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Abstract As tools and techniques to measure experi-
mental granular flows become increasingly sophisticated,

there is a need to rigorously assess the validity of the
approaches used. This paper critically assesses the per-
formance of Particle Image Velocimetry (PIV) and Par-

ticle Tracking Velocimetry (PTV) for the measurement

of granular flow properties. After a brief review of the

PIV and PTV techniques, we describe the most com-

mon sources of error arising from the applications of

these two methods. For PTV, a series of controlled ex-
periments of a circular motion is used to illustrate the
errors associated with the particle centroid uncertain-

ties and the linear approximation of particle trajecto-

ries. The influence of these errors is then examined in

experiments on dry monodisperse granular flows down

an inclined chute geometry. The results are compared

to those from PIV analysis in which errors are influ-

enced by the size of the interrogation region. While

velocity profiles estimated by the two techniques show

strong agreement, second order statistics, e.g. the gran-

ular temperature, display very different profiles. We

show how the choice of the sampling interval, or frame

rate, affects both the magnitude of granular temper-
ature and the profile shape determined in the case of
PTV. In addition, the determined magnitudes of gran-
ular temperature from PIV tends to be considerably

lower when directly measured or largely overestimated

when theoretically scaled than those of PTV for the

same tests, though the shape of the profiles is less sen-

sitive to frame rate. We finally present solid concentra-
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tion profiles obtained at the sidewalls and and exam-

ine their relationship to the determined shear rate and

granular temperature profiles.

Keywords Particle Image Velocimetry (PIV) ·
Particle Tracking Velocimetry (PTV) · Sources of
error · Granular flows

1 Introduction

The study of granular flows has become increasingly

popular in recent years. Such flows encompass both

granular chute flows for industrial applications and also

landslide and debris flows in the geophysical context. In

laboratory experiments, non-invasive measurements of

motion are usually obtained using imaging techniques

such as Particle Image Velocimetry (PIV) and Parti-

cle Tracking Velocimetry (PTV). These techniques are
broadly used to estimate the velocity of groups of par-
ticles or movement of single particles.

A number of investigations of granular flows in which

imaging techniques are used have been reported in the
literature. PIV applications include the works of [22,
48,28,38,43,25,5,14]. Studies that use PTV include the

works of [50,7,26,6,11,31]. PIV allows estimation of the
velocity by performing cross-correlation within interro-
gation regions of small tracer particles or particle tex-

ture. Improvement of this technique has been widely

reported in the literature (e.g. [3]) in the fields of fluid

mechanics ([1]) and geomechanics (e.g. [53,46]).
Another method of analysis developed for the case of

low seeding densities is PTV. This relies on the ability

to track individual particles, an attractive characteris-

tic for the study of granular flows. In the last decades,

efforts made to improve PTV together with relatively

recent algorithms have proved its reliability also at high
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densities. Therefore, PTV has become the main method

of choice to collect measurements from moving particle

flows.

Recent research has focused on describing granu-

lar flows according to their microscopic behaviour, e.g.,

when investigating the transfer of momentum caused

by the particle interactions via collisions. This concept

was first presented by [8] and later introduced in the
kinetic theory of granular gases ([36]). Since extension
of this theory to dense granular flows (e.g. [27]) there

has been the need to obtain measurements at particle

level. Information obtained at this level may be used

to improve and support fundamental works devoted to

the validation and refinement of both existing and new

theoretical models. However, without due caution the

applications of these techniques can result in misleading

interpretation of the physical quantities in question.

In this paper we do not describe in detail the variety

of PIV and PTV algorithms that can be found in the

literature, rather we focus our attention on simple but

important experimental parameters. Indeed, we show

here that the reliability of results is directly related

to such parameters as the temporal resolution (camera

frame rate) and the spatial resolution (pixel density) of

the measurements.

The primary motivation for this work is to begin to
develop basic guidelines which may be adopted when

PIV and PTV are employed to investigate granular
flows. We first give a general introduction of PIV fol-
lowed by a more exhaustive description of PTV. Then
we present the most relevant sources of error arising

from the application of these two techniques. Here the

methods we have devised to compensate for PTV errors

are also explained. Finally, we examine the performance

of these two approaches to the descriptions of dry gran-
ular flows down an inclined chute geometry.

2 Review of PIV and PTV methods

While three-dimensional PIV and PTV have been pro-

posed ([33,42]), here we focus only on their two-dimensional

implementations, i.e., the computed displacement is ob-

tained in only two directions (e.g. streamwise and trans-

verse flow directions).
PIV and PTV are image velocimetry techniques that

were originally developed in the field of experimental

fluid mechanics for the study of single- and multi-phase

fluid flows. In this context the methodological princi-

ple is to add tracer particles to the flow, i.e. assuming

that they move under the action of the flow structure

of interest. While a fluid requires seeding with parti-

cles to create features upon which image processing can

operate, granular flows have their own texture in the

form of natural or idealized particles (usually spheres)
which can be individually tracked. With an appropri-
ate number of tracers or particles, a rigorous recon-

struction of the entire flow and its essential properties

can be achieved. The flow field is usually illuminated

by a source of light (lighting system or laser light) to

highlight the particle locations. A CCD or CMOS based

camera is then used to capture a sequence of images sep-

arated by a defined time interval. The displacement of a

characteristic interrogation region for PIV or a singular

particle for PTV is determined differently according to

the technique used.
PIV is a well-established technique and exhaustive

reviews may be found in the literature, for example, in

[4]. PIV invokes statistical methods to track the dis-

placement of a small group of particles. The common

approach is to divide the entire field-of-view into smaller

regions, called interrogation areas (or patches ([53]).
Extracting the displacement information between two
consecutive images is performed by cross-correlating

the interrogation areas at two sequential time steps us-

ing the calculation of correlation via Fourier Transform.

Eulerian velocity vectors of the assemble of particles in

the sub-images are provided in a regular raster by di-

viding each displacement by the time step chosen for
the acquisition.

An alternative image processing technique that is

suitable to obtain the velocity field is two-frame parti-
cle tracking via PTV. Generally, a particle image has a
brightness pattern with a peak near its centroid, with
brightness progressively decreasing one pixel away from

this peak. The process followed by PTV begins with the
individualization of particles and the estimation of their
centroids. Perhaps the simplest method for individual-

particle detection from the image intensity distribution

is the single-threshold binarization of a binarized im-

age, commonly referred to as image segmentation ([4]).

Once found the particle is labelled, its position is cal-

culated by means of a centre-of-mass estimator. This

method finds its best applications in low density flows

where the edge of each particle can be clearly identi-

fied. However, in dense granular flows, particles move

randomly creating a non-homogeneous distribution of

the intensity matrix over time. Moreover, due to the

high concentration, particles are prone to overlap, ap-

pearing with no sharp edges, leading to spurious detec-

tion or loss of the particle data. In order to handle such

cases and also situations where the particle images are

partly varied with respect to their size, mean brightness

level, and intensity-distribution profile, other methods

are available, such as dynamic threshold binarization

([34]) and particle-mask-correlation ([47]). In dynamic
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Fig. 1 Determination of the particle centroid. To find the the peak of the distributions, i.e. the centre coordinates, the
algorithm selected values (x-marks) of the intensity matrix are fitted by two curves (dashed-lines) in x- and y-direction, (a)
and (b), respectively.

threshold binarization, the binarization threshold is ad-
justed according to the mean intensity of each particle.
This is done in such a way that the contrast or differ-
ence with the image background is kept constant. For

the method to be successful the base threshold needs to

be always higher than the noise level. In the particle-

mask-correlation method, a Gaussian reference mask

(i.e. a matrix) is convoluted to the intensity distribu-
tion around each particle. The centroid of the parti-
cle is identified when the correlation value between the

mask and a sub-matrix, of the same size of the mask

and centred on each image pixel, is above a predefined

threshold level. Both methods, dynamic threshold bina-

rization and the particle-mask-correlation method, are

able to detect overlapped particles and can estimate
their centroid position with sub-pixel accuracy. How-
ever, their limitation lies in the fact that they assume

that the shape and intensity distribution is that of a

circular particle.

In case of dynamic threshold binarization, the sub-
pixel accuracy is achieved by using techniques similar to

the one used for the binary method (i.e. centre-of-mass
estimator). In the particle-mask-correlation method, the
threshold correlation level is chosen once, before the

analysis, and is taken to be representative of all image

particles. However, this can lead to uncertainties in the

particle centroid estimation due to differences in inten-

sity matrix of nearly overlapping particles and those at

the margins. An accurate estimation of the centroid po-

sition can be obtained by fitting a presumed functional

shape to the intensity matrix centred individually on

each particle. Generally, the estimate of a given param-

eter (e.g. the sub-pixel particle position) is attained by

minimizing the sum of the squared difference χ2 be-
tween the observation τ [m,n] in a MxN -pixel domain

and a suitable model h(X,Y ;θ) with respect to a pa-

rameter vector θ:

χ2 =
M
∑

m

N
∑

n

(

τ [m,n]− h(Xm, Yn;θ)

σm,n

)2

(1)

where σm,n is a weighting factor and τ [m,n] the pixel
intensities in the interrogation region. For circular par-

ticles the functional shape is well approximated by a

Gaussian distribution and the parameter vector would

consist of θ = (τ00, X0, Y0, d), that is, the amplitude

(τ00), a guessed particle location (X0, Y0) and the char-

acteristic diameter (d). The guessed particle location
can be acquired, for instance, by the use of one of the

other methods mentioned above. It may be expected

that the least-square fit in Eq. 1 will give very accurate

results in the case of low density flows. Conversely, in

highly concentrated flows the size and the shape of the

particle image are determined by the aforementioned

factors (e.g. random movement and particle overlap).
Care should be taken if the parameter estimates are
not near the minimum of χ2 or when a large number of

fitting parameters are used. Otherwise the result may
be an excessive increase in computational time which is
a major drawback of this method.

A characteristic application of this method is illus-

trated in Fig. 1. A guessed location is first generated us-
ing the particle-mask-correlation method by correlating
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the Gaussian reference matrix to the particle image. A

portion of the original image containing the particle of

interest is then extracted around this value (surround-

ing particles are masked out). This information is then

used as part of the parameter vector in Eq. 1. This equa-

tion enables the refinement of the guessed particle lo-

cation, yielding a higher precision estimate. During the

processing of the data, curves based on the presumed
functional shape are fitted to the intensity sub-matrix
(each curve gives the centroid coordinate in respect of

one axis). The process stops when the sum of squared

residuals (i.e. the difference between an observed value

and the fitted value provided by the model) is mini-

mized.

Once the particle positions are found and stored,

the next step is to track a large number of particles

over time in order to achieve high spatial resolution

(in the limiting case of steady flows) and obtain accu-

rate results. Low seeding densities has generally been

deemed the limiting case for PTV and the challenge

of the tracking algorithms for use in measuring gran-

ular flows has been to achieve applicability to much

higher particle densities. To do this, different tracking

algorithms have been proposed, for example, [17] pro-

posed a hybrid technique that uses PIV results to guide

the particle matching algorithm and more recently [13]

presented a two-stage integrated approach that com-

bines cross-correlation with a relaxation algorithm. In
the latter, during the cross-correlation phase the inter-
rogation windows are centred on each particle candidate
in the first image and a particle match is found in the

second image when the highest correlation coefficient

is detected. However, particle patterns associated with

the interrogation areas can suffer from strong deforma-

tion due to non-linear gradients in the field. The con-
sequence is a drop in the correlation level which would
decrease the reliability of the PTV analysis. To improve

the performance, the relaxation method is then applied

to those unmatched candidates that were disregarded

during the cross-correlation phase. Hence this method

is based on the probability of particle matching between

two frames defined for every possible pair of particles.
This approach enables the particle-matching probabil-
ity to be updated using the probabilities of the neigh-

bouring particles which are then iterated until all the

probabilities remain almost constant ([34]). This strat-

egy was found to be effective in establishing the correct

inter-particle links from the others, as was shown by a

higher value of the yield parameter Yi ([24]) compared

to similar approaches. The yield Yi is obtained from

synthetic benchmark studies and it is defined as the

ratio between the known number of particle displace-

ments available between two images and the valid dis-

placements recovered from the images. Ultimately, the

merits of this specific algorithm are its applicability to
complex flows with local shearing boundaries and rela-
tively strong velocity gradients. For a complete review

the reader may refer to [13].

So far we referred exclusively to two-frame meth-
ods where measurements are taken between recordings

separated by two different acquisition times. The op-

erational principle of these methods differs from multi-

frame approaches where information over more than

two successive frames is required. Multi-frame PIV has

been proposed ([21]) primarily with the scope of in-

creasing the dynamic velocity range (the ratio of the

maximum velocity to the minimum resolvable velocity

([2]) in PIV. However this technique requires limited

out-of-plane loss-of-correlation and good quality images

to produce enhanced measurement accuracy. Multi-frame

methods can also be applied to PTV ([16]) to reduce

the relative error on the measured displacement and to
enhance the robustness of the image particle pairing.
Similarly to PIV they suffer from the loss of particle im-

age pairs at the image margins. This inconvenience can

be overcome, however, in the case of volumetric mea-

surements therefore making it particularly suitable for

three-dimensional PTV ([16]). Multi-frame methods are

an attractive alternative that can be used to improve
the performance of the algorithms, however measure-
ment uncertainties are still associated with the centroid

estimation and the choice of the optimal temporal sep-

aration of the recordings.

3 Unit description

In the following the analyses refer to particles of the

same size with a characteristic mean diameter d′=1.5

mm and using the gravitational acceleration g′ = 9.81

ms−2. Our results are given in nondimensional form by

defining the following normalization for the distances,

times, velocities, granular temperatures (a measure of

the velocity fluctuations) and shear rates: d = 1, t =

t′/
√

d′/g′, V (u,v) = V ′

(u,v)/
√
g′d′, T = T ′/g′d′ and γ

= γ′ ·
√

d′/g′, where t′,V ′, T ′ and γ′ indicate the re-

spective dimensional forms.

4 Experimental investigation of sources of error

Without due caution, PIV and PTV can generate er-

rors that severely affect the results. While the complete

removal of these is practically impossible, some useful

guidelines can be followed to minimize them. Here we

briefly summarize some notions of PIV analysis useful
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Fig. 2 Particle position uncertainties associated with a single particle undergoing a circular motion. Data are shown for two
different rotational velocities: ≈ 2.9 (◦) and ≈ 5.8 (△). (a) Uncertainty versus particle diameter; (b) ratio of uncertainty to
respective particle diameter. For particle tracking the minimum error is found when the particle image is 3 pixels in diameter.

to obtain valid results while more in-depth experimen-

tal investigations are described for PTV.

4.1 PIV error type and reduction

Although PIV has been mainly implemented for fluids

and for pseudo-static geotechnical problems, we report

here a common framework which we hope may also help

the analysis of granular flows. The choice of the interro-

gation window size (or patch) has a strong influence on

the PIV results ([23]). This parameter would depend

on the experimental conditions (i.e lighting, texture,

etc.) and the particle diameter. In the simple case of

monodisperse flows, to increase the level of accuracy

it is necessary to increase the image density Ni, i.e.,
the mean number of particles per interrogation win-

dow. The signal strength (the peak of the correlation

matrix) increases when the number of particle images

in the interrogation domain increases. Also the noise

(i.e. the random correlations) is expected to increase in

proportion to the image density. However, when the cor-

relation is normalized with respect to the highest peak,

the relative noise level (defined as the highest random

correlation peak) decreases with increasing Ni. Exami-
nation of the normalized correlation function has shown

that for a correct peak detection, the mean number of

particles per interrogation area should vary between 5

and 10 ([4]). Additionally, empirical estimates for the

optimal particle image diameter suggest a range that

varies from 2 to 4 pixel units ([37,17]). Note that this

is maybe true for spherical particles, although other

particle shapes are also possible.

The boundaries of a granular flow can be frictional

and generate local shearing. For instance, granular flows

down chute geometries with highly frictional bottom

boundaries form shearing layers, producing an in-plane

velocity gradient. For methods that use standard static

spatial domain correlation (i.e. when the shape of the

interrogation region is fixed) in the vicinity of the bot-

tom boundary, faster particles may leave the sub-images

and the remaining slower particles act to generate in-

plane loss-of-correlation, hence biasing the displacement

estimates. Following [29] we will refer to this as gradi-

ent biasing. To reduce this error, the experimenter may

resort to algorithms that allow iterative sub-image de-

formation ([40,41]). This type of scheme starts with a

standard static correlation pass over the entire image.

This pass then provides an initial estimated displace-

ment vector for each node (nodes are found in the cor-

ners and the centre of the sub-image). The results are

then used to determine the amount by which to dynam-

ically deform the second sub-image. In highly sheared

flows the interrogation accuracy and robustness is sig-

nificantly improved. However, the computational cost is

generally increased owing to the iterative structure of
such advanced algorithms, and by the additional image
re-sampling process ([41]).

4.2 PTV error type and reduction

PTV does not suffer from gradient biasing since parti-

cles are tracked individually and the particle image is

not affected by displacement gradients. However, PTV

operations inherit two main sources of error, namely

the inaccuracy in determining a particle position and

errors arising from the linear approximation of the par-

ticle trajectory during the time taken to move from

one image to the next. Here we describe the errors and

simple investigations designed to determine their mag-

nitude in more detail.
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of 〈KE〉 is compared with the true kinetic energy KEtrue = m|Vp|

2/2 for different sampling intervals (∆t). Positive errors
due to particle position uncertainties arise at small ∆t (i.e. fast frame rate) whereas negative errors originate as a result of
particle acceleration at large ∆t (i.e. slow frame rate). The dashed-line in the negative region represents errors produced by
particle acceleration only. There is a range (shaded area) along the zero-error line where the total error should be the smallest.

4.3 Particle position error

Particle position error can induce unrealistic distur-

bances to the measured velocity field. It is likely to be

significant at very high acquisition rates due to the large

relative errors induced by the centroid estimates in the

total displacement. In Sec. 2 it was pointed out that

there are different algorithms to detect particles and

determine their locations. [17] suggested that the opti-

mal algorithm may also be a function of particle image

diameter (i.e. the diameter of the particle in number

of pixels). Based on this consideration, we experimen-

tally investigated the effect of particle size on centroid-

detection error during a rotational motion. The mo-

tivation for using a circular motion was to facilitate

the experimental procedures hence allowing changes in

lighting conditions and camera settings while isolating
the motion of an individual particle and providing the
possibility of changing its position (or radius) with re-
spect to the centre of the circular motion.

An aluminium disk covered with matt black paint

was mounted on an electric motor to allow for rotation.
A single white spherical particle taken from our exper-

imental monodisperse flows (see Sec. 4) was then glued
onto the disk contrasting with the dark background.
Knowing the radius of the particle from the midpoint of
the disk allowed a comparison to be made of the mea-

surements with the true particle positions during the

circular motion. Measurements were taken for different

particle image diameters by outdistancing the camera.

We varied the rotation speed and the acquisition fre-

quency and found that they had negligible effect on the

centroid-detection error magnitude. In addition, the re-

sults from the particle-mask-correlation method alone

and its implementation with a least-square fit collapsed

onto the same curves.

Fig. 2 (a,b) presents data for two rotational speeds.
Note that in Fig. 2 (a) a minimum error is found for a

particle image diameter of 3 pixels. That is, when the
particle is approximated by an intensity profile which
spans 3 pixels in diameter and with an intensity peak
located in its centre, the sub-pixel position estimated

using the three-point Gaussian approach performs best.

For smaller diameters, measurements are primarily in-

fluenced by pixel-locking, whereas for larger diameters,

the Gaussian fit tends to be skewed, acting to bias the

particle positions. At 3 pixels we expected the mag-

nitude of the RMS error to be close to zero, however,

added to the uncertainties of the particle-mask-correlation

method is a slight eccentricity of the disk that affected
all of our measurements. A further control depicted in
Fig. 2 (b) was made by dividing the uncertainty by

the respective particle diameter. This plot shows that 3

pixels is again the minimum size of particle that should

be considered. The ratio being somewhat flat for di-

ameters larger than 3 pixels suggests that the result is

insensitive to the choice of particle image larger than

this value.



Performance of PIV and PTV for granular flow measurements 7

4.4 Linear approximation error

The second source of error is associated with the accel-
eration of the particles, i.e. that the real particle tra-

jectory is approximated by linear displacement. This

error is strongly affected by the choice of the acquisi-

tion frequency (or frame rate). [19] pointed out that a

high frame rate is not always necessary to capture the

true behaviour of the process under analysis. The sim-
plest tracking method assumes that the particle trav-
els between two images in a straight line at a constant

speed. If the positions of a particle before and after

a time interval ∆t are ri and ri+1 respectively, where

ri = (xi, yi), then the velocity V i(ui, vi) can be esti-

mated as:

V i =
ri+1 − ri

∆t
(2)

In the work of [19] a uniform circular motion was
used to show the error arising from the particle accel-

erations. Assuming zero position error, at large ∆t the

two-frame tracking method in Eq. 2 approximates this

ideal circular motion to that of a polygon. At smaller

∆t, the polygon has more sides, resembling the circle

more closely.

When the particle position uncertainties are added
to the process, the polygon deforms in a manner pro-

portional to the magnitude of the error. Motivated by

this and having information about the particle position

errors from our previous analysis, we reproduced an

experiment similar to that of [19]. A simple simulation

was carried out where a single particle performs a uni-

form circular motion. A position error with maximum

magnitude equivalent to that at 3 pixels, as in Fig 2,

was randomly added to the particle. The distorted po-
sitions of the particle were updated during motion and
recorded at different sampling intervals ∆t. The veloc-

ity calculated in Eq. 2 was then used to compute a time

series for the kinetic energy, KE(t) = m|V(t)|2/2, and
the ensemble average, 〈KE〉, was extracted over 1000
circular periods. The values of 〈KE〉 were then com-

pared to the true kinetic energy KEtrue = m|Vp|2/2,
where Vp is the selected particle velocity having zero

position error (i.e. the radius is constant).

We varied the radius of the particle from the centre

in order to change the magnitude of Vp under the same

experimental condition. The influence of the sampling
interval ∆t was also analysed. The choice of differing

radius, and as a consequence Vp, is based on the fact
that in a typical free-surface granular flow the velocity
profile changes with depth, i.e. a typical measurement

is exposed to a large dynamic range. We chose three

different velocities Vp, and radii representative of our

experiments: 4.1 at 6.7d, 8.2 at 13.3d, and 12.8 at 20d,

respectively. The data produced from these simulations

are reported in Fig. 3.
Fig. 3 is useful to illustrate the combination of er-

rors. Positive errors that increase the measured KE

above the true value, above the zero-error line, origi-

nate due to the enhanced influence of centroid detec-

tion errors relative to the total displacement between

two time intervals. This issue becomes increasingly se-

vere for small sampling intervals (i.e. fast frame rate).

Conversely, negative errors that decrease the measured

KE are mainly due to the error involved in approximat-

ing the particle displacements to a straight line (Eq. 2).

It is evident that for large sampling intervals, the real

particle trajectories developed during their normal evo-
lution is non-linear (e.g. curved). This means that the
movement is under sampled and as a consequence it
can result in a strong aliasing of the measured position

signal. For reference, the dashed-line in Fig. 3 repre-

sents the error due to this effect only. This source of

error is effective for large ∆t (i.e. for slow frame rate).

However, there is a value of ∆t when the data crosses
the zero-error line, that corresponds to the minimiza-

tion of errors. Such information can be used to help the

choice of a sampling interval that reduces the total er-

ror within the range of velocities considered for a given

experiment.
The velocities Vp analysed here with their respec-

tive radii yield a sampling interval that ranges approx-

imately between 0.26 and 0.54 (shaded area in Fig. 3),

corresponding roughly to 150 fps (frames per second)

to 350 fps. Within these values the expected total er-

ror should be minimized. Notably, Fig. 3 suggests that

there is no unique value of ∆t suitable for examining
the whole of a granular flow. Best practice would then

require a combination of different acquisition frequen-
cies obtained by analysing different ROI at different∆t.

However, we also need to consider that in most phys-

ical experiments, particles do not experience the same

idealized circular motion as investigated here, with the

motion of individual particles varying from that of sur-

rounding ones. Hence, while the values reported in Fig.

3 have been used here to guide the choice of an indica-

tive initial (highest) frame rate before undertaking the

laboratory experiments on granular flow, they should

be treated with some caution.

From their simplified simulation, [19] proposed a

scheme to minimize the total error. The process should

be analysed not only at the initial frame rate but also
at different ∆t obtained by skipping frames (i.e. in-

creasing ∆t) from the original recording. This strategy

should continue until convergence to a single averaged
value for a quantity (e.g. 〈KE〉) is reached. For gran-
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Fig. 4 Inclined chute geometry developed for the study of
dry granular flows: (a) side view; (b) image detailed with
positioned particle centres captured in the fully developed
region of the flow.

ular flows, this is difficult to achieve, since as stated

above, the flow characteristics (e.g. velocity gradient)

vary with depth. A better choice would be to study the

convergence of the KE profile rather than an averaged

value. Analyses can be iterated by skipping frames un-

til a value of ∆t deemed close enough to those found

in Fig. 3 is reached. This unique value will not be the

correct one in all parts of the flow due to the change

of velocity with depth, however, by employing values

similar to those reported in Fig. 3 we can avoid using

overly slow or fast frame rates, i.e., falling into areas

where the error is severely dominated by particle posi-

tion or acceleration uncertainties.

4.5 Outlier removal

Even with the best practice, PIV and PTV can return

spurious vectors. However, there are a number of outlier

detectors that can be used to remove these. One of the

most commonly used is the median filter, also known

as universal outlier detection. This method is based

on defining a threshold value of the normalized resid-

ual velocity fluctuation of one data point relative to

its neighbourhood. The data point is rejected when its

residual is greater than the normalized residual thresh-

old. This approach is simple, computationally efficient

and universal ([18]). Another filter worth mentioning

is the mean local filter, which compares the direction

and magnitude of each velocity vector with the local

mean value of a pre-defined neighbourhood. This fil-

ter is very sensitive to the user-defined parameters re-

quired to consider a vector as outlier (size and number

of points within the neighbourhood, maximum magni-

tude and angle difference between points), which can

result in the elimination of a large number of correct

vectors. [52] and [51] give more information on these

two methods. In this paper these two filters were used

during the processing of the data as reported in Sec.

5.2.

5 Experimental investigation on free-surface

granular flows

5.1 Apparatus

The flume used in this study is a sloping rectangular 10
cm wide and 150 cm long channel that can tilt from hor-

izontal up to 45◦ (Fig. 4(a)). At one end, the material is
held inside a hopper, which can contain approximately

20 kg of material. A double-slider gate mechanism en-

ables control of the releasing flow height that develops

downstream. The basal roughness is created by gluing

the flume bottom with the same material used to repro-

duce the granular flows. The walls are made of Perspex

allowing observation at the sides. The sidewall surface
of the granular flow of interest is illuminated by two
50W DC LED floodlights and captured via a high-speed

camera (Phantom Miro 310).

The material used for the experiments was almost

spherical ceramic beads (Sigmund Lindner Gmbh). This
material was selected for several practical reasons: spher-

ical particles are used in the majority of granular flow
experiments, and accordant behaviour is assumed in
many theories, while particle tracking algorithms often

assume a spherical particle shape. The ceramic beads

were nominally 1.4 - 1.6 mm in diameter with a bulk

density of 2430 kg m−3. The static friction angle, de-
termined from a tilt test, was 24◦.

5.2 Outline of the PIV and PTV procedures

The high-speed camera was positioned and aligned with

the chute. Digital images of the moving mass were then
recorded with a resolution of 256 x 256 pixels. The
frame rate was varied: in this paper we report 1000

and 1400 fps as the maximum rate (∆t of 0.08 and ap-

prox. 0.06, respectively) depending on the velocity of
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the flow. For each flow, a time series lasting 2 s - or

t = 162 - (i.e. within the limit of our apparatus) was
extracted from the original recording in the fully devel-

oped, steady region of the flow, about 30 cm before the

outlet.

Following the scheme mentioned in Sec 4.2, we in-
vestigated the flows at the original frame rate and by

progressively increasing the sampling interval by skip-
ping one frame, i.e. doubling ∆t, in each previous set.

The additional frame rates obtained from the 1000 fps

case were 500 fps, 250 fps and 125 fps (∆t equal to 0.16,

0.32 and 0.64). Similarly, for the 1400 fps case, 700 fps,

350 fps and 175 fps (∆t of approximately 0.12, 0.24 and
0.46), were produced. Note that increasing ∆t to this

extent brings its values within the interval highlighted

in Fig. 3.

For the PIV analysis we employed the open source

algorithm PIVLab ([49]). This particular PIV method

uses a multi-pass approach to deform the interrogation

areas in the second pass based on the estimate obtained

in a previous one. For the multi-pass we selected 24 x

24 and 12 x 12 pixels, for the coarse and refined grid, re-

spectively. Hence the analysis includes a state-of-the-art

image deformation technique (e.g. [41]) which reduces

the error associated with the correlation calculation by

deforming the interrogation windows according to the

local velocity gradient (shear deformation). We did not

study the effect of smaller or larger areas on the results
as in all cases the signal to noise ratio, defined as the
ratio between the primary and secondary peaks in the
correlation plane, was always reliable.

For PTV, the particle-tracking algorithm proposed

by [13], briefly described earlier, was used. Upon the ap-
plication of the centroid estimators, the outermost faint

edges of the particles were removed by a morphological
image opening. To do this we allowed the particles to
have a diameter of approx. 5 pixel units. This conflicts
somewhat with the diameter by which a particle should

be approximated for a proper analysis in both PIV and

PTV (3 pixels as shown in Fig 2). However, diameters

smaller than 5 pixels would make the edges very diffi-

cult to recognize. Considering smaller particle diame-
ters, i.e. 3 pixels, the particles could still be separated
by a background subtraction. However, some particles

would then result in being incorrectly approximated by

single pixels and hence would be prone to pixel lock-

ing. For larger diameters, e.g. 5 pixels, the background

subtraction affects the estimation of the centroid posi-

tion only slightly. Following this procedure, the particle

diameters in the image frames were reduced from the

original 5 pixels down to approx. 3 pixels (e.g. see Fig.

1).

Although the particle images could be resized using

background subtraction in this way, the particle-mask-
correlation method alone still led to poor position es-
timates, due to the necessary thresholding used to re-
move the background. This was clearly revealed when

the centroids were plotted over several frames. However,
this information could be used to estimate particle lo-
cations for a least-squares method (e.g. as in Eq. 1), as

discussed earlier.

The functional model for Eq. 1 was a Gaussian dis-

tribution, in this case a good approximation due to the

spherical shape of the experimental material. The cho-

sen parameter vector was θ = (τ00, X0, Y0, d, ρ), where
ρ is an additional factor in radian units, which allows

for rotation of the pixel intensity grid associated with

each particle, thus compensating for the surrounding

particles. A sub-matrix was extracted from the origi-

nal image around the guessed location. The character-

istic brightness of a particle was isolated from the oth-
ers (each giving the centroid coordinate with respect to
one axis) and curves were fitted to the data (e.g. Fig.

1). This process was iterated for all the particles in the

image. This scheme rendered the system considerably

more stable over consecutive frames while improving

the localization of the particle centroids at the same

time.
The aforementioned processing steps were applied

automatically to all successive images in the sequence.

At a later stage, the tracking algorithm was initiated to

sequentially match the particles in each pair of consec-

utive frames, producing arrays of particle displacement

vectors. This arrangement was then filtered to remove

erroneous and spurious displacements that contaminate
the data by using the two filters mentioned in Sec 4.3.

Ultimately, both PIV and PTV require a transfor-

mation for relating information in pixels to physical
lengths. Prior to each experiment, a calibration grid
composed of regular circular marks spaced by 4 mm

was located at the wall exactly in the region of inter-

est. An image of this target grid was captured and the

coordinates of the calibration marks detected with sub-

pixel accuracy. These coordinates were then associated

with an undistorted grid (mm units) and then interpo-

lated by using the built-in Matlab function Scattered-

Interpolant ([12]). The latter is an approach based on

linear interpolation that uses Delaunay triangulation.

The displacements are converted into real world co-

ordinates and corrected for distortion induced by the

imaging device and the optical distortions induced by

the experimental facility.
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5.3 Data processing

Upon completion of the PIV and PTV analyses, the re-
sulting displacement data were used to compute the

corresponding instantaneous and mean velocities. In

PIV, the displacements obtained from cross-correlation

divided by the sampling interval yields the components

of the instantaneous velocity field (ui, vi), generally given

in a regular mesh partitioned into rows and columns.

The mean velocity is obtained as the temporal aver-

age of all velocities belonging to the same rows of in-

terrogation regions (or columns depending on the flow

direction) for the entire duration of the flow.

In PTV the in-plane instantaneous velocity is ap-

proximated by Eq. 2. Binning is then used to extract ve-

locity profiles. The flow is subdivided into non-overlapping

horizontal slices, typically of thickness one particle di-

ameter. The mean velocities are then constructed by

separately taking the ensemble-average velocities of each

bin in the two directions.
As a general reference the slope-parallel (stream-

wise) mean velocity component ū for each Kth bin/row
is given by:

ū =

∑i=1
Nk

(ui)k

Nk

(3)

where Nk is the total number of velocity vectors in the

Kth bin/row across the entire flow.

Another field property of interest in granular flows

is the square of the velocity fluctuation, also known

as the granular temperature. It provides a measure of

the energy associated with the fluctuating nature of the

granular motion, i.e. the agitation within the flow and

is of importance to the transfer of stress via collisions.

In this paper, we define granular temperature (T ) from

the measurement of fluctuation components. The slope-

parallel fluctuation component is given as:

(u∗

i )k = (ui)k − ūk (4)

The mean of the squares of this quantity is calcu-

lated for each bin/row as follows:

〈(u∗)2〉k =

∑i=1
Nk

[(u∗

i )
2]k

Nk

(5)

Eqs. 3, 4 and 5 similarly apply to the slope-normal
(transverse) velocity component v. The third compo-

nent of velocity w was not measured in these experi-

ments, thus the granular temperature is given as:

Tk =
1

2
〈[(u∗

i )
2]k + [(v∗i )

2]k〉 (6)

where the angle brackets denote ensemble averaging.
By following this definition, granular temperature has

units of squared velocity.

5.4 Estimation of density profiles

Measurements of solid concentration ν (or, alternatively,

porosity φ = 1− ν), defined as the ratio of volume oc-

cupied by the solid to the total volume, are useful to

examine the dependency of basic flow properties such

as velocity and granular temperature on ν. To date,

simple, cost effective and very accurate measurements

of this quantity are still challenging to reproduce, es-

pecially for dense and opaque systems. In the following

we describe simple methods used to estimate two- and

three-dimensional solid concentration profiles based on

image analysis and information obtained from the cen-

troiding procedure for PTV.

In our particular case, the fact that the flows are

made of spherical, nearly uniform, particles can be ex-

ploited to obtain concentration profiles. If the particles

can be visualized at a sufficient pixel scale, their edges

can be easily distinguished and an algorithm can be

used such as that based on the Hough transform for

finding circles in a image ([9]). While keeping the same

chute conditions (i.e. inclination and gate height), we

performed similar flows to those we used to measure

other properties derived from the velocity fields but

at a larger spatial resolution. In these experiments the

particles were approximated to ≈ 27 pixels in diame-
ter compared to the 5 pixels adopted to minimize the

particle position errors. This was necessary to improve
the robustness of the Hough transform detection and
remove spurious circular shapes developed at smaller
scales. Prior to the direct application of the Hough

transform, a morphological image opening was applied

to the image to enhance the foreground particles. The

particle circumferences of the first layer closest to the

side-wall were then outlined by the edge detector. Im-
ages were subdivided into bins (27 pixels in height),
which in turn allowed for the calculation of the particle
areas (the entire area or part if the particle was shared

across two bins). The sum of all areas divided by the

total area of the corresponding bin yielded the value of

two-dimensional solid concentration.

It should be noted that the results are affected by
the side-walls and may not represent accurately the lo-

cal solid concentration throughout. The algorithm also

is not able to isolate particles leaving the side-walls un-

less the particle partially disappears behind the first

layer. We assumed that the particles remained close

to the side-walls for a long enough period of time, al-

though this may not be the case, especially at steeper
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slopes. Furthermore, the algorithm has the tendency to

construct smaller circumferences than the real particle

edges leading to underestimations in the data with an

estimated error of up to 4%. To examine this we varied

specific parameters (e.g. the minimum and maximum

radii required for the detection of circles) which resulted

in slightly differences in magnitude of solid concentra-

tion while the profiles changed little.
In the three-dimensional case, concentrations may

be theoretically estimated from the point density of

visible particles per unit image surface ([1]). However,

this method is limited to sparse dispersions and be-

comes unsuitable for dense flows due to the prevalence

of occlusion effects ([15]). On the other hand, when the

mean interparticle distance becomes of the order of the

diameter (as in the case of dense systems) neighbour-

ing particles are forced to organize with respect to each

other into increasingly ordered assemblies. This creates

short-range correlations between grain positions allow-

ing the characterization of the local particle arrange-

ment with local descriptors, as proposed by [15]. The

ordering can be estimated based on the roundness of

the Voronöi polygons. From the centroiding procedure

for PTV (see Sec. 4.2), these can be constructed based

on the known position of each particle and those of the

surrounding ones. Depending on the local concentration

of the system each particle has its own configuration (a

polygon with a certain number of sides). The shape of
the polygon can then be related to the concentration via
a Voronöi-base indicator. This is provided by the ratio
ξ = 4πA/P 2, where A and P are the area and perimeter

of the polygon, respectively. Once the flow has been di-
vided into horizontal slices (or bins as described in Sec.
4.3) a local average value of ξ is obtained for a sufficient

number of individual polygons over time. This average
value (ξ̄) is then used to determine a three-dimensional

granular concentration profile based on the normalized
power law relation calibrated by [15]:

ν

ν3Drcp
=

(

ξ̄ − ξmin

ξrcp − ξmin

)β

(7)

where ν is the solid concentration of the solid ma-

terial, ν3Drcp ≈ 0.64, i.e. the 3D random close packing for

spheres and ξmin ≈ 0.72, which derives from Monte-

Carlo simulations ([35]). The other parameters, ξ(rcp) =
0.84 and β = 3.5 were calibrated by [15] based on flu-

idization cell tests.

The validity of this method has also been tested by

[30] based on a comparison with 3D stereoscopic mea-

surements. He found that correct values of solid con-

centration based on roundness estimate of the Voronöi
polygons can be extended up to ν ≈ 0.55. Hence, it is

not expected that Eq. 7 applies for very densely packed
systems. Other effects (e.g. particle shape or sidewalls)
in addition to volume exclusion can contribute to the
ordering of the particles leading to an erroneous solid

concentration estimation. When the pattern-based es-

timator is used, such effects can lead to unreasonably

high concentration values. Therefore, a limiting max-

imum concentration (ν3Drcp) must be imposed ([6]). In

other words, all the values that exceed this threshold

are assumed to be in the maximum packing state ν3Drcp.

It is also expected that in the range 0.55 < ν < ν3Drcp
the results yield only an approximate indication of ν.

A great deal of research has been devoted to the
improvement of solid concentration measurements. For

near-wall granular flows, a three-dimensional imaging

technique with a multiple-camera system can be used to

obtain such measurements. [44] showed how this method

is able to overcome occlusion effects and is suited for

highly concentrated and rapidly moving dispersions. Al-

ternatively, [45] proposed a methodology to measure

concentrations based on the image analysis of near-wall

grains (either in dry or fluid saturated condition) by

means of a laser-illuminated sheet shone laterally to

the flows and recorded by a single camera. This laser-

based technique was found to yield good estimates of

concentration. Both methodologies represent valuable

alternatives, however, for the purpose of this work we

sought only to adopt approaches that are easy to im-

plement with simple systems (e.g. monocular imaging

with simple lighting) and reduced costs.

Applications of the two methods previously described

(namely, high resolution images and pattern-based indi-

cator) are reported and compared in Fig. 6 (e,f). While

the maximum theoretical value of ν for spheres varies

in the two cases (ν2Drcp ≈ 0.82 and ν3Drcp ≈ 0.64, respec-
tively), the profiles show a similar variation of the con-

centration with depth. Some discrepancies arise in the

first layer of the two-dimensional profiles at 26◦. This

point represents firmly glued particles at the bottom

and should not be taken into consideration. Notably,

both approaches have their strengths and limitations.

High resolution images tend to underestimate the con-
centration. Conversely, the roundness indicator leads
to an overestimation in most cases which is corrected
by limiting the maximum value that can be achieved.

However, these methods can still be used to assess the

variation of other kinematic properties of the flows, as

described in Sec. 6.1.

6 Results

For the purpose of this work, we wish to bring attention

to two granular flows released at an inclination of 26◦
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and 30◦, respectively. In both cases the experimental

conditions (mass and flow rate) were kept constant, pro-
ducing nominal, steady, flow depths of approximately
18 particle diameters over a sampling period of t = 162.

Over the duration considered, the slope-normal compo-
nent of velocity (v) showed in all cases a gradient very
close to zero with a tendency to deviate from it at the

free surface due to the higher mobility of the flows.
Thus, to take this effect into account, in the calcula-
tions of granular temperature the two velocity compo-

nents (u, v) in Eq. 6 are summed together and only one

curve is plotted for each experiment at different ∆t.

Distributions of the mean (ensemble-averaged) ve-
locities obtained from the PIV algorithm are given in

Fig. 5 (a,b). For each flow, the velocity profiles collapse

onto a single curve for different ∆t, indicating a lack of

sensitivity to time step over the range considered. The

magnitude of the streamwise mean velocity increases

with steeper inclination as expected and a higher veloc-

ity is found at the free-surface, decreasing with depth

until the bed of the chute is encountered. The first layer

of particles appearing at the bottom through the side-

wall is firmly glued, so that no-slip velocity is exhibited.

Thus, zero basal slip velocity is always found.

Profiles of granular temperature using PIV, as de-

fined in Eq. 6 are given in Fig. 5 (c,d). This ensemble-

average quantity achieves its maximum value at the free

surface and decays to zero with depth. When plotted
on the same graph, the granular temperature distribu-
tions in each flow have similar values but when the flows
are processed with the two largest ∆t (≈ 0.24 and ≈
0.46) some dissimilarities in the profile of granular tem-
perature arise. They are caused by faster moving parti-
cles that leave the sub-image causing loss of correlation.

Most importantly, the magnitude of granular tempera-
ture profiles is rather less than that measured by PTV
(Fig. 6 (c,d)) as explained later in more detail. The rea-

son for this may be due to the size of the interrogation

region. In these experiments we chose 12 x 12 pixels as

the smallest interrogation window which can contain a

maximum of approx. 5 particles (the least seeding con-

centration required for a correct correlation peak lo-
calization). This implies that the measured values are
not referred to a single particle but to an ensemble. In

other words, averaging and smoothing of the data is in-

troduced, which may damp the fluctuations measured.

One could perform an analysis with very small interro-

gation areas to mitigate this, although this would make

the correlation peak very difficult to identify resulting

in potentially inaccurate displacement estimates. This

approach was previously trialled for sub-images having

size of the order of one particle diameter ([20]) - al-

though this used a different PIV algorithm and particle

image diameter - with results suggesting that PIV may,

in general, produce lower estimates of granular temper-
ature than PTV.

An alternative approach was presented by [39]. From

a coarse PIV analysis, i.e. using interrogation regions
larger than the particle diameter, they showed that
the values of granular temperature can be theoretically
scaled to the characteristic length scale of one parti-

cle diameter. When scaled, the results are useful to

directly compare with the PTV results which are ob-

tained from the tracking of single particles. Following

their approach we scaled up our measurements by a fac-

tor of 9 with values reported in Fig. 5 (e,f). The scale

factor can be calculated considering the actual inter-

rogation size (δact), in our case 12 pixels, and as the

interrogation area is decreased by a factor n the cal-

culated granular temperature will increase by the same

factor leading to n = (δact/δp)
2, where δp is the pre-

sumed interrogation area including one image particle.

With δp = 4 (somewhat larger than 3 pixels to take

into account any change in particle shape and dimen-

sion) the scale factor by which the measurement are

increased is (12/4)2 = 9.

Mean velocity profiles produced by PTV are shown
in Fig. 6 (a,b). As with PIV, velocity profiles collapse

onto a single curve for different sampling intervals, al-
though the velocity measured at ∆t ≈ 0.46 becomes

corrupted above a depth of 12 particles. At this frame

rate the PTV algorithm is incapable of correctly per-

forming the matching routine due to the large displace-

ments and a few velocity vectors from which to calculate

the average. Without considering this particular case,

the magnitude of the velocities is very similar to those
found for PIV (Fig. 5 (a,b)), which cross-validates the
particle tracking and particle image velocimetry algo-

rithms, at least in terms of mean velocity.

Distributions of granular temperature obtained with

PTV are shown in Fig. 6 (c,d), where the most notable

feature is the variability of granular temperature with

∆t (or frame rate). That is, although the mean velocity
measurement is insensitive to ∆t, the determined gran-

ular temperature is greatly influenced by it. As is clear

in Fig. 6 (c,d), there is a shift of the granular tempera-

ture profiles to the left with increase in ∆t, converging

somewhat at large ∆t although the exact values do not

(they are still declining with ∆t). However, this trend

disappears for sampling intervals smaller than 0.16 and

approx. 0.12, respectively. The reason for this is that

errors in the determination of the square of the fluc-

tuation velocities accumulate (rather than cancel out)

during the ensemble-average calculations. Conversely,

for the mean velocities, the errors in instantaneous ve-

locities are reduced by averaging.
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Fig. 5 Depth-averaged flow property profiles obtained with PIV at different sampling intervals (∆t): (a,b) mean velocity for
the flows released at an inclination of 26◦ and 30◦. Filled symbols represent transverse (v) velocity, empty symbols streamwise
(u) velocity; (c,d) granular temperature at 26◦ and 30◦; (e,f) granular temperature scaled up by a factor of 9.

When PTV data is compared to PIV results, the
shape of the granular temperature profiles show similar

trends, i.e., increasing values moving towards the free-

surface and an apparent change in the gradient above

10 particle diameters in the flow at 30◦. For the same

flow at 26◦ the magnitude is slightly higher while at an
inclination of 30◦ the dimensionless granular tempera-

ture reaches values up to 4.2 at the flow surface which

are well beyond the average magnitude showed in the

rest of the analyses. This is probably caused by the er-

rors arising during the cross-correlation process in PIV

which are then magnified when granular temperature is

scaled up.

Looking at the data for both PIV and PTV we rec-

ognize the expected changes of granular temperature.

High-speed images at the base near the side-wall in-

dicates frictional dependence of the motion with oc-
casional brief contacts between neighbouring particles
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and more long-lived contacts (i.e. less granular tem-

perature is generated). In contrast, particle collisions

become more prominent towards the free-surface (i.e.

more granular temperature is produced). Additionally,

the granular temperature increases with increasing tilt

angles, as the kinetic energy of the system increases.

6.1 Granular temperature sensitivity on density

profiles

In simple dry granular shear flows down inclined ge-

ometries, three different regimes can be usually identi-
fied: a quasi-static regime governed primarily by inter-
particle friction, a dense flow regime where grains inter-

act both through enduring contacts and through colli-

sions, and as the granular material gradually accelerates

it becomes more agitated until it reaches a collisional-

dominated rapid flow regime. These three regimes can

coexist and are strictly connected to the shear rate γ
(the rate of change of velocity across the shear flow)

and the solid fraction profile.

Granular temperature is a by-product of particle

collisions, and has been shown to follow the same order

of magnitude as the shear rate γ ([32]). This relation is

depicted in Fig 6 (g,h) for the flows studied here. For

clarity, we have omitted the data related to the short-

est sampling intervals which appear to be dominated

by the accumulation of errors. When the particle con-

centration decreases with the shear rate, i.e., when the

system becomes diluted, individual particles experience

random collisions which are converted through grain ve-

locity into higher flow mobility. This can be expected to

happen close to the free surface of simple dry granular

flows where the stress associated with the granular tem-

perature acts to force the particles apart thus creating

a dilute region represented by lower solid fraction.

After these considerations, we compare the values

of granular temperature calculated here with the solid

fraction profiles in two and three-dimensions. Note that

the profile for ∆t ≈ 0.06 in Fig 6 (d) is affected by the
high accumulation of errors and should not be consid-

ered below. The gradient of granular temperature devel-

oped in the body of the flow at an angle of 26◦ steadily

increases, remaining close to zero until some more agita-

tion (or granular temperature) is produced at the free

surface. In contrast, the flow released at 30◦ shows a
clear change of granular temperature above 10-12 par-

ticle diameters (depending on the solid concentration

considered) which is accompanied by a growing dilated

region. These features are captured by the solid concen-

tration profiles shown in Fig. 6 (f). For 26◦ we see that

the solid concentration is nearly uniform in the central

part of the flow but changes when the free-surface is

approached. For 30◦ the solid concentration decreases

significantly above 10-12 particle diameters showing the

flow to be more diluted. The good agreement between

the changes of granular temperature and the profiles of

solid fraction confirms the general variations expected

in these flows and supports the validity of our measure-

ments.

7 Conclusions

Particle image velocimetry (PIV) and particle tracking
velocimetry (PTV) were briefly reviewed and the com-

mon sources of error and the methods used for their
reduction were discussed. It was found that the errors
originating from PIV procedures can be mitigated by

an appropriate selection of the interrogation region size

and the particle image diameter. To our knowledge,

error frameworks associated with PTV only exist for

steady and long-lasting granular flows (e.g in a recircu-
lating flume ([6,31])). The difficulties with quasi-steady
and short-lasting flow measurements (as in dam-break
experiments) is that, by definition, steady flows are not

obtained. Hence, this work has focused on the removal

of potential sources of error affecting measurements of

granular temperature that could be a priori avoided,

rather than methods to deal with these in a post hoc

situation. For this technique, two main errors were de-

scribed and analysed, those associated with the particle

centroid estimates and with the particle acceleration.

We found that the former is reduced for particle im-

age diameters of approximately 3 pixel (for monodis-

perse granular flows). The latter requires an appropri-

ate choice of the sampling interval (or frame rate). In-
deed, there should be a frequency of acquisition where
the aforementioned errors are minimized. We used a

simple simulation of a circular motion which may help

in choosing a most appropriate sampling interval. No-

tably, high frame rate can greatly worsen velocity errors

and compromise the results.

We studied the influence of these observations on
different granular flows down an inclined geometry. The

results of mean velocity were well matched by the two

techniques, which allowed the two algorithms to be cross-

validated, at least in terms of this quantity. Conversely,

rather different profiles of granular temperature where

obtained between the two methods. Granular tempera-

ture profiles for PIV were somewhat sampling-interval
dependent with magnitudes that increased at larger∆t,

specifically at ∆t = 0.65 for a slope of 26◦ and more

clearly at ∆t ≈ 0.24 and 0.46 for a slope of 30◦. This

effect was associated with the selection of the sample
interval which caused loss of correlation at large ∆t.

Moreover, errors in the PIV results are also likely to
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Fig. 6 Depth-averaged flow property profiles obtained with PTV at different sampling intervals (∆t): (a,b) mean velocity for
the flows released at an inclination of 26◦ and 30◦. Filled symbols represent transverse (v) velocity, empty symbols streamwise
(u) velocity; (c,d) granular temperature at 26◦ and 30◦; (e,f) 2D and 3D solid concentrations. Dashed lines represent the two
theoretical limits ν2D

rcp and ν3D
rcp; (g,h) ratio of shear rate to granular temperature.
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be connected with the scale of scrutiny used in the

analysis. Therefore, careful judgement has to be made

not only when choosing the sampling interval, but also

when deciding the spatial resolution of interest. We se-

lected an interrogation size that included several par-

ticles in order to minimize the error associated with

the correlation peak localization. Considerably differ-

ent values for the directly measured and theoretically
scaled second-order-statistical quantities (i.e. granular
temperature) were obtained when compared to PTV

results. The direct application of Eq. 6 showed a no-

table underestimation of these values. The opposite was

obtained after scaling according to the method pro-

posed by [39], with values that were magnified and

much larger than expected, especially for the 30◦ case.

Conducting such a scaling analysis on the PIV results

to enable granular temperature to be derived from mea-

surements over large interrogation regions did not gen-

erate the expected results, and it still remains unclear

whether PIV can be used for this purpose.

The same sampling interval dependency but with an

opposite trend was seen in the PTV results, with both

changes in granular temperature magnitude and pro-

file shape. The accumulation of errors for the smallest

∆t (≈ 0.06 and 0.08) produced very different profiles

when compared to the rest. Nonetheless, for the largest
∆t (≈ 0.46 and 0.65) PTV was only partially able to

obtain correct measurements away from the surface of
the flows, as it is evident above 12 particle diameters for
∆t ≈ 0.46 in Fig 6(d). If these values are disregarded,

the remaining agree qualitatively with those of PIV, i.e.,

although the shape of the profiles are similar the values

are not. For this data the general variation of granular

temperature were also supported by our estimations of

the solid concentration.
Granular temperature results obtained from the PIV

and PTV analyses were unexpectedly variable and both

methods had shortcomings when applied to dense gran-

ular flows. A more detailed analysis is underway where

results from discrete element simulation of dry granular

flows are used to generate synthetic images with known

particle locations. The two imaging techniques will be
tested against these images in order to compare their
results against the true velocity and granular temper-

ature determined numerically, and thus we should be

able to infer which one is the more appropriate tech-

nique to be used for these types of analyses.
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