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Abstract

We consider the inverse problem of determining the time-dependent thermal conductivity
and the transient temperature satisfying the heat equation with initial data, Dirichlet
boundary conditions, and the heat flux as overdetermination condition. This formulation
ensures that the inverse problem has a unique solution. However, the problem is still
ill-posed since small errors in the input data cause large errors in the output solution.
The finite difference method is employed as a direct solver for the inverse problem. The
inverse problem is recast as a nonlinear least-squares minimization subject to physical
positivity bound on the unknown thermal conductivity. Numerically, this is effectivey
solved using the lsqnonlin routine from the MATLAB toolbox. We investigate the accu-
racy and stablity of results on a few test numerical examples.

Keywords: Inverse problem; thermal conductivity; heat equation; nonlinear optimiza-
tion.

1 Introduction

In inverse problems, the unknown densities or distributed source, or the coefficients in-
volved in the governing partial differential equation or in the boundary conditions for
a mathematical model under investigation are sought from additional information on
the main dependent variable solution of the original direct initial boundary value prob-
lem, [11]. In particular, the inverse problem of identifying the thermal diffusivity/ con-
ductivity from boundary data (temperature and partial heat flux) has been investigated
widely by many researchers in the past, see [1–3, 5–8, 12] to mention only a few. In this
paper, the novelty consists in the development of a convergent numerical optimization
method for solving this nonlinear but well-posed inverse coefficient problem for the heat
equation. Numerically, the implementation is realised using the MATLAB toolbox routine
lsqnonlin.

The paper is organized as follows. In Section 2, the mathematical formulation of the
inverse problem is presented. In Section 3, the numerical solution of the direct problem is
based on the finite difference method with the Crank-Nicolson scheme. In Section 4, the
minimization algorithm to solve the inverse problem is presented. The numerical results
are discussed in Section 5. Finally, conclusions are highlighted in Section 6.
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2 Mathematical formulation

In the domain QT = {(x, t)|0 < t < T, 0 < x < L}, we consider the inverse problem given
by the parabolic heat equation

∂u

∂t
(x, t) = a(t)

∂2u

∂x2
(x, t) + f(x, t), (x, t) ∈ QT , (1)

with known heat source f(x, t), unknown temperature u(x, t) and unknown thermal con-
ductivity a(t) > 0, t ∈ (0, T ], subject to the initial condition

u(x, 0) = φ(x), x ∈ [0, L], (2)

the Dirichlet temperature boundary conditions

u(0, t) = µ1(t), u(L, t) = µ2(t), t ∈ [0, T ], (3)

and the Neumann heat flux overdetermination condition

a(t)ux(0, t) = µ3(t), t ∈ [0, T ]. (4)

The uniqueness of solution of the inverse problem (1)–(4) has been established in [6] and
reads as follows.

Theorem 1. (Uniqueness). If 0 < µ3 ∈ C[0, T ], then a solution (a(t), u(x, t)) ∈
H1+α/2[0, T ]×H2+α,1+α/2(QT ), for some α ∈ (0, 1), a(t) > 0 for t ∈ [0, T ], to the problem
(1)–(4) is unique.

In this theorem, H1+α/2[0, T ] denotes the space of Hölder continuously differentiable
functions on [0, T ] with exponent α/2. Also, H2+α,1+α/2(QT ) denotes the space of contin-
uous functions u along with their partial derivatives ux, uxx, ut in QT , with uxx being
Hölder continuous with exponent α in x ∈ [0, L] uniformly with respect to t ∈ [0, T ], and
with ut being Hölder continuous with exponent α/2 in t ∈ [0, T ] uniformly with respect to
x ∈ [0, L]. Lower-order terms b(x, t)∂u

∂x
(x, t) + c(x, t)u(x, t), with b and c known functions,

can also be added to the right-hand side of equation (1), with no qualitative change in
both analytical and numerical analyses, [6].

3 Numerical solution of direct problem

In this section, we consider the direct initial boundary value problem given by equations
(1)–(3). We use the finite-difference method (FDM) with a Crank-Nicholson scheme, [10],
which is unconditionally stable and second-order accurate in space and time. The discrete
form of the direct problem is as follows. We denote u(xi, tj) = ui,j, a(tj) = aj, and
f(xi, tj) = fi,j, where xi = i∆x, tj = j∆t for i = 0,M, j = 0, N, and ∆x = L

M
,∆t = T

N
.

Then the problem (1)–(3) can be discretised as

−Aj+1ui−1,j+1 + (1 + Bj+1)ui,j+1 − Aj+1ui+1,j+1

= Ajui−1,j + (1− Bj)ui,j + Ajui+1,j +
∆t

2
(fi,j + fi,j+1), i = 1, (M − 1), j = 0, N, (5)

ui,0 = φ(xi), i = 0,M, (6)
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u0,j = µ1(tj), uM,j = µ2(tj), j = 0, N, (7)

where

Aj =
(∆t)aj
2(∆x)2

, Bj =
(∆t)aj
(∆x)2

.

At each time step tj+1, for j = 0, (N − 1), using the Dirichlet boundary conditions
(7), the above difference equation can be reformulated as a (M − 1)× (M − 1) system of
linear equations of the form,

Duj+1 = Euj + bj, (8)

where

uj+1 = (u1,j+1, u2,j+1, ..., uM−2,j+1, uM−1,j+1)
T,

D =















1 + Bj+1 −Aj+1 0 ... 0 0 0
−Aj+1 1 + Bj+1 −Aj+1 ... 0 0 0

...
...

...
. . .

...
...

...
0 0 0 ... −Aj+1 1 + Bj+1 −Aj+1

0 0 0 ... 0 −Aj+1 1 + Bj+1















,

E =















1− Bj Aj 0 ... 0 0 0
Aj 1− Bj Aj ... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 ... Aj 1− Bj Aj

0 0 0 ... 0 Aj 1− Bj















,

and

bj =















∆t
2
(f1,j + f1,j+1) + Ajµ1(tj) + Aj+1µ1(tj+1)

∆t
2
(f2,j + f2,j+1)

...
∆t
2
(fM−2,j + fM−2,j+1)

∆t
2
(fM−1,j + fM−1,j+1) + Ajµ2(tj) + Aj+1µ2(tj+1)















.

The numerical solution for heat flux in equation (4) on the interval t ∈ [0, T ] is given
by

µ3(tj) = a(tj)ux(0, tj) =
(4u1,j − u2,j − 3µ1(tj))aj

2∆x
, j = 0, N. (9)

4 Numerical approach to solve the inverse problem

The nonlinear inverse problem (1)–(4) can be formulated as a nonlinear minimization of
the least-squares objective function

F (a) := ‖a(t)ux(0, t)− µ3(t)‖
2, (10)
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the discretizations of which is

F (a) =
N
∑

j=1

[

ajux(0, tj)− µ3(tj)
]2

, (11)

where a = (aj)j=1,N ∈ R
N
+ .

The minimization of (11) is performed using the MATLAB toolbox routine lsqnonlin,
which does not require supplying by the user the gradient of the objective function, [9].
This routine attempts to find the minimum of a sum of squares by starting from the
arbitrary initial guesses a(0) for a. We have compiled this routine with the following spec-
ifications :

• Algorithm is the Trust Region Reflective (TRR) minimization, see [4].

• Number of variables M = N.

• Maximum number of iterations, (MaxIter)= 400.

• Maximum number of objective function evaluations, (MaxFunEvals)= 102×(number
of variables.)

• Termination tolerance on the function value, (TolFun) = 10−20.

• x Tolerance, (xTol)=10−20.

5 Numerical results and discussion

In this section, we present a few test examples in order to test the accuracy and stability
of the numerical method introduced in Section 4. The root mean square error (rmse) is
used to evaluate the accuracy of the numerical results as follows:

rmse(a(t)) =

√

√

√

√

1

N

N
∑

j=1

(

anumerical(tj)− aexact(tj)
)2

. (12)

The inverse problem (1)–(4) is solved subject to both exact and noisy heat flux mea-
surements (4). The noisy data are numerically simulated as

µǫ
3(tj) = µ3(tj) + ǫj, j = 1, N, (13)

where ǫj are random variables generated from a Gaussian normal distribution with mean
zero and standard deviation σ given by

σ = p× max
t∈[0,T ]

|µ3(t)|, (14)

where p represents the percentage of noise. We use the MATLAB function normrnd to
generate the random variables ǫ = (ǫj)j=1,N as follows:

ǫ = normrnd(0, σ,N). (15)
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The total amount of noise ǫ is given by

ǫ = |ǫ|=

√

√

√

√

N
∑

j=1

(µǫ
3(tj)− µ3(tj))2. (16)

In all the numerical results presented below we take L = T = 1. We also take the
initial guess for the unknown thermal diffusivity a(t) equal to the constant a(0), which
from the compatibility of the conditions (2) and (4) at t = 0 is known and given by
a(0) = µ3(0)/φ

′(0).

5.1 Example 1

In this example, we consider the inverse problem given by (1)–(4) and the input data

φ(x) = u(x, 0) = 2x− x2
(

x+
1

2

)2

, (17)

µ1(t) = u(0, t) = 2t−
t2

4
, µ2(t) = u(1, t) = 2 + 2t−

9

4
(1 + t)2, (18)

f(x, t) = 2−2
(

x+
1

2

)2

(x+ t)− (1+ t)
(

−2
(

x+
1

2

)2

−8
(

x+
1

2

)

(x+ t)−2(x+ t)2
)

, (19)

µ3(t) = a(t)ux(0, t) = (1 + t)
(

2−
1

2
t− t2

)

. (20)

It can be easily checked by direct substitution that the analytical solution of the inverse
problem (1)–(4) with the input data (17)–(20) is given by

u(x, t) = 2t+ 2x−
(

x+
1

2

)2

(x+ t)2, (21)

and
a(t) = 1 + t. (22)

First, we assess the convergence and accuracy of the FDM solver of Section 3 for
solving the direct problem (1)–(3). Figure 1 shows the numerical heat flux in equation (4)
in comparison with the exact solution (20) obtained by solving the direct problem (1)–
(3) with the input data (17)–(19) and (22) using the FDM, described in Section 3, with
M = N ∈ {10, 20, 40}. Form this figure it can be seen that the good agreement between
the exact solution (20) and the numerical one is obtained and its order is O((∆x)2), as
the mesh size decreases.

We now fixM = N = 40 and try to recover the unknown thermal conductivity a(t) and
the temperature u(x, t) for exact input data, i.e. p = 0, as well as for p ∈ {5%, 10%} noisy
data. The objective function (11) is plotted, as a function of the number of iterations, in
Figure 2. From this figure, it can be seen that a very fast convergence is achieved in about
8 to 21 iterations to reach to a very low value of O(10−26). The related numerical results
for a(t) and u(x, t) are presented in Figures 3 and 4, respectively. From these figures it
can be seen clearly that there is good agreement between the numerical results and the
analytical solutions for exact data, i.e. p = 0, and is proportionate with the errors in
the input data for p > 0. The numerical solutions for a(t) and u(x, t) converge to their
corresponding exact solutions in equations (21) and (22), as the percentage of noise p
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decreases from 10% to 5% and then to zero.
For completeness, other the details about number of iterations, the number of function

evaluations, the value of the objective function (11) at final iteration, the rmse in (12)
and the computational time are given in Table 1. From this table it can be seen that
accurate and stable numerical results are rapidly achieved by the iterative MATLAB
toolbox routine lsqnonlin.
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Figure 1: The exact (equation (20)) and numerical solutions for the heat flux (4), for Example

1 with M = N ∈ {10, 20, 40}, for the direct problem.
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Figure 2: Objective function (11), for Example 1 with p ∈ {0, 5%, 10%} noise.
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Figure 3: The exact (equation (22)) and numerical solutions for the thermal conductivity a(t),

for Example 1 with p ∈ {0, 5%, 10%} noise.
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Figure 4: The exact (equation (21)) and numerical solutions for the temperature u(x, t), for

Example 1, with (a) no noise, (b) p = 5% noise, and (c) p = 10% noise. The absolute error

between them is also included.
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Table 1: Number of iterations, number of function evaluations, value of the objective
function (11) at final iteration, rmse(a) and computational time, for Example 1.

Numerical outputs p = 0 p = 5% p = 10%
Number of iterations
Number of function evaluations
Value of objective function
(11) at final iteration
rmse(a)
Computational time

9
420
7.2E-26

1.6384
6 mins

12
504
8.2E-26

1.8420
7 mins

21
924
7.8E-3

2.3598
13 mins

5.2 Example 2

We now consider recovering a non-smooth thermal conductivity, as given by equation (25)
below. We take input data given by (17), (18),

f(x, t) = 2−2
(

x+
1

2

)2

(x+t)−
(∣

∣

∣
t−

1

2

∣

∣

∣
+
1

2

)(

−2
(

x+
1

2

)2

−8
(

x+
1

2

)

(x+t)−2(x+t)2
)

, (23)

and

µ3(t) = a(t)ux(0, t) =
(

2−
1

2
t− t2

)(∣

∣

∣
t−

1

2

∣

∣

∣
+

1

2

)

. (24)

Then the analytical solution of the inverse problem (1)–(4) with this input data is given
by (21) for the temperature u(x, t) and

a(t) =
∣

∣

∣
t−

1

2

∣

∣

∣
+

1

2
(25)

for the thermal conductivity.
Figure 5 shows the numerical heat flux in equation (4) in comparison with the exact

solution (24) obtained by solving the direct problem (1)–(3) with the input data (17),
(18), (22) and (23) using the FDM, described in Section 3, with M = N ∈ {10, 20, 40}.
From this figure it can be seen that the good agreement between the exact solution (24)
and the numerical one is obtained and its order is O((∆x)2), as the mesh size decreases.

We now fix M = N = 40 and try to recover the thermal conductivity a(t) and the
temperature u(x, t) for exact input data, i.e. p = 0, as well as for p ∈ {1%, 3%} noisy
data. The objective function (11) is plotted, as a function of the number of iterations, in
Figure 6. From this figure, it can be seen that a very fast convergence is achieved in about
7 to 11 iterations to reach to a very low value of O(10−27). The related numerical results
for a(t) and u(x, t) are presented in Figures 7 and 8, respectively. From these figures it
can be seen clearly that there is good agreement between the numerical results and the
analytical solutions for exact data, i.e. p = 0, and is proportionate with the errors in
the input data for p > 0. The numerical solutions for a(t) and u(x, t) converge to their
corresponding exact solutions in equations (25) and (21), as the percentage of noise p
decreases from 3% to 1% and then to zero.
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Figure 5: The exact (equation (24)) and numerical solutions for the heat flux (4), for Example

2 with M = N ∈ {10, 20, 40}, for the direct problem.
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Figure 6: Objective function (11), for Example 2 with p ∈ {0, 1%, 3%} noise.
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Figure 7: The exact (equation (25)) and numerical solutions for the thermal conductivity a(t),

for Example 2 with p ∈ {0, 1%, 3%} noise.
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Figure 8: The exact (equation (21)) and numerical solutions for the temperature u(x, t), for

Example 2, with (a) no noise, (b) p = 1% noise, and (c) p = 3% noise. The absolute error

between them is also included.

Other details about number of iterations, the number of function evaluations, the value
of the objective function (11) at final iteration, the rmse in (12) and the computational
time are given in Table 2. From this table it can be seen that accurate and stable numerical
results are rapidly achieved by the iterative MATLAB toolbox routine lsqnonlin.
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Table 2: Number of iterations, number of function evaluations, value of the objective
function (11) at final iteration, rmse(a) and the computational time, for Example 2.

Numerical outputs p = 0 p = 1% p = 3%
Number of iterations
Number of function evaluations
Value of objective function
(11) at final iteration
rmse(a)
Computational time

7
336
2.2E-26

0.0325
4 mins

7
336
4.2E-26

0.2123
4 mins

11
504
9.4E-27

0.6643
6 mins

5.3 Example 3

Consider the inverse problem (1)–(4) with the input data

φ(x) = u(x, 0) = sin(πx), µ1(t) = µ2(t) = 0, f(x, t) = 0, (26)

µ3(t) = a(t)ux(0, t) = π(1.01 + sin(3πt)) exp
[

− π2
(

1.01t+
1− cos(3πt)

3π

)]

. (27)

The exact solution for the temperature u(x, t) is

u(x, t) = sin(πx) exp
[

− π2
(

1.01t+
1− cos(3πt)

3π

)]

, (28)

and for the thermal conductivity a(t) is

a(t) = 1.01 + sin(3πt). (29)

This example was considered in [12] and we generate the noisy heat flux measurement (4)
for this example as in [12] as multiplicative (rather than additive as in (13)), namely,

µǫ
3(tj) = µ3(tj)(1 + pǫj), j = 1, N, (30)

where p represents the percentage of noise and ǫ = (ǫj)j=1,N , is a random real number
between [−1, 1] generated from uniform distribution using MATLAB function rand as

ǫ = 2× rand(1, N)− 1. (31)

The objective function (11), as a function of the number of iterations is shown in
Figure 9 with no noise and with various mesh sizes. From this figure it can be seen
that very low converging values of the monotonically decreasing objective function F in
(11) are achieved. The corresponding numerical results for a(t) are compared with the
analytical solution (29) in Figure 10, with the numerical details included in Table 3. From
this figure and table it can be seen that the numerical solution for a(t) converges to exact
solution (29), as the mesh size decreases.
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Figure 9: Objective function (11), for Example 3 with no noise and with M = N ∈ {20, 40, 80}.
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Figure 10: The exact (equation (29)) and numerical solutions for the thermal conductivity a(t),

for Example 3 with no noise and with various mesh size M = N ∈ {20, 40, 80}.

Table 3: Number of iterations, number of function evaluations, value of the objective
function (11) at final iteration, rmse(a) and the computational time, for Example 3 with
various mesh size M = N ∈ {20, 40, 80} and with no noise.

Numerical outputs M = N = 20 M = N = 40 M = N = 80
Number of iterations
Number of function evaluations
Value of objective function
(11) at final iteration
rmse(a)
Computational time

301
6644
5.7E-30

0.1977
6 mins

201
16884
6.4E-29

0.0634
478 mins

401
32964
3.4E-28

0.0170
10 hours

When we include various levels of noise p ∈ {1, 3, 5}% as in (30) to the heat flux
measurement (4) we obtain stable results for the a(t) as thermal conductivity shown in
Figure 11. Furthermore, the results become more accurate as the amount of noise p
decreases. Numerical results are also comparable in terms of stability and accuracy with
those in [12] obtained using a totally different method.
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Figure 11: The exact (equation (29)) and numerical solutions for the thermal conductivity a(t),

for Example 3 with p ∈ {1%, 3%, 5%} noise and no regularization with M = N = 40.

6 Conclusions

This paper has presented the determination of the time-dependent thermal conductivity
from heat flux measurements in the one-dimensional parabolic heat equation. The re-
sulting inverse problem has been reformulated as a nonlinear least-squares optimization
problem, which has been solved using the MATLAB toolbox routine lsqnonlin. The nu-
merical results are shown to be stable and accurate. The inverse problem seems stable,
and hence, no regularization was found necessary to be employed.
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