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Abstract

Classification is one of the critical issues in the operations managemeat®pspts. The issue of managing spare
parts involves multiple criteria to be taken into consideration, and therefore be&mahapproaches exists that
consider criteria such as criticality, price, demand, lead time, and obsolesceraegta few. In this paper, we first
review proposals to deal with inventory control. We then propose a these-ptulticriteria classification

framework for spare parts management using the dominance+aggdset approach (DRSA). In the first phase, a
set of ‘if-then’ decision rules is generated from historical data using the DRSA. The generated rules are then

validated in the second phase by using both the automated and mamaatheg, including cross-validation and
feedback assessments by the decision maker. The third and final ploasiassify an unseen set of spare parts in a
real setting. The proposed approach has been successfully applied to data ¢mlmcéechanufacturing company

in China. The proposed framework was practically testedifferent spare parts and, basetthe feedback

received fromhe industry experts96% of the spare parts were correctly classified. Furthermore, the cross-
validation results show that the proposed approach significantly cutmsrbther well-known classification
methods. The proposed approach has several important charactemstiistthguish it from existing ones: (i) it is a
learning-set based analysis approach; (ii) it uses a powerful multicriteria classificatimupretmely the DRSA,;

(iii) it validates the generated decision rules with multiple strategies; and (iv) it adtivelyes the decision maker
during all the steps of the decision-making process.

Keywords: Rough Sets, Spare parts, ABC classification, Multiple Critereataxy Classification, Dominance-based
Rough Set Approach.

1. Introduction

Spare parts are common inventory stock items that are required for tiraiglienance of industrial plant systems.
A recent study [51] shows that the operational and maintenance sopgisrin a typical industrial plant account for
more than 60% of the overall cost, where the spare parts related costcatmung for about 25% to 30%. This clearly
indicates that better operations management of spare parts is required andniyasrtant role in the availability of
the plant at an optimal cost. An efficient and effective inventory managemipst & firm maintain its competitive
advantage [75]. In many large firms, it is not uncommon to holdakt®usands of spare parts [32], e.g. the number
of spares in a medium scale engineering business it may be in shef thiwusands while in a large scale chemical
factory, it may be around hundreds of thousands. In stugtiens, it may become practically impossible to use human
judgement alone to identify the appropriate stock control strategy obpaoh part and hence inventory management



becomes a great challenge. In order to facilitate spare parts managemefithempossible ways is to group the spare
parts into specific categories by finding some similarities in their featung$hen, based on these common features,
define a set of policies for each group.

One of the most well-known and commonly used classification techniquesABt classification, that uses the
80-20 rule (the Pareto principle). The ABC classification is particularly appropriateganventory management of
materials that are fairly homogenous in nature and differ from eachrothiely by unit price and demand volume.
The ABC analysis has retained its popularity among practitionersentidig the control efforts and choosing the
‘sufficient-enough’ control parameters without the need of item-specific analyses [52].

The ABC classification technique has traditionally focused on a single critenwitef which is usually measured
in annual dollar usage. However, it is important to realize that optimizing thle sibjective of price is generally
misleading, as several other criteria should be taken in consideration for pateeparts operations management.
We contend that focusing on this single criterion ignores severaliotpertant criteria for classifying spare parts,
such as criticality, lead time, demand, commonality, obsolescence andusabiity (see, e.g. [15][16][64]). The
authors in [27], for instance, emphasize the role of the lead tiitezian in analysing the competitiveness of
companies. In terms of criticality, one can also argue that it is a fundtitwe ariticality of the spare parts for the
machine as well as the criticality of the machine in the whole operational §33§88][57]. Accordingly, the use
of multiple criteria for spare parts classification has better justification as it attenqusdioler all the operations
management/control requirements of different types of items. The suthi@6][37] were amongst the first to state
the importance of applying multiple criteria to ABC analysis, and sineg éheumber of Multiple Criteria Inventory
Classification methods have been proposed in the literature. A discussmmeof the relevant and recent papers is
presented in Section 3.

The objective of this paper is to propose a data analytic approachultiple criteria ABC classification of spare
partsanddemonstrateitsusefulnessbyapplyingittoarealbusinessproblemireshamgcompany.Thisapproach
reliesontheDominance-basedRoughSetApproach(DRSA),whichisawell-knownnedigaiassificationmethod
thathasbeenproposedby[41][42][77][78]toovercometheshortcomithgeainventionalRoughSetsTheory(RST)
[68][69] in multicriteria classification by allowing preference-oriented attributelsvelrere the decision classes are
defined in an ordinal way. The multicriteria classification is a fundamerdblem of multicriteria decision making
[84]. The multicriteria classification problem can be stated as follows: giwat af objects described by a set of
criteria (attributes with preference-ordered domains), assign these objeotaaqre-defined decision classes or
categories, in such a way that each object is assigned to exactly one lbaBRRIA has been successfully used in
different real-world decision problems (see, e.g. [21][40][59]he DRSA has some powerful capabilities that make
it attractive for real-world decision problems (see [20]). Amongtihen characteristics of the DRSA is the use of a
learning set as input to elicit and generalize the preferences of the decéien which minimizes the cognitive
effort required from him/her. The use of a learning set as inpatlagpted in several multicriteria classification
methods, including [3][4][17][31]. However, the main distinctiohthe DRSA compared to other multicriteria
classification methods that are based on the use of a learning set as inpurriplibiégysand the easily understandable
if—then decision rules provided as output, while other methods have nstmightforward interpretation [10].

The proposed approach is structured into three phases. The firstyslessa carefully selected set of spare parts
as a learning set to generate a set-dfién decision rules that can be shown to the decision maker iple sgadable
manner. These rules are generated by the DRSA. In the second phase, therdtessioe assessed and analysed by
the decision maker as feedback for reinforced learning of thieeifi rules. In addition to this, re-classification and
cross-validation have also been used to further validate the generated dedésiofitre third phase exploits the
generated (and validated) decision rules in order to classify unseen agsare p

We apply the proposed approach to a real-world case study andtsmosvit by comparing the results with other
methods using ten-fold cross-validation. The dataset has been acquiredriranufacturing company in China. The
company has been anonymized and renamed the Industrial Manufga&@orinpany (IMC) in this paper for reasons
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of data protection and business ethics. The company showed an interest in gidrgiggtock items (spare parts) by
gaining some useful insights through historical data collected oveioal pé time, and based on this learning, they
were interested in classifying the new spare parts (for the newthamed equipment). We used this case study to
validate the results and illustrate the usefulness of the proposed dpprotie future, the approach can easily be
extended to automatically analyse a large number of spare parts.

The approach proposed in this paper has several important characterisficapfiies a learning-set based
analysis, which is particularity useful in spare parts management forfilange (i) it uses a powerful multicriteria
classification method, namely the DRSA, which is characterised by its simaligityhe easily understandable if
then decision rules provided as output; (iii) it includes a comprehensive collection aefiealistrategies enabling the
decision maker to analyse the validity of the results; and (iv) it activebphies the decision maker in all the steps of
the decision making process. A detailed discussion of these characteyrighie in Section 6.1.

This paper is organized as follows. Section 2 discusses related work. Septigposes an ABC classification
approach and methods of validation. Section 4 describes the case study. Seutwides a comparative study.
Section 6 discusses some theoretical and practical aspects of the proposathafaction 7 concludes the paper by
highlighting the merits and future challenge

2. Related work

In the past few decades, a number of approaches have been propsske thhe multiple criteria inventory
classification problem. In this section, we first characterize these approadkemsnof their classification criteria
and methods used (Section 2.1) and then in terms of their applicati@indcand validation strategies (Section 2.2).
Lastly, we summarize the main aspects of the discussed approaches (Segtion 2.3

2.1. Classification criteria and methods

The characteristics of the classification criteria considered and the classification methods abedt 37
approaches that we have identified in the relevant literature are summarized in. Titbtetable indicates also the
nature of the output for each approach.

While the listof criteria used varies from one proposal another,we can see that the first four criteria
(viz.Criticality, Annual Cost Usage, Unit Price, and Lead Time) have been colyjmeed by most of the reported
studies. In addition to these four criteria, the criterion Demand Rate has also éadnutuess frequently than the
first four. Indeed, the demand rate can be derived from the AnnualU€age and Unit Price and hence it is redundant
to use the demand rate alongside these two criteria. The other criteria halveeamteported in a few (mostly one or
two) studies related to the multiple criteria inventory classification problerordering cost [66][67], substitutability
[19][47], replaceability [19][47], perishability [8], storage cd8}, [current item status [26], severity of the impact of
its running out [26], number of hits [53], average value per3#}, [payment terms [19], durability [54][55][73],
limitations of warehouse space [49], last use date [54][55], suppi4érdnd turnover rate [60]. We note that some
proposed models offer more flexibility about the criteria to be included. Btanice, the model proposed by [36]
accepts any two criteria, while in the model proposed by [18], thecasenclude any criteria in the analysis. In the
case study presented in Section 4, we have considered four criteria, naitiediit, Annual Cost Usage, Unit Price,
and Lead Time. However, the proposed approach is flexible enouglaafe: used with any number of criteria.

A number of techniques that take into account multiple criteria for the ABC aasisifi problem have been
proposed in the literature. These methods can be grouped into differgutriestas follows:

1. Clustering algorithms: distance functions, such as the C-means algorithamfPthek-means algorithm [61],
Fuzzy C-Means Clustering [5];



2. Approaches basash Data Envelopment Analysis (DEA), suasthe FAHP-DEA p5] and the modified DEA-
like model [83];
3. Optimization:

» Optimization Models including linear programming approaches such as thddddnear Optimization
Model [50], the Hybrid Weighted Linear Optimization method [58], R-etq@d2], ZF-model [88], Ng
model [64]; and non-linear programming models such as the Ext&igteabdel [48];

 Evolutionary Optimization including Simulated Annealing (SA) [63] aadous evolutionary algorithms,
such as Genetic Algorithms (GA) [47] and Artificial Neural Network (ANBS]f

4. Multicriteria methods: Bi-criterion matrix [36][37], AHP [35][49][54][6, TOPSIS [8][23], DRSA [25] and
UTADIS [80].
5. Other statistical methods: Exponential Smoothing Weights [53] and Peer-estiagpimach [22].

Some of the approaches use fuzzy logic to take into account uncertalritg@ecision. Examples include Fuzzy
AHP [18][19], Fuzzy classification [26], Fuzzy Logic [73] and RugZzMeans Clustering [5]. Some other approaches
apply mixed approaches, e.g. AHP anditheaeans algorithm [61], FAHP and ANN [55], FAHP and DEA [49], CA
and SAA [60].

Table 1: Overview of classification criteria and clfisation methods employed by the main reviewed coniobhst

Criteria
Annual
Cost
Unit Lead Demand Used

Ref. Criticality Usage price time Rate Others method Output

[36] Any two Bi-criteria matrix Classification
[37] X X Bi-criteria matrix Classification
[35] X X X X AHP Classification
[67] X X X Ordering cost AHP Classification
[47] X X X Substitutability, Replaceability GA Classification
[66] X X X Ordering cost ANN Classification
[72] X X X X R-model Classification
[8] X X X Perishability, Storage cost TOPSIS Classification
[64] X X X Ng-model Classification
[88] X X X ZF-model Classification
[18] Any criteria Fuzzy AHP Classification
[24] X X X Case-based distance Classification
[25] X X X X DRSA Classification + if-then rules
[26] X X X Current item status, Severity of the impact of if ~Fuzzy classification Classification

X running out

[53] Number of hits, Average value per hit Exponential Smoothing Weights Classification
[19] X X X X Substitutability, Replaceability, Payment terms | Fuzzy AHP Classification
[48] X X Extended Ng-model Classification
[73] X X X Durability Fuzzy Logic Classification + fuzzy rules
[22] X X X X Peer-estimation approach Classification
[49] X X X Limitations of warehouse space FAHP-DEA Classification
[86] X X X Artificial Intelligence Classification
[5] X X X X Classification
[23] X X X . Two virtual items Classification
[54] % X X X Durability, Last use date, Supplier Fuzzy AHP Classification
(83] X X X X A modified DEA-like model Classification
[63] X X . Simulated annealin Classification
55] X X X X Durability, Last use date FAHP and ANN - Classification
[50] X X X X A modified linear optimization model Classification
[61] X X X X AHP and K-means algorithm Classification
[65] X i i X CE-WLO Classification
[80] X UTADIS method Classification
[60] X X X Tumover rate CA and SAA Classification
[58] X X New hybrid weighted linear optimization model | ~ Classification
This X X X DRSA Classification + if-then rules +
paper X validation + generalization

Concerning the nature of the output shown in Table 1, mosedghroaches generate a grouping of the spare
parts intothreeclasse§;B andd.Unfortunately,thegeneratedoutputsin thesecasescannot beusedto classifyaem/u
items. To classify unseen items, it is necessary to restart the processfabch, which may be time consuming and
may alter the already established classes. A possible solution to this issuseduazy logic (as described in [73])
in order to generate fuzzy rules permitting the classification of new item&re advanced resolution of this issue is
to use a case-based reasoning approach (as in [24]). However giimsad reasoning methods fail to fully cope with
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all aspects of multiple criteria inventory classification problems, more specifigatly the presence of preference-
ordered criteria. The use of the DRSA as proposed in this paper @lveidhortcomings of case-based reasoning
approaches in the multiple criteria inventory classification problem. Indeedripacison to other classification
methods and techniques (for instance in data mining, pattern recogaittbmachine learning), the DRSA assumes
that: (i) the decision classes are defined in an ordinal way; and (ii) tre@atecbjects are evaluated over a set of
criteria, meaning that the decision model should have some form otomdmrelationship with respect to the criteria.

2.2. Application domains and validation strategies

From a practical point of view, the studied approaches have been characterizveglspdict to the application
domain considered, and the validation strategy used. Table 2 providemarsuofithe main practical aspects of the
proposals given in Table 1. This table shows, when appropriate, theasalits of the comparative analysis included
in the discussed papers. We briefly discuss each of these characteristies follows.

Withrespecttotheapplicationdomain, Table2showsthatmostoftheapplicationsarerelatedtaresfittowed by the
manufacturing industry. Other application domains include pharmaceuticg[§7[6&ollowed by engineering
[18][61],andthentheenergysector[55]. Thereareafewapplicationstoothediaitiastheautomotiveindustry[5],
distribution [19], port services [26], and university stationery invgnitd7]. Furthermore, some of these applications
have been made to spare parts management, while others have been apgadrab stock keeping units.
Additionally, there are only 13 papers out of 33 that carried out casesstith real-world applications, while some
have used numerical examples (i.e. non-real data obtained, for instarsteubation), and some others have used
secondary data (extracted from other publications). In the present pagmgpbeed approach has been applied to
real-world data collected from a manufacturing company in China.

Regardingthevalidationtechniquesused, mostofthepreviousstudiesrelyonttssificaltonstrategywherethe
results of the classification methods used are compared to the initial resulte-diassification validation strategy
has been used in, for instance, [22][36][37][49][67][80].m&oprevious studies, including [8][65][67][80], use
simulation as a validation strategy and a few of them (e.g. [19]fd[§])on a discussion with the decision maker to
validate the results. Other validation techniques include the use of test dat®][58%jGerimental investigation
[5][60], and clustering [61]. Some of the proposed approachesodase any validation strategy, e.g. [54]. The
approach proposed in this paper uses several complementary validatioriestratiegct analysis of the obtained
decision rules by the decision maker, re-classification analysis andved@stion analysis.

Some of the discussed papers include a comparative study while othetts @oeniast two columns in Table 2
indicate, when appropriate, the methods that have been considered in tleatwegtudies and the main results of
each comparative study. The approach proposed in this paper has bparedoim several well-known classification
techniques: fuzzy classification rule (FR), nearest neighbours (KNN), sygmbor machine (SVM), decision trees
(DT), multi-layer perceptron network (MLPNN) and Naive Bayes (NB).

2.3. Summary

Based on the previous discussion, it appears that only a few odfistiagestudies have been applied to spare parts
classification. In addition, we can identify the following shortcomings:

1. Most of multicriteria methods that have been used in the previous literature adapted to deal with a large
number of spare parts;

2. most of the multicriteria methods used require a large amount of infornfiatiarthe decision maker;

3. Apart from the re-classification, which is used most often as a validdtategy, existing proposals lack the
use of appropriate and formal strategies to validate and exploit the resubsaogtisis;

4. Most of the existing literature does not carry out a real-world casg Btiidelies on example analysis or data
analysis using data extracted from other papers;
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5. Several approaches lack an effective comparative study.

The approach proposed in this paper attempts to address these aspects,sasl disSastion 6.
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3. The proposed approach

The proposed approach can be divided into three main phases: (I)de@@hvalidation, and (3) generalization.
Figure 1 shows the flowchart of the proposed approach wherdinsthighase aims to use a representative set of spare
parts data combined with the expertise and experience of the decisionimakder to generate a collection of if
then decision rules summarizing the preference of the decision méeesetond phase is to validate the output of
the first phase through a re-classification of the learning set andsavaigdation analysis. The validation process can
be further strengthened by taking input from the decision maker thyahet@ in revising the learning set. Once the
if—then rules are validated, the third and final phase is to use these rulesdiastification of unseen spare parts.
The main advantage of the proposed approach is that these rules can be@pehedr unknown spare parts in the
stock.

START
&
S

rq
\ 4
IF-THEN
decision rules
VALIDATION

Unseen &
)

PHASE 1

Modify input data

Enrich input data

_ PHASE 2

PHASE 3

Figure 1: General schema of the proposed approach

3.1. Phase-ZLearning

The objective of this phase is to use a collection of carefully identifie@ g@ats to generate a set oftifen
decision rules indicating the priority level of each spare part based onris gtterms of several evaluation criteria.
The assessment of the input data is a crucial step in this phase becgquaétthend representativeness of the decision
rules obtained depends largely on the quality and representativeness of thg eairnin

The learning phase, which relies on the DRSA, contains three steps: dataisfguapproximation, and inference
of decision rules.

3.1.1. Data structuring
In rough sets theory, information regarding the decision obigadften structured in a 4-tuple information table

S=(UQVf) ,whereUis a non-empty finite set of objects a@ids a non-empty finite set of attributes such that/

- V,for everyq € Q. TheVqis the domain of attribute, V = Nq€eq Vy, andf: U xQ — Vis the information function



defined such thagf{x,q) € V;for each attributey and objectx U. The setQ is often divided into a sub-s€tZ @ of
condition attributes and a sub-ge¥ @ of decision attributes, such thaty D = Q andC n D = @. In this caseSis
called a decision table.

In multicriteria decision making, the domains of the condition attributesupposed to be ordered according to a
decreasing or increasing preference. Such attributes are called criteripropbeents of DRSA assume that the
preference is increasing wiffr,q) for everyq € C. They also assume that the set of decision attrilute$E} is a
singleton. The unique decision attriblitenakes a partition off into a finite number of preference-ordered decision
classes Ck {CI,t € T}, T ={0,---,n}, such that eache U belongs to one and only one class.

ThedecisiontableusedinourcasestudyisgiveninAppendixA.Asshowninthistaldasthingsetiscomposed of 98
spare parts described in terms of four criteria, namely Criticality, Annual Qdkage, Average Unit Cost, and Lead
Time (a detailed description of these criteria is given in Section 4.3.1). These catezidden identified by the
decision maker based on his experience. However, it is worth mentionitigetipabposed approach is generic enough
and may be used with any number of criteria. The decision attfitil¢éines three classe4,; BandC. The preference
order assumed < B < A, where “x < y” means that y is preferred ta. The categorization of spare parts into the
groups4, Bandc will facilitate their management in the sense that a different stocking palicipe selected for each
group. For instance, the spare partd,imaking up roughly 10% of the total inventory, should be contraoidgdly,
recorded accurately, and monitored closely due to their taking a largec$leamual expenses; the spare parf3 in
making up about 20% of the total inventory, are less tightly controlledebrreécorded; and the spare partsCin
making up about 70% of the total inventory, are managed with the siroptesbls and records.

3.1.2. Approximation

In DRSA the represented knowledge is a collection of upward udlierend downward unionél:= of classes
defined as follows:

¢ =| ek, o =] ok

s>t s<t

The assertion “x € Cl:z”” means that “x belongs to at least cla6%” while assertion “x € CI=” means that “x belongs
to at most clas6ls”. The basic idea of DRSA is to replace the indiscernibility relation used in the conventional RST
with a dominance relation. L&< C be a subset of condition criteria. The dominance relati@ssociated witl® is

defined for each pair of objectandy as follows:

xAry = fixq) > fly.q),vq € P.

In the definition above, the symbol “3*” should be replaced with “<” for criteria which are ordered according to
decreasing preferences. To each obfeet/, we associate two sets: (i) tRedominating se\*p(x) = {y € U : yApx}
containing the objects that dominateand (ii) theP-dominated sef\-p(x) = {y € U : xAry} containing the objects
dominated by.

Then, theP-lower andP-upper approximations d@fl:> with respect ta® are defined as follows:
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* P(Cl) = {x € U: A*p(x) < Cl},
s P(Cle)={x€ U: Ap(x) N ClF= @}.

Analogously, theP-lower andP-upper approximations dfl:= with respect t? are defined as follows:
* P(Cls)={x€ U: Ap(x) € CI=},
. P(CIE)={z €U : Af(z)NCIF # 0}

The lower approximations group the objects which certainly belong to whésss Cl (resp.Cl:<). The upper
approximations group the objects which could belon@#dresp.CI:=).

The P-boundaries ofl# andCl+ are defined as follows:

* Bnp(Cl?) = P (CI#) - P(Cl#),
* Bnp(Cle) = P (Cl#) - P(Cl¥).

The boundaries group objects that can neither be ruled in nor out dsemarficlas€l:.

The quality of approximation of a partition Cl by means of a setiefriaP is defined as the ratio of all P-correctly
classified objects to all objects in the system. Mathematically,

U = (Urer Bre(CIZ) UWUser Bre(C)))|

U] . 1)
The accuracy of the rough-set representation of unions of classes istedraputhe ratio between the number of
objects in the lower approximation and the number of objects in {fer @pproximation. Mathematically,

e P(CED)
a(Cl7) = F’(le)l @)

Y1) =

whereo € {>,<}. It is easy to see that< a(Cl) < 1, Vt. This holds because, by definition, we h&¢€l.°) <
P_[le), vt. Clearly, when the upper and lower approximations are equal (i.eothmlary region is empty), then

a(Clr) = 1, and the approximation is perfect. At the other extreme, whenevemibe dpproximation is empty, the
accuracy isx(Cl) = 0.

In addition to these measures, the authors in [13] introduce two adflittasures to estimate the attainable
predictive accuracy of a rough-set-based classifier. The first measure Jca@iuinates the attainable percentage of
correctly classified objects of a classifier. With respect to the DRSAtthimable percentage of correctly classified
objects is defined for a subgeLt C of criteria as follows:

|Cly N POSpE(CLE)| i U=t |ClL N (POSE(CIZ) U POSR(CIE))| Ll POSp(CIZ)|

Ap(Cl) = 3
=0 U U] 0] &
whereP0Sp(Cl?) and POSp(Cli) are theP-positive region of’lz andCl=, respectively, defined as follows:
pPosp(CIi?)= |J AL
yEP(CIT) , (4)
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and
POSp(CIE)= | J AR
vEP(CIT) (5)

The second measure, call&destimates the attainable mean absolute error of a classifier. It is definednasath
absolute difference between the index of the class to which an object iwdssiga classifier and the index of the
class to which the object belongs. Obviouslgan be employed only when the decision classes are ordered, i.e. in
DRSA. The attainable mean absolute error is defined,ddf andy; € Clr with ¢ € {z,<}, as follows:

|
1 . .
TeC) (_ g y;EPOS,-((“i%_nll\.lftf,EP(J.L‘.',,((_"JE) b (©6)
TheA andé§ measures are only useful if the quality of approximationvisdo even equal to zero. Accordingly,
these measures have not been considered in the case study given in Sentierth#e quality of approximation on
the learning dataset is equal to 1.

The DRSA defines two concepts that may indicate some information Hiuhportance of the criteria: the
reduct and the core. A reduct is a minimal subset of criteria which caselfyfully characterize the knowledge in
the decision table. The reduct of the decision table is not unique: there maypsubsets of criteria which preserve
the equivalence classes. The set of attributes which is common to all reducts is callee. tReezrefore, they are the
criteria which cannot be removed from the decision table without causicgithpse of the equivalence classes. More
information on these concepts is available in [41][42]. The resultedgproximation of the decision table used as
input in the considered case study are presented in Section 4.3.2 andigethindrable 4.

3.1.3. The inference of the decision rules

The decision attribute induces a partitionlah a way that is independent of the criteria. Hence, a decision table
may be seen as a set of ‘if—then’ decision rules. The condition part specifies the values assumed by one or more criteria,
and the decision part specifies an assignment to one or more decision Glassesypes of decision rules may be
considered: (i) certain rules generated from the lower approximationgobwof classes, (ii) possible rules generated
from the upper approximations of unions of classes, and (iii) appatxirales generated from the boundary regions.
The general structures of certain decision rules are as follows:

IF condition(s), THEN At Mostl: IF condition(s), THEN At Leadftl;

The decision part of a certain rule takes the form of an assignment tstatlasgs unions or at least class unions.
The general structures of possible decision rules are as follows:

IF condition(s), THEN Possibly At Mogt; IF condition(s), THEN Possibly At Lea6t:

In this case, the decision part specifies a possible assignment to at mostioles®uat least class unions.
Finally, the general structure of approximate rules is as follows:

IF condition(s), THEN Belongs t€ls U Cls«1 U +- U Cl;

Here, the decision part is defined as the union of several decision classes.

Decision rules are judged by their quality on the basis of the learnirigaifoing) set, and by how they classify
new unseen objects [71]. Several measures have been proposed to ¢valpatformance of decision rules. An
object supports a decision rule if the description of the object matctiethbaondition and the decision parts of this
rule. The support of a rule is the number of objects supportegulle. A decision rule covers an object if the
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description of the object matches at least the condition part of the rule. Thagmverthe number of the objects
covered by the rule. The strength of a rule is the number of positimgéscovered by the rule. The relative strength
is the number of positive examples covered by the rule divided muthber of all positive examples in the union of
classes. The confidence level (some authors call it consistency, or the ceatatmtydr the precision) is defined as
the number of positive examples covered by the rule divided by thearwf examples covered by the rule. For more
information and the formal definitions of all these concepts, s@B[I{1We note that if the consequence is univocal
(i.e. contains only one decision), the rule is exact, otherwise it is sipparte.

At this level, we should note that a given decision object may be cobgrede or more decision rules, or may
not be covered by any rule, in other situations. This issue hasliseanssed in detail in [9], where the authors propose
different solutions to classify an object using decision rules in otteed possible situations: it is covered by (i) no
rule, (ii) exactly one rule, (iii) several rules. The authors in [9] shdweedthese issues are dealt with by the standard
classification method and the new classification method that they introlueéhat follows, we summarize the
solutions used by the standard classification method, as discussed in [9]:

1. the decision object is not covered by any decision rule: in this case, the okjiscassigned to all decision
classes fronCl.

2. the decision object is covered by one decision rule: in this case, the classification reliee @rutience
principle. Two subclasses are distinguished here. First, if the decision rii Ieast type with a decision part
of the form ‘then x € CI?’, then the decision object x is assigned to the lowest cladsof the unionClz suggested

in the decision part of the decision rule. Analogously, if the decisionsrofeat most type with a decision part
of the form ‘then X € Clts”, then the decision object x is assigned to the highest cla@sof the unionCi=

suggested in the decision part of the decision rule.

3. the decision object is covered by several decision rules: in this case, the standard classifitetibod
proceeds in two steps. First, the decision object is assigned to aalintathe form[Cl,Cls] where: (i)Cl:is the
lowest class in the intersection of suggested unions of all coveringfuigee at least; and (ilsis the highest
class in the intersection of suggested unions of all covering rulesedcditypost. Then, @l:= Cls, the assignment
of xis univocal; otherwise, two cases are possible:

(a) if t<s, then decision objeetis assigned to classég,::-,Cls, without the possibility of refinement, because

of imprecise information;

(b) if t > s, then decision object is assigned to classé&,--,Cl;, without the possibility of discernment,

because of contradictory information.

One possible way to refine the assignment intef@gLls] in case (a) above is to use some simple rules (such as the
min, max, mean, floor, and ceiling operators) to reduce the assigrmnterval into a single decision class. This
solution has been used in [20][21] for the reduction of the ms&gt intervals in the context of group decision making.
The new classification method proposed in [9] adopts the same gteestéige standard classification method for
handling situation (1). With respect to situation (2), the new classificatitimotheomputes, for each decision object
x and rulep covering it, a score if0,1] (which can be interpreted as the degree of certainty of the assignndnt of
Cl:in the decision part of rulg) and then assignsto thatCl:for which the score is the greatest. For situation (3), the
authors in [9] use a combined score that considers the rules that aoedam with the assignment of the decision
object x to decision clas€l; and those which are discordant with this assignment. The combined cscoitge
interpreted as a net balance of arguments in favor and argument agaiassiinment of the decision object to
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considered decision class. Then, decision objastassigned to the clag¥ for which the combined score is the
greatest.

Inourcasestudy,weidentified11certainrulesthatarediscussedinSection4.3.3.Wesnioloimat,generally, only
certain decision rules are used in practice. The other types of rules are mainlyonsasitivity analysis.

3.2. Phase-2Validation

The objective of the second phase is to check and validate the generated deleisidn this paper, we propose
three validation techniques:

+ Decision rules analysis. The first and simplest validation technique is basedirest analysis of the decision
rules by the decision maker. The idea is based on asking the decigentmacan all the decision rules and
indicate his/her agreement level on a five-level Likert scale. A limited nuoflbisagreements can be managed
either by modifying some decision rules or by removing the ibecisles with a high level of disagreements.
Both options should, however, be authorized only for well-experietheeidion makers.

» Reclassification analysis. The second validation technique consistsngf tii® generated decision rules in
order to re-classify the original spare parts. Ideally, the assignwistatimed by re-classification should match
completely with the original assignments. This is not always possiptadtice, and generally a limited number
of misclassifications may be accepted. When there are many misclassificagomsgifion maker is called to
revise his/her initial assignments in order to improve the quality afebision rules.

» Cross-validation analysis. This validation strategy is used to evaluafgetiietion accuracy of a machine
learning technique. In essence, it starts with the partitioning of the deailata into training and testing
subsets. The training subset is used to train the model, and théasting subset is used to measure the
prediction accuracy. The key difference from re-classification is thahtite! is assessed by means of testing
data that was completely unseen by the model. Multiple rounds sévatidation are usually performed on
different partitions, and the validation results are averaged over the rounds.

Thesecomplementaryvalidationtechniquescanbeusedseparatelyorjointly. Theycanhelpoinedzicésbetter
appreciate and refine the learning set and the obtained decision ruldswithnaturally enhance the effectiveness
of the decision making process and the successful implementatiensafiution at the end. The use of these validation
strategies is illustrated in Section 4.4 using real-world data in a case study.

3.3. Phase-3Generalization

This phase aims to exploit the decision rules to classify spare parts atfiénase used initially for learning. For
more advanced applications, decision rules can also be used to develegbasad decision support system by
incorporating these rules into the knowledge base, but such an adiearig beyond the scope of this paper.

The proposed approach is an iterative decision making process aad,l@sseen in Figure 1, the process can be
repeated whenever required. For example, at the end of the second ghages¢iment of the decision maker after
an advanced analysis of decision rules is required to go througienleealization phase. Furthermore, the iterative
structure of the dedisn making process enables the system to “learn” from past experiences. Indeed, and as shown in
Figure 1, the final classifications can be used as input for inducing a swirefrefined decision rules. This can
enhance the system over time.

In our case study, detailed in the next section, we used a new s ofuting the generalization phase. We then
provided the results to the decision maker for appreciation. More infornmatitins issue is given in Section 4.5.
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4. Case study

The objective of this section is to illustrate the proposed approemigtha case study in China. We first briefly
introduce the company, under the pseudonym of the ‘Industrial Manufacturing Company’ (IMC), considered in this
case study (Section 4.1). Then, we enumerate the problems facedMthmetheir current spare parts management
policies (Section 4.2). In the remaining sections, we provide abstspep application of the proposed approach to
the IMC (Sections 4:31.6).

4.1. The company

The business of the IMC includes operations, manufacturing, anideseitivities. In recent years, its service
business has made rapid progress. Hence, the activity of the IMC has adeallgrturned towards maintenance,
repair and overhaul (MRO) services for a variety of equipment, includingleshlocomotives, engines, and
electronic devices. Several MRO Service Centres have been created in order to satisgdthfor different MRO
services. The IMC also produces and supplies spare parts to custonoedgrito support thcustomers’ needs, the
IMC created a network of distribution warehouses. The spare parts relaieesbusf the IMC represents a very
important part of the company’s profits, leading to a substantial increase in the annual business volume to more than
14 million dollars in the last three years.

4.2. The problem

Although the IMC’s business made rapid progress in the preceding few years, the company, due to an increasingly
competitivemarket,hasfacedseveralproblemsinitssparepartsmanagement. Firstigittigpncosts,includingthe
procurement of raw materials, employee salaries, and so on, have d@@rggnd hence now make up a significant
part in the company’s expenses. Secondly, the spare parts management strategy used by the IMC is inappropriate.
Indeed, the IMC uses the ABC classification technique to manage its sparéHoavever, a high number of skilful
and well experienced employees have retired in recent years, and theurgyvaynd inexperienced employees are
unable to correctly classify the spare parts by themselves. {;hinédl company manages more than 20,000 types of
spare parts, which complicates the classification task, especially for the inexpkeermeyees.

The approach proposed in Section 3 permits handling all the abovexitddms by (i) reducing the production
costs by correctly identifying the most critical spare parts (those assiggienlip) that should be controlled tightly,
recorded accurately, and monitored closely, due to their important plaetamnual expenses; (ii) extracting valuable
knowledge (in terms of-ithen rules) about spare parts management from the past experiahtést@cal data of
the company; and (iii) automating the classification task through a learningsset &pproach that uses a reduced se
of spare parts as input and generates a collectiontb&ii decision rules that can be used to classify all the spare parts
of the IMC.

4.3. Phase-XLearning

Following Section 3.1, the learning phase is organized into three stegataistructuring (Section 4.3.1), (ii)
approximation (Section 4.3.2) and inference of decision rules (Secti@).4.3

4.3.1. Data structuring
As introduced in Section 3.1.1, the input for the DRSA is a decisiondabtaining a subset of typical spare parts
described in terms of a collection of evaluation criteria.

Identification of the criterialnitially,the IMC’spractice of spare parts management relied on a single criterion, namely
Annual Dollar Usage, to classify the spare parts. As strongly advocatkd bgare parts manager, the use of Annual
Dollar Usage alone is inefficient. For the purpose of this case study tand discussion with the spare parts manager,
we decided to maintain four criteria: Criticality (Criticality), Annual Dollar Usage (AsitEBUsage), Average Unit
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Cost (AvgUnitCost), and Lead Time (LeadTime). The description of théeeiaiis given in Table 3. The criteria
Annual Dollar Usage and Average Unit Cost are continuous while the criteria Critanaditiyead Time are ordinal.
The Criticality criterion can take one of the four values 1, 2, 3 amnthdre 1 corresponds to the lowest criticality and
4 corresponds to the highest criticality. The possible values for Tiesglare 1, 2 and 3, where 1 means a low lead
time and 3 a high lead time. Finally, we note that all criteria are of type gathgijgreference is increasing with the
criteria values.

Table 3: Characteristics of used spare part manageniteniacr

Code Name Description Preference| Data type
Criticality Criticality It represents the influence of spare parts running out on thelaliyilaf equipment. Gain Ordinal
AnnDollarUsage | Annual Dollar It is calculated by spare part cost multiply demand volume. Gain Continuous
Usage
AvgUnitCost Average Unit Cost It refers to spare part cost. Gain Continuous
LeadTime Lead Time It refers to the time between the placement of an order and delivery of a new spare part from a IMC’s Gain Ordinal
supplier.

Generally, the assessment of ordinal criteria is not an obvious exerciserdinal criteria have been considered
in this paper: Criticality and Lead Time. For the purpose of this ¢tadg, she criteria Criticality and Lead Time have
been assessed by the spare parts manager, based on his long expihiente IMC. Let us also mention that the
authors in [27], for instance, emphasize the role of the lead tineFiam in analysing the competitiveness of
companies. In terms of criticality, one can also argue that it is a functitbee afiticality of the spare parts in the
machine as well as the criticality of the machine within the whole operational sySE&8][%57]. According to [82],
the integration of production and maintenance is important and corfpleexample, the criticality of a machine and
hence its related spare parts can be based on different criteria, such as the saptaheanachine, its rarity (i.e.
absence of redundancy), the degree of deterioration (measure@ssirgéts conditions [85]), the difficulty of repair
in case of downtime (measured by the mean time to repair [74)dtkability (measured by the mean time between
failures [6]), the throughput of the machine (whether it is a bottlepetidther the outputs of the machine are intended
for important customers, or whether the machine has already proittudetgnded schedule of production (i.e. the
current required demand).

Identification and assignment of learning examples. The definition of tlggasmnt examples is a crucial step in our
approach. It involves two operations: (i) the selection of a representatiet sfibpare parts, and (ii) the assignment
by the decision makerof the selected spare parts on the three-level scale defined earlier. Inlitetiapgonsidered

in this paper, a subset of 98 spare parts (denoted 1 to 98) was sdlbetedaluations of the selected spare parts in
terms of the considered criteria, i.e. Criticality, AnnDollarUsage, AvgUnitCost ardiTirea, are summarized in the
decision table in Appendix A. The values in the last column in thisidedable correspond to the assignments, as
expressed by the decision maker, of the spare parts to the decision €|asaedA.

The selection of these spare parts from about 20 thousand spare peednby the IMC was a very difficult
task. The inputs of the highly experienced spare parts manager haverbgal in this exercise. At this level, it is
important to emphasize that there are no formal rules that can be useérentghdentify the learning set. In this
respect, the authors in [59] identified some general guidelines that can be followed to obtain the ‘best’ set of assignment
examples: (i) the spare parts should be as representative as possible bngndlffdrent specifications and
characteristics; (ii) the spare parts should be non-redundant (in terimsiroftaluation with respect to different
criteria); (iii) the spare parts should cover all the decision classes; and (iv) tagpaparshould ideally be well known
to the decision maker/expert. The authors in [59] also observe that there idaalrtbeoretical number of examples.
A limited number of examples might lead to a few and very generisidecules and too great number of examples
may lead to a high number of very specific and redundant decigdem r
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4.3.2. Approximation
The DRSA has been designed to be used with any sBlsfetriteria from the set of criteri@ = {Criticality,

AnnDollarUsage, AvgUnitCost, LeadTihdn our case study, we assumed that all the criteria are usdtizieIn
addition, the domain of the decision attribdités equal to{C,B,A}. These values correspond to the labels of the
categorie<, B andA introduced in Section 3.1.1. The decision attribtitfivides the set/ of spare parts into three

preference-ordered classé€si= {C}, Cl>= {B}, andCls = {A}. Thus, the class unions that should be approximated are:

. Cl5 i e. the objects belonging to (at most) cléss
Al <

- Ul3 j.e. the objects belonging to at most clBss
> . .

- Cl3 | i.e. the objects belonging to at least class

. Cf:sz, i.e. the objects belonging to (at least) cléss

These class unions have been approximated using our decision table idiAppamnd the equations given in
Section 3.1.2. The result of the approximation is summarized in Tableshos in this table, all the boundaries are
empty sets, which indicates that the approximation is perfect (see Setti)n Bhe quality of the approximation and
accuracy of the rough-set representation of the classes of our atpuaré summarized in Table 5. In our example,

the quality of approximation of the partiti@h = {Cl1,Cl,Cl3}, the percentage of correctly classified objects, and the

accuracy of the rough-set representation, are all equal to 1 and the attaieablabsolute error is equal to 0. This
ensures the high quality of the learning set used as input. Additionally, tlysiamgth the DRSA shows that the set
{LeadTime, AnnualDollarUsage, AverageUnitGasinstitutes the unique reduct and also the core of the data used as
input.

Class union Lower approximation Upper approximation Boundary

(?if (At Most () 1,2,3,4,57,8,9, 16,338, 19, 20,21,22,24,28,Z7 1,2,3,4,5/7,8,9, 16,338, 19, 20, 21, 22, 24, 28, Z 0]
31, 33, 34, 36, 37, 38, 41, 42, 43, 46, 47, 48, 49, 50, 31, 33, 34, 36, 37, 38, 41, 42, 43, 46, 47, 48, 49, 50,
52, 56, 57, 58, 61, 62, 63, 64, 66, 68, 69, 70, 74, 75, 52, 56, 57, 58, 61, 62, 63, 64, 66, 68, 69, 70, 74, 75,
77,78, 79, 80, 86, 88, 89, 90, 91, 92, 93, 94, 97 77,78, 79, 80, 86, 88, 89, 90, 91, 92, 93, 94, 97

G;ZS (At Most B) 1,2,3/4,56,7,8,9, 10, 11, 12, 13, 14, 15,16, 17,| 1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 0]
19, 20, 21, 22, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34,| 19, 20, 21, 22, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34,
36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
52, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 52, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
69, 70, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 86, 87, 69, 70, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 86, 87,
89, 90, 91, 92, 93, 94, 95, 96, 97 89, 90, 91, 92, 93, 94, 95, 96, 97

(*,g'zi (At LeastB) 6, 10, 11, 12, 13, 14, 15, 17, 23, 25, 26, 27,32, 35, | 6, 10, 11, 12, 13, 14, 15, 17, 23, 25, 26, 27, 32, 35, [0}
40, 44, 45, 53, 54, 55, 59, 60, 65, 67, 71, 72, 73, 81,| 40, 44, 45, 53, 54, 55, 59, 60, 65, 67, 71, 72, 73, 81,
83, 84, 85, 87, 95, 96, 98 83, 84, 85, 87, 95, 96, 98
23, 27, 40, 53, 55, 71, 73, 83, 84, 85, 98 23, 27, 40, 53, 55, 71, 73, 83, 84, 85, 98

(S (At LeastA)

Table 4: Result of approximation
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Table 5: Quality of the approximation, accuracy @diction and accuracy of rough-set representation
Quality of Percentage of correct|  Attainable mean Accuracy
approximation  classified objectsA) absolute errord)

che(AtMostC) €  (AtMost®) ¢  (AtLeast?) ¢«  (Atleastd)
1 1 0 1 1 1 1

4.3.3. Inference of decision rules

The application of the inference algorithm DOMLEM [44] of the DRSA to thelteesfi the approximation in
Table 4 leads to a minimal set of 11 certain and exact decision rules,asbigiven in Table 6. A detailed description
of these rules is given in Appendix B. By minimal set we meeart of non-redundant rules that cover all the spare
parts in the learning set. Table 6 indicates, in addition to the descriptitwesd#fcision rules, the number of supporting
objects, the relative strength, and the confidence of each decision ruttesthiption of these rules is straightforward.
Rule #8, for instance, indicates that a spare part is classified as high prieriag$igned to categosy once (i) the
Annual Dollar Usage is greater than or equal to 3150 and (ii) it is ofvginycriticality. This decision rule is supported
by 9 spare parts, has a relative strength of 81.82%, and a confidenad BV&2%.

# Rule Support Relative strength Confidence level
(%) (%)

1 IF (AnnDollarUsage1260) THEN (Class at mos§) 53 86.89 100
2 . - 16 26.23 100
3 IF (AvgUnitCosk27.3) & (Criticality<2) THEN (Class at most) 47 77.05 100
4 | IF (AvgUnitCosk24.07) & (LeadTime&2) & (AnnDollarUsage1754) THEN (Class at mos) 83 iigg 100
5 39 : 100
6 | IF (AnnDollarUsage3071.25) THEN (Class at moB} 64 ;g?g 100
7 | |F (LeadTimes1) THEN (Class at mos) 8 81.82 100
8 9 86.49 81.82
9 IF (AvgUnitCosk36.75) & (LeadTime&2) THEN (Class at most) 32 54:05 100
10 20 43.24 100
11 IF (AnnDollarUsage11025) THEN (Class at lead} 16 100

IF (AnnDollarUsage3150) & (Criticality=4) THEN (Class at leagt)

IF (AnnDollarUsage1786.4) THEN (Class at leaB}

IF (AvgUnitCost71.66) THEN (Class at leaB)

IF (AnnDollarUsage 1470) & (LeadTime 2) & (AvgUnitCost  29.4) THEN (ChsieastB)

Table 6: Decision rules

v
v
\2

As discussed at the end of Section 3.1.3, a decision object can be dpvé)atb rule, (i) exactly one rule, (iii)
several rules. In the considered case study and as shown in ApBedlispare parts in the initial learning set are
covered by at least one decision rule.

4.4, Phase-2Validation
In the rest of this section, we apply the three validation strategies introicuSedtion 3.2 to our case study.

4.4.1. Analysis of the decision rules

As mentioned earlier in Section 3.2, this validation strategy consists ofjabkidecision maker to scan all the
decision rules and indicate his/her agreement level on a five-level Likert scafgglpidisagree, Disagree, Neutral,
Agree, and Strongly Agree. The result of the analysis of the decigies for our case study is given in Table 7.
According to this table, the decision maker agrees with five decisies, ig neutral about five other decision rules,
and disagrees with one decision rule.
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Table 7: Decision rules analysis

Strongly Strongly

Rule Disagree | Disagree | Neutral | Agree Agree Comments

IF (AnnDollarUsage&1260) THEN (Class at mos§) X

X
IF (AvgUnitCosk27.3) & (Criticality<2) THEN (Class at most)

WN P H

IF (AvgUnitCosk24.07) & (LeadTime2) & (AnnDollarUsage&1754) THEN
(Class at most)
IF (AnnDollarUsage3071.25) THEN (Class at moB} X

X X X
x

IF (LeadTimes1) THEN (Class at most)
IF (AvgUnitCosk36.75) & (LeadTime&2) THEN (Class at most)

© o0 ~NO O

IF (AnnDollarUsage3150) & (Criticality=4) THEN (Class at leagt) condition ~ is  very
IF (AnnDollarUsage1786.4) THEN (Class at leaB} X part should be&.
10 | IF (AvgUnitCost71.66) THEN (Class at leaB) X

11
IF (AnnDollarUsage1470) & (LeadTime2) & (AvgUnitCost29.4) THEN X

(Class at least)

IF (AnnDollarUsage11025.) THEN (Class at leas} The right-hand member of th¢

consequently, the decisio

low;

The last column in Table 7 indicates the comments of the decision matker decision rules. In the present case
study, the decision maker justifies his disagreement with decidiert@uby the fact that the right-hand member of
the unique condition (which is relative to the criterion Annal Dollar Usage) of tlkissruery low; consequently, the
decision part should b& However, the decision provided by the decision maker is notstemswith the condition
part of decision rule #9. To avoid any confusion, we contacted theaegiaker again and proposed three solutions:
(i) maintain decision rule #9 as it is and add ‘by hand’ to the list of inferred decision rules the following rule: ‘IF
(AnnDollarUsage1786.39), THEN (Class at mo6&Y’; (ii) maintain rule #9 as it is without adding any new rule; and
(iif) remove decision rule #9. He finally opted for the second solutieghtenchanged his agreement level from

‘Disagree’ to ‘Neutral’.

4.4.2. Re-classification analysis

The second validation technique consists of using the generated degisfoto re-classify the spare parts. In the
case study considered in this paper, the re-classification analgsis gtat the original assignments (proposed by the
decision maker) match with those proposed by the system for 88%wbf the spare parts, and there are about 2%
ambiguous assignments (for spare parts numbers 25 and 26ksTitteof the re-classification can be summarized
through am x n confusion matrix, where is the number of decision classes. The intersection of a row and column
indicates the number of original and possible assignments for the detésises corresponding to the considered row
and column. The confusion matrix for our case study is giva@alrhe 8. As indicated by this table, all the spare parts
originally assigned to decision classesind A have been assigned to the same classes by the system. This table
indicates also that 24 spare parts that had been initially assigned t8 wlass re-assigned to the same class by the
system and that two spare parts (namely #25 and #26) that hadsségmed to clas® by the decision maker could
be assigned tB or A.

It is important to mention that since there were no inconsistentnassigs, normally there should be a perfect
reclassification with 100% correct assignments and no ambigueusog assignments. However, as shown in Table
8, there are two ambiguous assignments. Indeed, the value @ @ornfusion matrix can be read as there are two
decision objects that had been assigned to dlasstead of class® as initially proposed by the decision maker. This
is due to decision objects #25 and #26, which are covered by cougfliciies! Indeed, a careful examination of
Appendix B shows that decision objects #25 and #26 are covemtehecision rule (namely rule #6) of type at most
and three decision rules (namely rules #8, #9 and #11) ofatyieast. The assignment of decision objects #25 and

! The results in Table 4 show empty boundaries, whichldhmmrmally lead to a perfect re-classification ancisien objects #25 and #26 should
be assigned strictly to claBs After careful examination, it turns out that rug should never been induced by the DOMLEM algorith#j,[4s it
has conclusion “at least A”, and covers two decision objects (#25 and #26) from a worse classB. It seems to be somewhat of an implementation
error in the software 4eMka2 used to run DRSA. Deshigefact, rule #8 is maintained in the rest of the paper
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#26 to bothB and A holds since the DRSA software 4eMka2 [1][43] used in this papplements the standard
classification method mentioned in Section 3.1.3.

Table 8: Confusion matrix

Possible
/ c B A
c 61 0 0
Original B 0 26 2
A 0 0 11

We provided the result of the re-classification analysis to the decision makaskatihim to revise his original
assignments for spare parts #25 and #26 causing the confusidenp. The result of this exercise is summarized in
Table 9. As shown in this table, the decision maker refused to rasissdignments and maintained the original
assignments for spare parts #25 and #26.

Table 9: Result of revision

Annual Dollar | Average Lead Original assignment | Possible Revision by
Unit assignment the
# Criticality Usage Cost Time | (by the decision (by the system) decision maker
maker)
25 4 3150.00 31.50 2 B BorA B
26 4 3675.00 36.75 2 B BorA B

4.4.3. Cross-validation analysis

The basic idea here is to randomly partition the data into parts or ‘folds’, and select one fold to be used for testing
and the remaining to train the classification algorithm. Cross-validationgs commonly applied witk=10, where
each fold should contain at least 30 items. For this purpose, we rgndarated 10 mutually exclusive pairs of
training and testing datasets. Then, we used the training sets to gémeddeision rules, which were then applied
to the testing sets. Each training and testing dataset was composed of 49 itd®@dq(i.eraining and 49 for testing).
Furthermore, we used stratified cross-validation to have proportiomakespation of each class in each fold.

Table 10 summarizes the recall and accuracy analysis for the decisg@s€|dsandA. In this table, we observe
that the performance of the DRSA remains consistent for the thoésiah classes. It is important to emphasize here
that decision class has the fewest samples in the dataset, while decisionGhaessthe highest number of samples.
This indicates that the DRSA performs equally well regardless of theanofhbamples available in the dataset.

Table 10: Recall and accuracy analysis using the DRBAIl three classes
Class-wise recall Class-wise accuracy Total Total
recall accuracy

4 B A 4 B A
0.9033 0.8692 0.8167 | 0.9374 0.8019 0.8129 | 0.8631 0.8507

We have also used a series of well-known pamametric statistics to compare the decision maker’s assignments
of the decision objects in the testing sets to those generated by therdedéesanferred from the training sets. The
statistics considerea ithis paper are: Kendall’s tau, Spearman’s rho, and the Unweighted and Weighted Cohen’s
kappa. These statistics are often used to compare a set of rankings poguidediecision makers, experts, methods,
etc. In addition, all of them accept ordinal daid can deal with ties. Kendall’s tau lies in the range [-1,1]. If the
agreement between the two rankings is perfect (i.e. the two gandae the same) it is 1. If the disagreement between
the two rankings is perfect (i.e. one ranking is the reverse ofthleg)dt is -1. If two rankings are independent, then
we would expect it to be approximately zero. Spearman’s rho is in the range [-1,1]. A positive Spearman correlation
coefficient indicates that both rankings vary in the same directiongAtiwe Spearman rho coefficient indicates a
monotone decreasing relation between the two rankings. A Speermaoefficient of zero indicates that there is no
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tendency between the two rankings. There are two ways of calculating Cohen’s kappa: unweighted and weighted. The
weighted kappa is more appropriate for variables having more than two categories. In both cases, the value of Cohen’s
kappa lies in [0,1]. Conventionally, a kappa of <0.2 is consideredggreement, 0.2D.4 fair, 0.420.6 moderate,
0.61-0.8 strong, and more than 0.8 a near complete agreement.

The result of this statistical comparison is given in Table 11. According to this table, Kendall’s tau and Spearman’s
rho show a very high agreement between the two assignment sets while the Cohen’s kappa measures show a slightly
less strong correlation between the two assignment sets. At this leveliembatodespite the fact that the accuracy
of fold number 7 is higher than the accuracy of fold numbere2stdtistical analysis shows a higher correlation level
for fold number 2. This can be explained by the fact that in foldbeur, there are three similar disagreements
(assignment t@® instead ofd) while in fold number 7 there are two different disagreements (assigrion@instead
of Band assignment tBinstead ofd). Indeed, the definitions of the statistics used take into account these aspects.

Table 11: Results of the cross-validation for DRS#atistical analysis

Fold Standard
deviatior|
Statistics 1 2 3 4 5 6 7 8 9 10 Min Max Average
Kendall’s tau 0.8254 0.9624 0.7831 0.8811 0.9117 0.8211 0.9538 0.9062 0.8195 0.84771 0.783] 0.9624 0.8712 | 0.0612
Spearman’s rho 0.8482 0.9844 0.8116 0.9150 0.9290 0.8301 0.9632 0.9228 0.8405 0.875] 0.811€ 0.9844 0.89199| 0.0593

Unweighted Cohen’s kappa | 0.7224 0.8847 0.6554 0.7789 0.8464 0.7845 0.9230 0.8471 0.7454 0.749§ 0.6554 0.923| 0.7938 | 0.0812
Weighted Cohen’s kappa 0.7817 0.9049 0.7232 0.8248 0.8852 0.8271 0.9391 0.8761 0.7969 0.802§ 0.7232 0.9391 0.8361 | 0.0649
Mean Absolute Error 0.1633 0.0612 0.2041 0.1224 0.0816 0.1224 0.0408 0.0816 0.1429 0.1429 0.040§ 0.2041 0.1163 | 0.0500

We also compared the ranking resulting from assignments giver lojedision maker and the rankings resulting
from application of decision rules induced on training sets by calcgléténMean Absolute Error (MAE) for all the
training sets. The MAE is computed as the mean absolute difference bétderif the class to which an object is
assigned by the decision maker and index of the class to which it is adsigndds. The results of this additional
comparison are summarized in the last row of Table 11. These resuttsténcklatively high agreement levels
(between the initial and predicted assignments) for all learning datasets.

Finally, we can conclude that the result of the cross-validation showh &h@ of accuracy and agreement. This
confirms the result of the previous validation techniques.

In the next phase of the decision making process, we should bpplglidated decision rules to a new dataset of
spare parts. At this level, we should mention that if the levels of theaamgcand agreement are not sufficient, the
decision making process can be started by considering new input dé)anmydifying the assignments of the spare
parts in the learning set; (ii) selecting a new set of spare parts as a leatnargifor (ii) adding (or removing) some
evaluation criteria.

4.5. Phase-3Generalization

The dataset used for the generalization phase consists of 123 spatteapaed not been used during the learning
phase. The description of this new dataset is given in Appendix C.s@¢ethe decision rules given in Table 6 to
classify these new items and then provided the results to the decisienforacomment. More specifically, we asked
the decision maker to check the classification of the 123 new spare paimsli@ate his agreement level on a five-
level Likert scale. The result of this exercise is given in Appendix D amthswized in Table 12. As shown in this
table, the decision maker agrees with 56.10% of the assignments, is aleotita31.71%, and disagrees with 12.20%.
This means that the decision maker is satisfied with 87.80% of tlgmassits.

Table 12: Summary of the decision maker agreementssaly

Agreement | Strongly Strongly
level Disagree Disagree Neutral Agree Agree Total
Number 2 13 39 16 53 123
Percent (%) 1.63 10.57 31.71 13.01 43.09 100
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Following the assignment of unseen spare parts into the clasBemd(, the decision maker should check and
agree on the result of classification. If the decision maker acceptssilyarasnts of unseen spare parts, then the
decision process stops. Otherwise the decision maker should madifiptit data and restarts the analysis approach
from the beginning. In this particular case study, the acceptandesabeen judged relatively high. After discussing
with the decision maker, we decided to update the initial learning set audad the analysis approach. More insights
on this additional analysis are given in the following subsection.

4.6. Modification of the learning dataset

The assignment of the unseen spare parts by the obtained decision rutesaleadceptance rate of 87.80%. As
mentioned earlier, we decided, after discussing with the decision nakgglate the initial learning set used in the
first phase by adding a subset of the spare parts used duringnéralization phase. The spare parts to be added to
the learning set are given in Table 13. These additional spare parts cbrigisitams from Appendix C whose
assignments had been judged unacceptable by the decision maker, adiimdidaigendix D. The additional spare
parts were assigned based on the information provided by the decisienimakpendix D (last column).

Table 13: Additional spare parts to be added tdethming set

Annual Dollar ~ Average Unit Lead
# Criticality Usage Cost Time | Class
100 4 3805 38.05 1 B
114 3 10148.7 338.29 2 A
117 3 4420 11.05 1 c
119 3 1462.5 29.25 1 c
123 3 10176 101.76 2 A
137 3 3044 7.61 2 c
138 3 2013 6.71 2 c
141 3 9280.2 309.34 2 A
183 3 1138.95 227.79 2 B
195 3 1254.15 250.83 2 B
204 3 2144 5.36 1 c
205 2 4008 5.01 1 c
207 4 3150 315 2 B
212 3 10173.6 339.12 2 A
220 3 10482.2 524.11 2 A

We applied the DRSA to the new learning set in order to approximate ¢gedécision classés B andA. It is
fruitful to note that the quality of approximation, percentage of correctlgifitss objects, and accuracy of rough-set
representation are all equal to 1, and the attainable mean absolute error is edonaddifion, in this case there is a
single reduct composed of all the criteria {Criticality, AnnualDollarUsage, AverageUnitCGazstTime}. This reduct
constitutes also the core of the new learning set. We remark that the ci@atioality was absent from the reduct
and core during the approximation of the initial learning set (see Sdci®).

The application of the inference algorithm to the result of the appabximof the revised learning set leads to a
new set of decision rules that are given in Table 14. A detailed destribtibese rules is given in Appendix E. This
table contains 11 certain and exact decision rules. By analysing the initial seisiénl rules presented in Table 6
and the ones given in Table 14, we remark that there are two ralesetidentical in both sets. There are also several
rules with relaxed or stricter elementary conditions and/or decision. Fitiedhg, are several different decision rules.

We followed the same steps given in Section 3.2 and Section 4.4 to validattidecision rules. The direct
analysis of the decision rules by the decision maker using a fmifarsto Table 7 showed that he agrees with all the
rules. We also used the re-classification validation strategy to compare the assggobtained using the decision

Table 14: Decision rules obtained from the updated ileguset
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# Rule Support Relative strength Confidence level
(%) (%6)
1 IF (AnnDollarUsage1117.98) THEN (Class at mosy; 52 77.61 100
2 . . . 55 82.09 96
3 IF (AvgUnitCosk29.25) & (LeadTime&2) THEN (Class at mosl); 89 91.75 100
4 | IF (AnnDollarUsage3071.25) THEN (Class at moBY; 44 ‘;ggg 100
5 71 : 100
6 | IF(LeadTimel) THEN (Class at mos); 12 gggg 100
Z} IF (AvgUnitCosk36.75) & (LeadTime2) THEN (Class at mos); 190 62.50 17550
60.87
9 IF (AvgUnitCost257.25) THEN (Class at leas}; 28 41.30 100
10 - ) . 19 80.43 100
11 IF (AnnDollarUsage3150) & (Criticality=4) & (LeadTime2) THEN (Class at least); 37 100
IF (AnnDollarUsage10176) & (LeadTime2) THEN (Class at leag);
IF (AvgUnitCost65.1) THEN (Class at leas);
IF (AnnDollarUsage2063.4) & (Criticalityz4) THEN (Class at lea$);
IF (AnnDollarUsage 1470) & (AvgUnitCost 29.36) THEN (Class at IBgst

2 2

rules given in Table 14 with those given by the decision makeneBudt of this comparison is given in the confusion
matrix in Table 15 and summarized in Table 16. The latter shows an acoti@&% and an error of 4%.

Table 15: Confusion matrix for the new learning set

Possible
/ 4 B A
c 67 0 0
Original B 2 30 3
A 0 0 16

Table 16: Summary of confusion matrix for the new lesgrset

Correct Incorrect Ambiguous | Accuracy | Error
Parameter| assignment| assignment| assignment (%) (%)
Value 108 0 5 96 4

We also compared the assignments obtained using the decision rules ghaeiri4 and those given by the
decision maker using the n@arametric statistics Kendall’s tau, Spearman rho, and the Unweighted and Weighted
Cohen’s kappa. The result is given in Table 17 where we distinguished two cases concerning the five ambiguou
assignments: (i) case of best choice in which the five assignment intervalsgevreduced into a single assignment
equal to the one provided by the decision maker, and (ii) worst choickich the five assignment intervals have
been reduced into a single assignment different from the one provides dgcision maker. Concerning the statistical
analysis using the best choices, all the statistics indicate a full agreement hiisvassignments obtained using the
decision rules given in Table 14 and those given by the decision nk@kdhe statistics analysis using the wrong
choices, the non-parametric statistics indicate a very high level of agreement.

Table 17: Statistics analysis for the new learning set

Best choice Wrong choice
Kendall’s Spearman’s ~ Unweighted Cohen’s ~ Weighted Kendall’s Spearman’s ~ Unweighted Cohen’s ~ Weighted
Cohen’s Cohen’s
Statistics tau rho kappa kappa tau rho kappa kappa
Value 0.9999 1 1 1 0.95577 0.96730 0.9203 0.9403

Based on these results, and after discussion with the decision makedge® fjbat there is no need to conduct a
second cross-validation analysis since the two first validation stratedieatéd a very high level of accuracy and
agreement, and acceptance by the decision maker.

Finally, we used the new decision rules to classify 108 unseen spsdqomposed of the 123 spare parts used
earlier and given in Appendix C minus those included in thelaaming set). Then, we provided the output of this
operation to the decision maker to indicate his agreement level. The resuitsesétitise are given in Appendix F.
In this appendix, we also indicate the assignment given by thedfirsf slecision rules and those corresponding to
the new set of decision rules. We note that in Appendix F some romsgjgonding to objects moved from the testing
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set to the extended learning set) do not appear. Appendix F also showeettecision maker globally agrees with
all the new assignments.

5. Comparative study

WecomparedtheDRSAtootherwidely-usedclassificationmethods,includingfuzzyickassifrule(FR),nearest
neighbours (KNN), support vector machine (SVM), decision trees (Dillji-tayer perceptron network (MLPNN),
and the Naive Bayes (NB) approach. We conducted two types of comparissstvalidation and statistical analysis
using the same data considered in Section 4.4.3. The cross-validatioa foethods FR, KNN, SVM, DT, MLPNN
and NB was conducted using the software KNIME (see [7] and wwwekaig) and for DRSA, we used the software
4eMka?2 [1][43]. All the methods (except DRSA) were applied and tesied the software KNIME with their default
parameter settings. The same learning and testing datasets have beerasedalu for all the compared methods
including DRSA. We note that the scores of the criteria Criticality and Leadiéwve been standardized since the
methods FR, KNN, SVM, DT, MLPNN and NB require continuous data. The standardipgtoation was not
required for the DRSA since it accepts ordinal data. Finally, it is also imptotamphasize that the criteria Criticality
and LeadTime are ordinal ones, with number-coded ordered categadti@s(fior Criticality and 1,2,3 for LeadTime).
Thus the standardization of these criteria is mathematically wrong and ie@asbnducted only for comparison
purposes.

Thedifferentconfusionmatricesofthecross-validationaregiveninAppendixG.Adetailgdeoftheconfusion
matrices is given in Appendix H and summarized in Table 18. Based on theisuwélyable 18, we can conclude
that the DRSA has the best average accuracy and the best average MAE. TalmafAzes the recall and accuracy
analysis for all three classes using different classification methods. becsgen that DRSA clearly outperforms all
other methods on overall recall and accuracy, with the FR and MPLNNaaty@s performing very close to DRSA.
However, on careful observation, we can see that the performancé&df i2Rains consistent for all the three classes,
of typesA, B andC. It is important to emphasize here that cla$ss the fewest samples in the dataset, while €lass
has the highest number of samples, so clearly DRSA performs equallyegaitiless of the number of samples
available in the dataset.

Table 18: Results of the cross-validation for the carmatve study

Correct Wrong Missing Accuracy MAE

Assign. Assign. Assign. (%) (%)
Method Min Max Avg Stdev Min Max Avg Stdev Min Max Avg Stdev Min Max Avg Stdev Min Max Avg Stdev
FR 39 45 42.6 2.0111 3 8 5.1 1.2867 0 5 13 1.8288 79.59 91.84 86.93 4.0981 8.16 20.41 13.06 4.1043
KNN 37 46 40.3 2.8304 3 12 9 2.8304 0 0 0 0 75.51 93.88 82.25 5.7764 6.12 24.49 17.76 5.7764
SVM 33 35 34.4 0.6992 14 16 15 0.6992 0 0 0 0 67.35 71.43 70.20 1.4271 28.57 32.65 29.80 1.4271
DT 33 43 39.4 3.0258 6 16 9.6 3.0258 0 0 0 0 67.35 87.76 80.41 6.1751 12.25 32.65 19.59 6.1751
MLPNN 40 46 43 1.8257 3 9 6 1.8257 0 0 0 0 81.63 93.88 87.76 3.7262 6.12 18.37 12.24 3.7262
NB 32 42 37 3.8006 7 17 12 3.8006 0 0 0 0 65.31 85.71 75.51 7.7563 14.29 34.69 24.49 7.7563
DRSA 39 a7 43.3 2.4518 2 10 5.7 2.4518 0 0 0 0 79.59 95.92 88.37 5.0036 4.08 20.41 11.63 5.0036

Table 19: Recall and accuracy analysis for all thrassels

Class-wise Recall Class-wise Accuracy Total Total

Recall | Accuracy

Method A B C A B C
FR 0.7667 0.7934  0.9581 0.8166 0.7876 0.9474 | 0.8394 | 0.8505
KNN 0.6833 0.5846  0.9533 0.7961 0.6410 0.8854 | 0.7404 | 0.7742
SVM 0.7333 0.0000 1.0000 0.8217 0.0000 0.8090 | 0.5778 0.5436
DT 0.9000 0.6000 0.8733 0.7382 0.6164 0.8999 | 0.7911 0.7515
MLPNN 0.7833 0.8385 0.9133 0.8157 0.7841 0.9325 | 0.8450 | 0.8441
NB 0.1500 0.5154  0.9800 0.2365 0.5924 0.8438 | 0.5485 | 0.5575
DRSA 0.8167 0.8692 0.9033 0.8129 0.8019 0.9374 | 0.8631 0.8507

The details of the statistical analysis are given in Appendix | and summarizattle 20. The analysis of Table
20 indicates that the DRSA outranks all the other methods in terms of all thicstadibhough the MLPNN and FR
results are quite high, they cannot be offered as an interactive tdektision makers to suggest or amend any changes
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in an understandable manner. Only experts of MLPNN/FR can varypr@imeters, while in DRSA, the decision
makers do not need any expert knowledge to modify the extracted/adyggles and/or provide feedback on these
rules.

Table 20: Results of the statistical analysis for the e@oative study

Statistics
Kendall’s tau  Spearman’srho  Unweighted Cohen’s kappa ~ Weighted Cohen’s

Method kappa
FR 0.8236 0.8534 0.7616 0.7777
KNN 0.7146 0.7320 0.6421 0.6975
SVM 0.5393 0.5614 0.3143 0.4538
DT 0.7982 0.8329 0.6534 0.7375
MLPNN 0.8534 0.8734 0.7778 0.8230
NB 0.4522 0.4666 0.4437 0.3962
DRSA 0.8712 0.8920 0.7938 0.8361

6. Discussion

In this section, we first discuss the characteristics and main contribaofitims proposed approach (Section 6.1).
Then, we provide a straightforward guideline for using the propagpbach in practice (Section 6.2).

6.1. Characteristics of the proposed approach and main contributions

The proposed approach has several important characteristics that distifigfiism existing ones. These
characteristics, which are discussed in more detail in the rest of this sextoan attempt to respond to the
shortcomings of the existing literature discussed in Section 2.3.

6.1.1. Learning-set based analysis

The proposed approach uses a learning set as an input, representing a dhiessparfe parts, to extract the
preference of the decision maker. The idea of using a subsatadiod inferring the preference of the decision maker
is inspired by case-based reasoning (see, e.g. [39][76Phwsha powerful knowledge extraction technique that was
initially developed in the field of Artificial Intelligence. This idea has been adaptenulticriteria analysis, where
severalmulticriterialearning-setbasedmethodshavebeenproposed(e.g.[11][82][30])andsuccessfullyapplied
todifferentreal-worlddecisionproblems(see,e.q.[21][46][59][@dParning-setbasedanalysisisparticularityuseful in
spare parts management for large firms where tens of thoudespire parts need to be managed (see, e.g. [32]). In
such situations, it is not practical to identify the appropriate stock cattedegy for each spare part. The use of a
learning-set based approach will naturally minimize the cognitive effort requin@cthe decision maker. Although
all machine learning methods are learning-set based approaches, they failntotakedunt the multicriteria aspects
of the spare parts management problem.

6.1.2. Use of a powerful multicriteria classification method

The learning phase relies on the DRSA, which has several powerful antivatttharacteristics [20] as it: (i) does
not need any preference parameters, which reduces the cognitiveezftored from the decision maker; (ii) produces
if-then decision rules, which are easily understood by the decision mBKgr (iii) is able to deal with
incomplete/missing attribute values (see [14][77]); and (iv) is able to detédeahwith inconsistency problems (see
[29][79]). At this stage, it is important to mention that the author%) have also used the DRSA for ABC
classification. However, the model proposed in [25] lacks effective validatmegies and a real-world application
of the model.

6.1.3. Comprehensive collection of validation strategies
The proposed approach is enhanced with three validation strategiesy(ndineet analysis of decision rules by
the decision maker, re-classification analysis and cross-validation apahyaiging the decision maker to analyse the
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validity of the results before using the obtainedhi&n decision rules in practice. These different strategies are very
useful in practice in that they enable the decision maker to better appreciag@ranthe learning set. From a practical
point of view, the validation strategies will help the decision makehéalcthe quality of the generated decision
rules. If the decision maker agrees with the extracted decision rules, thénendre used in practice to classify the
spare parts. Otherwise, the decision maker may prefer to restart the deaiking process by considering new input
data. This will substantially improve the effectiveness of the decisioningigbrocess and the successful
implementation of the resulting solution.

6.1.4. Real-world case study and active involvement of the decisiagr mak

The proposed approach has been applied to a real-world case fstuthanufacturing company in China while
most of the existing studies conducted example analysis or dataisnalgg data extracted from other papers. During
this case study, the decision maker was involved in all the steps detision making process: (i) in the learning
phase, the decision maker was involved in identifying the evaluation catetialso in defining the learning set; (i)
in the validation phase, the decision maker was involved in the&idge@nalysing and revising of the obtained
decision rules; and (iii) in the generalization phase, the decision makemwadged in the identification and
assessment of a new set of spare parts and then in the analysigisiod of the new collection of decision rules. In
all these activities, the participation of the decision maker was crucial and his expedigeedback played an
important role in refining the decision rules.

6.1.5. Comparative analysis

The proposed approach has been compared to several well-known classifertitiques, namely FR, KNN,
SVM, DT, MLPNN and NB, using the data of the case study. The refiglte that the proposed approach outranks
all the other approaches in terms of accuracy of classification. In agditestatistical analysis shows that the use of
the DRSA leads to a high agreement between the assignmerisgutdyy the decision maker and those computed by
the use of the proposed approach. An important characteristic of the D&t§#ared to the above cited and well-
known classification techniques is its flexibility in the sense that it accepts almydsind of data (binary, symbolic,
nominal, ordinal, discrete, and continuous) while the other approache®ringuirse of continuous data. Furthermore,
as with some other well-known methods like SVM and NB, DRSA is also abéatevith incomplete/missing values
with some adaptation (see [14][77]).

6.2. Practical guidelines for using the proposed approach

The last point to discuss is related to the practical use of the proposeddppiMe show in Table 21 some
practical guidelines for using the proposed approach. For each $tepdeitision making process, this table indicates
the input data, the operation and computing, the output data, and the gdtelise according to different analysis
types and results. The description of Table 21 is straightforward. Adtdge, we will only briefly comment on the
last row in this table. Indeed, in the medium to long term and aftersthef the proposed approach in practice, the
decision maker can judge efficiently the decision rules. If he/slgegithat the spare parts management system is still
efficient, he/she can continue the use of the system and no actioniiedeilowever, when some insufficiencies are
detected, the decision maker can use the progressively updated learningstattthe process.

7. Conclusion and future research

We presented a learning-set based approach to implement an advanced multifeAB&®eclassification of
spare parts. The proposed approach contains three phases. Thbhafiestuses the dominance-based rough set
approach (DRSA) to infer a set ofilfien decision rules that summarize the preferences of the decision mader. T
second phase uses different techniques (the direct analysis of the degis®my the decision maker, a re-
classification analysis, and a cross-validation analysis) in order to amalgselidate the generated decision rules.
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The third phase exploits the generated and validated decision rules in order tp c&assipare parts. An important
aspect of the proposed approach is the simplicity and the easilystamdkable ifthen decision rules provided as
output. Another
interestingaspectoftheproposedapproachistheinclusionofseveralvalidationstrategitisgéredecisionmaker  to
analyse the validity of the results before using the obtaingéukifi rules in practice. The proposed approach has been
successfully applied to a manufacturing company in China. We also axhtharproposed approach to several well-
known classifications methods. The results show that the proposedelpputranks all the other approaches in terms
of accuracy of classification.

Based on our findings, the following spare parts manageméaiegaare suggested for the company of the case
study: (i) for those spare parts classified in grduphe Economic Order Quantity (EOQ) and reorder point will be
determined, and a few of them should be held in inventory amdeatdrequently; (ii) for those spare parts classified
in groupB, the EOQ and reorder point will also be determined, but the managentieistgroup of spare parts needs
less attention than those in gradip-only periodic review is needed here; and (iii) those spare parts classifiedipn g
C should be kept in stock and ordered when required.

Table 21: Practical guidelines

Phase Input Operation Output Guidelines
Learning
Selectionof  Raw data The decision maker, based on Information table The selected spare parts should be as representati
the his/her experience, selects a possible by including and covering differe
learning set subset of spare parts to be used a specifications and characteristics. In addition, th
learning set. should be non-redundant (in terms of their evaluation

the different criteria). The spare parts should ideally
well known to the decision maker/expert. Note that th
was no ideal theoretical number q
examples.Alimitednumberofexamplesmightlead
toafewandverygenericdecisionrulesandtoogreat num
of examples may lead to a high number of very spec|
and redundant decision rules.

Definition of Information table
the

The decision maker, based on Decision table
his/herexperiencesandknowledge,

Thesparepartsshouldcoverallthedecisionclasses;
other words, all decision classes should contair|

assignment assigns the spare parts in the sufficient number of decision objects.
examples learning set into the classes
A, BandC.
Decision table Approximation by the DRSA Decision rules If the quality of approximation is acceptable (say, f
Learning of andinductionofdecisionrules. example, greater than or equal to 80%), then go

decision rules

validation phase. Otherwise the decision maker shq
modify the input data.

Validation

Decision rules Decision rules
analysis

Re-

Ask the decision maker to scan all Checked
the decision rules and indicate validated
his/her agreement level on a five- rules.
level Likert scale (Strongly

Disagree, Disagree, Neutral,

Agree, and Strongly Agree).

andIf there is a limited number of disagreements, t
decision decision rules can be used for the generalization ph

With a moderate number of disagreements, the deci
maker can either remove the decision rules with h
levels of disagreement or modify some of them. WH
there are many disagreement
thedecisionmakershouldrevisehis/herassignment
examples and/or the criteria used.

Decision table and
Decision rules

classification

Use the decision rules in order to Reclassification of

re-classify the initial spare parts. theinitialspareparts
into the classed,
BandC.

If there are many misclassifications, the decision ma|
is called to revise his/her initial assignments in order
improve the quality of decision rules.

Cross-

validation testing sets

k folds of training and Use the

training sets to Accuracy of the
generatethedecisionrulesandapplyassignment of the
them on the testing sets. testing sets

Iftheaccuracyishigh(say,forexample,higherthan 909
the decision rules can be used for tl
generalizationphase.Otherwise,thedecisionmakersh
modify learning dataset and restart the process.

Generalization

Short term Unseen spare parts

Use the decision rules to classify Classification of

any new spare part into classes thethe new spare parts
A, BandC.

into theclassesB
andC.

If the decision maker accepts the new classificatio
then the decision process stops. Otherwise the deci
maker should modify the input data and restart from
beginning.
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Medium  to  Spare parts that have Enrich and update the learning setProgressively If the spare parts management system is still efficig

long been enhanced learning no action is required. Otherwise, the decision maker
term successfull set. use the new and updated learning set to restart
y managed using the process.

decision rules.
The proposed approach does not provide an optimised inventory gyetemeters for each group of spare parts.

However, the ABC classification permits the use of different stocking pofmiatifferent groups of spare parts. In
future research, we intend to enhance the proposed approachriyaddw layer devoted to spare parts optimization.
The idea consists of combining the qualitative approach proposed papes with a quantitative one, which leads to
a bi-objective problem. Indeed, solving a bi-objective problem wiith qualitative dimension and one quantitative
dimension is computationally better than solving a pure multi-objeptiMelem, as has been proven in [2]. Another
variation, with respect to optimization, it is to use other advanced techniqueassgehetic programming [38] or
joint optimization such as in [§7

We also intend to investigate the use of some recent extensions of theiDfRSAiterature, such as the Variable
Consistency Dominance-based Rough Set Approach (VC-DRSHLPI#5][56], the Stochastic DRSA [28] or the
Dominance-based Rough Set Approach for Group decisions (DRSAf@(2IThe VC-DRSA is a variant of DRSA
that enables the relaxation of the conditions for assignments of objebts lmwver approximations by accepting a
limited proportion of negative examples, which is particularly usefuefge decision tables. The Stochastic DRSA
allowsinconsistenciestosomedegree. TheDRSAfG,amethodthatextendstheDRSAtograusjisaigpropriate to
deal with spare parts management in the presence of multiple decisiors.nvikealso intend to investigate the use
of the aggregation/disaggregation approach [31] to address the sparmgratgement problem. The idea of this
approach is to use a subset of data to infer the preference parametbenghd ELECTRE TRI method [34] is used
to assign spare parts into different classes. In comparison to the DRS#ggitegation/disaggregation approach
allows the decision maker to specify an assignment interval for each sparetparearning set, instead of a single
assignment.
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AppendixA. Information table and assignment examples

Annual Average Annual  Average
Dollar Unit Lead Dollar Unit Lead
# Criticality Usage Cost Time | Class # Criticality Usage Cost Time | Class
1 2 1312.5 26.25 2 c 50 1 352.8 8.82 1 c
2 2 1365 27.3 2 c 51 3 105.84 2.94 1 c
3 1 347.76 19.32 1 c 52 1 1304.48  21.04 1 c
4 1 74.8 7.48 1 c 53 4 3580.5 65.1 2 A
5 1 1117.98  62.11 2 c 54 2 132552  73.64 1 B
6 1 1289.88  71.66 2 B 55 4 18375  1837.5 3 A
7 3 193.55 38.71 1 c 56 2 236.7 2.63 1 c
8 4 1313 13.13 2 c 57 2 862 8.62 1 c
9 3 326 31-2223 1 c 58 3 735 7.35 1 c
10 3 2268 B 59 1 2315.34  128.63 1 B
11 3 4134.6 91.88 1 B 60 1 19845  110.25 1 B
12 3 1587.6 gi-g i B 61 1 157.5 15.75 ; c
13 3 2063.4 . 62 1 340.2 18.9
14 3 1786.4  44.66 1 g 63 1 642.6 35.7 2 g
15 3 10365.75 12201-2975 1 5 64 4 346.5 34.65 i c
16 3 770.26 52-92 1 c 65 3 1890 189 1 B
17 3 2646 . B 66 3 567 315 c
18 3 113.4 5627 i c 67 3 2126.25  47.25 ; B
650 623.7 34.65
;3 i 41888 1496 1 ¢ 23 2 420 4.2 2 ¢
21 1 948.3 3161 1 ¢ 70 4 840 8.4 2 ¢
2 3 410.7 13.69 1 ¢ 7 4 3150 315 3 c
23 3 26995.6 26793656 2 fl 72 4 2625  26.25 3 /;
24 4 746 e 3 p 73 4 139253 139253 3 "
o5 4 3150 : 74 3 199.5 5.25 2
26 4 3675 36.75 2 B 75 3 4725 9.45 2 ¢
27 3 275625 18375 2 B 76 3 336 16.8 2 ¢
28 4 840 8.4 ‘3 A 77 1 57.8 5.78 2 ¢
29 4 1670 1176-574 5 g 78 1 161.84 578 ; 2
30 4 1754 437 2 p 79 3 840 8.4 5 .
31 4 437 26.95 2 80 4 840 8.4
32 4 2625 462 > c 81 4 2625 26.25 3 ¢
33 4 462 126 > B 82 4 2100 21 3 B
34 4 1260 21 ” c 83 4 25725  257.25 3 B
35 4 2100 105 5 c 84 4 40056  400.56 3 A
36 4 1050 15.75 5 B 85 4 3780 126 2 A
37 4 1575 578 5 c 86 3 882 29.4 2 A
38 4 578 29.36 1 c 87 1 1470 36.75 2 c
39 3 2936 3936.46 o c 88 3 126 12.6 2 B
40 4 19682.3 24.07 1 B 89 4 1071 17.85 2 c
a1 4 14442 1323 1 | A 9 3 1211346 2 | ¢
42 3 463.05 7.35 1 c 91 3 43.56 2.42 2 c
43 3 1323 97.65 1 c 92 1 823.2 29.4 2 c
44 1 2734.2 87.75 1 I 93 1 1029 5.78 2 c
a5 1 3071.25  17.46 1 B 04 4 102555  22.79 2 c
46 4 785.7 11.94 1 B 95 4 2688 33.6 2 c
47 4 955.2 1.58 1 c 06 3 1470 29.4 2 B
48 1 28.44 8.51 ’ c 97 5 264.6 5%1.275 2 B
49 2 851 c o8 4 11025 . 3 c
C A

AppendixB. Detailed description of initial decision rules
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# Rule Supporting objects Relative strength Confidence level
(%) (%)
1 IF (AnnDollarUsage1260) THEN (Class at mo§) 3,4,5,7,9, 16, 18, 19, 20, 21, 22, 24, 28, 31, 86.89 100
34, 36, 38, 42, 43, 46, 47, 48, 49, 50, 51, 56, 5
58,
61, 62, 63, 64, 66, 68, 69, 70, 74, 75,76, 77, 7
79,
80, 86, 88, 89, 90, 91, 92, 93, 94, 97
2 IF (AvgUnitCosk27.3) & (Criticality<2) THEN (Class at mosl) 1, 2, 3, 4, 20, 48, 50, 52, 56, 57, 61, 62, 77, 7§ 26.23 100
93,
97
3 IF (AvgUnitCosk24.07) & (LeadTime2) & 3,4,8,9, 16, 18, 20, 22, 24, 29, 30, 31, 33, 34 77.05 100
36,
(AnnDollarUsage1754) THEN (Class at mos) 37 38 41 42 43. 46, 47. 48, 49, 50. 51. 52. 5
57,
58, 61, 62, 69, 70, 74, 75, 76, 77, 78, 79, 88, 89,
91, 93, 94, 97




4 IF (AnnDollarUsage3071.25) THEN (Class at moB}

5 IF (LeadTimes1) THEN (Class at mod)

6 IF (AvgUnitCosk36.75) & (LeadTime2) THEN (Class at mod)

7 IF (AnnDollarUsage11025) THEN (Class at lead}

8 IF (AnnDollarUsage3150) & (Criticality=4) THEN (Class at leagt)

9 IF (AnnDollarUsage1786.4) THEN (Class at leaB}

10 | IF (AvgUnitCost71.66) THEN (Class at leaB)

1 IF (AnnDollarUsag&HEN (Class at leazB1470) & ( LeadTime:2)

& (AvgUnitCost=29.4)

1,2,34,56,7,8,9,10, 12,13, 14, 16, 17, 18
19,
20, 21, 22, 24, 28, 29, 30, 31, 32, 33, 34, 35, 36
37,
38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51
52,
54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67|
68,
69, 70, 72, 74,75, 76, 77, 78, 79, 80, 81, 82, 86
87,
88, 89, 90, 91, 92, 93, 94, 95, 96, 97
3,4,7,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19
20,
21, 22, 39, 41, 42, 43, 44, 45, 46, 47, 48, 50, 5
52,
54, 56, 57, 58, 59, 60, 61, 65, 66, 67
1,2,34,8,9, 16, 18, 20, 21, 22, 24, 25, 26, 29
30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46
47,
48, 49, 50, 51, 52, 56, 57, 58, 61, 62, 63, 64, 66
68,
69, 70, 74, 75, 76, 77, 78, 79, 86, 87, 88, 89, 90
91,
92, 93, 94, 95, 96, 97

23, 27, 40, 55, 73, 83, 84, 98
25, 26, 40, 53, 55, 71, 73, 83, 84, 85, 98

10, 11, 13, 14, 15, 17, 23, 25, 26, 27, 32, 35, 3
40,
44, 45, 53, 55, 59, 60, 65, 67, 71, 72, 73, 81, 82,
84, 85, 95, 98
6, 10, 11, 12, 15, 23, 27, 40, 44, 45, 54, 55, 5¢
60,
65, 73, 83, 84, 85, 98
23, 25, 26, 27, 40, 53, 55, 71, 73, 83, 84, 85, 8
95,
96, 98

95.40

44.83

73.56

72.73
81.82

86.49

54.05

43.24

100

100

100

100
81.82

100

100

100

AppendixC. Data used for the generalization phase

Annual Average

Annual Average

Annual

Dollar
# Criticality Usage

Unit
Cost

Lead
Time

Dollar
Criticality Usage

Unit
Cost

Lead
Time

Dollar
Criticality Usage

Average
Unit
Cost

Lead
Time
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100 | 4 3805 38.05 1 141 | 3 9280.2 309.34 2 182 | 1 9155 1831 2
101 | 3 66256  331.28 2 142 | 3 221052 736.84 2 183 | 3 1138.95 227.79 2
102 | 3 13396.5 267.93 2 143 | 3 3506.1 116.87 2 184 | 2 1232 2464 2
103 | 1 16555 16555 2 144 | 3 7529.1 250.97 2 185 | 3 3317.25 663.45 3
104 | 3 12645 12645 2 145 | 3 3506.1 116.87 2 186 | 3 3150 63 2
105 | 2 868 1736 2 146 | 3 5898.6 589.86 2 187 | 3 1800 18 2
106 | 3 25375 50.75 2 147 | 3 14980.8 249.68 2 188 | 3 8453.4 281.78 2
107 | 3 26955 5391 2 148 | 3 3875.7 12919 2 189 | 3 16306.5 326.13 2
108 | 1 1837 36.74 2 149 | 3 856 17.12 2 190 | 3 14055.6 468.52 2
109 | 3 12122 12122 3 150 | 3 1266.5 2533 2 191 | 3 31136 622.72 3
110 | 3 4887 4887 2 151 | 1 55 0.55 1 192 | 3 3585 3585 2
111 | 3 31136 62272 3 152 | 2 16185 3237 2 193 | 3 13768.5 27537 2
112 | 3 88146 29382 2 153 | 3 3283.2 10944 2 194 | 3 18555 37.11 2
113 | 3 6519 130.38 2 154 | 2 1312 3.28 1 195 | 3 1254.15 250.83 2
114 | 3 10148.7 33829 2 155 | 3 33215 6643 2 196 | 3 12145 2429 3
115 | 3 15389.1 512.97 2 156 | 4 61249.35 12249.87 3 197 | 4 16851.45 3370.29 3
116 | 3 594 11.88 1 157 | 3 5898.6 589.86 2 198 | 3 8229.9 27433 2
117 | 3 4420 11.05 1 158 | 2 1440 14.4 2 199 | 3 117435 391.45 2
118 | 3 21255 4251 4 159 | 2 9720 97.2 2 200 | 3 13752 4584 2
119 | 3 1462.5 ‘2195-25 1 2 160 | 3 21507 14338 2 201 | 3 1301 26.02 2
120 | 1 900 : 322 161 | 3 155400 51.8 2 202 | 3 1072 5.36 2
121 ] 4 20126.25 4025.25 3 162 | 3 g8872.8 29576 2 203 | 2 626 626 1
122 | 1 756 378 163 | 3 4455 1485 2 204 | 3 2144 536 1
123 3 10176 10176 3 164 | 3 18917.1 630.57 3 205 | 2 4008 501 1
124 | 2 786.5 %g;g 2 165 | 3 2358 2358 2 206 | 3 14288 893 2
125 | 2 3611 ggas 2 166 | 3 1646 1646 2 207 | 4 3150 315 2
126 | 3 706800 4197 2 167 | 3 3150 315 2 208 | 1 302 302 5
127 | 3 4121 4191 2 168 | 3 1377.9 4593 2 209 | 1 55 055 »
128 | 1 4121 64.73 2 169 | 3 14496 14496 2 210 | 2 165 1.65 2
129 | 3 6473 69.38 2 2 170 | 3 12600 126 2 211 | 4 630 12.6 1
130 | 3 3469 61.08 2 171 | 1 311 311 1 212 | 3 101736 3912 5
131 | 3 6108 1629 22 172 | 3 23 0.23 1 213 | 1 sss0 04 5
132 | 2 1629 9.76 2 173 | 3 7072 3536 2 214 | 3 3091 6182 5
133 | 3 976 69.76 23 174 | 3 462 7.7 1 215 | 3 189171 93957 3
134 | 2 3488 5445 3 175 | 3 868 1736 2 216 | 1 552 552
135 | 3 27225 446 176 | 3 2885 o177 1 217 | 3 1396 2192,
136 | 3 892 7.61 177 | 3 279.6 466 2 218 | 1 504 168
137 | 3 3044 671 178 | 3 3702.85 4057 3 219 | 1 420 4.2 2
138 | 3 2013 272546 179 | 3 9474 9474 2 220 | 3 104822 2411 5
139 | 3 13627.3 42181.96 180 | 3 504 1188 2 221 | 1 10008 P4 3
140 | 4 210909.8 181 | 3 5636 11272 2 222 | 3 273444 91148 3

ppendixD. Result of the generalization phase using the initial set of denités

Agreement Agreement

level level
Decision Decision

by the set Strongly Strongly | Desirable by the set Strongly Strongly | Desirable
# of rules Disagree Disagree Neutral Agree Agree decision # of rules Disagree Disagree  Neutral Agree Agree decision
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100 BorA X X X B 162 B X X
101 4 X 163 B X
102 A 164 A
103 4 X X 165 B
104 166
105 ‘g X :E:Z ,C; i
106 6
107 i X 169 ﬁ X x
108 X 170 X
B 4
o |4 Xy | e
1 B 173 [ X
112 A 174 B
13 B X 175 c i
14 B X X X A 176 c X
s B X 177 c
16 A 178 c X X X
n7 179
18 f; X ¢ 180 ‘; x X i
19 B X X X c 181 p %
120 B X 182 B
121 c X 183 c X
122 184
123 A M « N peed CorB i X
124 ¢ X 186 ¢
125 ? X 187 g M
126 188
127 B X 189 B X
128 A 190 B X B
129 B 191 A
130 B 192 4 M
131 B X 193 A M
132 B 194 B
133 B X 195 A x X
134 ¢ X X M 196 B X
135 ¢ X X 197 corB X
136 B 198 A X
137 4 X N X c 199 A
s x RN x x
140 z X X 202 '; X X X B
141 203
142 A X X A 44 B X X
143 g 205 g
s x| : .
146 B X 208 CorBC X
147 B 209 BorA
148 B 210 c
149 B X X 211 ¢ X c
150 A X X 212 c X c
151 B X 213 ¢ M X
152 c X 214 B X 3 X B
153 B « 25 i X
154 c X 26 K X
155 217
156 g X X 218 /; . X
157 4
158 g X X ;;3 B X
159 X X 21 C X
160 4 222 ¢ X
161 ? g i
B X A
A X
A X X X X A
AppendixE. Detailed description of revised decision rules
# Rule Supporting objects Relative strength Confidence
(%) (%)
1 IF (AnnDollarUsage1117.98) THEN (Class at mos}; 3,4,5,7,9, 16, 18, 19, 20, 21, 22, 24, 28, 31, 77.61 100
36, 38, 42, 43, 46, 47, 48, 49, 50, 51, 56, 57, 5
61,
62, 63, 64, 66, 68, 69, 70, 74, 75, 76, 77, 78, 7
80,
86, 88, 89, 90, 91, 92, 93, 94, 97
2 IF (AvgUnitCosk29.25) & (LeadTime&2) THEN (Class at mosl); 1,2,3,4,8,9, 16, 18, 20, 22, 24, 29, 30, 31, 3 82.09 96
33,
34, 35, 36, 37, 38, 41, 42, 43, 46, 47, 48, 49, 5
51,
52, 56, 57, 58, 61, 62, 69, 70, 74, 75, 76, 77, 7|
79,
88, 89, 90, 91, 93, 94, 97, 117, 119, 137, 138,
204, 205
3 IF (AnnDollarUsage3071.25) THEN (Class at moB}; 1,2,34,56,7,8,9, 10, 12, 13, 14, 16, 17, 18 91.75 100
19,
20, 21, 22, 24, 28, 29, 30, 31, 32, 33, 34, 35, 36
37,
38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 5]
52,
54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67|
68,
69, 70, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 86
87,
88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 119, 137, ]
183, 195, 204
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4 IF (LeadTimes1) THEN (Class at mos); 3,4,7,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 45.36 100
20,
21, 22, 39, 41, 42, 43, 44, 45, 46, 47, 48, 50, 5
52,
54, 56, 57, 58, 59, 60, 61, 65, 66, 67, 100, 117, 1
204, 205
5 IF (AvgUnitCosk36.75) & (LeadTime&2) THEN (Class at mos); 1,2,3,4,8,9, 16, 18, 20, 21, 22, 24, 25, 26, 29 73.20 100
30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46
47,
48, 49, 50, 51, 52, 56, 57, 58, 61, 62, 63, 64, 66
68,
69, 70, 74,75, 76, 77, 78, 79, 86, 87, 88, 89, 90
91,
92, 93, 94, 95, 96, 97, 117, 119, 137, 138, 204,
205, 207
6 IF (AvgUnitCost257.25) THEN (Class at leas}; 23, 27, 40, 55, 73, 83, 84, 98, 114, 141, 212, 22 75.00 100
7 IF (AnnDollarUsaggHEN (Class at leasta3150) & (; Criticality>4) 25, 26, 40, 53, 55, 71, 73, 83, 84, 85, 98, 207 56.25 75
& (LeadTime=2)
8 IF (AnnDollarUsage10176) & (LeadTime2) THEN (Class at least | 23, 27, 40, 55, 73, 83, 84, 98, 123, 220 62.50 100
4);
9 IF (AvgUnitCost65.1) THEN (Class at leas); 6, 10, 11, 12, 15, 23, 27, 40, 44, 45, 53, 54, 5¢ 60.87 100
59,
60, 65, 73, 83, 84, 85, 98, 114, 123, 141, 183,
195, 212, 220
10 | IF (AnnDollarUsage2063.4) & (Criticality4) THEN (Class at least 25, 26, 32, 35, 40, 53, 55, 71, 72, 73, 81, 82, 8 41.30 100
B): 84,
' 85, 95, 98, 100, 207
11 | IF (AnnDollarUsage1470) & (AvgUnitCost29.36) THEN (Class at 10, 11, 12, 13, 14, 15, 17, 283, 25, 26, 27, 39, 4 80.43 100
leastB); 44,
45, 53, 55, 59, 60, 65, 67, 71, 73, 83, 84, 85, 8
95,
96, 98, 100, 114, 123, 141
AppendixF. Result of the generalization using the new set of decidas r
Assignment Agreement Assignment Agreement
level level
Initial New Initial New
decision decision decision decision
rules rules rules rules
Strongly Strongly Strongly Strongly
Disagree Disagree Neutral Agree Agree # Disagree Disagree Neutral Agree Agree
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101 A 4 X 162 B A X
102 A A X 163 B B X
103 A A 164 A A
104 A A X 165 B c
105 ¢ ¢ X 166 c c X X
106 B B X 167 B B X
107 A 4 168 B B X
108 B B 169 A A
109 2 a X X 170 2 A
110 171
111 " 5 X 172 ¢ ¢ X
A A X ¢ ¢ X
112 B 4 X M 173 B B X
113 174
115 i 5 X 175 ¢ ¢ X
A A X ¢ ¢
116 176
[4 [4 [4 [4 X
118 B B X M 177 ¢ ¢ X X
120 c c X x 178 B A X X
121 A 4 X 179 B B X
122 180
¢ ¢ X ¢ ¢
124 ¢ ¢ X 181 » »
125 M M M 182 c c X X
126 A a o 184 ¢ ¢ X
127 B B 185 5 M
128 5 5 186 5 B X
129 s s X 187 s p X
130 5 5 188 5 4
131 X 189
132 g g X X 190 j 2
133 ‘ ‘ X 191 h 4 X X
134 5 5 X 192 B B X
135 ; 4 X X 193 4 4 X X
136 X X 194
139 ¢ ¢ X 196 B B X
140 4 A X X 197 A 4 X
142 A 4 198 4 4 X
143 A A 199 B A X X
144 B B 200 4 4 X
145 B B 201 B B X
146 B B X 202 B ¢
147 B A X 203 c c M
148 A A X X 206 c c X
149 B B X 208 c c
150 c c x x 209 c c X
151 B ¢ X 210 4 4 X
152 c c 211 c c X 3
153 B B X X 213 c c o
154 B B « 214 B B
155 ¢ ¢ X 215 B B N
156 B B X X N 216 A A X
157 A A 217 c c X
158 B A 218 B ¢ X
159 ¢ c 219 c c X
160 B B X 221 c c X
161 A A X 222 B A
A A X X A A X
AppendixG. Confusion Matrices
Method
FR Fold 1 3 5
c B cC B A c B A c B [§
c 26 3 29 1 0 C 3 0 28 2 c 30
B 0 10 1 12 0o B 0 12 2 1 B 4
A 0 2 o 3 3 A 0 3 0o 1 A 0
Fold 6 8 10
c B c B A c B c B [
c 23 3 30 0 0 C 29 1 3 0 c 28
B 2 10 3 6 0 B 2 1 3 9 B 2
A 0 0 o 1 5 A 0 2 0o 1 A 0
KNN Fold 1 3 5
c B c B A c B c B [
c 3 o0 28 2 0 C 271 3 30 0 c 29
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B 3 10 B 4 9 0 B 5 8 B 2 11 B 7

A [ 0 A 0 3 3 A 3 0 A 0 4 A 0
Fold 6 7 8 9 10

C B C B A C B C B C

C 28 2 C 30 0 0 C 29 1 C 29 1 C 26

B 9 4 B 9 4 [ B 7 6 B 3 10 B 5

A 1 0 A 1 1 4 A 2 0 A 0 2 A 0
SVM Fold 1 2 3 4 5

C B C B A C B C B C

C 30 0 C 30 0 0 C 30 0 C 30 0 C 30

B 10 o0 B 3 0 0 B 13 0 B 13 0 B 13

A 0 1 A 3 0 3 A 1 0 A 2 0 A 1
Fold 6 7 8 9 10

C B C B A C B C B Cc

C 30 0 C 30 0 0 C 30 0 C 30 0 C 30

B 13 0 B 3 0 0 B 13 0 B 13 0 B 13

A 1 0 A 2 [ 4 A 2 0 A 2 0 A 1
DT Fold 1 2 3 4 5

C B C B A C B C B Cc

(¢} 24 6 C 28 2 0 [} 21 9 Cc 27 3 Cc 28

B 0 9 B 1 8 4 B 4 6 B 0 10 B 2

A 0 0 A 0 2 4 A 0 0 A 0 1 A 0
Fold 6 7 8 9 10

C B [} B A C B (¢} B C

C 24 6 C 30 0 0 C 30 0 C 24 6 C 26

B 1 9 B 4 9 0 B 4 6 B 1 9 B 2

A 0 0 A 0 2 4 A 0 1 A 0 0 A 0
MLPNN Fold 1 2 3 4 5

Cc B [} B A Cc B Cc B C

(¢} 26 4 Cc 29 1 0 [} 28 2 Cc 26 4 Cc 30

B 0 10 B 0 13 0 B 1 11 B 0 12 B 3

A 0 0 A 0 3 3 A 0 1 A 0 2 A 0
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Fold 6 7 8 9 10

NB Fold 1 2 3 4 5

Fold 6 7 8 9 10

DRSA Fold 1 2 3 4 5

Fold 6 7 8 9 10

AppendixH. Analysis of confusion matrices

Fold
Method | Parameter 1 2 3 4 5 6 7 8 9 10
FR Correct assignment 40 44 45 44 43 39 41 44 44 42
Wrong assignment 8 5 3 5 6 5 4 5 5 5
Missing assignment 1 0 1 0 0 5 4 0 0 2
Accuracy (%) 81.63 89.76 91.84 89.76 87.76 79.59 83.67 89.8 89.8 85.71
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Mean Absolute Error 18.37 10.2 8.16 10.2 1225 2041 16.33 10.2 10.2  14.29
(%)
KNN Correct assignment 46 40 38 43 40 37 38 39 43 39
Wrong assignment 3 9 11 6 9 12 11 10 6 10
Missing assignment 0 0 0 0 0 0 0 0 0 0
Accuracy (%) 93.88 8163 7755 87.76 8163 7551 7755 7959 87.76 79.59
Mean Absolute Error 6.12 18.37 2245 1225 1837 2449 2245 2041 1225 2041
(%)
SVM Correct assignment 35 33 35 34 35 35 34 34 34 35
Wrong assignment 14 16 14 15 14 14 15 15 15 14
Missing assignment 0 0 0 0 0 0 0 0 0 0
Accuracy (%) 7143 6735 7143 6939 7143 7143 69.39 69.39 69.39 7143
Mean Absolute Error 28,57 32,65 2857 30.61 2857 2857 30.61 30.61 30.61 28.57
(%)
DT Correct assignment 39 40 33 42 42 39 43 41 39 36
Wrong assignment 10 9 16 7 7 10 6 8 10 13
Missing assignment 0 0 0 0 0 0 0 0 0 0
Accuracy (%) 79.59 8163 6735 8571 8571 7959 87.76 83.67 79.59 73.47
Mean Absolute Error 20.41 18.37 3265 1429 1429 2041 1225 16.33 20.41 26.53
(%)
MLPNN Correct assignment 42 45 44 42 43 40 43 44 46 41
Wrong assignment 7 4 5 7 6 9 6 5 3 8
Missing assignment 0 0 0 0 0 0 0 0 0 0
Accuracy (%) 85.714 91.84 898 8571 87.76 81.63 87.76 89.8 93.88 83.67
Mean Absolute Error(%) | 14.286  8.16 10.2 1429 1225 18.37 1225 10.2 6.12 16.33
NB Correct assignment 36 32 33 33 35 42 40 40 42 37
Wrong assignment 13 17 16 16 14 7 9 9 7 12
Missing assignment 0 0 0 0 0 0 0 0 0 0
Accuracy (%) 7347 6531 6735 6735 7143 8571 8163 8163 8571 7551
Mean Absolute Error 2653 3469 32.65 3265 2857 14.29 1837 1837 1429 24.49
(%)
DRSA Correct assignment 41 46 39 43 45 43 47 45 42 42
Wrong assignment 8 3 10 6 4 6 2 4 7 7
Missing assignment 0 0 0 0 0 0 0 0 0 0
Accuracy (%) 83.67 93.88 79.59 87.76 91.84 87.76 9592 91.84 8571 8571
Mean Absolute Error 16.33 6.12 2041 1224 816 1224 4.08 8.16 14.29 14.29
(%)
Appendixl. Statistical analysis
Statistics Statistics
Fold | Method Fold | Method
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Unweighted Weighted Unweighted Weighted

Kendall’s ~ Spearman’s Cohen’s Cohen’s Kendall’s ~ Spearman’s Cohen’s Cohen’s

tau rho kappa kappa tau rho kappa kappa

FR 0.7732 0.8151 0.6814 0.7043 6 FR 0.5652 0.5803 0.6611 0.5652
KNN 0.904 0.9092 0.8819 0.9094 KNN 0.5624 0.5811 0.49 0.5839
SVM 0.6696 0.706 0.3982 0.5765 SVM 0.5694 0.5916 0.3473 0.4983
DT 0.8176 0.853 0.6564 0.738 DT 0.7825 0.8133 0.6505 0.7311
MLPNN 0.8614 0.8887 0.7523 0.8106 MLPNN 0.7384 0.7538 0.675 0.7348
NB 0.4582 0.4781 0.4145 0.3806 NB 0.6315 0.6496 0.7125 0.6223
FR 0.8944 0.9165 0.8078 0.8414 7 FR 0.801 0.869 0.6961 0.6953
KNN 0.7611 0.7842 0.6446 0.7104 KNN 0.659 0.6789 0.5153 0.6005
SVM 0.4314 0.4482 0.2183 0.3199 SVM 0.5036 0.5233 0.2843 0.4121
DT 0.828 0.8767 0.6677 0.7467 DT 0.8512 0.8705 0.7578 0.8088
MLPNN 0.9274 0.949 0.8483 0.874 MLPNN 0.8216 0.8364 0.7625 0.8146
NB 0.1945 0.2021 0.1368 0.0962 NB 0.5702 0.5869 0.6195 0.5466
FR 0.9368 0.9745 0.8478 0.8498 8 FR 0.8735 0.8911 0.8063 0.844
KNN 0.5102 0.52 0.5471 0.5396 KNN 0.6045 0.617 0.5724 0.6064
SVM 0.5694 0.5916 0.3473 0.4983 SVM 0.5036 0.5233 0.2843 0.4121
DT 0.6086 0.6468 0.4408 0.5697 DT 0.8273 0.8613 0.6844 0.7675
MLPNN 0.8751 0.8948 0.8134 0.853 MLPNN 0.8731 0.8898 0.8114 0.8462
NB 0.2408 0.2502 0.2016 0.1431 NB 0.674 0.6931 0.6272 0.629
FR 0.8525 0.8652 0.8099 0.8487 9 FR 0.8781 0.8984 0.8032 0.849
KNN 0.892 0.9197 0.7618 0.8022 KNN 0.8415 0.8601 0.7644 0.8115
SVM 0.5036 0.5233 0.2843 0.4121 SVM 0.5036 0.5233 0.2843 0.4121
DT 0.8634 0.8974 0.748 0.8054 DT 0.7825 0.8133 0.6505 0.7311
MLPNN 0.8387 0.864 0.7472 0.7937 MLPNN 0.9223 0.9331 0.8829 0.908
NB 0.2408 0.2502 0.2016 0.1431 NB 0.6848 0.7055 0.7243 0.6644
FR 0.852 0.8716 0.7633 0.8256 10 FR 0.8095 0.8519 0.7392 0.7538
KNN 0.7285 0.7481 0.6285 0.716 KNN 0.6831 0.7019 0.6148 0.6953
SVM 0.5694 0.5916 0.3473 0.4983 SVM 0.5694 0.5916 0.3473 0.4983
DT 0.841 0.8681 0.7396 0.8059 DT 0.7795 0.8281 0.5381 0.6711
MLPNN 0.8661 0.8935 0.7652 0.8229 MLPNN 0.8101 0.8307 0.7196 0.7724
NB 0.3898 0.4005 0.3553 0.359 NB 0.4377 0.45 0.4437 0.3779
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