries necessary

for an encompassing and parsimonious ID representation of the game are not

present. This is one characteristic of the types of games that we consider in this

paper; we discuss other important attributes in the following paragraphs.

Harsanyi [9] considered games where the players are uncertain about some or

all of the following – the other players’ utility functions, the strategies available

to the other players, and the information other players have about the game.

In the games considered in this paper each player holds a body of common

knowledge – the exact form of other players’ utility functions is unknown, but the

variables these functions depend upon (a feature of the conditional independence

structure of the game) are known; the strategies available to the other players

are known; and what information is known to the other players is also known.

So essentially the games we consider are ones where the “structure” is common

knowledge, but the exact values of other players’ utilities and the probability

distributions of some chance variables are not.

In contrast to Harsanyi, Banks et al in [1] state that Game theory needs the

defenders to know the attackers’ utilities and probabilities, and the attackers to

know the defenders’ utilities and probabilities, and for both to know that these are

common knowledge. We do not agree that these are absolute requirements, but

it is certainly true that a player cannot solve a game to her satisfaction unless

she has some values for her opponents’ utilities and probabilities. So in our

games, players assign subjective probabilities to their unknowns and estimate

values of their opponents’ utility functions. Each player’s utilities depend not

only on the strategies chosen by the various players, but also on chance.

We take a decision-theoretic approach to Bayesian Game theory. Our games
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are sequential (typically with players acting alternately, and with chance vari-

ables interspersed between the players’ actions). The standard description for

such a game is Extensive Form Bayesian Game with Chance moves; they are

generally expressed as a game tree (or as an ID [24] or MAID – multi-agent

influence diagram [14]).

Asymmetric games, as described above, are being played with increasing fre-

quency wherever large constitutional organisations (governments, police forces

etc.) are at risk from or attempting to combat criminal or anticonstitutional

organisations or networks. An example is described below, taken from this area,

probably less familiar than games in a commercial context.

Governments and police play a game with groups trying to influence or

radicalise susceptible individuals. These radicalisers often attempt to influence

vulnerable people via the web. The government strategy here can be thought of

as a combination of prevention and pursuit: if a website is easily accessible then

it might be best just to shut it down; if it is difficult to access, then perhaps

it is better to monitor, collect information and then act to scare vulnerable

people sufficiently so that they do not get involved with any anticonstitutional

group. But when should the government act? There is a trade-off here between

frustrating a number of attempts to radicalise vulnerable people, and bringing

down a whole anticonstitutional group (with the attached risks of failure and

of exposing more susceptible individuals to malign influence for a longer period

of time). The decisions available to the radicalisers are similar; the asymmetry

of the game arises from the fact that different decisions by both players lead to

very different collections of possible futures.

The Chain Event Graph (CEG) was introduced in 2008 [27] for the mod-

elling of probabilistic problems whose underlying trees exhibit a high degree

of asymmetry. It provides a platform from which to deduce dependence re-

lationships between variables directly from the graph’s topology. CEGs have

principally been used for learning/model selection (see for example [21, 2]), but

also in two areas of interest to us in this paper – causal analysis (see for exam-

ple [30, 7]), and also decision analysis [29] where the semantics of the CEG can
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be extended to provide algorithms which allow users to discover minimal sets of

variables needed to fully specify an SEUM decision rule. In 2015 it was realised

that CEGs include Acyclic Probabilistic Finite Automata (APFAs) as a special

case [8].

In this paper we demonstrate how it is often possible to use causal CEGs

to deduce (from appropriate qualitative assumptions) a simpler representation

of a two person game. To retain plausibility we assume only the qualitative

structure of the problem (as expressed by the topology of a CEG) is common

knowledge, and that the players are SEUM given the information available to

them when they make a move. In section 2 we introduce the semantics of

the decision CEG and discuss the principle of parsimony. To illustrate how

the CEG can be used for the representation and analysis of games, and also

how it can be used to simplify these games, section 3 contains a description

of a 2 player game modelling a simplified version of the radicalisation scenario

described above. Section 4 contains a discussion of ideas prompted by the work

in earlier sections.

We have focussed here on a two person adversarial game, but note that the

techniques described can be extended for use with multi-player games. We have

also assumed here that we are supporting one of the two players, but because of

the common knowledge assumption we have made, the qualitative results of the

analysis are equally valid to this player’s opponent or indeed some independent

external observer.

2. Decision Chain Event Graphs

2.1. Conditional independence, Chain Event Graphs and causal hypotheses

Bayesian Networks (BNs) and Influence Diagrams express the conditional

independence/Markov structure of a model through the presence/absence of

edges between vertices of the graph. We say that a variable X is independent

of a variable Y given Z (written X ∐ Y | Z) if once we know the value taken

by Z, then Y gives us no further information for forecasting X . The structure
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of an ID can be used to produce fast algorithms for finding optimal decision

strategies [19].

One advantage that CEGs have over BNs and IDs for asymmetric problems

is that they can be used to represent context-specific conditional independence

properties such as X ∐ Y | (Z = z), which hold only for a subset of values of

the conditioning variable.

The CEG is a function of a probability (or event) tree, having the same

structure as a game tree, but with all non-leaf vertices being chance nodes and

all edges representing outcomes of these chance nodes, rather than actions of a

player, We introduce two partitions of the vertices of the tree:

• Vertices in the same stage have sets of outgoing edges representing the

same collections of possible outcomes, and have the same probabilities of

these outcomes.

• Vertices in the same position have sets of outgoing subpaths represent-

ing the same collections of possible complete futures, and have the same

probabilities of these futures.

These equivalence classes encode (context-specific) conditional independences

as follows: Given arrival at one of the vertices in a particular stage, the next de-

velopment is independent of precisely which vertex has been arrived at. Given

arrival at one of the vertices in a particular position, the complete future is

independent of precisely which vertex has been arrived at.

Our CEG is then produced from the tree by combining (or coalescing) ver-

tices which are in the same position. Vertices in the same stage are generally

given the same colour, and equivalent edges emanating from vertices in the same

stage are generally also given the same colour. The stages and positions between

them encode the full conditional independence/Markov structure of our model.

More detailed definitions are given in [27].

In [16], Pearl discusses the assumptions under which BNs can be considered

causal (a more decision-theoretic approach to graphical modelling is considered

in [25]). We have shown that under similar assumptions CEGs can also be
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considered as causal [30]. Heuristically this means that the model specified by

a CEG continues to be valid when particular variables are manipulated. Such

a hypothesis is a particularly natural one to entertain in decision problems,

where a decision maker (DM) by choosing a specific action at some point can be

thought of as manipulating a specific variable. The hypothesis is also a natural

one to entertain in a game whose underlying structure is common knowledge

and where each player is able to manipulate their own decisions to a particular

value, but nature or the player’s opponents will determine the value of other

variables.

Those vertices in a CEG which we allow to be manipulated can be construed

as decision nodes and the CEG as a function of a decision tree [28]. The remain-

ing vertices in the CEG are then chance or utility nodes. In this mode the CEG

is an elegant answer to the problems highlighted in [22, 17, 5, 4], where differ-

ent actions can result in different choices in the future. As such it provides an

alternative to valuation networks [20], decision circuits [3], sequential decision

diagrams [6] and sequential IDs [12]. A full discussion of why IDs (including

those supplemented by trees or similar) are unsatisfactory for the representation

and analysis of asymmetric problems can be found in [4]. A comparison of deci-

sion CEGs with IDs, and with valuation networks, decision circuits, sequential

decision diagrams and sequential IDs can be found in [29].

In [30] we were concerned primarily with the effects of a manipulation and

whether these effects could be gauged from probabilities in the idle system.

Considering the CEG as a function of a decision tree in contrast, we assume

that the owner of the CEG has a utility function over the possible outcomes of

the problem, and can then use techniques analogous to those used for decision

trees to find an optimal decision rule for the decision maker. An introduction

to the use of CEGs for decision analysis can be found in [29].

2.2. An example of how CEGs can be used to represent decision problems

Figures 1 and 2 illustrate how a decision tree is converted into a CEG.

Figure 1 shows a variation of the Oil drilling example from [18]. A more detailed
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version of this example appears in [29].

pass
+20

test
-10

good

bad

good

bad

no drill 0

drill -30 

no drill 0

drill -30 

no drill 0

drill -30 

oil

oil

no oil

no oil

oil

no oil

0

0

0

0

100

100

100

10

10

40

Figure 1: Coloured decision tree for Oil drilling example

We have an option on testing some ground for oil. We can either

take up this option, at a cost of 10, or pass it on to another prospector

for a fee of 20. Whoever does the testing, the outcomes are good or

bad, with probabilities independent of who does the testing. If we

have passed on the testing and the test result is good then we lose

the option for drilling and get nothing. If it is bad then the other

prospector will not drill and the option for drilling reverts to us.

If we do the test and the result is good, then we can either drill,

for a cost of 30, or sell the drilling rights for a fee of 40. If the

result is bad, then regardless of who does the test, we can either

drill ourselves, again for a cost of 30, or sell the drilling option for

a fee of 10. If we drill and find oil we gain 100.

Decision nodes are indicated by squares, chance nodes by circles and utility

nodes by diamonds. Utilities here are decomposed and appear both on the leaf

utility nodes and on the edges emanating from decision nodes. Edges emanating
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from chance nodes have been assigned the same colour if the nodes are in the

same stage, and if the edges represent the same outcome and carry the same

probability. So for example the two good/bad chance nodes are in the same stage.

Also the first and third drill/no drill decision nodes are in the same position,

since they root subtrees which are identical in both topology and colouring.

In purely-probabilistic CEGs we usually combine all leaf nodes into a single

sink node. With decision CEGs it is preferable to retain a number of leaf utility

nodes, each representing a different final reward. The CEG corresponding to

Figure 1 is given in Figure 2. The CEG is Extensive Form – that is the variables

appear in the order that they appear to the DM. If there is oil in the ground

it will have been there before we test or drill, but we don’t know this until we

drill.

pass
+20

test
-10

good 

bad 

good

bad

no drill

drill
-30

drill -30

no drill

oil 

no oil

oil 

no oil

40

100

0

10

Figure 2: Decision CEG for Oil drilling example

As with purely-probabilistic CEGs, the colouring and coalescence in the

decision CEG allow it to express the complete conditional independence/Markov

structure of a problem through its topology [29]. If vertices are in the same

stage then we know that the possible immediate future developments from these

vertices are the same, and (if the vertices are chance nodes) that the probability
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of any specific immediate future development is the same. Vertices in the tree

which are in the same position are combined in the decision CEG because the

sets of possible complete future developments from these vertices are the same

and have the same probability distribution.

In Figure 2 we have coloured the chance nodes which are in the same stage,

and the edges emanating from them (indicating that they have the same proba-

bilities). We have retained the colouring of the edges leaving the 2nd oil chance

node to illustrate how these edges relate to those in Figure 1.

2.3. Parsimony

In the example above we have a single DM. When we move into games

with more than one player, the CEG represents the problem to each of the

players and its topology can be considered as common knowledge (CK). The

underlying structure is causal to each player, but each decision node can only

be manipulated by a single (specified) player. In [24] we considered IDs which

obeyed the same assumptions as those described immediately above. Such IDs

were resurrected and modified by [14] and called MAIDs (multi-agent influence

diagrams). In [23] we noted that such IDs could be seen from the point of view

of an informed observer to whom all nodes could be considered as chance nodes

– a scenario which for example would be valid if the observer’s BN were causal

and common knowledge.

The paper [24] describes how to produce a parsimonious representation of a

game. When a player needs to make a decision at D, some of the information

they have obtained beforehand may be superfluous for the purposes of making

this decision. We then write

U ∐QS(D) | (D,QR(D)) (1)

where U is the utility for that player, and Q(D) = {QS(D), QR(D)} (S =

superfluous, R = required) is a partition of the information obtained by the

player before making the decision (equivalent to the vertices in the ID with edges

directed into D). In this case the player need only consider the configuration
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of the variables QR(D) when choosing a decision at D to maximise U . In

[14] the authors use similar ideas which they call strategic relevance and s-

reachability. Conditional independence statements involving decision variables

and utilities are discussed in some detail in [29]. If the symmetry property of

such statements is abandoned and a statement such as X ∐ Y | Z is read only

as X is independent of Y given Z, then statements involving decision variables

and utilities are unambiguous providing they do not take the form D∐ . . . | . . . ,

where D is a decision variable; and if the statement involves a utility U then it

must be of the form U ∐ . . . | . . . .

3. CEGs for Games, and an example of a 2 player game

In section 3.1 we introduce an example of a 2 player adversarial game, which

we will use to illustrate how CEGs can be used to represent and analyse such

games. The ID of this example (Figure 3) appeared originally in [24] where it was

used to demonstrate how the parsimony assumption can simplify the analysis

required in a 2 player game. The problem is presented here within the context of

a test of strength between a government department and a radicalising website

provider. In section 3.3 we demonstrate that the idea of parsimony can be used

to simplify CEG-based analysis; we also show how CEG methods accomodate

problem asymmetry in their topology in a way that IDs do not. Moreover we

see how the process of simplification can be directly linked to the asymmetries

exhibited in the associated game tree.

3.1. Example: description and ID

In our example the players are the provider (A) of an internet site aimed at

radicalising vulnerable people, and a government department (or police force)

tasked with combatting radicalisation (B). The site provider has contacts with

a radical group (RG); the government department is aware of this group, but

has no wish to tackle them directly at the present time. Our example is a

simplification of the real games being played, and combines aspects of both
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prevention and pursuit to illustrate how such games may develop. The example

is concerned also with a single vulnerable person (VP). As already noted, we

could adapt the methods described below to games with more than two players,

but here, for simplicity, the behaviour of VP and RG are considered to be

governed by chance.

The ID contains chance and decision nodes as described below. We assume

here that we are supporting one player. In the description which follows, there

is a utility pair associated with the chance variables X3 and X4, one of whose

entries records our supported player’s utilities, and the other entry our sup-

ported player’s estimated values for their opponent’s utilities. For illustrative

purposes, let our supported player be A (!), so the 2nd entry in our utility pairs

is A’s estimate of B’s utility. In Figure 3, and in the CEGs in Figures 4 to 7,

we have outlined A’s decision nodes in red, and B’s decision nodes in blue, for

ease of reading.

X 1

D 1(A)

D 1(B )

X 2

X 3

D 2(A)

D 2(B )

X 4

U

Figure 3: Initial ID

X1: VP visits the website and either posts to the site, or contacts RG via a

link on the site. Both B & A observe VP’s action.
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D1(A): A decides either to contact VP, or to contact RG. B observes A’s action.

D1(B): B decides either to contact VP via the site in the guise of an RG-sympathiser,

or to shut the site down. A observes B’s action.

X2 : B’s action at D1(B) may warn VP that he is being observed. The proba-

bility of this depends on whether VP posted to the site or contacted RG,

on whether A contacted VP at D1(A) or not, and on B’s action at D1(B).

VP’s online behaviour indicating whether he is aware of being observed is

itself observed by both A & B.

X3: A’s action at D1(A) and B’s action at D1(B) either persuades RG to cut

contact with A (with utility pair (UA, UB) = (−10,+10)), or to increase

their cooperation (with utility pair (UA, UB) = (+10, 0)). The respective

probabilities depend on which combination of A’s & B’s actions occurred.

Behaviour of RG observed by both A & B.

D2(A): A posts to own site either pretending to be VP, or in the guise of a sym-

pathiser. This post provides false information about themselves and their

relationships with RG & VP. VP knows that he did not post the message

and that the aspect of the information concerning his relationship with A

is false. The post is seen by B.

D2(B): B decides either to arrest VP or not.

X4 : VP either tells B that the information is false, or does not. The probability

of VP doing this depends on A’s action at D2(A) and B’s action at D2(B).

CEGs were designed for use with asymmetric problems. ID-representations

often obscure such asymmetries and so even if a problem is expressed as an ID

it might still incorporate significant numbers of hidden asymmetries. A deci-

sion CEG can depict explicitly any number of asymmetries, but for illustrative

convenience we concentrate here on just one such possibility:

If at X3, RG cut contact, then A believes that B believes that the infor-

mation is false ((UA, UB) = (0, 0)) irrespective of what VP tells B. If at
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X3, RG increased cooperation, then A believes that B believes that the

information is true ((UA, UB) = (+20,+10)) if VP does not tell B that it

is false, and believes that it is false ((UA, UB) = (0, 0)) if VP tells B it is

false.

Note that A’s estimate of B’s utility for (X3: RG increased cooperation, X4:

VP does not tell B that information is false) is positive because A believes that

B believes the information. UA is large for this scenario because A believes that

they have successfully planted false information on B. If RG cuts contact at X3

then the decisions made at D2(A), D2(B) have no influence on (UA, UB), and

neither does the outcome of X4.

Table 1: (UA, UB) as a function of X3 and X4

X4: VP tells B that false VP does not ...

X3: RG cuts contact (-10, +10) (-10, +10)

RG increases ... (+10, 0) (+30, +10)

We describe in sections 3.2 and 3.3 how this information can be incorporated

directly into the topology of the CEG.

3.2. CEG and conditional independence structure

CEGs used for game analysis have the same relationship to game trees as

Decision CEGs have to decision trees. In our CEG in Figure 4 there are no

utilities on edges; they have been restricted to the terminal utility nodes (we

have elsewhere described this as a Type 2 decision CEG [29]). For each utility

node, each player has an associated utility pair (as described in section 3.1).

From the player’s perspective, one value in the pair corresponds to their own

utility value for this outcome, whereas the other corresponds to the player’s

estimate of their opponent’s utility value for this outcome. We maintain that

the CEG in Figure 4 is causal, and that its topology is common knowledge.
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X 1

D 1(A)

D 1(B )

X 2

X 3

D 2(A)
32 nodes

D 2(B )
64 nodes X 4 U

Figure 4: Naive CEG of model depicted in Figure 3

We have given vertices in the same stage the same colour (as in Figure 2),

but have not coloured emanating edges to avoid cluttering the diagrams. We

can read the colouring as, for example the probability that X3 = 1 given the

histories up to each red X3 vertex is the same, but different from that given the

histories up to any of the differently coloured X3 vertices.

For illustrative convenience the CEG has been drawn out in more detail than

is strictly necessary. The diagram need really only show certain key aspects of

the model – the colouring of the X3 vertices; the grouping and colouring of

the X4 vertices; and the asymmetric grouping of the utility nodes (reflecting

the utilities given in Table 1). These four aspects correspond to the four non-

trivial conditional independence statements associated with the model. So the

full CEG need never be drawn out – it can simply be stored as a collection of

computer constraints. The players need the picture only as a reminder of the

key local properties and asymmetric aspects of the game.

Various conditional independence/Markov properties can be read off CEGs
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by considering individual positions, stages or cuts through these. Stages encode

statements about the immediate future, whereas positions encode statements

about the complete future.

If we consider a cut through the 16 X3 vertices, we see that they are grouped

into four stages. So for instance the 1st, 2nd, 9th & 10th X3 vertices are in the

same stage – the probability that X3 = 1 (say) is the same for the four histories

X1 = 1 or 2, D1(A) = 1, D1(B) = 1, X2 = 1 or 2. Similar results hold for the

other groups of vertices, and together give us the property that

X3 ∐ (X1, X2) | (D1(A), D1(B)).

This property concerns X3, but not D2(A), D2(B), X4 or U . It can also of

course be read from the ID in Figure 3. Similarly we see that the X4 vertices

are also grouped into four stages, and a similar reading of the stage cut through

these vertices gives us the property

X4 ∐ (X1, D1(A), D1(B), X2, X3) | (D2(A), D2(B)).

There are 8 X4 vertices (although 4 stages, and in the underlying tree 128

vertices) because the utility function depends on the value taken by X4 but also

on the value taken by X3 (which has no direct influence on X4).

When considering position cuts we ignore the colouring and groupings into

stages. The first X4 vertex corresponds to the histories X1 = 1 or 2,

D1(A) = 1 or 2, D1(B) = 1 or 2, X2 = 1 or 2, X3 = 1, D2(A) = 1, D2(B) = 1.

So reading the position cut through the X4 vertices gives us the property

(X4, U)∐ (X1, D1(A), D1(B), X2) | (X3, D2(A), D2(B)). (2)

Here the property concerns X4, but also U , since positions encode statements

about the complete future. We finally consider a cut through the utility nodes,

and see that

U ∐ (X1, D1(A), D1(B), X2, D2(A), D2(B)) | (X3, X4).

Our experience suggests that with practice, users of CEGs quickly become adept

at the reading of the graphs for their conditional independence structure.
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3.3. Simplifying the CEG

We now turn our attention to how parsimony allows us to simplify analysis.

For a multi-player adversarial game, simplification takes the form of an iterative

process whose steps are of two types – decision node coalescence, and barren

node deletion. The process is run from leaf nodes to root node.

Decision node coalescence: As already noted, for a player making a deci-

sion at D, if she can learn that U ∐ QS(D) | (D,QR(D)), then she need only

consider the configuration of the variables QR(D) when choosing a decision at

D to maximise her utility. If QS(D) is non-empty then in the CEG there are

distinct decision nodes that are actually in the same position and therefore can

be combined [29]. Two or more decision nodes (in a Type 2 decision CEG) are

in the same position if:� the subCEGs rooted in these nodes have the same topology,� equivalent edges in these subCEGs have the same labels and (where ap-

propriate) probabilities,� equivalent branches in these subCEGs terminate in the same utility node.

Barren node deletion: As with IDs [19], decision CEGs may have barren

nodes which can be deleted. A barren node in a Type 2 decision CEG [29] is

simply a vertex all of whose emanating edges terminate in the same node. If

the vertex is a decision node then whatever decision the DM makes is irrelevant,

and if it is a chance node then whatever outcome happens is of no consequence.

The deletion step proceeds as follows [29]:

If w has only one child node then� label this node w≻,� for each node w≺ in the parent set of w:

replace all edges e(w≺, w) by a single edge e(w≺, w≻), and delete all edges

e(w,w≻) and the node w.

Note that this simplification process works as straightforwardly for games

with three or more players, as for games with just two players. With these tools

at our disposal we can start to simplify the CEG from Figure 4.
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The 5th to 8th X4 nodes in Figure 4 are barren, as all their emanating edges

terminate in the same utility node. They can be deleted, and the edges entering

them from D2(B) vertices extended so that they now terminate at the third

utility node. But these D2(B) nodes are now also barren, as all their emanating

edges now terminate in the same utility node. They can be deleted, and the

edges entering them from D2(A) vertices extended so that they now terminate

at the third utility node. These D2(A) nodes are now also barren, and once we

have deleted them we get a reduced graph as in Figure 5.

X 1

D 1(A)

D 1(B )

X 2

X 3 =1

D 2(A)

D 2(B )
X 4

U

X 3 = 2

16 nodes

32 nodes

Figure 5: First reduced CEG

Now considering the remainder of the graph, we can deduce from expres-

sion (2) that

UB ∐ (X1, D1(A), D1(B), X2) | (D2(B), X3 = 1, D2(A)). (3)

So QS(D2(B)) = {X1, D1(A), D1(B), X2}, and these variables can be consid-

ered as non-parents of D2(B) for the purposes of optimal decision making. The

32 remaining D2(B) vertices are grouped into two positions (corresponding to
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the combinations X3 = 1, D2(A) = 1 or 2), and we can combine these D2(B)

vertices into two, each with 16 incoming edges corresponding to the 16 possible

configurations of (X1, D1(A), D1(B), X2). Each remaining X4 vertex now has

only 1 incoming edge.

A position cut through the D2(B) nodes now yields the statement

(D2(B), X4, U) ∐ (X1, D1(A), D1(B), X2) | (X3 = 1, D2(A)),

which if viewed from the perspective of B is an invalid statement – B can

choose arbitrarily between two actions at D2(B), so the statement that D2(B)

is conditionally independent of other variables is nonsensical (see comment in

section 2.3).

X 1

D 1(A)

D 1(B )

X 2

X 3 =1

D 2(A)

D 2(B )
X 4

U

X 3 = 2

Figure 6: Second reduced CEG

However, this is a 2 player game, and at this point in the analysis we are

considering the possible actions of A at D2(A). To A the behaviour of B can be

considered as random (or at leastD2(B) can be considered as a chance variable),

19



and so to A the statement has meaning. We can therefore deduce that

UA ∐ (X1, D1(A), D1(B), X2) | (D2(A), X3 = 1).

SoQS(D2(A)) = {X1, D1(A), D1(B), X2}, and these variables can be considered

as non-parents of D2(A) for the purposes of optimal decision making. The 16

remainingD2(A) vertices are all in the same position (corresponding toX3 = 1),

and we can combine these D2(A) vertices into one, with 16 incoming edges cor-

responding to the 16 possible configurations of (X1, D1(A), D1(B), X2). The

two remaining D2(B) vertices now each have only 1 incoming edge. The result-

ing graph is given in Figure 6, where the redundant colouring of the remaining

X4 vertices has been removed.

We cover the remainder of the simplification process more rapidly. The 1st,

2nd, 9th & 10th X3 vertices root identical subCEGs, so they are now in the

same position and can be combined. The same is true of the other sets of

coloured X3 vertices. The 8 X2 nodes are barren and can be deleted (we run

the edges from the 4 D1(B) vertices straight into the appropriate X3 vertices).

The 1st & 3rd D1(B) vertices now root identical subCEGs so are in the same

position. The same is true of the 2nd & 4th D1(B) vertices, and the two D1(A)

vertices. Finally, the X1 node is now barren so can be removed, giving us the

parsimonious CEG in Figure 7.

At this point it is worth reminding ourselves that we are supporting one

player, here A, so even when we have considered UB (as in expression (3)), we

have been looking at the game from A’s perspective. Now, both players start

with the same initial CEG (Figure 4) since its topology is considered to be

common knowledge; and some aspects of the simplification process will occur

regardless of which player’s shoulder we are looking over (such as the removal of

the vertices associated with X1 and X2). But other aspects of the simplification

might be different for B, since the process will depend on B’s own utilities and

on B’s estimates of A’s utilities, rather than on A’s beliefs about B’s utilities

and A’s own utilities. The particular shape of the parsimonious CEG in Figure 7

is a result of A’s utility pair being (0, 0) if RG cuts contact, irrespective of what
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D 1(A)

D 1(B )
X 3 D 2(A)

D 2(B ) X 4 U

Figure 7: Parsimonious CEG

VP tells B. But B may not have the same utility for both possible cases here,

and may not believe that A has the same utility for both. So B might produce a

different parsimonious CEG to A, although still simpler than the original CEG.

We know thatX1 andX2 are irrelevant for optimal decision making purposes

(for both A and B). From Figure 7 we see that from A’s perspective, X3 depends

on both D1(A) and D1(B). If X3 = 2 then A believes that decisions made at

D2(A), D2(B) are irrelevant. Only if X3 = 1 are they of any consequence and

A believes that they do not need to consider any other prior action or event

when making a decision at D2(A). In this case B needs to consider D2(A) when

making a decision at D2(B). A’s own utility and A’s estimated utility for B

depend only on the values taken by X3 and X4.

The parsimonious CEG in Figure 7 is not much more complex than the equiv-

alent ID, which has the vertices D1(A), D1(B), X3, D2(A), D2(B) & U , and the

edges D1(A) → D1(B), X3; D1(B) → X3; X3 → D2(A), D2(B), U ; D2(A) →

D2(B), X4; D2(B) → X4 and X4 → U [24]. Koller and Milch, comparing
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MAIDs and game trees in [14], note that a MAID representation is not always

compact. If a game tree is naturally asymmetric, a naive MAID representa-

tion can be exponentially larger than the tree. The parsimonious ID does not of

course encode any of the asymmetry of the problem, a major drawback when

evaluating optimal decision rules for the players.

3.4. Solution

A possible solution concept for a game expressed as Extensive Form with

Chance moves would be Bayes-Nash equilibrium. The equilibria are found by

applying a decision analysis type rollback or backward induction algorithm to

the game tree or CEG, in which each player plays a best response to the strategy

of the other player(s). But in games where there is incomplete and imperfect

information, the approach needs supplementing.

In our game, our players are SEUM, conditioned on the information available

to them each time they make a decision, and hence they are sequentially ratio-

nal. If all information was common knowledge, then our backward induction

computes subgame perfect equilibria, and the end result of the process would

be a subgame perfect Nash equilibrium [1]. Under the common knowledge as-

sumption then of course such equilibria would be agreed by all players.

As noted by Banks et al in [1], if our game incorporates any sort of asymme-

try (such as that described in this paper), then attempts to deduce Nash equi-

libria from non-tree based representations of the game (such as pay-off tables)

will usually yield impossible equilibria. This happens because representations

which assume symmetry in the game will provide utility pairs (or in general,

utility vectors) for combinations of decisions which could not possibly happen.

As already suggested, in the context of the analysis above (where we are

supporting one player), the comprehensive common knowledge assumption made

above will rarely be plausible, and consequently the solutions reached will not

in general be subgame perfect Nash equilibria. The general approach however is

still appropriate, and the solutions reached will be those we believe exist, based

on our supported player’s own utilities and her estimates of the utilities (etc)
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of the other players. Our supported player calculations are made under the

optimistic assumption that her opponents’ information is contained within her

own and that she knows their utility function, but also under the pessimistic

assumption that her opponents have access via which they can deduce her own

knowledge. So in this sense she is supported by the provision of a reference

analysis embellished with her now-quantified beliefs. In particular if she has

substantive information about where, why and how the common knowledge

assumption might be violated then we should modify the analysis accordingly.

Whether or not such substantive information exists, we note that the calcu-

lations we describe should not stand on their own. They would typically need

to be supported by various sensitivity analyses relating to our player’s estimates

of probabilities and of her opponents’ judgments, or further probabilistic rea-

soning regarding these judgments, which draw from complementary sources of

information concerning who might know what within the given domain. Such

considerations will of course be highly dependent on the particular context being

modelled.

Returning to our example, once the qualitative re-analysis of section 3.3

is complete, the optimal decision rule for A and the decision rule which A

believes to be optimal for B (and which A therefore thinks B will follow) can

be discovered by treating the CEG from Figure 7 as if there were a single

decision maker, working upstream from the terminal nodes, but noting that

when we reach the set of D2(B) vertices, the optimal decisions will be those

that maximise A’s estimates of B’s utility, and that when we reach the D2(A)

vertex, the optimal decision will be that which maximises A’s utility and so on.

An algorithm for this process is given in Table 2.

In the algorithm we use C and D for the sets of chance and decision nodes,

withD(B) indicating a decision node belonging toB (etc). UA[w] and (UA, UB)[w]

(etc) indicate A’s utility at the position w and the utility pair at w (etc). The

(conditional) probability of an edge e(w,w′) is denoted by p[e(w,w′)]. The set

of child nodes of a position w is denoted by ch(w). Note that
∑

e(wi,w) appears

in the line “If wi ∈ C” because there may be more than one edge connecting
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two positions, if say two different decisions have the same consequence.

Once the algorithm has run, the root node will have an associated utility

pair (UA, UB)[w1], such that UA[w1] will be A’s maximum expected utility given

their assumptions, and UB[w1] will be A’s estimate of B’s expected utility if they

follow the strategy that A believes they should. A’s optimal decision strategy

and B’s strategy if A is correct in their beliefs about B will be indicated by the

subset of edges that have not been marked as being sub-optimal.

Table 2: Local propagation algorithm for solving a 2-player game� Find an ordering of the positions w1, w2, . . . , wn, such that

1. w1 is the root-node,

2. if there are t utility nodes, then wn−t+1, wn−t+2, . . . , wn are the

utility nodes,

3. if wj ∈ ch(wi) then j > i.� Initialize the utility pairs (UA, UB)[w] of the utility leaf nodes to the

values specified.� Iterate: for i = n− t step minus 1 until i = 1 do:

– If wi ∈ C then

(UA, UB)[wi] :=
∑

w∈ch(wi)

{
∑

e(wi,w)

{

p[e(wi, w)] ∗ (UA, UB)[w]
}}

– If wi ∈ D(B) then (UA, UB)[wi] := (UA, UB)[w
∗]

where w∗ = argmaxw∈ch(wi)

{

UB[w]
}

– If wi ∈ D(A) then (UA, UB)[wi] := (UA, UB)[w
∗]

where w∗ = argmaxw∈ch(wi)

{

UA[w]
}� Mark the sub-optimal edges.

For our example, noting that X3 = 1 corresponds to RG increases contact,

Table 1 gives us A’s utility pairs for the 3 terminal utility nodes. They are

(UA, UB) = (+10, 0), (+30,+10) and (−10,+10).

If at D2(A), A has chosen D2(A) = 1 (the upper edge emanating from the
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D2(A) vertex), then at D2(B), A believes that B needs to choose a decision

D2(B) = 1 or 2 based on whichever of

p(X4 = 1 | X3 = 1, D2(A) = 1, D2(B) = 1)× 0

+ p(X4 = 2 | X3 = 1, D2(A) = 1, D2(B) = 1)×+10

and p(X4 = 1 | X3 = 1, D2(A) = 1, D2(B) = 2)× 0

+ p(X4 = 2 | X3 = 1, D2(A) = 1, D2(B) = 2)×+10

is greater. A similar expression exists for if A has chosen D2(A) = 2.

In deciding on an action at D2(A), A assumes that B will act rationally at

D2(B). If we denote by d12(B) & d22(B) the rational decisions of B (as perceived

by A) at D2(B) given that A chose D2(A) = 1 or D2(A) = 2, then A needs to

choose a decision D2(A) = 1 or 2 based on whichever of

p(X4 = 1 | X3 = 1, D2(A) = 1, D2(B) = d12(B))×+10

+ p(X4 = 2 | X3 = 1, D2(A) = 1, D2(B) = d12(B))×+30

and p(X4 = 1 | X3 = 1, D2(A) = 1, D2(B) = d22(B))×+10

+ p(X4 = 2 | X3 = 1, D2(A) = 1, D2(B) = d22(B))×+30

is greater. Similar decision rules can be generated for B at each D1(B) vertex

and for A at D1(A).

From A’s perspective, B’s decisions at the D2(B) vertices reduce to choosing

the action which will lead to the higher conditional probability that X4 = 2;

and there are similar simple interpretations of decisions at other points in the

graph, so even if the players have no software for processing the information

stored in the graph, they can make their choices very quickly.

Starting with the CEG in Figure 4 and populating it with B’s own utilities

and beliefs about A’s utilities, B can produce their own simplified CEG from

which they can discover their own optimal decision rule in an exactly analogous

manner.

As with the simplification process described in section 3.3, the algorithm

given in Table 2 can be easily adapted for use with multi-player adversarial
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games.

4. Discussion

The example in section 3 illustrates how Bayesian game theory can be used

in constructing models of competitive environments based on the impact the

likely rationality of players might have on the structure of the game. Once the

class of models consistent with this structure has been identified, we can use

standard Bayesian techniques to estimate its parameters. Bayesian game theory

can thus be used to enhance and complement a Bayesian analysis, making it

more plausible from a perspective of mutual rationality.

Structural reasoning, such as common knowledge assumptions and the idea

of parsimony, gives ways to deduce simplified forms of the players’ decision rules.

Distributions for our supported player’s opponent can then be elicited, based,

for example, on their previous acts and what our supported player believes

the distributions of the outcome variables to be. This then gives a standard

decision CEG to solve, but one that recognises the more plausible structural

common knowledge and is fashioned to be consistent with this. Alternatively,

in the special case where the players really do believe that they can assess their

opponent’s utility function accurately and both players agree on the probability

assignment, then we can simply proceed in a standard game-theoretic way: we

add this extra information to the common knowledge base, and seamlessly apply

this to compute a solution of the game. Note that in this case our prior structural

analysis has helped because it has prevented us engaging in elicitation activities

which subsequently prove to be superfluous

As noted in section 3.4, our approach needs to be supplemented by some form

of sensitivity analysis. How robust is our solution to differences between our

supported player’s assessments of probabilities and her opponents’ judgments,

and other plausible values of these probabilities and judgments? Alternatively,

our supported player’s uncertainty regarding her opponent could be modelled

via some set of possible beliefs and preferences. Our calculations then include
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assigning probabilities to the elements of this set. In this scenario, both our

solution and solution concept would be different, each belief and preference

yielding a different Nash equilibrium. We leave further discussion of both these

ideas to a future paper.

Our example is obviously a simplification of the real game played between

governments and radicalisers, but is sufficiently detailed both to show how the

asymmetry powers the analysis, and describe in essence how such games func-

tion. One thing that the many similar real games have in common is that at a

population level there are people who if caught & dealt with early, will never

become involved in anything anticonstitutional again, and those for whom it

really is a game, and for whom such interventional methods will not work. The

constitutional organisation needs to decide whether to concentrate on the former

group of people (on the grounds that they will get greater reward for doing so)

or the latter group (who perpetuate the game). Their utility will be a function

of the risks inherent in either strategy.

As we observed in section 3.1, our example could be thought of as a four

player game. If we interpret it as such, we would need our supported player A

to consider the utilities also of VP and RG. We would also have decision nodes

associated with both VP and RG. We have confined ourselves to two players here

simply for illustrative convenience, and to demonstrate the power and simplicity

of the method. It would be straightforward to extend the methodology to three,

four or more players. Little modification is needed – the graph is simplified

following the same rules, and in the rollback required for maximum expected

utility calculations, the utilities to be maximised will (still) be those of whichever

player has to make a decision at that point.

We have also confined ourselves here to an adversarial game (of the sort de-

scribed in the introduction), but we believe there is scope for adapting the ideas

and techniques to the modelling of other forms of games such as those involving

oligopolistic competition. If we were to interpret the game in our example as

a four player game, then there would probably be some degree of cooperation

or collusion between some of the players, particularly between A and RG. It is
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unlikely that this would have much effect on the iterative simplification process

described in section 3.3, but it would require some modification to the solution

algorithm of section 3.4. At A’s decision nodes, A might wish to choose actions

which maximised some function of their own utility and RG’s utility, rather

than just their own utility.

In our example both A’s and B’s utilities depended on the chance variables

X3 andX4; and this was common knowledge. B’s utilities could however depend

on different variables to A’s, provided the dependence structure was common

knowledge. In the ID-representation of the game, this could be encoded by hav-

ing separate utility nodes for A and B. One way that this could be represented

in a CEG without increasing the topological complexity of the graph, would

be to keep the single collection of terminal utility nodes, each representing a

different utility pair; but read any conditional independence properties involv-

ing utilities on a player-by-player basis (as we did in the simplification process

in section 3.3). An alternative is to extend the CEG so that each UA utility

node is connected by a single edge to a UB utility node. There might then be

UA utility nodes that are in the same stage but not the same position. This

slight increase in complexity would be offset by still being able to read the full

conditional independence structure from the topology of the graph alone. Other

possibilities exist.

Another simplification in our modelling of the real game here is that we

have made it sequential. This is obviously unrealistic, as our players are likely

on occasion to make their moves simultaneously. This can be modelled sim-

ply in a MAID-based analysis, by having no edge between decision nodes be-

longing to different players when they act at the same time. Obviously, in a

CEG-representation one of these decisions must precede the other in the graph,

although the order does not have to be constant across the CEG. There is then

more than one possible Extensive Form ordering of the CEG. This scenario is

discussed for single-DM decision problems in [29], in the context of there being

more than one possible ordering of a pair of chance nodes, but the multi-agent

version would be an interesting area for further investigation.
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The use of tree models in decision analysis waned during the ascendancy of

ID-based representations and solution methods. Developments such as CEGs

and the types of graphical models described in [11, 12, 3] make this once-again

a particularly powerful modelling tool for decision problems, and as we have

shown here, for Bayesian games.
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