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Abstract 

Classification is one of the critical issues in the operations management of spare parts. The issue of managing spare 

parts involves multiple criteria to be taken into consideration, and therefore, a number of approaches exists that 

consider criteria such as criticality, price, demand, lead time, and obsolescence, to name a few. In this paper, we first 

review proposals to deal with inventory control. We then propose a three-phase multicriteria classification 

framework for spare parts management using the dominance-based rough set approach (DRSA). In the first phase, a 

set of ‘if–then’ decision rules is generated from historical data using the DRSA. The generated rules are then 
validated in the second phase by using both the automated and manual approaches, including cross-validation and 

feedback assessments by the decision maker. The third and final phase is to classify an unseen set of spare parts in a 

real setting. The proposed approach has been successfully applied to data collected from a manufacturing company 

in China. The proposed framework was practically tested on different spare parts and, based on the feedback 

received from the industry experts, 96% of the spare parts were correctly classified. Furthermore, the cross-

validation results show that the proposed approach significantly outperforms other well-known classification 

methods. The proposed approach has several important characteristics that distinguish it from existing ones: (i) it is a 

learning-set based analysis approach; (ii) it uses a powerful multicriteria classification method, namely the DRSA; 

(iii) it validates the generated decision rules with multiple strategies; and (iv) it actively involves the decision maker 

during all the steps of the decision-making process. 

Keywords: Rough Sets, Spare parts, ABC classification, Multiple Criteria Inventory Classification, Dominance-based 

Rough Set Approach. 

 

1. Introduction 

Spare parts are common inventory stock items that are required for timely maintenance of industrial plant systems. 

A recent study [51] shows that the operational and maintenance support costs in a typical industrial plant account for 

more than 60% of the overall cost, where the spare parts related costs alone account for about 25% to 30%. This clearly 

indicates that better operations management of spare parts is required and has an important role in the availability of 

the plant at an optimal cost. An efficient and effective inventory management helps a firm maintain its competitive 

advantage [75]. In many large firms, it is not uncommon to hold tens of thousands of spare parts [32], e.g. the number 

of spares in a medium scale engineering business it may be in the tens of thousands while in a large scale chemical 

factory, it may be around hundreds of thousands. In such situations, it may become practically impossible to use human 

judgement alone to identify the appropriate stock control strategy of each spare part and hence inventory management 
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becomes a great challenge. In order to facilitate spare parts management, one of the possible ways is to group the spare 

parts into specific categories by finding some similarities in their features and then, based on these common features, 

define a set of policies for each group. 

One of the most well-known and commonly used classification techniques is the ABC classification, that uses the 

80–20 rule (the Pareto principle). The ABC classification is particularly appropriate for the inventory management of 

materials that are fairly homogenous in nature and differ from each other mainly by unit price and demand volume. 

The ABC analysis has retained its popularity among practitioners in directing the control efforts and choosing the 

‘sufficient-enough’ control parameters without the need of item-specific analyses [52]. 

The ABC classification technique has traditionally focused on a single criterion of price, which is usually measured 

in annual dollar usage. However, it is important to realize that optimizing the single objective of price is generally 

misleading, as several other criteria should be taken in consideration for better spare parts operations management. 

We contend that focusing on this single criterion ignores several other important criteria for classifying spare parts, 

such as criticality, lead time, demand, commonality, obsolescence and substitutability (see, e.g. [15][16][64]). The 

authors in [27], for instance, emphasize the role of the lead time criterion in analysing the competitiveness of 

companies. In terms of criticality, one can also argue that it is a function of the criticality of the spare parts for the 

machine as well as the criticality of the machine in the whole operational system [33][38][57]. Accordingly, the use 

of multiple criteria for spare parts classification has better justification as it attempts to consider all the operations 

management/control requirements of different types of items. The authors in [36][37] were amongst the first to state 

the importance of applying multiple criteria to ABC analysis, and since then, a number of Multiple Criteria Inventory 

Classification methods have been proposed in the literature. A discussion of some of the relevant and recent papers is 

presented in Section 3. 

The objective of this paper is to propose a data analytic approach for multiple criteria ABC classification of spare 

partsanddemonstrateitsusefulnessbyapplyingittoarealbusinessprobleminamanufacturingcompany.Thisapproach 

reliesontheDominance-basedRoughSetApproach(DRSA),whichisawell-knownmulticriteriaclassificationmethod 

thathasbeenproposedby[41][42][77][78]toovercometheshortcomingsoftheconventionalRoughSetsTheory(RST) 

[68][69] in multicriteria classification by allowing preference-oriented attributes and where the decision classes are 

defined in an ordinal way. The multicriteria classification is a fundamental problem of multicriteria decision making 

[84]. The multicriteria classification problem can be stated as follows: given a set of objects described by a set of 

criteria (attributes with preference-ordered domains), assign these objects to some pre-defined decision classes or 

categories, in such a way that each object is assigned to exactly one class. The DRSA has been successfully used in 

different real-world decision problems (see, e.g. [21][40][59])). The DRSA has some powerful capabilities that make 

it attractive for real-world decision problems (see [20]). Among the main characteristics of the DRSA is the use of a 

learning set as input to elicit and generalize the preferences of the decision maker, which minimizes the cognitive 

effort required from him/her. The use of a learning set as input is adopted in several multicriteria classification 

methods, including [3][4][17][31]. However, the main distinction of the DRSA compared to other multicriteria 

classification methods that are based on the use of a learning set as input is the simplicity and the easily understandable 

if–then decision rules provided as output, while other methods have no such straightforward interpretation [10]. 

The proposed approach is structured into three phases. The first phase uses a carefully selected set of spare parts 

as a learning set to generate a set of if–then decision rules that can be shown to the decision maker in a simple readable 

manner. These rules are generated by the DRSA. In the second phase, the decision rules are assessed and analysed by 

the decision maker as feedback for reinforced learning of the if–then rules. In addition to this, re-classification and 

cross-validation have also been used to further validate the generated decision rules. The third phase exploits the 

generated (and validated) decision rules in order to classify unseen spare parts. 

We apply the proposed approach to a real-world case study and show its merit by comparing the results with other 

methods using ten-fold cross-validation. The dataset has been acquired from a manufacturing company in China. The 

company has been anonymized and renamed the Industrial Manufacturing Company (IMC) in this paper for reasons 
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of data protection and business ethics. The company showed an interest in managing their stock items (spare parts) by 

gaining some useful insights through historical data collected over a period of time, and based on this learning, they 

were interested in classifying the new spare parts (for the newly purchased equipment). We used this case study to 

validate the results and illustrate the usefulness of the proposed approach. In the future, the approach can easily be 

extended to automatically analyse a large number of spare parts. 

The approach proposed in this paper has several important characteristics: (i) it applies a learning-set based 

analysis, which is particularity useful in spare parts management for large firms; (ii) it uses a powerful multicriteria 

classification method, namely the DRSA, which is characterised by its simplicity and the easily understandable if–
then decision rules provided as output; (iii) it includes a comprehensive collection of validation strategies enabling the 

decision maker to analyse the validity of the results; and (iv) it actively involves the decision maker in all the steps of 

the decision making process. A detailed discussion of these characteristics is given in Section 6.1. 

This paper is organized as follows. Section 2 discusses related work. Section 3 proposes an ABC classification 

approach and methods of validation. Section 4 describes the case study. Section 5 provides a comparative study. 

Section 6 discusses some theoretical and practical aspects of the proposed approach. Section 7 concludes the paper by 

highlighting the merits and future challenge 

2. Related work 

In the past few decades, a number of approaches have been proposed to solve the multiple criteria inventory 

classification problem. In this section, we first characterize these approaches in terms of their classification criteria 

and methods used (Section 2.1) and then in terms of their application domains and validation strategies (Section 2.2). 

Lastly, we summarize the main aspects of the discussed approaches (Section 2.3) 

2.1. Classification criteria and methods 

The characteristics of the classification criteria considered and the classification methods used of about 37 

approaches that we have identified in the relevant literature are summarized in Table 1. This table indicates also the 

nature of the output for each approach. 

While the list of criteria used varies from one proposal to another, we can see that the first four criteria 

(viz.Criticality, Annual Cost Usage, Unit Price, and Lead Time) have been commonly used by most of the reported 

studies. In addition to these four criteria, the criterion Demand Rate has also been used but less frequently than the 

first four. Indeed, the demand rate can be derived from the Annual Cost Usage and Unit Price and hence it is redundant 

to use the demand rate alongside these two criteria. The other criteria have only been reported in a few (mostly one or 

two) studies related to the multiple criteria inventory classification problem, i.e. ordering cost [66][67], substitutability 

[19][47], replaceability [19][47], perishability [8], storage cost [8], current item status [26], severity of the impact of 

its running out [26], number of hits [53], average value per hit [53], payment terms [19], durability [54][55][73], 

limitations of warehouse space [49], last use date [54][55], supplier [54], and turnover rate [60]. We note that some 

proposed models offer more flexibility about the criteria to be included. For instance, the model proposed by [36] 

accepts any two criteria, while in the model proposed by [18], the user can include any criteria in the analysis. In the 

case study presented in Section 4, we have considered four criteria, namely Criticality, Annual Cost Usage, Unit Price, 

and Lead Time. However, the proposed approach is flexible enough and can be used with any number of criteria. 

A number of techniques that take into account multiple criteria for the ABC classification problem have been 

proposed in the literature. These methods can be grouped into different categories as follows: 

1. Clustering algorithms: distance functions, such as the C-means algorithm [24] and the k-means algorithm [61], 

Fuzzy C-Means Clustering [5]; 
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2. Approaches based on Data Envelopment Analysis (DEA), such as the FAHP-DEA [55] and the modified DEA-

like model [83]; 

3. Optimization: 

• Optimization Models including linear programming approaches such as the Modified Linear Optimization 

Model [50], the Hybrid Weighted Linear Optimization method [58], R-model [72], ZF-model [88], Ng 

model [64]; and non-linear programming models such as the Extended Ng-model [48]; 

• Evolutionary Optimization including Simulated Annealing (SA) [63] and various evolutionary algorithms, 

such as Genetic Algorithms (GA) [47] and Artificial Neural Network (ANN) [66]; 

4. Multicriteria methods: Bi-criterion matrix [36][37], AHP [35][49][54][67], TOPSIS [8][23], DRSA [25] and 

UTADIS [80]. 

5. Other statistical methods: Exponential Smoothing Weights [53] and Peer-estimation approach [22]. 

Some of the approaches use fuzzy logic to take into account uncertainty and imprecision. Examples include Fuzzy 

AHP [18][19], Fuzzy classification [26], Fuzzy Logic [73] and Fuzzy C-Means Clustering [5]. Some other approaches 

apply mixed approaches, e.g. AHP and the k-means algorithm [61], FAHP and ANN [55], FAHP and DEA [49], CA 

and SAA [60]. 

Table 1: Overview of classification criteria and classification methods employed by the main reviewed contributions 
 Criteria      

Used 

 

 Annual 
Cost 

Unit Lead Demand 
 

Ref. Criticality Usage price time Rate Others method Output 
[36] Any two      Bi-criteria matrix Classification 

[37] 
[35] 
[67] 
[47] 
[66] 
[72] 
[8] 
[64] 
[88] 

X 
X 

X 

X 
X 
X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 

Ordering cost 
Substitutability, Replaceability 
Ordering cost 
Perishability, Storage cost 

Bi-criteria matrix 
AHP 
AHP 
GA 
ANN 
R-model 
TOPSIS 
Ng-model 
ZF-model 

Classification 
Classification 
Classification 
Classification 
Classification 
Classification 
Classification 
Classification 
Classification 

[18] Any criteria      Fuzzy AHP Classification 

[24] 
[25] 
[26] 

X 
X 
X 

X 
X 

X 
X 
X 

X 
X 
X 

X 
Current item status, Severity of the impact of its 
running out 

Case-based distance 
DRSA 
Fuzzy classification 

Classification 
Classification + if-then rules 
Classification 

[53]      Number of hits, Average value per hit Exponential Smoothing Weights Classification 

[19] 
[48] 
[73] 
[22] 
[49] 
[86] 
[5] 
[23] 
[54] 
[83] 
[63] 
[55] 
[50] 
[61] 
[65] 
[80] 
[60] 
[58] 
This 
paper 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

X 
X 

X 

X 

Substitutability, Replaceability, Payment terms 
Durability 
Limitations of warehouse space 

Durability, Last use date, Supplier 

Durability, Last use date 

Turnover rate 

Fuzzy AHP 
Extended Ng-model 
Fuzzy Logic 
Peer-estimation approach 
FAHP-DEA 
Artificial Intelligence 
FCM 
Two virtual items 
Fuzzy AHP 
A modified DEA-like model 
Simulated annealing 
FAHP and ANN 
A modified linear optimization model 
AHP and K-means algorithm 
CE-WLO 
UTADIS method 
CA and SAA 
New hybrid weighted linear optimization model 
DRSA 

Classification 
Classification 
Classification + fuzzy rules 
Classification 
Classification 
Classification 
Classification 
Classification 
Classification 
Classification 
Classification 
Classification 
Classification 
Classification 
Classification 
Classification 
Classification 
Classification 
Classification + if-then rules + 
validation + generalization 

Concerning the nature of the output shown in Table 1, most of the approaches generate a grouping of the spare 

parts intothreeclasses: C,B andA.Unfortunately,thegeneratedoutputsin thesecasescannot beusedto classifynew/unseen 

items. To classify unseen items, it is necessary to restart the process from scratch, which may be time consuming and 

may alter the already established classes. A possible solution to this issue is to use fuzzy logic (as described in [73]) 

in order to generate fuzzy rules permitting the classification of new items. A more advanced resolution of this issue is 

to use a case-based reasoning approach (as in [24]). However, the case-based reasoning methods fail to fully cope with 
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all aspects of multiple criteria inventory classification problems, more specifically, with the presence of preference-

ordered criteria. The use of the DRSA as proposed in this paper avoids the shortcomings of case-based reasoning 

approaches in the multiple criteria inventory classification problem. Indeed, in comparison to other classification 

methods and techniques (for instance in data mining, pattern recognition, and machine learning), the DRSA assumes 

that: (i) the decision classes are defined in an ordinal way; and (ii) the decision objects are evaluated over a set of 

criteria, meaning that the decision model should have some form of monotonic relationship with respect to the criteria. 

2.2. Application domains and validation strategies 

From a practical point of view, the studied approaches have been characterized with respect to the application 

domain considered, and the validation strategy used. Table 2 provides a summary of the main practical aspects of the 

proposals given in Table 1. This table shows, when appropriate, the main results of the comparative analysis included 

in the discussed papers. We briefly discuss each of these characteristics in what follows. 

Withrespecttotheapplicationdomain,Table2showsthatmostoftheapplicationsarerelatedtohealthcare,followed by the 

manufacturing industry. Other application domains include pharmaceuticals [66][67], followed by engineering 

[18][61],andthentheenergysector[55].Thereareafewapplicationstootherfields,suchastheautomotiveindustry[5], 

distribution [19], port services [26], and university stationery inventory [47]. Furthermore, some of these applications 

have been made to spare parts management, while others have been applied to general stock keeping units. 

Additionally, there are only 13 papers out of 33 that carried out case studies with real-world applications, while some 

have used numerical examples (i.e. non-real data obtained, for instance, by simulation), and some others have used 

secondary data (extracted from other publications). In the present paper, the proposed approach has been applied to 

real-world data collected from a manufacturing company in China. 

Regardingthevalidationtechniquesused,mostofthepreviousstudiesrelyonthere-classificationstrategywherethe 

results of the classification methods used are compared to the initial results. The re-classification validation strategy 

has been used in, for instance, [22][36][37][49][67][80]. Some previous studies, including [8][65][67][80], use 

simulation as a validation strategy and a few of them (e.g. [19][47]) rely on a discussion with the decision maker to 

validate the results. Other validation techniques include the use of test data [55][66], experimental investigation 

[5][60], and clustering [61]. Some of the proposed approaches do not use any validation strategy, e.g. [54]. The 

approach proposed in this paper uses several complementary validation strategies: direct analysis of the obtained 

decision rules by the decision maker, re-classification analysis and cross-validation analysis. 

Some of the discussed papers include a comparative study while others do not. The last two columns in Table 2 

indicate, when appropriate, the methods that have been considered in the comparative studies and the main results of 

each comparative study. The approach proposed in this paper has been compared to several well-known classification 

techniques: fuzzy classification rule (FR), nearest neighbours (KNN), support vector machine (SVM), decision trees 

(DT), multi-layer perceptron network (MLPNN) and Naïve Bayes (NB). 

2.3. Summary 

Based on the previous discussion, it appears that only a few of the existing studies have been applied to spare parts 

classification. In addition, we can identify the following shortcomings: 

1. Most of multicriteria methods that have been used in the previous literature are not adapted to deal with a large 

number of spare parts; 

2. most of the multicriteria methods used require a large amount of information from the decision maker; 

3. Apart from the re-classification, which is used most often as a validation strategy, existing proposals lack the 

use of appropriate and formal strategies to validate and exploit the results of the analysis; 

4. Most of the existing literature does not carry out a real-world case study but relies on example analysis or data 

analysis using data extracted from other papers; 
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5. Several approaches lack an effective comparative study. 

The approach proposed in this paper attempts to address these aspects, as discussed in Section 6. 
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3. The proposed approach 

The proposed approach can be divided into three main phases: (1) learning, (2) validation, and (3) generalization. 

Figure 1 shows the flowchart of the proposed approach wherein the first phase aims to use a representative set of spare 

parts data combined with the expertise and experience of the decision maker in order to generate a collection of if–
then decision rules summarizing the preference of the decision maker. The second phase is to validate the output of 

the first phase through a re-classification of the learning set and a cross-validation analysis. The validation process can 

be further strengthened by taking input from the decision maker that may help in revising the learning set. Once the 

if–then rules are validated, the third and final phase is to use these rules for the classification of unseen spare parts. 

The main advantage of the proposed approach is that these rules can be applied to new or unknown spare parts in the 

stock. 

 

Figure 1: General schema of the proposed approach 

3.1. Phase 1—Learning 

The objective of this phase is to use a collection of carefully identified spare parts to generate a set of if–then 

decision rules indicating the priority level of each spare part based on its scores in terms of several evaluation criteria. 

The assessment of the input data is a crucial step in this phase because the quality and representativeness of the decision 

rules obtained depends largely on the quality and representativeness of the learning set. 

The learning phase, which relies on the DRSA, contains three steps: data structuring, approximation, and inference 

of decision rules. 

3.1.1. Data structuring 

In rough sets theory, information regarding the decision objects is often structured in a 4-tuple information table 

S = 駆 U,Q,V,f駈 , where U is a non-empty finite set of objects and Q is a non-empty finite set of attributes such that q : U ՜ Vq for every q א Q. The Vq is the domain of attribute q, V α תqאאQ Vq, and f : U ×Q ՜ V is the information function 
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defined such that f(x,qȌ א Vq for each attribute q and object x U. The set Q is often divided into a sub-set C αӏ ׎ of 

condition attributes and a sub-set D αӏ ׎ of decision attributes, such that C ׫ D = Q and C ת D α ׎. In this case, S is 

called a decision table. 

In multicriteria decision making, the domains of the condition attributes are supposed to be ordered according to a 

decreasing or increasing preference. Such attributes are called criteria. The proponents of DRSA assume that the 

preference is increasing with f(·,q) for every q א C. They also assume that the set of decision attributes D = {E} is a 

singleton. The unique decision attribute E makes a partition of U into a finite number of preference-ordered decision 

classes Cl = {Clt,t א T}, T = {0,··· ,n}, such that each x א U belongs to one and only one class. 

ThedecisiontableusedinourcasestudyisgiveninAppendixA.Asshowninthistable,thelearningsetiscomposed of 98 

spare parts described in terms of four criteria, namely Criticality, Annual Dollar Usage, Average Unit Cost, and Lead 

Time (a detailed description of these criteria is given in Section 4.3.1). These criteria have been identified by the 

decision maker based on his experience. However, it is worth mentioning that the proposed approach is generic enough 

and may be used with any number of criteria. The decision attribute E defines three classes: A, B and C. The preference 

order assumed C ط B ط A, where “x ط y” means that y is preferred to x. The categorization of spare parts into the 

groups A, B and C will facilitate their management in the sense that a different stocking policy can be selected for each 

group. For instance, the spare parts in A, making up roughly 10% of the total inventory, should be controlled tightly, 

recorded accurately, and monitored closely due to their taking a large share of annual expenses; the spare parts in B, 

making up about 20% of the total inventory, are less tightly controlled or well recorded; and the spare parts in C, 

making up about 70% of the total inventory, are managed with the simplest controls and records. 

3.1.2. Approximation 

In DRSA the represented knowledge is a collection of upward unions Clt
η and downward unions Clt

ζ of classes 

defined as follows: 

. 

The assertion “x א Clt
η” means that “x belongs to at least class Clt” while assertion “x א Clt

ζ” means that “x belongs 

to at most class Clt”. The basic idea of DRSA is to replace the indiscernibility relation used in the conventional RST 

with a dominance relation. Let P ك C be a subset of condition criteria. The dominance relation οP associated with P is 

defined for each pair of objects x and y as follows: 

xοPy ֞ f(x,qȌ غ f(y,q),׊q א P. 

In the definition above, the symbol “غ” should be replaced with “ع” for criteria which are ordered according to 

decreasing preferences. To each object x א U, we associate two sets: (i) the P-dominating set ο+
P(x) = {y א U : yοPx} 

containing the objects that dominate x, and (ii) the P-dominated set οΫ
P(x) = {y א U : xοPy} containing the objects 

dominated by x. 

Then, the P-lower and P-upper approximations of Clt
η with respect to P are defined as follows: 
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• P(Clt
η) = {x א U ǣ ο+

P(xȌ ك Clt
η}, 

• P¯(Clt
η) = {x א U ǣ οΫ

P(xȌ ת Clt
η ӏ= ׎Ȕ. 

Analogously, the P-lower and P-upper approximations of Clt
ζ with respect to P are defined as follows: 

• P(Clt
ζ) = {x א U ǣ οΫ

P(xȌ ك Clt
ζ}, 

• . 

The lower approximations group the objects which certainly belong to class unions Clt
η (resp. Clt

ζ). The upper 

approximations group the objects which could belong to Clt
η (resp. Clt

ζ). 
The P-boundaries of Clt

η and Clt
ζ are defined as follows: 

• BnP(Clt
η) = P¯(Clt

ηȌ Ϋ P(Clt
η), 

• BnP(Clt
ζ) = P¯(Clt

ζȌ Ϋ P(Clt
ζ). 

The boundaries group objects that can neither be ruled in nor out as members of class Clt. 

The quality of approximation of a partition Cl by means of a set of criteria P is defined as the ratio of all P-correctly 

classified objects to all objects in the system. Mathematically, 

 . (1) 
The accuracy of the rough-set representation of unions of classes is computed as the ratio between the number of 

objects in the lower approximation and the number of objects in the upper approximation. Mathematically, 

 , (2) 

where א ڃ ȓη,ζȔ. It is easy to see that Ͳ ζ Ƚ(Clt
t. This holds because, by definition, we have P(Clt׊ ,Ȍ ζ ͳڃ

 ك Ȍڃ

P¯(Clt
 t. Clearly, when the upper and lower approximations are equal (i.e. the boundary region is empty), then׊ ,(ڃ

Ƚ(Clt
 and the approximation is perfect. At the other extreme, whenever the lower approximation is empty, the ,1 = (ڃ

accuracy is Ƚ(Clt
 .0 = (ڃ

In addition to these measures, the authors in [13] introduce two additional measures to estimate the attainable 

predictive accuracy of a rough-set-based classifier. The first measure, called ɉ, estimates the attainable percentage of 

correctly classified objects of a classifier. With respect to the DRSA, the attainable percentage of correctly classified 

objects is defined for a subset P ك C of criteria as follows: 

 

where POSP(Cli
η) and POSP(Cli

ζ) are the P-positive region of Cli
η and Cli

ζ, respectively, defined as follows: 

 , (4) 
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and 

 , (5) 

The second measure, called Ɂ, estimates the attainable mean absolute error of a classifier. It is defined as the mean 

absolute difference between the index of the class to which an object is assigned by a classifier and the index of the 

class to which the object belongs. Obviously, Ɂ can be employed only when the decision classes are ordered, i.e. in 

DRSA. The attainable mean absolute error is defined, for i א T and yj א Cli
 :ȓη,ζȔ, as follows א ڃ with ڃ

  (6) 

The ɉ and Ɂ measures are only useful if the quality of approximation is low or even equal to zero. Accordingly, 

these measures have not been considered in the case study given in Section 4 since the quality of approximation on 

the learning dataset is equal to 1. 

The DRSA defines two concepts that may indicate some information about the importance of the criteria: the 

reduct and the core. A reduct is a minimal subset of criteria which can, by itself, fully characterize the knowledge in 

the decision table. The reduct of the decision table is not unique: there may be many subsets of criteria which preserve 

the equivalence classes. The set of attributes which is common to all reducts is called the core. Therefore, they are the 

criteria which cannot be removed from the decision table without causing the collapse of the equivalence classes. More 

information on these concepts is available in [41][42]. The results of the approximation of the decision table used as 

input in the considered case study are presented in Section 4.3.2 and summarized in Table 4. 

3.1.3. The inference of the decision rules 

The decision attribute induces a partition of U in a way that is independent of the criteria. Hence, a decision table 

may be seen as a set of ‘if–then’ decision rules. The condition part specifies the values assumed by one or more criteria, 
and the decision part specifies an assignment to one or more decision classes. Three types of decision rules may be 

considered: (i) certain rules generated from the lower approximations of unions of classes, (ii) possible rules generated 

from the upper approximations of unions of classes, and (iii) approximate rules generated from the boundary regions. 

The general structures of certain decision rules are as follows: 

IF condition(s), THEN At Most Clt IF condition(s), THEN At Least Clt 

The decision part of a certain rule takes the form of an assignment to at most class unions or at least class unions. 

The general structures of possible decision rules are as follows: 

IF condition(s), THEN Possibly At Most Clt IF condition(s), THEN Possibly At Least Clt 

In this case, the decision part specifies a possible assignment to at most class unions or at least class unions. 

Finally, the general structure of approximate rules is as follows: 

IF condition(s), THEN Belongs to Cls ׫ Cls+1 ׫ ȉȉȉ ׫ Clt 

Here, the decision part is defined as the union of several decision classes. 

Decision rules are judged by their quality on the basis of the learning (or training) set, and by how they classify 

new unseen objects [71]. Several measures have been proposed to evaluate the performance of decision rules. An 

object supports a decision rule if the description of the object matches both the condition and the decision parts of this 

rule. The support of a rule is the number of objects supporting the rule. A decision rule covers an object if the 
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description of the object matches at least the condition part of the rule. The coverage is the number of the objects 

covered by the rule. The strength of a rule is the number of positive examples covered by the rule. The relative strength 

is the number of positive examples covered by the rule divided by the number of all positive examples in the union of 

classes. The confidence level (some authors call it consistency, or the certainty factor, or the precision) is defined as 

the number of positive examples covered by the rule divided by the number of examples covered by the rule. For more 

information and the formal definitions of all these concepts, see [71][81]. We note that if the consequence is univocal 

(i.e. contains only one decision), the rule is exact, otherwise it is approximate. 

At this level, we should note that a given decision object may be covered by one or more decision rules, or may 

not be covered by any rule, in other situations. This issue has been discussed in detail in [9], where the authors propose 

different solutions to classify an object using decision rules in one of three possible situations: it is covered by (i) no 

rule, (ii) exactly one rule, (iii) several rules. The authors in [9] showed how these issues are dealt with by the standard 

classification method and the new classification method that they introduce. In what follows, we summarize the 

solutions used by the standard classification method, as discussed in [9]: 

1. the decision object x is not covered by any decision rule: in this case, the object x is assigned to all decision 

classes from Cl. 

2. the decision object x is covered by one decision rule: in this case, the classification relies on the prudence 

principle. Two subclasses are distinguished here. First, if the decision rule is of at least type with a decision part 

of the form ‘then x א Clt
η’, then the decision object x is assigned to the lowest class Clt of the union Clt

η suggested 

in the decision part of the decision rule. Analogously, if the decision rule is of at most type with a decision part 

of the form ‘then x א Cl
t
ζԢ ’, then the decision object x is assigned to the highest class CltԢ of the union Clt

ζԢ 
suggested in the decision part of the decision rule. 

3. the decision object x is covered by several decision rules: in this case, the standard classification method 

proceeds in two steps. First, the decision object is assigned to an interval of the form [Clt,Cls] where: (i) Clt is the 

lowest class in the intersection of suggested unions of all covering rules of type at least; and (ii) Cls is the highest 

class in the intersection of suggested unions of all covering rules of type at most. Then, if Clt = Cls, the assignment 

of x is univocal; otherwise, two cases are possible: 

(a) if t < s, then decision object x is assigned to classes Clt,··· ,Cls, without the possibility of refinement, because 

of imprecise information; 

(b) if t > s, then decision object x is assigned to classes Cls,··· ,Clt, without the possibility of discernment, 

because of contradictory information. 

One possible way to refine the assignment interval [Clt,Cls] in case (a) above is to use some simple rules (such as the 

min, max, mean, floor, and ceiling operators) to reduce the assignment interval into a single decision class. This 

solution has been used in [20][21] for the reduction of the assignment intervals in the context of group decision making. 

The new classification method proposed in [9] adopts the same strategy as the standard classification method for 

handling situation (1). With respect to situation (2), the new classification method computes, for each decision object 

x and rule ɏ covering it, a score in [0,1] (which can be interpreted as the degree of certainty of the assignment of x to 

Clt in the decision part of rule ɏ) and then assigns x to that Clt for which the score is the greatest. For situation (3), the 

authors in [9] use a combined score that considers the rules that are concordant with the assignment of the decision 

object x to decision class Clt and those which are discordant with this assignment. The combined score can be 

interpreted as a net balance of arguments in favor and argument against the assignment of the decision object to 
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considered decision class. Then, decision object x is assigned to the class Clt for which the combined score is the 

greatest. 

Inourcasestudy,weidentified11certainrulesthatarediscussedinSection4.3.3.Weshouldmentionthat,generally, only 

certain decision rules are used in practice. The other types of rules are mainly useful for sensitivity analysis. 

3.2. Phase 2—Validation 

The objective of the second phase is to check and validate the generated decision rules. In this paper, we propose 

three validation techniques: 

• Decision rules analysis. The first and simplest validation technique is based on a direct analysis of the decision 

rules by the decision maker. The idea is based on asking the decision maker to scan all the decision rules and 

indicate his/her agreement level on a five-level Likert scale. A limited number of disagreements can be managed 

either by modifying some decision rules or by removing the decision rules with a high level of disagreements. 

Both options should, however, be authorized only for well-experienced decision makers. 

• Re-classification analysis. The second validation technique consists of using the generated decision rules in 

order to re-classify the original spare parts. Ideally, the assignments obtained by re-classification should match 

completely with the original assignments. This is not always possible in practice, and generally a limited number 

of misclassifications may be accepted. When there are many misclassifications, the decision maker is called to 

revise his/her initial assignments in order to improve the quality of the decision rules. 

• Cross-validation analysis. This validation strategy is used to evaluate the prediction accuracy of a machine 

learning technique. In essence, it starts with the partitioning of the available data into training and testing 

subsets. The training subset is used to train the model, and then the testing subset is used to measure the 

prediction accuracy. The key difference from re-classification is that the model is assessed by means of testing 

data that was completely unseen by the model. Multiple rounds of cross-validation are usually performed on 

different partitions, and the validation results are averaged over the rounds. 

Thesecomplementaryvalidationtechniquescanbeusedseparatelyorjointly.Theycanhelpthedecisionmakerbetter 

appreciate and refine the learning set and the obtained decision rules, which will naturally enhance the effectiveness 

of the decision making process and the successful implementation of the solution at the end. The use of these validation 

strategies is illustrated in Section 4.4 using real-world data in a case study. 

3.3. Phase 3—Generalization 

This phase aims to exploit the decision rules to classify spare parts other than those used initially for learning. For 

more advanced applications, decision rules can also be used to develop a rule-based decision support system by 

incorporating these rules into the knowledge base, but such an action is clearly beyond the scope of this paper. 

The proposed approach is an iterative decision making process and, as can be seen in Figure 1, the process can be 

repeated whenever required. For example, at the end of the second phase, the agreement of the decision maker after 

an advanced analysis of decision rules is required to go through the generalization phase. Furthermore, the iterative 

structure of the decision making process enables the system to “learn” from past experiences. Indeed, and as shown in 
Figure 1, the final classifications can be used as input for inducing a set of more refined decision rules. This can 

enhance the system over time. 

In our case study, detailed in the next section, we used a new set of data during the generalization phase. We then 

provided the results to the decision maker for appreciation. More information on this issue is given in Section 4.5. 
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4. Case study 

The objective of this section is to illustrate the proposed approach through a case study in China. We first briefly 

introduce the company, under the pseudonym of the ‘Industrial Manufacturing Company’ (IMC), considered in this 
case study (Section 4.1). Then, we enumerate the problems faced by the IMC in their current spare parts management 

policies (Section 4.2). In the remaining sections, we provide a step-by-step application of the proposed approach to 

the IMC (Sections 4.3–4.6). 

4.1. The company 

The business of the IMC includes operations, manufacturing, and service activities. In recent years, its service 

business has made rapid progress. Hence, the activity of the IMC has been gradually turned towards maintenance, 

repair and overhaul (MRO) services for a variety of equipment, including vehicles, locomotives, engines, and 

electronic devices. Several MRO Service Centres have been created in order to satisfy the needs for different MRO 

services. The IMC also produces and supplies spare parts to customers. In order to support the customers’ needs, the 
IMC created a network of distribution warehouses. The spare parts related business of the IMC represents a very 

important part of the company’s profits, leading to a substantial increase in the annual business volume to more than 
14 million dollars in the last three years. 

4.2. The problem 

Although the IMC’s business made rapid progress in the preceding few years, the company, due to an increasingly 
competitivemarket,hasfacedseveralproblemsinitssparepartsmanagement.Firstly,theproductioncosts,includingthe 

procurement of raw materials, employee salaries, and so on, have been growing and hence now make up a significant 

part in the company’s expenses. Secondly, the spare parts management strategy used by the IMC is inappropriate. 
Indeed, the IMC uses the ABC classification technique to manage its spare parts. However, a high number of skilful 

and well experienced employees have retired in recent years, and the new young and inexperienced employees are 

unable to correctly classify the spare parts by themselves. Thirdly, the company manages more than 20,000 types of 

spare parts, which complicates the classification task, especially for the inexperienced employees. 

The approach proposed in Section 3 permits handling all the above-cited problems by (i) reducing the production 

costs by correctly identifying the most critical spare parts (those assigned to group A) that should be controlled tightly, 

recorded accurately, and monitored closely, due to their important part in the annual expenses; (ii) extracting valuable 

knowledge (in terms of if–then rules) about spare parts management from the past experiences and historical data of 

the company; and (iii) automating the classification task through a learning-set based approach that uses a reduced set 

of spare parts as input and generates a collection of if–then decision rules that can be used to classify all the spare parts 

of the IMC. 

4.3. Phase 1—Learning 

Following Section 3.1, the learning phase is organized into three steps: (i) data structuring (Section 4.3.1), (ii) 

approximation (Section 4.3.2) and inference of decision rules (Section 4.3.3). 

4.3.1. Data structuring 

As introduced in Section 3.1.1, the input for the DRSA is a decision table containing a subset of typical spare parts 

described in terms of a collection of evaluation criteria. 

Identification of the criteria. Initially,the IMC’spractice of spare parts management relied on a single criterion, namely 

Annual Dollar Usage, to classify the spare parts. As strongly advocated by the spare parts manager, the use of Annual 

Dollar Usage alone is inefficient. For the purpose of this case study, and after a discussion with the spare parts manager, 

we decided to maintain four criteria: Criticality (Criticality), Annual Dollar Usage (AnnDollarUsage), Average Unit 
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Cost (AvgUnitCost), and Lead Time (LeadTime). The description of these criteria is given in Table 3. The criteria 

Annual Dollar Usage and Average Unit Cost are continuous while the criteria Criticality and Lead Time are ordinal. 

The Criticality criterion can take one of the four values 1, 2, 3 and 4, where 1 corresponds to the lowest criticality and 

4 corresponds to the highest criticality. The possible values for Lead Time are 1, 2 and 3, where 1 means a low lead 

time and 3 a high lead time. Finally, we note that all criteria are of type gain, i.e. the preference is increasing with the 

criteria values. 

Table 3: Characteristics of used spare part management criteria 
Code Name Description Preference Data type 
Criticality Criticality It represents the influence of spare parts running out on the availability of equipment. Gain Ordinal 
AnnDollarUsage Annual Dollar 

Usage 
It is calculated by spare part cost multiply demand volume. Gain Continuous 

AvgUnitCost Average Unit Cost It refers to spare part cost. Gain Continuous 
LeadTime Lead Time It refers to the time between the placement of an order and delivery of a new spare part from a IMC’s 

supplier. 
Gain Ordinal 

Generally, the assessment of ordinal criteria is not an obvious exercise. Two ordinal criteria have been considered 

in this paper: Criticality and Lead Time. For the purpose of this case study, the criteria Criticality and Lead Time have 

been assessed by the spare parts manager, based on his long experience within the IMC. Let us also mention that the 

authors in [27], for instance, emphasize the role of the lead time criterion in analysing the competitiveness of 

companies. In terms of criticality, one can also argue that it is a function of the criticality of the spare parts in the 

machine as well as the criticality of the machine within the whole operational system [33][38][57]. According to [82], 

the integration of production and maintenance is important and complex. For example, the criticality of a machine and 

hence its related spare parts can be based on different criteria, such as the capital cost of the machine, its rarity (i.e. 

absence of redundancy), the degree of deterioration (measured by assessing its conditions [85]), the difficulty of repair 

in case of downtime (measured by the mean time to repair [74]), its availability (measured by the mean time between 

failures [6]), the throughput of the machine (whether it is a bottleneck), whether the outputs of the machine are intended 

for important customers, or whether the machine has already produced its intended schedule of production (i.e. the 

current required demand). 

Identification and assignment of learning examples. The definition of the assignment examples is a crucial step in our 

approach. It involves two operations: (i) the selection of a representative subset of spare parts, and (ii) the assignment— 

by the decision maker—of the selected spare parts on the three-level scale defined earlier. In the application considered 

in this paper, a subset of 98 spare parts (denoted 1 to 98) was selected. The evaluations of the selected spare parts in 

terms of the considered criteria, i.e. Criticality, AnnDollarUsage, AvgUnitCost and LeadTime, are summarized in the 

decision table in Appendix A. The values in the last column in the decision table correspond to the assignments, as 

expressed by the decision maker, of the spare parts to the decision classes C, B and A. 

The selection of these spare parts from about 20 thousand spare parts managed by the IMC was a very difficult 

task. The inputs of the highly experienced spare parts manager have been crucial in this exercise. At this level, it is 

important to emphasize that there are no formal rules that can be used to coherently identify the learning set. In this 

respect, the authors in [59] identified some general guidelines that can be followed to obtain the ‘best’ set of assignment 
examples: (i) the spare parts should be as representative as possible by including different specifications and 

characteristics; (ii) the spare parts should be non-redundant (in terms of their evaluation with respect to different 

criteria); (iii) the spare parts should cover all the decision classes; and (iv) the spare parts should ideally be well known 

to the decision maker/expert. The authors in [59] also observe that there was no ideal theoretical number of examples. 

A limited number of examples might lead to a few and very generic decision rules and too great number of examples 

may lead to a high number of very specific and redundant decision rules. 
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4.3.2. Approximation 

The DRSA has been designed to be used with any subset P of criteria from the set of criteria C = {Criticality, 

AnnDollarUsage, AvgUnitCost, LeadTime}. In our case study, we assumed that all the criteria are used, i.e. P = C. In 

addition, the domain of the decision attribute E is equal to {C,B,A}. These values correspond to the labels of the 

categories C, B and A introduced in Section 3.1.1. The decision attribute E divides the set U of spare parts into three 

preference-ordered classes: Cl1 = {C}, Cl2 = {B}, and Cl3 = {A}. Thus, the class unions that should be approximated are: 

• , i.e. the objects belonging to (at most) class C, 

• , i.e. the objects belonging to at most class B, 

• , i.e. the objects belonging to at least class B, 

• , i.e. the objects belonging to (at least) class A. 

These class unions have been approximated using our decision table in Appendix A and the equations given in 

Section 3.1.2. The result of the approximation is summarized in Table 4. As shown in this table, all the boundaries are 

empty sets, which indicates that the approximation is perfect (see Section 3.1.2). The quality of the approximation and 

accuracy of the rough-set representation of the classes of our input data are summarized in Table 5. In our example, 

the quality of approximation of the partition Cl = {Cl1,Cl2,Cl3}, the percentage of correctly classified objects, and the 

accuracy of the rough-set representation, are all equal to 1 and the attainable mean absolute error is equal to 0. This 

ensures the high quality of the learning set used as input. Additionally, the analysis with the DRSA shows that the set 

{LeadTime, AnnualDollarUsage, AverageUnitCost} constitutes the unique reduct and also the core of the data used as 

input. 

Table 4: Result of approximation 

 ׎

Class union Lower approximation Upper approximation Boundary 
 (At Most C) 1, 2, 3, 4, 5, 7, 8, 9, 16, 18, 19, 20, 21, 22, 24, 28, 29, 

30, 
31, 33, 34, 36, 37, 38, 41, 42, 43, 46, 47, 48, 49, 50, 51, 
52, 56, 57, 58, 61, 62, 63, 64, 66, 68, 69, 70, 74, 75, 76, 
77, 78, 79, 80, 86, 88, 89, 90, 91, 92, 93, 94, 97 

1, 2, 3, 4, 5, 7, 8, 9, 16, 18, 19, 20, 21, 22, 24, 28, 29, 
30, 

31, 33, 34, 36, 37, 38, 41, 42, 43, 46, 47, 48, 49, 50, 51, 
52, 56, 57, 58, 61, 62, 63, 64, 66, 68, 69, 70, 74, 75, 76, 
77, 78, 79, 80, 86, 88, 89, 90, 91, 92, 93, 94, 97 

 ׎

 (At Most B) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 
19, 20, 21, 22, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 
36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 
52, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 
69, 70, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 86, 87, 88, 
89, 90, 91, 92, 93, 94, 95, 96, 97 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 
19, 20, 21, 22, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 
36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 
52, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 
69, 70, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 86, 87, 88, 
89, 90, 91, 92, 93, 94, 95, 96, 97 

 ׎

 (At Least B) 6, 10, 11, 12, 13, 14, 15, 17, 23, 25, 26, 27, 32, 35, 39, 
40, 44, 45, 53, 54, 55, 59, 60, 65, 67, 71, 72, 73, 81, 82, 
83, 84, 85, 87, 95, 96, 98 

6, 10, 11, 12, 13, 14, 15, 17, 23, 25, 26, 27, 32, 35, 39, 
40, 44, 45, 53, 54, 55, 59, 60, 65, 67, 71, 72, 73, 81, 82, 
83, 84, 85, 87, 95, 96, 98 

 ׎

 (At Least A) 23, 27, 40, 53, 55, 71, 73, 83, 84, 85, 98 23, 27, 40, 53, 55, 71, 73, 83, 84, 85, 98  
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Table 5: Quality of the approximation, accuracy of prediction and accuracy of rough-set representation 
Quality of 

approximation 
Percentage of correctly 
classified objects (ɉ) 

Attainable mean 
absolute error (Ɂ) 

Accuracy    

Cl1ζ (At Most (At Most (At Least (At Least A) 
1 1 0 1 1 1 1 

4.3.3. Inference of decision rules 

The application of the inference algorithm DOMLEM [44] of the DRSA to the results of the approximation in 

Table 4 leads to a minimal set of 11 certain and exact decision rules, which are given in Table 6. A detailed description 

of these rules is given in Appendix B. By minimal set we mean a set of non-redundant rules that cover all the spare 

parts in the learning set. Table 6 indicates, in addition to the descriptions of the decision rules, the number of supporting 

objects, the relative strength, and the confidence of each decision rule. The description of these rules is straightforward. 

Rule #8, for instance, indicates that a spare part is classified as high priority (i.e. assigned to category A) once (i) the 

Annual Dollar Usage is greater than or equal to 3150 and (ii) it is of very high criticality. This decision rule is supported 

by 9 spare parts, has a relative strength of 81.82%, and a confidence level of 81.82%. 

Table 6: Decision rules 

 η η η 
As discussed at the end of Section 3.1.3, a decision object can be covered by (i) no rule, (ii) exactly one rule, (iii) 

several rules. In the considered case study and as shown in Appendix B, all spare parts in the initial learning set are 

covered by at least one decision rule. 

4.4. Phase 2—Validation 

In the rest of this section, we apply the three validation strategies introduced in Section 3.2 to our case study. 

4.4.1. Analysis of the decision rules 

As mentioned earlier in Section 3.2, this validation strategy consists of asking the decision maker to scan all the 

decision rules and indicate his/her agreement level on a five-level Likert scale: Strongly Disagree, Disagree, Neutral, 

Agree, and Strongly Agree. The result of the analysis of the decision rules for our case study is given in Table 7. 

According to this table, the decision maker agrees with five decision rules, is neutral about five other decision rules, 

and disagrees with one decision rule. 

# Rule Support Relative strength 
(%) 

Confidence level 
(%) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

IF (AnnDollarUsageζ1260) THEN (Class at most C) 
IF (AvgUnitCostζ27.3) & (Criticalityζ2) THEN (Class at most C) 
IF (AvgUnitCostζ24.07) & (LeadTimeζ2) & (AnnDollarUsageζ1754) THEN (Class at most C) 
IF (AnnDollarUsageζ3071.25) THEN (Class at most B) 
IF (LeadTimeζ1) THEN (Class at most B) 
IF (AvgUnitCostζ36.75) & (LeadTimeζ2) THEN (Class at most B) 
IF (AnnDollarUsageη11025) THEN (Class at least A) 
IF (AnnDollarUsageη3150) & (Criticalityη4) THEN (Class at least A) 
IF (AnnDollarUsageη1786.4) THEN (Class at least B) 
IF (AvgUnitCostη71.66) THEN (Class at least B) 
IF (AnnDollarUsage 1470) & (LeadTime 2) & (AvgUnitCost 29.4) THEN (Class at least B) 

53 
16 
47 
83 
39 
64 
8 
9 
32 
20 
16 

86.89 
26.23 
77.05 
95.40 
44.83 
73.56 
72.73 
81.82 
86.49 
54.05 
43.24 

100 
100 
100 
100 
100 
100 
100 

81.82 
100 
100 
100 
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Table 7: Decision rules analysis 
  Strongly    Strongly  

# Rule Disagree Disagree Neutral Agree Agree Comments 
1 
2 
3 

IF (AnnDollarUsageζ1260) THEN (Class at most C) 
IF (AvgUnitCostζ27.3) & (Criticalityζ2) THEN (Class at most C) 
IF (AvgUnitCostζ24.07) & (LeadTimeζ2) & (AnnDollarUsageζ1754) THEN 
(Class at most C) 

  X 
X 

X 

  

4 
5 
6 
7 
8 
9 

IF (AnnDollarUsageζ3071.25) THEN (Class at most B) 
IF (LeadTimeζ1) THEN (Class at most B) 
IF (AvgUnitCostζ36.75) & (LeadTimeζ2) THEN (Class at most B) 
IF (AnnDollarUsageη11025.) THEN (Class at least A) 
IF (AnnDollarUsageη3150) & (Criticalityη4) THEN (Class at least A) 
IF (AnnDollarUsageη1786.4) THEN (Class at least B) 

 

X 

X 

X 

X 
X 

X 

The right-hand member of the 
condition is very low; 
consequently, the decision 
part should be C. 

10 
11 

IF (AvgUnitCostη71.66) THEN (Class at least B) 
IF (AnnDollarUsageη1470) & (LeadTimeη2) & (AvgUnitCostη29.4) THEN 
(Class at least B) 

  
X 

X   

The last column in Table 7 indicates the comments of the decision maker on the decision rules. In the present case 

study, the decision maker justifies his disagreement with decision rule #9 by the fact that the right-hand member of 

the unique condition (which is relative to the criterion Annal Dollar Usage) of this rule is very low; consequently, the 

decision part should be C. However, the decision provided by the decision maker is not consistent with the condition 

part of decision rule #9. To avoid any confusion, we contacted the decision maker again and proposed three solutions: 

(i) maintain decision rule #9 as it is and add ‘by hand’ to the list of inferred decision rules the following rule: ‘IF 
(AnnDollarUsage<1786.39), THEN (Class at most C)’; (ii) maintain rule #9 as it is without adding any new rule; and 

(iii) remove decision rule #9. He finally opted for the second solution and he changed his agreement level from 

‘Disagree’ to ‘Neutral’. 

4.4.2. Re-classification analysis 

The second validation technique consists of using the generated decision rules to re-classify the spare parts. In the 

case study considered in this paper, the re-classification analysis shows that the original assignments (proposed by the 

decision maker) match with those proposed by the system for about 98% of the spare parts, and there are about 2% 

ambiguous assignments (for spare parts numbers 25 and 26). The result of the re-classification can be summarized 

through an n × n confusion matrix, where n is the number of decision classes. The intersection of a row and column 

indicates the number of original and possible assignments for the decision classes corresponding to the considered row 

and column. The confusion matrix for our case study is given in Table 8. As indicated by this table, all the spare parts 

originally assigned to decision classes C and A have been assigned to the same classes by the system. This table 

indicates also that 24 spare parts that had been initially assigned to class B were re-assigned to the same class by the 

system and that two spare parts (namely #25 and #26) that had been assigned to class B by the decision maker could 

be assigned to B or A. 

It is important to mention that since there were no inconsistent assignments, normally there should be a perfect 

reclassification with 100% correct assignments and no ambiguous or wrong assignments. However, as shown in Table 

8, there are two ambiguous assignments. Indeed, the value 2 in the confusion matrix can be read as there are two 

decision objects that had been assigned to class A instead of class B as initially proposed by the decision maker. This 

is due to decision objects #25 and #26, which are covered by conflicting rules.1 Indeed, a careful examination of 

Appendix B shows that decision objects #25 and #26 are covered by one decision rule (namely rule #6) of type at most 

and three decision rules (namely rules #8, #9 and #11) of type at least. The assignment of decision objects #25 and 

                                                           
1 The results in Table 4 show empty boundaries, which should normally lead to a perfect re-classification and decision objects #25 and #26 should 

be assigned strictly to class B. After careful examination, it turns out that rule #8 should never been induced by the DOMLEM algorithm [44], as it 
has conclusion “at least A”, and covers two decision objects (#25 and #26) from a worse class, B. It seems to be somewhat of an implementation 
error in the software 4eMka2 used to run DRSA. Despite this fact, rule #8 is maintained in the rest of the paper. 
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#26 to both B and A holds since the DRSA software 4eMka2 [1][43] used in this paper implements the standard 

classification method mentioned in Section 3.1.3. 

Table 8: Confusion matrix 
   Possible  

 / C B A 

 C 61 0 0 

Original B 0 26 2 
 A 0 0 11 

We provided the result of the re-classification analysis to the decision maker and asked him to revise his original 

assignments for spare parts #25 and #26 causing the confusion problem. The result of this exercise is summarized in 

Table 9. As shown in this table, the decision maker refused to revise his assignments and maintained the original 

assignments for spare parts #25 and #26. 

Table 9: Result of revision 
  Annual Dollar Average 

Unit 
Lead Original assignment Possible 

assignment 
Revision by 
the 

# Criticality Usage Cost Time (by the decision 
maker) 

(by the system) decision maker 

25 4 3150.00 31.50 2 B B or A B 
26 4 3675.00 36.75 2 B B or A B 

4.4.3. Cross-validation analysis 

The basic idea here is to randomly partition the data into parts or ‘folds’, and select one fold to be used for testing 
and the remaining to train the classification algorithm. Cross-validation is most commonly applied with k=10, where 

each fold should contain at least 30 items. For this purpose, we randomly created 10 mutually exclusive pairs of 

training and testing datasets. Then, we used the training sets to generate the decision rules, which were then applied 

to the testing sets. Each training and testing dataset was composed of 49 items (i.e. 49 for training and 49 for testing). 

Furthermore, we used stratified cross-validation to have proportional representation of each class in each fold. 

Table 10 summarizes the recall and accuracy analysis for the decision classes C, B and A. In this table, we observe 

that the performance of the DRSA remains consistent for the three decision classes. It is important to emphasize here 

that decision class A has the fewest samples in the dataset, while decision class C has the highest number of samples. 

This indicates that the DRSA performs equally well regardless of the number of samples available in the dataset. 

Table 10: Recall and accuracy analysis using the DRSA for all three classes 
 Class-wise recall   Class-wise accuracy  Total 

recall 
Total 

accuracy 
C B A C B A 

0.9033 0.8692 0.8167 0.9374 0.8019 0.8129 0.8631 0.8507 
We have also used a series of well-known non-parametric statistics to compare the decision maker’s assignments 

of the decision objects in the testing sets to those generated by the decision rules inferred from the training sets. The 

statistics considered in this paper are: Kendall’s tau, Spearman’s rho, and the Unweighted and Weighted Cohen’s 
kappa. These statistics are often used to compare a set of rankings provided by two decision makers, experts, methods, 

etc. In addition, all of them accept ordinal data and can deal with ties. Kendall’s tau lies in the range [-1,1]. If the 

agreement between the two rankings is perfect (i.e. the two rankings are the same) it is 1. If the disagreement between 

the two rankings is perfect (i.e. one ranking is the reverse of the other) it is -1. If two rankings are independent, then 

we would expect it to be approximately zero. Spearman’s rho is in the range [-1,1]. A positive Spearman correlation 

coefficient indicates that both rankings vary in the same direction. A negative Spearman rho coefficient indicates a 

monotone decreasing relation between the two rankings. A Spearman rho coefficient of zero indicates that there is no 
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tendency between the two rankings. There are two ways of calculating Cohen’s kappa: unweighted and weighted. The 

weighted kappa is more appropriate for variables having more than two categories. In both cases, the value of Cohen’s 
kappa lies in [0,1]. Conventionally, a kappa of <0.2 is considered poor agreement, 0.21–0.4 fair, 0.41–0.6 moderate, 

0.61–0.8 strong, and more than 0.8 a near complete agreement. 

The result of this statistical comparison is given in Table 11. According to this table, Kendall’s tau and Spearman’s 
rho show a very high agreement between the two assignment sets while the Cohen’s kappa measures show a slightly 

less strong correlation between the two assignment sets. At this level, we note that despite the fact that the accuracy 

of fold number 7 is higher than the accuracy of fold number 2, the statistical analysis shows a higher correlation level 

for fold number 2. This can be explained by the fact that in fold number 2, there are three similar disagreements 

(assignment to B instead of A) while in fold number 7 there are two different disagreements (assignment to C instead 

of B and assignment to B instead of A). Indeed, the definitions of the statistics used take into account these aspects. 

Table 11: Results of the cross-validation for DRSA—statistical analysis 

Statistics 

Fold          

Min Max Average 

Standard 
deviation 

1 2 3 4 5 6 7 8 9 10 
Kendall’s tau 0.8254 0.9624 0.7831 0.8811 0.9117 0.8211 0.9538 0.9062 0.8195 0.8477 0.7831 0.9624 0.8712 0.0612 
Spearman’s rho 0.8482 0.9844 0.8116 0.9150 0.9290 0.8301 0.9632 0.9228 0.8405 0.8751 0.8116 0.9844 0.89199 0.0593 
Unweighted Cohen’s kappa 0.7224 0.8847 0.6554 0.7789 0.8464 0.7845 0.9230 0.8471 0.7454 0.7498 0.6554 0.923 0.7938 0.0812 
Weighted Cohen’s kappa 0.7817 0.9049 0.7232 0.8248 0.8852 0.8271 0.9391 0.8761 0.7969 0.8025 0.7232 0.9391 0.8361 0.0649 
Mean Absolute Error 0.1633 0.0612 0.2041 0.1224 0.0816 0.1224 0.0408 0.0816 0.1429 0.1429 0.0408 0.2041 0.1163 0.0500 

We also compared the ranking resulting from assignments given by the decision maker and the rankings resulting 

from application of decision rules induced on training sets by calculating the Mean Absolute Error (MAE) for all the 

training sets. The MAE is computed as the mean absolute difference between index of the class to which an object is 

assigned by the decision maker and index of the class to which it is assigned by rules. The results of this additional 

comparison are summarized in the last row of Table 11. These results indicate relatively high agreement levels 

(between the initial and predicted assignments) for all learning datasets. 

Finally, we can conclude that the result of the cross-validation shows a high level of accuracy and agreement. This 

confirms the result of the previous validation techniques. 

In the next phase of the decision making process, we should apply the validated decision rules to a new dataset of 

spare parts. At this level, we should mention that if the levels of the accuracy and agreement are not sufficient, the 

decision making process can be started by considering new input data by: (i) modifying the assignments of the spare 

parts in the learning set; (ii) selecting a new set of spare parts as a learning set, and/or (ii) adding (or removing) some 

evaluation criteria. 

4.5. Phase 3—Generalization 

The dataset used for the generalization phase consists of 123 spare parts that had not been used during the learning 

phase. The description of this new dataset is given in Appendix C. We used the decision rules given in Table 6 to 

classify these new items and then provided the results to the decision maker for comment. More specifically, we asked 

the decision maker to check the classification of the 123 new spare parts and indicate his agreement level on a five-

level Likert scale. The result of this exercise is given in Appendix D and summarized in Table 12. As shown in this 

table, the decision maker agrees with 56.10% of the assignments, is neutral about 31.71%, and disagrees with 12.20%. 

This means that the decision maker is satisfied with 87.80% of the assignments. 

Table 12: Summary of the decision maker agreement analysis 
Agreement Strongly    Strongly  

level Disagree Disagree Neutral Agree Agree Total 
Number 2 13 39 16 53 123 

Percent (%) 1.63 10.57 31.71 13.01 43.09 100 
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Following the assignment of unseen spare parts into the classes A, B and C, the decision maker should check and 

agree on the result of classification. If the decision maker accepts the assignments of unseen spare parts, then the 

decision process stops. Otherwise the decision maker should modify the input data and restarts the analysis approach 

from the beginning. In this particular case study, the acceptance rate has been judged relatively high. After discussing 

with the decision maker, we decided to update the initial learning set and to restart the analysis approach. More insights 

on this additional analysis are given in the following subsection. 

4.6. Modification of the learning dataset 

The assignment of the unseen spare parts by the obtained decision rules lead to an acceptance rate of 87.80%. As 

mentioned earlier, we decided, after discussing with the decision maker, to update the initial learning set used in the 

first phase by adding a subset of the spare parts used during the generalization phase. The spare parts to be added to 

the learning set are given in Table 13. These additional spare parts consist of 15 items from Appendix C whose 

assignments had been judged unacceptable by the decision maker, as indicated in Appendix D. The additional spare 

parts were assigned based on the information provided by the decision maker in Appendix D (last column). 

Table 13: Additional spare parts to be added to the learning set 
  Annual Dollar Average Unit Lead  

# Criticality Usage Cost Time Class 
100 4 3805 38.05 1 B 
114 3 10148.7 338.29 2 A 
117 3 4420 11.05 1 C 
119 3 1462.5 29.25 1 C 
123 3 10176 101.76 2 A 
137 3 3044 7.61 2 C 
138 3 2013 6.71 2 C 
141 3 9280.2 309.34 2 A 
183 3 1138.95 227.79 2 B 
195 3 1254.15 250.83 2 B 
204 3 2144 5.36 1 C 
205 2 4008 5.01 1 C 
207 4 3150 31.5 2 B 
212 3 10173.6 339.12 2 A 
220 3 10482.2 524.11 2 A 

We applied the DRSA to the new learning set in order to approximate the three decision classes C, B and A. It is 

fruitful to note that the quality of approximation, percentage of correctly classified objects, and accuracy of rough-set 

representation are all equal to 1, and the attainable mean absolute error is equal to 0. In addition, in this case there is a 

single reduct composed of all the criteria {Criticality, AnnualDollarUsage, AverageUnitCost, LeadTime}. This reduct 

constitutes also the core of the new learning set. We remark that the criterion Criticality was absent from the reduct 

and core during the approximation of the initial learning set (see Section 4.3.2). 

The application of the inference algorithm to the result of the approximation of the revised learning set leads to a 

new set of decision rules that are given in Table 14. A detailed description of these rules is given in Appendix E. This 

table contains 11 certain and exact decision rules. By analysing the initial set of decision rules presented in Table 6 

and the ones given in Table 14, we remark that there are two rules that are identical in both sets. There are also several 

rules with relaxed or stricter elementary conditions and/or decision. Finally, there are several different decision rules. 

We followed the same steps given in Section 3.2 and Section 4.4 to validate the new decision rules. The direct 

analysis of the decision rules by the decision maker using a form similar to Table 7 showed that he agrees with all the 

rules. We also used the re-classification validation strategy to compare the assignments obtained using the decision 

Table 14: Decision rules obtained from the updated learning set 
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 η η 
rules given in Table 14 with those given by the decision maker. The result of this comparison is given in the confusion 

matrix in Table 15 and summarized in Table 16. The latter shows an accuracy of 96% and an error of 4%. 

Table 15: Confusion matrix for the new learning set 
   Possible  

 / C B A 

 C 67 0 0 

Original B 2 30 3 
 A 0 0 16 

Table 16: Summary of confusion matrix for the new learning set 
 Correct Incorrect Ambiguous Accuracy Error 

Parameter assignment assignment assignment (%) (%) 
Value 108 0 5 96 4 

We also compared the assignments obtained using the decision rules given in Table 14 and those given by the 

decision maker using the non-parametric statistics Kendall’s tau, Spearman rho, and the Unweighted and Weighted 
Cohen’s kappa. The result is given in Table 17 where we distinguished two cases concerning the five ambiguous 

assignments: (i) case of best choice in which the five assignment intervals have been reduced into a single assignment 

equal to the one provided by the decision maker, and (ii) worst choice in which the five assignment intervals have 

been reduced into a single assignment different from the one provided by the decision maker. Concerning the statistical 

analysis using the best choices, all the statistics indicate a full agreement between the assignments obtained using the 

decision rules given in Table 14 and those given by the decision maker. For the statistics analysis using the wrong 

choices, the non-parametric statistics indicate a very high level of agreement. 

Table 17: Statistics analysis for the new learning set 
 Best choice    Wrong choice    

Kendall’s Spearman’s Unweighted Cohen’s Weighted 
Cohen’s 

Kendall’s Spearman’s Unweighted Cohen’s Weighted 
Cohen’s 

Statistics tau rho kappa kappa tau rho kappa kappa 
Value 0.9999 1 1 1 0.95577 0.96730 0.9203 0.9403 
Based on these results, and after discussion with the decision maker, we judged that there is no need to conduct a 

second cross-validation analysis since the two first validation strategies indicated a very high level of accuracy and 

agreement, and acceptance by the decision maker. 

Finally, we used the new decision rules to classify 108 unseen spare parts (composed of the 123 spare parts used 

earlier and given in Appendix C minus those included in the new learning set). Then, we provided the output of this 

operation to the decision maker to indicate his agreement level. The results of this exercise are given in Appendix F. 

In this appendix, we also indicate the assignment given by the first set of decision rules and those corresponding to 

the new set of decision rules. We note that in Appendix F some rows (corresponding to objects moved from the testing 

# Rule Support Relative strength 
(%) 

Confidence level 
(%) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

IF (AnnDollarUsageζ1117.98) THEN (Class at most C); 
IF (AvgUnitCostζ29.25) & (LeadTimeζ2) THEN (Class at most C); 
IF (AnnDollarUsageζ3071.25) THEN (Class at most B); 
IF (LeadTimeζ1) THEN (Class at most B); 
IF (AvgUnitCostζ36.75) & (LeadTimeζ2) THEN (Class at most B); 
IF (AvgUnitCostη257.25) THEN (Class at least A); 
IF (AnnDollarUsageη3150) & (Criticalityη4) & (LeadTimeη2) THEN (Class at least A); 
IF (AnnDollarUsageη10176) & (LeadTimeη2) THEN (Class at least A); 
IF (AvgUnitCostη65.1) THEN (Class at least B); 
IF (AnnDollarUsageη2063.4) & (Criticalityη4) THEN (Class at least B); 
IF (AnnDollarUsage 1470) & (AvgUnitCost 29.36) THEN (Class at least B); 

52 
55 
89 
44 
71 
12 
9 
10 
28 
19 
37 

77.61 
82.09 
91.75 
45.36 
73.20 
75.00 
56.25 
62.50 
60.87 
41.30 
80.43 

100 
96 
100 
100 
100 
100 
75 
100 
100 
100 
100 
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set to the extended learning set) do not appear. Appendix F also shows that the decision maker globally agrees with 

all the new assignments. 

5. Comparative study 

WecomparedtheDRSAtootherwidely-usedclassificationmethods,includingfuzzyclassificationrule(FR),nearest 

neighbours (KNN), support vector machine (SVM), decision trees (DT), multi-layer perceptron network (MLPNN), 

and the Naive Bayes (NB) approach. We conducted two types of comparison: cross-validation and statistical analysis 

using the same data considered in Section 4.4.3. The cross-validation for the methods FR, KNN, SVM, DT, MLPNN 

and NB was conducted using the software KNIME (see [7] and www.knime.org) and for DRSA, we used the software 

4eMka2 [1][43]. All the methods (except DRSA) were applied and tested using the software KNIME with their default 

parameter settings. The same learning and testing datasets have been used in each fold for all the compared methods 

including DRSA. We note that the scores of the criteria Criticality and LeadTime have been standardized since the 

methods FR, KNN, SVM, DT, MLPNN and NB require continuous data. The standardization operation was not 

required for the DRSA since it accepts ordinal data. Finally, it is also important to emphasize that the criteria Criticality 

and LeadTime are ordinal ones, with number-coded ordered categories (1,2,3,4 for Criticality and 1,2,3 for LeadTime). 

Thus the standardization of these criteria is mathematically wrong and it has been conducted only for comparison 

purposes. 

Thedifferentconfusionmatricesofthecross-validationaregiveninAppendixG.Adetailedanalysisoftheconfusion 

matrices is given in Appendix H and summarized in Table 18. Based on the analysis of Table 18, we can conclude 

that the DRSA has the best average accuracy and the best average MAE. Table 19 summarizes the recall and accuracy 

analysis for all three classes using different classification methods. It can be seen that DRSA clearly outperforms all 

other methods on overall recall and accuracy, with the FR and MPLNN approaches performing very close to DRSA. 

However, on careful observation, we can see that the performance of DRSA remains consistent for all the three classes, 

of types A, B and C. It is important to emphasize here that class A has the fewest samples in the dataset, while class C 

has the highest number of samples, so clearly DRSA performs equally well regardless of the number of samples 

available in the dataset. 

Table 18: Results of the cross-validation for the comparative study 
 Correct    Wrong    Missing    Accuracy    MAE    

Method 

Assign.    Assign.    Assign.    (%)    (%)    

Min Max Avg Stdev Min Max Avg Stdev Min Max Avg Stdev Min Max Avg Stdev Min Max Avg Stdev 
FR 39 45 42.6 2.0111 3 8 5.1 1.2867 0 5 1.3 1.8288 79.59 91.84 86.93 4.0981 8.16 20.41 13.06 4.1043 

KNN 37 46 40.3 2.8304 3 12 9 2.8304 0 0 0 0 75.51 93.88 82.25 5.7764 6.12 24.49 17.76 5.7764 
SVM 33 35 34.4 0.6992 14 16 15 0.6992 0 0 0 0 67.35 71.43 70.20 1.4271 28.57 32.65 29.80 1.4271 
DT 33 43 39.4 3.0258 6 16 9.6 3.0258 0 0 0 0 67.35 87.76 80.41 6.1751 12.25 32.65 19.59 6.1751 

MLPNN 40 46 43 1.8257 3 9 6 1.8257 0 0 0 0 81.63 93.88 87.76 3.7262 6.12 18.37 12.24 3.7262 
NB 32 42 37 3.8006 7 17 12 3.8006 0 0 0 0 65.31 85.71 75.51 7.7563 14.29 34.69 24.49 7.7563 

DRSA 39 47 43.3 2.4518 2 10 5.7 2.4518 0 0 0 0 79.59 95.92 88.37 5.0036 4.08 20.41 11.63 5.0036 
Table 19: Recall and accuracy analysis for all three classes 

Method 

Class-wise Recall   Class-wise Accuracy   Total 
Recall 

Total 
Accuracy 

A B C A B C 
FR 0.7667 0.7934 0.9581 0.8166 0.7876 0.9474 0.8394 0.8505 

KNN 0.6833 0.5846 0.9533 0.7961 0.6410 0.8854 0.7404 0.7742 
SVM 0.7333 0.0000 1.0000 0.8217 0.0000 0.8090 0.5778 0.5436 
DT 0.9000 0.6000 0.8733 0.7382 0.6164 0.8999 0.7911 0.7515 

MLPNN 0.7833 0.8385 0.9133 0.8157 0.7841 0.9325 0.8450 0.8441 
NB 0.1500 0.5154 0.9800 0.2365 0.5924 0.8438 0.5485 0.5575 

DRSA 0.8167 0.8692 0.9033 0.8129 0.8019 0.9374 0.8631 0.8507 
The details of the statistical analysis are given in Appendix I and summarized in Table 20. The analysis of Table 

20 indicates that the DRSA outranks all the other methods in terms of all the statistics. Although the MLPNN and FR 

results are quite high, they cannot be offered as an interactive tool for decision makers to suggest or amend any changes 
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in an understandable manner. Only experts of MLPNN/FR can vary their parameters, while in DRSA, the decision 

makers do not need any expert knowledge to modify the extracted/suggested rules and/or provide feedback on these 

rules. 

Table 20: Results of the statistical analysis for the comparative study 

Method 

Statistics    

Kendall’s tau Spearman’s rho Unweighted Cohen’s kappa Weighted Cohen’s 
kappa 

FR 0.8236 0.8534 0.7616 0.7777 
KNN 0.7146 0.7320 0.6421 0.6975 
SVM 0.5393 0.5614 0.3143 0.4538 
DT 0.7982 0.8329 0.6534 0.7375 

MLPNN 0.8534 0.8734 0.7778 0.8230 
NB 0.4522 0.4666 0.4437 0.3962 

DRSA 0.8712 0.8920 0.7938 0.8361 
6. Discussion 

In this section, we first discuss the characteristics and main contributions of the proposed approach (Section 6.1). 

Then, we provide a straightforward guideline for using the proposed approach in practice (Section 6.2). 

6.1. Characteristics of the proposed approach and main contributions 

The proposed approach has several important characteristics that distinguish it from existing ones. These 

characteristics, which are discussed in more detail in the rest of this section, are an attempt to respond to the 

shortcomings of the existing literature discussed in Section 2.3. 

6.1.1. Learning-set based analysis 

The proposed approach uses a learning set as an input, representing a subset of the spare parts, to extract the 

preference of the decision maker. The idea of using a subset of data for inferring the preference of the decision maker 

is inspired by case-based reasoning (see, e.g. [39][76]), which is a powerful knowledge extraction technique that was 

initially developed in the field of Artificial Intelligence. This idea has been adopted in multicriteria analysis, where 

severalmulticriterialearning-setbasedmethodshavebeenproposed(e.g.[17][30][31][42][70])andsuccessfullyapplied 

todifferentreal-worlddecisionproblems(see,e.g.[21][46][59][62]).Alearning-setbasedanalysisisparticularityuseful in 

spare parts management for large firms where tens of thousands of spare parts need to be managed (see, e.g. [32]). In 

such situations, it is not practical to identify the appropriate stock control strategy for each spare part. The use of a 

learning-set based approach will naturally minimize the cognitive effort required from the decision maker. Although 

all machine learning methods are learning-set based approaches, they fail to take into account the multicriteria aspects 

of the spare parts management problem. 

6.1.2. Use of a powerful multicriteria classification method 

The learning phase relies on the DRSA, which has several powerful and attractive characteristics [20] as it: (i) does 

not need any preference parameters, which reduces the cognitive effort required from the decision maker; (ii) produces 

if–then decision rules, which are easily understood by the decision maker [10]; (iii) is able to deal with 

incomplete/missing attribute values (see [14][77]); and (iv) is able to detect and deal with inconsistency problems (see 

[29][79]). At this stage, it is important to mention that the authors in [25] have also used the DRSA for ABC 

classification. However, the model proposed in [25] lacks effective validation strategies and a real-world application 

of the model. 

6.1.3. Comprehensive collection of validation strategies 

The proposed approach is enhanced with three validation strategies (namely, direct analysis of decision rules by 

the decision maker, re-classification analysis and cross-validation analysis) enabling the decision maker to analyse the 
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validity of the results before using the obtained if–then decision rules in practice. These different strategies are very 

useful in practice in that they enable the decision maker to better appreciate and refine the learning set. From a practical 

point of view, the validation strategies will help the decision maker to check the quality of the generated decision 

rules. If the decision maker agrees with the extracted decision rules, they can then be used in practice to classify the 

spare parts. Otherwise, the decision maker may prefer to restart the decision making process by considering new input 

data. This will substantially improve the effectiveness of the decision making process and the successful 

implementation of the resulting solution. 

6.1.4. Real-world case study and active involvement of the decision maker 

The proposed approach has been applied to a real-world case study of a manufacturing company in China while 

most of the existing studies conducted example analysis or data analysis using data extracted from other papers. During 

this case study, the decision maker was involved in all the steps of the decision making process: (i) in the learning 

phase, the decision maker was involved in identifying the evaluation criteria and also in defining the learning set; (ii) 

in the validation phase, the decision maker was involved in the checking, analysing and revising of the obtained 

decision rules; and (iii) in the generalization phase, the decision maker was involved in the identification and 

assessment of a new set of spare parts and then in the analysis and revision of the new collection of decision rules. In 

all these activities, the participation of the decision maker was crucial and his expertise and feedback played an 

important role in refining the decision rules. 

6.1.5. Comparative analysis 

The proposed approach has been compared to several well-known classification techniques, namely FR, KNN, 

SVM, DT, MLPNN and NB, using the data of the case study. The results show that the proposed approach outranks 

all the other approaches in terms of accuracy of classification. In addition, the statistical analysis shows that the use of 

the DRSA leads to a high agreement between the assignments proposed by the decision maker and those computed by 

the use of the proposed approach. An important characteristic of the DRSA compared to the above cited and well-

known classification techniques is its flexibility in the sense that it accepts almost any kind of data (binary, symbolic, 

nominal, ordinal, discrete, and continuous) while the other approaches require the use of continuous data. Furthermore, 

as with some other well-known methods like SVM and NB, DRSA is also able to deal with incomplete/missing values 

with some adaptation (see [14][77]). 

6.2. Practical guidelines for using the proposed approach 

The last point to discuss is related to the practical use of the proposed approach. We show in Table 21 some 

practical guidelines for using the proposed approach. For each step of the decision making process, this table indicates 

the input data, the operation and computing, the output data, and the guideline for use according to different analysis 

types and results. The description of Table 21 is straightforward. At this stage, we will only briefly comment on the 

last row in this table. Indeed, in the medium to long term and after the use of the proposed approach in practice, the 

decision maker can judge efficiently the decision rules. If he/she judges that the spare parts management system is still 

efficient, he/she can continue the use of the system and no action is required. However, when some insufficiencies are 

detected, the decision maker can use the progressively updated learning set to restart the process. 

7. Conclusion and future research 

We presented a learning-set based approach to implement an advanced multiple criteria ABC classification of 

spare parts. The proposed approach contains three phases. The first phase uses the dominance-based rough set 

approach (DRSA) to infer a set of if–then decision rules that summarize the preferences of the decision maker. The 

second phase uses different techniques (the direct analysis of the decision rules by the decision maker, a re-

classification analysis, and a cross-validation analysis) in order to analyse and validate the generated decision rules. 
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The third phase exploits the generated and validated decision rules in order to classify new spare parts. An important 

aspect of the proposed approach is the simplicity and the easily understandable if–then decision rules provided as 

output. Another 

interestingaspectoftheproposedapproachistheinclusionofseveralvalidationstrategiespermittingthedecisionmaker to 

analyse the validity of the results before using the obtained if–then rules in practice. The proposed approach has been 

successfully applied to a manufacturing company in China. We also compared the proposed approach to several well-

known classifications methods. The results show that the proposed approach outranks all the other approaches in terms 

of accuracy of classification. 

Based on our findings, the following spare parts management policies are suggested for the company of the case 

study: (i) for those spare parts classified in group A, the Economic Order Quantity (EOQ) and reorder point will be 

determined, and a few of them should be held in inventory and ordered frequently; (ii) for those spare parts classified 

in group B, the EOQ and reorder point will also be determined, but the management of this group of spare parts needs 

less attention than those in group A—only periodic review is needed here; and (iii) those spare parts classified in group 

C should be kept in stock and ordered when required. 

Table 21: Practical guidelines 
Phase Input Operation Output Guidelines 
Learning     

Selection of
 the 
learning set 

Definition of 
the 
assignment 
examples 

Learning of 
decision rules 

Raw data The decision maker, based on 
his/her experience, selects a 
subset of spare parts to be used as 
learning set. 

Information table The selected spare parts should be as representative as 
possible by including and covering different 
specifications and characteristics. In addition, they 
should be non-redundant (in terms of their evaluation on 
the different criteria). The spare parts should ideally be 
well known to the decision maker/expert. Note that there 
was no ideal theoretical number of 
examples.Alimitednumberofexamplesmightlead 
toafewandverygenericdecisionrulesandtoogreat number 
of examples may lead to a high number of very specific 
and redundant decision rules. 

Information table The decision maker, based on 
his/herexperiencesandknowledge, 
assigns the spare parts in the 
learning set into the classes 
A, B and C. 

Decision table Thesparepartsshouldcoverallthedecisionclasses; in 
other words, all decision classes should contain a 
sufficient number of decision objects. 

Decision table Approximation by the DRSA 
andinductionofdecisionrules. 

Decision rules If the quality of approximation is acceptable (say, for 
example, greater than or equal to 80%), then go to 
validation phase. Otherwise the decision maker should 
modify the input data. 

Validation     

Decision rules 
analysis 

Re-
classification 

Cross-
validation 

Decision rules Ask the decision maker to scan all 
the decision rules and indicate 
his/her agreement level on a five-
level Likert scale (Strongly 
Disagree, Disagree, Neutral, 
Agree, and Strongly Agree). 

Checked and 
validated decision 
rules. 

If there is a limited number of disagreements, the 
decision rules can be used for the generalization phase. 
With a moderate number of disagreements, the decision 
maker can either remove the decision rules with high 
levels of disagreement or modify some of them. When 
there are many disagreements, 
thedecisionmakershouldrevisehis/herassignment 
examples and/or the criteria used. 

Decision table and 
Decision rules 

Use the decision rules in order to 
re-classify the initial spare parts. 

Reclassification of 
theinitialspareparts 
into the classes A, 
B and C. 

If there are many misclassifications, the decision maker 
is called to revise his/her initial assignments in order to 
improve the quality of decision rules. 

k folds of training and 
testing sets 

Use the training sets to 
generatethedecisionrulesandapply 
them on the testing sets. 

Accuracy of the 
assignment of the 
testing sets 

Iftheaccuracyishigh(say,forexample,higherthan 90%), 
the decision rules can be used for the 
generalizationphase.Otherwise,thedecisionmakershould 
modify learning dataset and restart the process. 

Generalization     

Short term Unseen spare parts Use the decision rules to classify 
any new spare part into classes the 
A, B and C. 

Classification of 
the new spare parts 
into theclassesA,B 

and C. 

If the decision maker accepts the new classifications, 
then the decision process stops. Otherwise the decision 
maker should modify the input data and restart from the 
beginning. 
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Medium to
 long 

term 

Spare parts that have 
been
 successfull
y managed using the 
decision rules. 

Enrich and update the learning set. Progressively 
enhanced learning 
set. 

If the spare parts management system is still efficient, 
no action is required. Otherwise, the decision maker can 
use the new and updated learning set to restart the 
process. 

The proposed approach does not provide an optimised inventory system parameters for each group of spare parts. 

However, the ABC classification permits the use of different stocking policies for different groups of spare parts. In 

future research, we intend to enhance the proposed approach by adding a new layer devoted to spare parts optimization. 

The idea consists of combining the qualitative approach proposed in this paper with a quantitative one, which leads to 

a bi-objective problem. Indeed, solving a bi-objective problem with one qualitative dimension and one quantitative 

dimension is computationally better than solving a pure multi-objective problem, as has been proven in [2]. Another 

variation, with respect to optimization, it is to use other advanced techniques such as genetic programming [38] or 

joint optimization such as in [87]. 

We also intend to investigate the use of some recent extensions of the DRSA in the literature, such as the Variable 

Consistency Dominance-based Rough Set Approach (VC-DRSA) [11][12][45][56], the Stochastic DRSA [28] or the 

Dominance-based Rough Set Approach for Group decisions (DRSAfG) [21][20]. The VC-DRSA is a variant of DRSA 

that enables the relaxation of the conditions for assignments of objects to the lower approximations by accepting a 

limited proportion of negative examples, which is particularly useful for large decision tables. The Stochastic DRSA 

allowsinconsistenciestosomedegree.TheDRSAfG,amethodthatextendstheDRSAtogroupdecisions,isappropriate to 

deal with spare parts management in the presence of multiple decision makers. We also intend to investigate the use 

of the aggregation/disaggregation approach [31] to address the spare parts management problem. The idea of this 

approach is to use a subset of data to infer the preference parameters and then the ELECTRE TRI method [34] is used 

to assign spare parts into different classes. In comparison to the DRSA, the aggregation/disaggregation approach 

allows the decision maker to specify an assignment interval for each spare part in the learning set, instead of a single 

assignment. 
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AppendixA. Information table and assignment examples 
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3936.46 
24.07 
13.23 
7.35 
97.65 
87.75 
17.46 
11.94 
1.58 
8.51 

2 
2 
1 
1 
2 
2 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
2 

C 
C 
C 
C 
C 
B 
C 
C 
C 
B 
B 
B 
B 
B 
B 
C 
B 
C 
C 
C 
C 
C 
A 
C 
B 
B 
A 
C 
C 
C 
C 
B 
C 
C 
B 
C 
C 
C 
B 
A 
C 
C 
C 
B 
B 
C 
C 
C 
C 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 

1 
3 
1 
4 
2 
4 
2 
2 
3 
1 
1 
1 
1 
1 
4 
3 
3 
3 
3 
3 
4 
4 
4 
4 
3 
3 
3 
1 
1 
3 
4 
4 
4 
4 
4 
4 
3 
1 
3 
4 
3 
3 
1 
1 
4 
4 
3 
2 
4 

352.8 
105.84 
1304.48 
3580.5 
1325.52 
18375 
236.7 
862 
735 

2315.34 
1984.5 
157.5 
340.2 
642.6 
346.5 
1890 
567 

2126.25 
623.7 
420 
840 
3150 
2625 

13925.3 
199.5 
472.5 
336 
57.8 

161.84 
840 
840 
2625 
2100 
25725 
40056 
3780 
882 
1470 
126 
1071 
121.1 
43.56 
823.2 
1029 

1025.55 
2688 
1470 
264.6 
11025 

8.82 
2.94 
21.04 
65.1 
73.64 
1837.5 
2.63 
8.62 
7.35 

128.63 
110.25 
15.75 
18.9 
35.7 
34.65 
189 
31.5 
47.25 
34.65 
4.2 
8.4 
31.5 
26.25 

1392.53 
5.25 
9.45 
16.8 
5.78 
5.78 
8.4 
8.4 

26.25 
21 

257.25 
400.56 

126 
29.4 
36.75 
12.6 
17.85 
3.46 
2.42 
29.4 
5.78 
22.79 
33.6 
29.4 
14.7 

5512.5 

1 
1 
1 
2 
1 
3 
1 
1 
1 
1 
1 
1 
2 
2 
2 
1 
1 
1 
2 
2 
2 
3 
3 
3 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 

C 
C 
C 
A 
B 
A 
C 
C 
C 
B 
B 
C 
C 
C 
C 
B 
C 
B 
C 
C 
C 
A 
B 
A 
C 
C 
C 
C 
C 
C 
C 
B 
B 
A 
A 
A 
C 
B 
C 
C 
C 
C 
C 
C 
C 
B 
B 
C 
A 

AppendixB. Detailed description of initial decision rules 

# Rule Supporting objects Relative strength 
(%) 

Confidence level 
(%) 

1 IF (AnnDollarUsageζ1260) THEN (Class at most C) 3, 4, 5, 7, 9, 16, 18, 19, 20, 21, 22, 24, 28, 31, 33, 
34, 36, 38, 42, 43, 46, 47, 48, 49, 50, 51, 56, 57, 

58, 
61, 62, 63, 64, 66, 68, 69, 70, 74, 75, 76, 77, 78, 

79, 
80, 86, 88, 89, 90, 91, 92, 93, 94, 97 

86.89 100 

2 IF (AvgUnitCostζ27.3) & (Criticalityζ2) THEN (Class at most C) 1, 2, 3, 4, 20, 48, 50, 52, 56, 57, 61, 62, 77, 78, 
93, 

97 

26.23 100 

3 IF (AvgUnitCostζ24.07) & (LeadTimeζ2) & 
(AnnDollarUsageζ1754) THEN (Class at most C) 

3, 4, 8, 9, 16, 18, 20, 22, 24, 29, 30, 31, 33, 34, 
36, 

37, 38, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 56, 
57, 

58, 61, 62, 69, 70, 74, 75, 76, 77, 78, 79, 88, 89, 90, 
91, 93, 94, 97 

77.05 100 
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4 IF (AnnDollarUsageζ3071.25) THEN (Class at most B) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 
19, 
20, 21, 22, 24, 28, 29, 30, 31, 32, 33, 34, 35, 36, 
37, 
38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 
52, 
54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 
68, 
69, 70, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 86, 
87, 
88, 89, 90, 91, 92, 93, 94, 95, 96, 97 

95.40 100 

5 IF (LeadTimeζ1) THEN (Class at most B) 3, 4, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 
20, 

21, 22, 39, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 
52, 

54, 56, 57, 58, 59, 60, 61, 65, 66, 67 

44.83 100 

6 IF (AvgUnitCostζ36.75) & (LeadTimeζ2) THEN (Class at most B) 1, 2, 3, 4, 8, 9, 16, 18, 20, 21, 22, 24, 25, 26, 29, 
30, 
31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 
47, 
48, 49, 50, 51, 52, 56, 57, 58, 61, 62, 63, 64, 66, 
68, 
69, 70, 74, 75, 76, 77, 78, 79, 86, 87, 88, 89, 90, 
91, 
92, 93, 94, 95, 96, 97 

73.56 100 

7 IF (AnnDollarUsageη11025) THEN (Class at least A) 23, 27, 40, 55, 73, 83, 84, 98 72.73 100 

8 IF (AnnDollarUsageη3150) & (Criticalityη4) THEN (Class at least A) 25, 26, 40, 53, 55, 71, 73, 83, 84, 85, 98 81.82 81.82 

9 IF (AnnDollarUsageη1786.4) THEN (Class at least B) 10, 11, 13, 14, 15, 17, 23, 25, 26, 27, 32, 35, 39, 
40, 

44, 45, 53, 55, 59, 60, 65, 67, 71, 72, 73, 81, 82, 83, 
84, 85, 95, 98 

86.49 100 

10 IF (AvgUnitCostη71.66) THEN (Class at least B) 6, 10, 11, 12, 15, 23, 27, 40, 44, 45, 54, 55, 59, 
60, 

65, 73, 83, 84, 85, 98 

54.05 100 

11 IF (AnnDollarUsageTHEN (Class at leastηB1470) & () LeadTimeη2) 

& (AvgUnitCostη29.4) 
23, 25, 26, 27, 40, 53, 55, 71, 73, 83, 84, 85, 87, 

95, 
96, 98 

43.24 100 

AppendixC. Data used for the generalization phase 

# 

Annual 
Dollar 

Criticality Usage 

Average 
Unit 
Cost 

Lead 
Time 

 

# 

Annual 
Dollar 

Criticality Usage 

Average 
Unit 
Cost 

Lead 
Time 

 

# 

Annual 
Dollar 

Criticality Usage 

Average 
Unit 
Cost 

Lead 
Time 
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100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 

4 
3 
3 
1 
3 
2 
3 
3 
1 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
1 
4 
1 
3 
2 
2 
3 
3 
1 
3 
3 
3 
2 
3 
2 
3 
3 
3 
3 
3 
4 

3805 
66256 
13396.5 
16555 
12645 
868 
2537.5 
26955 
1837 
12122 
4887 
31136 
8814.6 
6519 
10148.7 
15389.1 
594 
4420 
2125.5 
1462.5 
900 
20126.25 
756 
10176 
786.5 
3611 
706800 
4121 
4121 
6473 
3469 
6108 
1629 
976 
3488 
27225 
892 
3044 
2013 
13627.3 
210909.8 

38.05 
331.28 
267.93 
165.55 
126.45 
17.36 
50.75 
53.91 
36.74 
121.22 
48.87 
622.72 
293.82 
130.38 
338.29 
512.97 
11.88 
11.05 
42.51 
29.25 
4.5 
4025.25 
3.78 
101.76 
15.73 
72.22 
883.5 
41.21 
41.21 
64.73 
69.38 
61.08 
16.29 
9.76 
69.76 
544.5 
4.46 
7.61 
6.71 
2725.46 
42181.96 

1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
2 
2 
2 
2 
1 
1 
1 
1 2 
3 2 2 
1 
1 
3 
2 
2 
2 
2 
2 
2 2 
2 
2 2 
2 
2 3 
3 

141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 

3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
1 
2 
3 
2 
3 
4 
3 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
1 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

9280.2 
22105.2 
3506.1 
7529.1 
3506.1 
5898.6 
14980.8 
3875.7 
856 
1266.5 
55 
1618.5 
3283.2 
1312 
3321.5 
61249.35 
5898.6 
1440 
9720 
21507 
155400 
8872.8 
4455 
18917.1 
2358 
1646 
3150 
1377.9 
14496 
12600 
311 
23 
7072 
462 
868 
288.5 
279.6 
3702.85 
9474 
594 
5636 

309.34 
736.84 
116.87 
250.97 
116.87 
589.86 
249.68 
129.19 
17.12 
25.33 
0.55 
32.37 
109.44 
3.28 
66.43 
12249.87 
589.86 
14.4 
97.2 
143.38 
51.8 
295.76 
148.5 
630.57 
23.58 
16.46 
31.5 
45.93 
144.96 
126 
3.11 
0.23 
35.36 
7.7 
17.36 
5.77 
4.66 
740.57 
94.74 
11.88 
112.72 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
1 
2 
2 
1 
2 
3 
2 
2 
2 
2 
2 
2 
2 
3 
2 
2 
2 
2 
2 
2 
1 
1 
2 
1 
2 
1 
2 
3 
2 
2 
2 

182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 

1 
3 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
3 
3 
3 
3 
3 
2 
3 
2 
3 
4 
1 
1 
2 
4 
3 
1 
3 
3 
1 
3 
1 
1 
3 
1 
3 

915.5 
1138.95 
1232 
3317.25 
3150 
1800 
8453.4 
16306.5 
14055.6 
31136 
3585 
13768.5 
1855.5 
1254.15 
12145 
16851.45 
8229.9 
11743.5 
1375.2 
1301 
1072 
626 
2144 
4008 
1428.8 
3150 
302 
55 
165 
630 
10173.6 
5880 
3091 
18917.1 
552 
1396 
504 
420 
10482.2 
10908 
27344.4 

18.31 
227.79 
24.64 
663.45 
63 
18 
281.78 
326.13 
468.52 
622.72 
35.85 
275.37 
37.11 
250.83 
2429 
3370.29 
274.33 
391.45 
45.84 
26.02 
5.36 
6.26 
5.36 
5.01 
8.93 
31.5 
3.02 
0.55 
1.65 
12.6 
339.12 
29.4 
61.82 
630.57 
5.52 
27.92 
16.8 
4.2 
524.11 
545.4 
911.48 

2 
2 
2 
3 
2 
2 
2 
2 
2 
3 
2 
2 
2 
2 
3 
3 
2 
2 
2 
2 
2 
1 
1 
1 
2 
2 
2 
2 
2 
1 
2 
2 
2 
3 
1 
2 
2 
2 
2 
3 
3 

AppendixD. Result of the generalization phase using the initial set of decision rules 
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Decision 
by the set 
of rules 

Agreement 
level     
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100 
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AppendixE. Detailed description of revised decision rules 

# Rule Supporting objects Relative strength 
(%) 

Confidence 
(%) 

1 IF (AnnDollarUsageζ1117.98) THEN (Class at most C); 3, 4, 5, 7, 9, 16, 18, 19, 20, 21, 22, 24, 28, 31, 33, 
36, 38, 42, 43, 46, 47, 48, 49, 50, 51, 56, 57, 58, 

61, 
62, 63, 64, 66, 68, 69, 70, 74, 75, 76, 77, 78, 79, 

80, 
86, 88, 89, 90, 91, 92, 93, 94, 97 

77.61 100 

2 IF (AvgUnitCostζ29.25) & (LeadTimeζ2) THEN (Class at most C); 1, 2, 3, 4, 8, 9, 16, 18, 20, 22, 24, 29, 30, 31, 32, 
33, 

34, 35, 36, 37, 38, 41, 42, 43, 46, 47, 48, 49, 50, 
51, 

52, 56, 57, 58, 61, 62, 69, 70, 74, 75, 76, 77, 78, 
79, 

88, 89, 90, 91, 93, 94, 97, 117, 119, 137, 138, 
204, 205 

82.09 96 

3 IF (AnnDollarUsageζ3071.25) THEN (Class at most B); 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 
19, 
20, 21, 22, 24, 28, 29, 30, 31, 32, 33, 34, 35, 36, 
37, 
38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 
52, 
54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 
68, 
69, 70, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82, 86, 
87, 
88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 119, 137, 138, 
183, 195, 204 

91.75 100 
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4 IF (LeadTimeζ1) THEN (Class at most B); 3, 4, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 
20, 

21, 22, 39, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 
52, 

54, 56, 57, 58, 59, 60, 61, 65, 66, 67, 100, 117, 119, 
204, 205 

45.36 100 

5 IF (AvgUnitCostζ36.75) & (LeadTimeζ2) THEN (Class at most B); 1, 2, 3, 4, 8, 9, 16, 18, 20, 21, 22, 24, 25, 26, 29, 
30, 
31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 
47, 
48, 49, 50, 51, 52, 56, 57, 58, 61, 62, 63, 64, 66, 
68, 
69, 70, 74, 75, 76, 77, 78, 79, 86, 87, 88, 89, 90, 
91, 
92, 93, 94, 95, 96, 97, 117, 119, 137, 138, 204, 
205, 207 

73.20 100 

6 IF (AvgUnitCostη257.25) THEN (Class at least A); 23, 27, 40, 55, 73, 83, 84, 98, 114, 141, 212, 220 75.00 100 

7 IF (AnnDollarUsageTHEN (Class at least ηA3150) & (); Criticalityη4) 

& (LeadTimeη2) 
25, 26, 40, 53, 55, 71, 73, 83, 84, 85, 98, 207 56.25 75 

8 IF (AnnDollarUsageη10176) & (LeadTimeη2) THEN (Class at least 
A); 

23, 27, 40, 55, 73, 83, 84, 98, 123, 220 62.50 100 

9 IF (AvgUnitCostη65.1) THEN (Class at least B); 6, 10, 11, 12, 15, 23, 27, 40, 44, 45, 53, 54, 55, 
59, 

60, 65, 73, 83, 84, 85, 98, 114, 123, 141, 183, 
195, 212, 220 

60.87 100 

10 IF (AnnDollarUsageη2063.4) & (Criticalityη4) THEN (Class at least 
B); 

25, 26, 32, 35, 40, 53, 55, 71, 72, 73, 81, 82, 83, 
84, 

85, 95, 98, 100, 207 

41.30 100 

11 IF (AnnDollarUsageη1470) & (AvgUnitCostη29.36) THEN (Class at 
least B); 

10, 11, 12, 13, 14, 15, 17, 23, 25, 26, 27, 39, 40, 
44, 

45, 53, 55, 59, 60, 65, 67, 71, 73, 83, 84, 85, 87, 
95, 

96, 98, 100, 114, 123, 141 

80.43 100 

AppendixF. Result of the generalization using the new set of decision rules 
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120 
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161 
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AppendixG. Confusion Matrices 

Method                      

FR Fold 1    2    3    4    5    

 C B A  C B A  C B A  C B A  C B A 

  C 26 3 0 C 29 1 0 C 30 0 0 C 28 2 0 C 30 0 0 

  B 0 10 3 B 1 12 0 B 0 12 0 B 2 11 0 B 4 7 2 

  A 0 2 4 A 0 3 3 A 0 3 3 A 0 1 5 A 0 0 6 

Fold 6    7    8    9    10    

 C B A  C B A  C B A  C B A  C B A 

  C 23 3 0 C 30 0 0 C 29 1 0 C 30 0 0 C 28 2 0 

  B 2 10 0 B 3 6 0 B 2 11 0 B 3 9 1 B 2 9 0 

  A 0 0 6 A 0 1 5 A 0 2 4 A 0 1 5 A 0 1 5 

KNN Fold 1    2    3    4    5    

 C B A  C B A  C B A  C B A  C B A 

  C 30 0 0 C 28 2 0 C 27 3 0 C 30 0 0 C 29 1 0 
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  B 3 10 0 B 4 9 0 B 5 8 0 B 2 11 0 B 7 6 0 

  A 0 0 6 A 0 3 3 A 3 0 3 A 0 4 2 A 0 1 5 

Fold 6    7    8    9    10    

 C B A  C B A  C B A  C B A  C B A 

  C 28 2 0 C 30 0 0 C 29 1 0 C 29 1 0 C 26 4 0 

  B 9 4 0 B 9 4 0 B 7 6 0 B 3 10 0 B 5 8 0 

  A 1 0 5 A 1 1 4 A 2 0 4 A 0 2 4 A 0 1 5 

SVM Fold 1    2    3    4    5    

 C B A  C B A  C B A  C B A  C B A 

  C 30 0 0 C 30 0 0 C 30 0 0 C 30 0 0 C 30 0 0 

  B 10 0 3 B 13 0 0 B 13 0 0 B 13 0 0 B 13 0 0 

  A 0 1 5 A 3 0 3 A 1 0 5 A 2 0 4 A 1 0 5 

Fold 6    7    8    9    10    

 C B A  C B A  C B A  C B A  C B A 

  C 30 0 0 C 30 0 0 C 30 0 0 C 30 0 0 C 30 0 0 

  B 13 0 0 B 13 0 0 B 13 0 0 B 13 0 0 B 13 0 0 

  A 1 0 5 A 2 0 4 A 2 0 4 A 2 0 4 A 1 0 5 

DT Fold 1    2    3    4    5    

 C B A  C B A  C B A  C B A  C B A 

  C 24 6 0 C 28 2 0 C 21 9 0 C 27 3 0 C 28 2 0 

  B 0 9 4 B 1 8 4 B 4 6 3 B 0 10 3 B 2 8 3 

  A 0 0 6 A 0 2 4 A 0 0 6 A 0 1 5 A 0 0 6 

Fold 6    7    8    9    10    

 C B A  C B A  C B A  C B A  C B A 

  C 24 6 0 C 30 0 0 C 30 0 0 C 24 6 0 C 26 4 0 

  B 1 9 3 B 4 9 0 B 4 6 3 B 1 9 3 B 2 4 7 

  A 0 0 6 A 0 2 4 A 0 1 5 A 0 0 6 A 0 0 6 

MLPNN Fold 1    2    3    4    5    

   C B A  C B A  C B A  C B A  C B A 

C 26 4 0 C 29 1 0 C 28 2 0 C 26 4 0 C 30 0 0 
  B 0 10 3 B 0 13 0 B 1 11 1 B 0 12 1 B 3 8 2 

  A 0 0 6 A 0 3 3 A 0 1 5 A 0 2 4 A 0 1 5 
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Fold 6    7    8    9    10    

 C B A  C B A  C B A  C B A  C B A 

  C 24 6 0 C 29 1 0 C 28 2 0 C 30 0 0 C 24 6 0 

  B 2 11 0 B 4 9 0 B 1 12 0 B 2 11 0 B 0 12 1 

  A 0 1 5 A 0 1 5 A 0 2 4 A 0 1 5 A 0 1 5 

NB Fold 1    2    3    4    5    

 C B A  C B A  C B A  C B A  C B A 

  C 30 0 0 C 30 0 0 C 30 0 0 C 30 0 0 C 29 1 0 

  B 6 5 2 B 11 2 0 B 10 3 0 B 10 3 0 B 9 4 0 

  A 5 0 1 A 6 0 0 A 6 0 0 A 6 0 0 A 4 0 2 

Fold 6    7    8    9    10    

 C B A  C B A  C B A  C B A  C B A 

  C 29 1 0 C 29 1 0 C 29 1 0 C 28 2 0 C 30 0 0 

  B 1 12 0 B 3 10 0 B 4 9 0 B 0 13 0 B 7 6 0 

  A 4 1 1 A 4 1 1 A 2 2 2 A 3 2 1 A 5 0 1 

DRSA Fold 1    2    3    4    5    

 C B A  C B A  C B A  C B A  C B A 

  C 24 6 0 C 30 0 0 C 23 7 0 C 28 2 0 C 30 0 0 

  B 0 11 2 B 0 13 0 B 0 11 2 B 0 11 2 B 2 9 2 

  A 0 0 6 A 0 3 3 A 0 1 5 A 0 2 4 A 0 0 6 

Fold 6    7    8    9    10    

 C B A  C B A  C B A  C B A  C B A 

  C 25 5 0 C 30 0 0 C 29 1 0 C 26 4 0 C 26 4 0 

  B 1 12 0 B 1 12 0 B 1 12 0 B 1 11 1 B 0 11 2 

  A 0 0 6 A 0 1 5 A 0 2 4 A 0 1 5 A 0 1 5 

AppendixH. Analysis of confusion matrices 

Method Parameter 

Fold          

1 2 3 4 5 6 7 8 9 10 
FR Correct assignment 40 44 45 44 43 39 41 44 44 42 

 Wrong assignment 8 5 3 5 6 5 4 5 5 5 

 Missing assignment 1 0 1 0 0 5 4 0 0 2 

 Accuracy (%) 81.63 89.76 91.84 89.76 87.76 79.59 83.67 89.8 89.8 85.71 
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 Mean Absolute Error 
(%) 

18.37 10.2 8.16 10.2 12.25 20.41 16.33 10.2 10.2 14.29 

KNN Correct assignment 46 40 38 43 40 37 38 39 43 39 
 Wrong assignment 3 9 11 6 9 12 11 10 6 10 

 Missing assignment 0 0 0 0 0 0 0 0 0 0 

 Accuracy (%) 93.88 81.63 77.55 87.76 81.63 75.51 77.55 79.59 87.76 79.59 

 Mean Absolute Error 
(%) 

6.12 18.37 22.45 12.25 18.37 24.49 22.45 20.41 12.25 20.41 

SVM Correct assignment 35 33 35 34 35 35 34 34 34 35 
 Wrong assignment 14 16 14 15 14 14 15 15 15 14 

 Missing assignment 0 0 0 0 0 0 0 0 0 0 

 Accuracy (%) 71.43 67.35 71.43 69.39 71.43 71.43 69.39 69.39 69.39 71.43 

 Mean Absolute Error 
(%) 

28.57 32.65 28.57 30.61 28.57 28.57 30.61 30.61 30.61 28.57 

DT Correct assignment 39 40 33 42 42 39 43 41 39 36 
 Wrong assignment 10 9 16 7 7 10 6 8 10 13 

 Missing assignment 0 0 0 0 0 0 0 0 0 0 

 Accuracy (%) 79.59 81.63 67.35 85.71 85.71 79.59 87.76 83.67 79.59 73.47 

 Mean Absolute Error 
(%) 

20.41 18.37 32.65 14.29 14.29 20.41 12.25 16.33 20.41 26.53 

MLPNN Correct assignment 42 45 44 42 43 40 43 44 46 41 
 Wrong assignment 7 4 5 7 6 9 6 5 3 8 

 Missing assignment 0 0 0 0 0 0 0 0 0 0 

 Accuracy (%) 85.714 91.84 89.8 85.71 87.76 81.63 87.76 89.8 93.88 83.67 

 Mean Absolute Error(%) 14.286 8.16 10.2 14.29 12.25 18.37 12.25 10.2 6.12 16.33 

NB Correct assignment 36 32 33 33 35 42 40 40 42 37 
 Wrong assignment 13 17 16 16 14 7 9 9 7 12 

 Missing assignment 0 0 0 0 0 0 0 0 0 0 

 Accuracy (%) 73.47 65.31 67.35 67.35 71.43 85.71 81.63 81.63 85.71 75.51 

 Mean Absolute Error 
(%) 

26.53 34.69 32.65 32.65 28.57 14.29 18.37 18.37 14.29 24.49 

DRSA Correct assignment 41 46 39 43 45 43 47 45 42 42 
 Wrong assignment 8 3 10 6 4 6 2 4 7 7 

 Missing assignment 0 0 0 0 0 0 0 0 0 0 

 Accuracy (%) 83.67 93.88 79.59 87.76 91.84 87.76 95.92 91.84 85.71 85.71 

 Mean Absolute Error 
(%) 

16.33 6.12 20.41 12.24 8.16 12.24 4.08 8.16 14.29 14.29 

AppendixI. Statistical analysis 

Fold Method 
Statistics     

Fold Method 
Statistics    
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Kendall’s 
tau 

Spearman’s 
rho 

Unweighted 
Cohen’s 
kappa 

Weighted 
Cohen’s 
kappa 

Kendall’s 
tau 

Spearman’s 
rho 

Unweighted 
Cohen’s 
kappa 

Weighted 
Cohen’s 
kappa 

1 FR 
KNN 
SVM 
DT 
MLPNN 
NB 

0.7732 
0.904 
0.6696 
0.8176 
0.8614 
0.4582 

0.8151 
0.9092 
0.706 
0.853 
0.8887 
0.4781 

0.6814 
0.8819 
0.3982 
0.6564 
0.7523 
0.4145 

0.7043 
0.9094 
0.5765 
0.738 
0.8106 
0.3806 

6 FR 
KNN 
SVM 
DT 
MLPNN 
NB 

0.5652 
0.5624 
0.5694 
0.7825 
0.7384 
0.6315 

0.5803 
0.5811 
0.5916 
0.8133 
0.7538 
0.6496 

0.6611 
0.49 

0.3473 
0.6505 
0.675 
0.7125 

0.5652 
0.5839 
0.4983 
0.7311 
0.7348 
0.6223 

2 FR 
KNN 
SVM 
DT 
MLPNN 
NB 

0.8944 
0.7611 
0.4314 
0.828 
0.9274 
0.1945 

0.9165 
0.7842 
0.4482 
0.8767 
0.949 
0.2021 

0.8078 
0.6446 
0.2183 
0.6677 
0.8483 
0.1368 

0.8414 
0.7104 
0.3199 
0.7467 
0.874 
0.0962 

7 FR 
KNN 
SVM 
DT 
MLPNN 
NB 

0.801 
0.659 
0.5036 
0.8512 
0.8216 
0.5702 

0.869 
0.6789 
0.5233 
0.8705 
0.8364 
0.5869 

0.6961 
0.5153 
0.2843 
0.7578 
0.7625 
0.6195 

0.6953 
0.6005 
0.4121 
0.8088 
0.8146 
0.5466 

3 FR 
KNN 
SVM 
DT 
MLPNN 
NB 

0.9368 
0.5102 
0.5694 
0.6086 
0.8751 
0.2408 

0.9745 
0.52 

0.5916 
0.6468 
0.8948 
0.2502 

0.8478 
0.5471 
0.3473 
0.4408 
0.8134 
0.2016 

0.8498 
0.5396 
0.4983 
0.5697 
0.853 
0.1431 

8 FR 
KNN 
SVM 
DT 
MLPNN 
NB 

0.8735 
0.6045 
0.5036 
0.8273 
0.8731 
0.674 

0.8911 
0.617 
0.5233 
0.8613 
0.8898 
0.6931 

0.8063 
0.5724 
0.2843 
0.6844 
0.8114 
0.6272 

0.844 
0.6064 
0.4121 
0.7675 
0.8462 
0.629 

4 FR 
KNN 
SVM 
DT 
MLPNN 
NB 

0.8525 
0.892 
0.5036 
0.8634 
0.8387 
0.2408 

0.8652 
0.9197 
0.5233 
0.8974 
0.864 
0.2502 

0.8099 
0.7618 
0.2843 
0.748 
0.7472 
0.2016 

0.8487 
0.8022 
0.4121 
0.8054 
0.7937 
0.1431 

9 FR 
KNN 
SVM 
DT 
MLPNN 
NB 

0.8781 
0.8415 
0.5036 
0.7825 
0.9223 
0.6848 

0.8984 
0.8601 
0.5233 
0.8133 
0.9331 
0.7055 

0.8032 
0.7644 
0.2843 
0.6505 
0.8829 
0.7243 

0.849 
0.8115 
0.4121 
0.7311 
0.908 
0.6644 

5 FR 
KNN 
SVM 
DT 
MLPNN 
NB 

0.852 
0.7285 
0.5694 
0.841 
0.8661 
0.3898 

0.8716 
0.7481 
0.5916 
0.8681 
0.8935 
0.4005 

0.7633 
0.6285 
0.3473 
0.7396 
0.7652 
0.3553 

0.8256 
0.716 
0.4983 
0.8059 
0.8229 
0.359 

10 FR 
KNN 
SVM 
DT 
MLPNN 
NB 

0.8095 
0.6831 
0.5694 
0.7795 
0.8101 
0.4377 

0.8519 
0.7019 
0.5916 
0.8281 
0.8307 
0.45 

0.7392 
0.6148 
0.3473 
0.5381 
0.7196 
0.4437 

0.7538 
0.6953 
0.4983 
0.6711 
0.7724 
0.3779 

 


