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Department of Psychology, University of York, York, North Yorkshire, YO10 5DD, United Kingdom 

 

Abstract 

 
Previous neuroimaging research has reported increased internal (neural) noise in sensory systems of autistic individuals. 

However, it is unclear if this difference has behavioural or perceptual consequences, as previous attempts at measuring 

internal noise in ASD psychophysically have been indirect. Here we use a ‘gold standard’ psychophysical double-pass 

paradigm to investigate the relationship between internal noise and autistic traits in the neurotypical population (n=43). 

We measured internal noise in three tasks (contrast perception, facial expression intensity perception and number 

summation) to estimate a global internal noise factor using principal components analysis. This global internal noise 

was positively correlated with autistic traits (rs=0.32, p=0.035). This suggests that increased internal noise is associated 

with the ASD phenotype even in subclinical populations. The finding is discussed in relation to the neural and genetic 

basis of internal noise in ASD.  

 

Keywords: internal noise, neural noise, double-pass, sensory, autism quotient, decision making 

 

1 Introduction 

 
Internal variability (noise) is an inherent property 

of neural systems and a limiting factor in neural 

signal transduction.  Internal noise results from 

many sources at several processing scales from 

molecular and synaptic fluctuations (Faisal, 

Selen, & Wolpert, 2008; Schneeweis & Schnapf, 

1999; Clifford et al., 2007) through to changes in 

internal states such as attention, arousal and top-

down cognitive modulation (Fontanini & Katz, 

2011). The collective internal noise resulting 

from these sources can be observed in 

electrophysiology and neuroimaging studies as 

signal variability (see Dinstein, Heeger, & 

Behrmann, 2015 for review) and behaviourally as 

varying responses to multiple presentations of a 

stimulus. 

 

It has been proposed that internal noise is higher 

in Autism Spectrum Disorders (ASDs). This idea 

could account for a variety of abnormal sensory 

experiences associated with the condition 

(Horder, Wilson, Mendez, & Murphy, 2014; 

Robertson & Simmons, 2013; Simmons et al., 

2009). Consistent with this theory, visual event-

related potentials were found to be more variable 

in ASD individuals (Milne, 2011). Similarly, 

fMRI BOLD responses in the visual and auditory 

systems (Dinstein et al., 2012) are also more 

variable compared to neurotypical controls. 

Conversely, it has also been argued that internal 

noise may be unaltered (Butler, Molholm, 

Andrade & Foxe, 2017) or reduced (Davis & 

Plaisted-Grant, 2014) in ASD. In support of this 

latter idea, a study using a luminance increment 

paradigm targeting the magnocellular pathway 

found increased discrimination thresholds in 

individuals with high-functioning autism 

compared to neurotypical controls (Greenaway, 

Davis, & Plaisted-Grant, 2013). Greenaway et al. 

attribute this to stochastic resonance, a process by 

which low levels of internal noise would yield 

worse performance on the task, although 

evidence for this phenomenon is tenuous 

(Manning & Baker, 2015). Additionally, as 

Manning & Baker point out, increased 

discrimination thresholds are indicative of 

increased rather than decreased internal noise 

since higher neural variability degrades the 

neural signal during processing, impairing 

performance. As this should increase 

discrimination thresholds, the Greenaway et al 

study could be interpreted as evidence for 

increased internal noise in ASD. 

 

Furthermore, mixed evidence for internal noise 

levels comes from motion coherence studies 

some of which show increased motion coherence 

thresholds indicating higher internal noise 

(Manning, Tibber, Charman, Dakin, & Pellicano, 

2015; Milne et al., 2002; Pellicano, Gibson, 

Maybery, Durkin, & Badcock, 2005);  and some 

show decreased thresholds suggesting lower 

noise (Manning et al., 2015). However, 

interpretation of motion studies is complicated by 

the possibility that participants might use 

different strategies, such as different sized 

pooling windows, in order to perform the task, 

and not all studies take this into account. So far, 

straightforward evidence for increased internal 

noise comes from EEG and fMRI research, 

however, it is unclear if and how increased 

variability in these measures affects perception 

and behaviour in ASD. It is therefore important 

to measure internal noise with a direct 

psychophysical paradigm. 
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One consequence of internal noise is that 

responses to the same stimulus over multiple 

repetitions will be inconsistent. This can be 

measured quantitatively using the ‘double-pass’ 

method, that was originally developed in auditory 

psychophysics (Green, 1964) and has 

subsequently been used to estimate noise in the 

visual system (Burgess & Colborne, 1988a; Lu & 

Dosher, 2008), as well as in higher level 

cognitive tasks (Hasan, Joosten, & Neri, 2012). 

The double-pass method has mostly been used in 

contrast perception research using white pixel 

noise to inject variability (Burgess & Colborne, 

1988a). However, white pixel noise confounds 

adding external noise with increased cross-

channel suppression (Baker & Meese, 2012), and 

so poses limitations on the accuracy of internal 

noise estimation (Baldwin, Baker, & Hess, 2016) 

and is not applicable outside of low-level visual 

properties. An alternative way to render a 

stimulus ‘noisy’ (and so able to induce variability 

into the detecting neural system) is to jitter the 

intensity of the stimulus along a continuum 

(Baker & Meese, 2012, 2013), such as contrast, 

tone, frequency, facial expression intensity, etc.  

 

The double-pass paradigm measures internal 

noise by repeating noisy stimuli twice (two 

passes) and calculating the consistency of 

responses between the passes (Burgess & 

Colborne, 1988; see Figure 1). In a two-

alternative forced-choice design two stimulus 

samples are drawn for each trial from a 

continuous normal distribution of stimulus 

intensities (e.g. contrast, tone frequency, etc.). 

The participant is asked to choose the more 

intense stimulus every time (first pass). This 

same procedure is then repeated again (second 

pass) with the exact same stimuli in each trial, 

and the consistency of responses across the first 

and second passes is calculated. The lower the 

consistency between passes, the higher the 

internal noise of the participant, because strong 

internal noise results in more highly variable 

responses. 

 

Given the complexity and range of symptoms in 

ASD, the novel method (Baker & Meese, 2012, 

2013) of introducing noise into the stimuli paired 

with the double-pass method can be applied to 

many perceptual and cognitive tasks in which 

internal noise may be implicated. To date, very 

little is known about internal noise throughout 

the brains of ASD individuals as research has 

been limited to low level visual properties. It is 

also not known how internal noise relates to 

autistic traits in subclinical populations. The 

current study investigates three tasks in which 

ASD individuals’ performance has been reported 

to be differential from neurotypical individuals: 

contrast perception (CP; Bertone, Mottron, 

Jelenic, & Faubert, 2003, 2005; Greenaway et al., 

2013), facial expression intensity (FE; see 

Harms, Martin, & Wallace, 2010 for review) and 

mathematical number summation (NS; Iuculano 

et al., 2015). The study aimed to investigate the 

relationship between autistic traits as measured 

with the Autism Spectrum Quotient (AQ; Baron-

Cohen, Wheelwright, Skinner, Martin, & 

Clubley, 2001) and internal noise in three neural 

systems. We hypothesised that if internal noise is 

a general factor associated with autistic traits, 

there would be a relationship between AQ and a 

global estimate of internal noise all three tasks.  

 

2 Methods 
 

2.1. Participants 

Forty-five neurotypical participants (aged 18-39, 

16 males) with normal or corrected-to-normal 

vision were recruited for the study. Two of the 

participants were not included in the analysis 

because of missing data in one or more of the 

tasks.  

 

2.2. Materials 

Stimuli for all tasks were presented on a gamma 

corrected Iiyama VisionMaster Pro 510 CRT 

monitor running at 100Hz, with a mean 

luminance of 32 cd/m2. To enable accurate 

rendering of low contrast stimuli in the CD 

experiment, we used a ViSaGe device 

(Cambridge Research Systems Ltd., Kent, UK) 

running in 14- bit mode. Participants used a 

computer mouse to make their responses. The 

AQ questionnaire was delivered and scored 

automatically by computer. 

 

2.3. Stimuli and paradigm 

Examples of the stimuli are displayed in Figure 

1. Stimuli were presented in pairs in each trial 

and the participants were asked to pick the more 

intense stimulus. CD stimuli were horizontal 

sine-wave gratings with a spatial frequency of 

0.5c/deg in cosine phase. Stimuli flickered 

between 0 and their maximum intensity (on/off 

flicker) at 7Hz for 429ms (3 cycles). The 

stimulus intensity for CD was the contrast level 

of the stimulus. There were two conditions, target 

present and target absent. In the target absent 

condition, the stimuli in the two intervals of each 

trial had random contrast levels drawn from a 

Gaussian distribution centred around 0% 

Michelson contrast (defined as 

C%=100*(
!"#$%	!"'(

!"#$	)	!"'(
), where Lmax and Lmin are the 

maximum and minimum luminances of the 

grating), with a standard deviation of 4%. 

Negative values reversed the polarity of the 

grating so that it became dark in the centre. In the  
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Figure 1. Panel A. Stimuli used for the double-pass 2AFC discrimination tasks: contrast (top row), facial expression 

intensity (middle row) and number summation (bottom row). In 50% of trials (no target condition) a stimulus was 

drawn for each of the two intervals from a stimulus intensity distribution (orange) centered around 0% contrast, 50% 

facial expression morph and 200 sum for the numbers task. In the other 50% of trials (target present condition) one of 

the intervals was drawn from a higher stimulus intensity distribution (e.g. 4% contrast), shown in purple. Panel B. 

Examples of the two intervals in four hypothetical trials of the CP task with correct choices indicated by green borders. 

The same trials are repeated in a double pass experiment, with interval order randomized. Panel C. Estimation of 

internal noise by model simulations. The red dots and connecting line shows accuracy and consistency scores from an 

example participant for the two conditions (target present condition at the top). The green and grey dots and solid lines 

show simulated curves (see text for details) for an example range of internal noise levels (expressed in dB). Errors 

between participant scores for each condition were calculated (shown as dotted lines) and the internal noise level which 

produced the smallest error (averaged over conditions) was assigned to the participant (in this case green, 12dB). In the 

main analysis, we used a finer sampling of internal noise levels (0.1dB steps) than depicted here. The solid black line 

represents the expected performance in the absence of external noise (Klein & Levi, 2009) and the dashed lines show 

chance levels. 

 
target present condition, a positive contrast 

increment of 4% was added to one of the 

intervals in each trial, so that the distribution in 

that interval had a mean and standard deviation 

of 4%. 

 

Similarly to CD, facial expression intensity was 

drawn from a Gaussian distribution of a 

continuous morph between a neutral and an 

expressive face (Figure 1), with a mean of 32% 

and a standard deviation of 16%. In the target 

absent condition both intervals within a trial were 

selected from the same Gaussian distribution 

whereas in target present an expression increment 

of 16% was added to one of the intervals (we 

imposed a floor of 0% so that expressions could 

not become negative). Six emotional expressions 

(anger, sadness, happiness, fear, surprise and 
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disgust) were used and data were collapsed over 

expressions. The RMS contrast of each 

expression was equated before morphing, 

ensuring that all stimuli had equal contrast. Facial 

stimuli were within-gender averages of from the 

NIMSTIM face database (Ekman & Friesen, 

1971), with 23 male models and 19 female 

models (Adams, Gray, Garner, & Graf, 2010). 

Face gender was randomly determined on each 

trial, but was constant for both intervals of each 

trial. The faces were windowed by an oval raised 

cosine envelope, and spanned 10x16 degrees of 

visual angle. Face stimuli were presented for 100 

ms. 

 

In the NS task, two boxes, each containing four 

double-digit numbers were presented. In the 

target absent condition the four numbers in each 

box on each trial were selected from a 

distribution centred around 50, with a standard 

deviation of 10 (and an average sum of 200). In 

the target present condition one of the boxes had 

a mean of 50 and the other had a mean of 60.  

 

For all tasks, each trial was repeated twice (pass 

one and pass two), preserving the exact samples 

of stimulus intensity, once in each half of the 

experiment. 

 

2.4. Procedure 

The method of constant stimuli was used. There 

were 100 trials in each target condition in each 

pass (400 trials in total per participant in each 

experiment). All experiments were carried out in 

a dark room at 57cm distance from the computer 

monitor using a chin-rest. Participants had breaks 

between sessions and the entire experiment took 

approximately two hours in total per participant.  

2.5. Estimating noise from model 

Accuracy and consistency scores were used to 

obtain accurate estimates of internal noise for 

each participant. In order to obtain a single 

measure of internal noise that averages out 

measurement error, double-pass accuracy and 

consistency scores were simulated for different 

levels of internal noise using a noisy linear 

model. We then determined the level of internal 

noise that best described the data for each 

observer. Simulated responses to the target and 

the null intervals within a trial were given by:

  

𝑟𝑒𝑠𝑝./012. = 	𝜎56. +	𝜎28. + 𝐶:2/6 + 𝐶./012. 

 

𝑟𝑒𝑠𝑝6;<< = 	𝜎56. +	𝜎28. +	𝐶:2/6 

 

where resptarget and respnull are the responses in 

the target and null intervals respectively, σint and 

σext represent internal and external noise, Cmean is 

the mean intensity of the stimulus and Ctarget is 

the target intensity added in the target interval. 

The noise variables (σint and σext) were drawn on 

each simulated trial from Gaussian distributions 

with a mean of zero, and the appropriate standard 

deviation for each experiment. The interval with 

the larger response was selected. This was 

repeated twice with identical values of σext, but 

different values of σint, in order to simulate both 

accuracy and consistency scores. There were 

100000 simulated trials for each internal noise 

level and this was done for 801 noise levels 

(ranging from -40dB to 40dB in steps of 0.1dB). 

The errors between the model simulations and 

empirical data points in each condition (in the 

accuracy-consistency space) were calculated for 

each participant. The internal noise level that 

produced the smallest absolute error (averaged 

over conditions) was then assigned to that 

participant. This was repeated for each of the 

three experiments. 

 

3 Results 
 

Mean accuracy in the target present condition 

was 0.67 (SD=0.06) for CP, 0.67 (SD=0.05) for 

FE and 0.68 (SD=0.06) for NS, indicating 

participants were performing above chance. The 

consistency scores were also above chance for 

CP (mean=0.81, SD=0.10), FE (mean=0.70, 

SD=0.08) and NS (mean=0.69, SD=0.06) tasks. 

We used these values along with the modelling 

approach described above to derive an estimate 

of internal noise for each participant in each 

experiment. The noise estimates from the CP and 

FE tasks were not normally distributed when 

tested with the Shapiro-Wilk test of normality 

(p<0.001 and p=0.009 respectively) therefore 

two-tailed Spearman signed rank correlations 

were used throughout the analysis. 

 

Internal noise was significantly correlated with 

AQ in the CP (rS=0.34, p=0.028) and NS 

(R=0.31, p=0.042) but not the FE task (rS=0.26, 

p=0.091). There were strong significant positive 

correlations between noise estimates across all 

three tasks (rS≥0.60, see Figure 2 for rS and p 

values). Since this suggested the presence of a 

single underlying factor, we performed principal 

component analysis (PCA) on the model 

estimates of internal noise. PCA is a dimension-

reduction technique that attempts to condense a 

multivariate dataset of correlated variables into a 

smaller number of uncorrelated factors. Internal 

noise estimates from the CP, FE and NS tasks 

loaded onto a single factor, ‘global internal 

noise’, which was extracted by Keiser’s criterion 

(eigenvalue of 2.30) explaining 76.81% of the 

variance. Factor loadings were extracted for 

participants and the inverse values were taken as 

a global measure of noise (such that small values 

indicate low noise).  
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Figure 2. Scatterplots showing correlations between the estimated noise levels in all three tasks, expressed in 

logarithmic (dB) units. Black lines represent best-fit Deming regression lines. 

 
 

The global internal noise factor was positively 

correlated with AQ scores (rS=0.32 p=0.035) 

suggesting that higher internal noise is related to 

higher levels of autistic traits. As raw double-

pass consistency scores are sometimes used as a 

measure of internal noise (low consistency means 

high internal noise), the PCA was repeated on 

mean consistency scores (averaged over the two 

target conditions). The internal noise factor 

extracted in this way explained 77.13% of 

variance and was also significantly correlated 

with AQ (rS=0.33, p=0.032). This suggests higher 

levels of autistic traits are related to higher 

internal noise (see Figure 3). However, as the 

accuracy scores in the NS task were significantly 

correlated with AQ (R=-0.43, p=0.004), the 

modelled estimates of internal noise which take 

into account both the accuracy and consistency 

are preferred. AQ was not significantly correlated 

with accuracy in CP (R=-0.14, p=0.384) or in FC 

(R=-0.14, p=0.364). 
 

 
Figure 3. Scatterplot showing the significant positive 

correlation between AQ scores and internal noise. The 

black line represents a Deming regression line. 

 

4 Discussion 

 
The current study reports the first direct 

psychophysical estimate of internal noise in 

relation to autistic traits. Using the double-pass 

method in three different tasks we found a 

positive relationship between autistic traits in the 

neurotypical population and overall levels of 

internal noise. Individual differences in internal 

noise in the CP, FE and NS tasks were largely 

accounted for (76.81% of the variance) by a 

single internal noise factor suggesting a common 

noise source. This factor was positively 

correlated with autism spectrum quotient (AQ) 

scores. We suggest that this factor is either global 

internal noise affecting perception and behaviour 

regardless of task complexity or neural 

mechanism involved, or it is late decision making 

noise. 

 

4.1. Neural basis of internal noise in ASD 

The current finding of increased internal noise 

being associated with more autistic traits supports 

previous electrophysiological and neuroimaging 

studies that found more variable responses to 

sensory stimuli in clinical ASD populations 

(Dinstein et al., 2010, 2012; Milne, 2011). 

Increased internal noise can also manifest as 

decreased coherence in natural neural oscillations 

such as γ-band activity. Rojas, Maharajh, Teale, 

& Rogers (2008) found reduced phase-locking in 

γ-band oscillations, indicative of increased neural 

noise, in adults with ASD and also in 

neurotypical parents of ASD children compared 

to controls. Increased neural variability in 

neurotypical first-order relatives of ASD 

individuals suggests a genetic influence of an 

ASD genotype on the level of internal noise in 

the brain. This is not surprising as ASD has a 

complex but strong genetic basis (see Miles, 

2011 for review) which may, at least in part, be 

mediated by neural noise factors. The finding of 
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the present study, as well as Rojas et al (2008), 

suggest that internal noise is intrinsic to the ASD 

phenotype and extends beyond clinical ASD 

populations. As others have proposed, noisier 

sensory processing throughout development 

could plausibly lead to several of the social 

difficulties (i.e. facial expression perception) 

typically associated with ASD (Simmons et al, 

2009). 

 

4.2. Early versus late noise 

It is unclear from the current study whether the 

internal noise we measured affects the neural 

signal early or late in processing. Noise in early 

sensory regions will be passed forward to 

decision making processes and so produce 

variable responses. As we find that internal noise 

is common across our three tasks, this type of 

noise would need to span multiple regions of the 

brain to account for our data. Autistic traits may 

be related to early sensory noise as previous 

research suggests increased neural variability in 

several sensory regions of the brain (Dinstein et 

al., 2012). Alternatively, the internal noise we 

measured may be a late decision-making noise 

that influences behaviour at the level of executive 

processing. This possibility is consistent with 

research showing poorer executive function 

(Hughes, Russell, & Robbins, 1994; Kenworthy, 

Black, Harrison, della Rosa, & Wallace, 2009) 

and abnormal connectivity of white matter in 

frontal lobes (Sundaram et al., 2008) in clinical 

ASD populations. In either case, internal noise 

may pose a limitation on brain function for 

individuals high on the autistic spectrum. 

 

4.3. Innovation in noise measurement 

This study benefits from a novel implementation 

of the double-pass paradigm for measuring 

internal noise. The application of intensity jitter 

rather than traditional white pixel noise (as often 

used in contrast detection experiments; Burgess 

& Colborne, 1988) extends the viability of 

double-pass methods to other sensory and 

cognitive modalities. We have also developed 

accurate model-based estimates of internal noise 

that take into account any sensitivity differences 

between individuals. Previous studies (Burgess & 

Colborne, 1988) used raw consistency scores as a 

measure of internal noise. However, we observed 

a high correlation between accuracy and 

consistency scores in our data (rS≥0.41, p≤0.006). 

This is not surprising since it follows that higher 

performance on a task would yield more 

consistent responses (in the limiting case of 

perfect performance, consistency is necessarily 

100%). The modelled estimates of noise take into 

account both accuracy and consistency scores 

and so are not biased by individual differences in 

sensitivity. 

 

The current methodology measures noise more 

directly than previous psychophysical studies 

(Greenaway et al., 2013; Manning et al., 2015). 

The equivalent noise approach used in other 

work (Manning et al., 2015; Manning, Charman, 

& Pellicano, 2013; Milne et al., 2002; Pellicano 

et al., 2005), relies on a specific (usually linear) 

model of the underlying mechanism that may not 

accurately reflect how stimuli are processed, and 

cannot disambiguate differences in noise from 

differences in sensitivity (see Baldwin, Baker & 

Hess, 2016). Double-pass techniques avoid these 

problems, and additionally have high internal 

reliability and produce internal noise estimates 

consistent with those from another 

psychophysical paradigm (Vilidaite & Baker, 

2017). As this study investigated the relationship 

between internal noise and autistic traits in 

neurotypical individuals, it would be of great 

interest to use the double-pass method to measure 

internal noise in clinical ASD. Considering 

current findings and previous studies we would 

expect higher internal noise in ASD individuals 

when compared to controls. 

 

4.4. Summary and conclusions 

Neurotypical individuals exhibiting higher levels 

of autistic traits had higher internal noise, 

measured using three psychophysical tasks. This 

finding supports previous studies that found 

higher internal noise in ASD populations using 

neuroimaging methods. Increased internal noise 

seems to be a fundamental feature associated 

with ASD in clinical and subclinical populations, 

and may explain some of the symptoms and traits 

of ASD (Simmons et al., 2009). We suggest that 

a genetic link between the autistic phenotype and 

internal noise could account for the current 

findings. 
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9 Lay abstract 

 
Previous research has shown that autistic individuals show more variable brain responses (measured with 

electroencephalography and magnetic resonance imaging) than neurotypical individuals. Such increased 

variability (or internal noise) means that when an individual is presented with an identical stimulus or task 

multiple times, their responses (or choices) vary more between presentations than a neurotypical 

participant's. Recent theories suggest that internal noise may impact on sensory symptoms in autism and can 

account for inconsistent findings in previous literature in autism research. In this study we used three simple 

tasks (visual contrast; facial expression; and number summation) to measure internal noise in the brain from 

choice variability in 43 neurotypical individuals. The participants also completed the Autism Quotient 

questionnaire to measure their levels of autistic traits. We found a positive correlation between the internal 

noise, measured behaviourally, and number of autistic traits reported. This is in accordance with previous 

neuroimaging studies in autistic individuals and suggests that the autistic phenotype has observable impact 

on the brain even in non-clinical populations. Our measure of internal noise can also be applied to other task 

performance in autistic and other clinical populations. 


