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ABSTRACT
Network research relies on packet generators to assess per-
formance and correctness of new ideas. Software-based gen-
erators in particular are widely used by academic researchers
because of their flexibility, affordability, and open-source na-
ture. The rise of new frameworks for fast IO on commodity
hardware is making them even more attractive. Longstand-
ing performance differences of software generation versus
hardware in terms of throughput are no longer as big of
a concern as they used to be few years ago.

This paper investigates the properties of several high-per-
formance software packet generators and the implications on
their precision when a given traffic pattern needs to be gen-
erated. We believe that the evaluation strategy presented
in this paper helps understanding the actual limitations in
high-performance software packet generation, thus helping
the research community to build better tools.

CCS Concepts
•Hardware→ Networking hardware; •Networks→ Net-
work experimentation; Network performance analy-
sis; Network performance modeling; Network measurement;
Packet-switching networks;
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1. INTRODUCTION
Computer networks are one of the greatest accomplish-

ments of the 21st century. Our society has become de-
pendent on the permanent availability and security of its
ICT infrastructure. This distinguished position subjects it
to constant development and research. Researchers rely on
packet generators to test their ideas and to assess the correct
operation of their proof-of-concepts. This places packet gen-
erators at the forefront of research as innovation enablers.
Validating a new apparatus under different loads and under-
standing its performance in terms of throughput or latency is
the first step of the production life-cycle. Moreover, the abil-
ity to generate synthetic traffic makes packet generators a
key instrument for field engineers troubleshooting networks.

Packet generators are implemented over both hardware
and software platforms. The former are typically closed-

source and expensive, but more accurate. The latter are
cheaper, slower, less accurate, but most importantly usually
open-source. As the open-source nature allows for easy mod-
ifications and extensions of core features, software packet
generators are very popular in academic research. The rise
of new fast IO frameworks, such as netmap or DPDK [2,25]
is making the software generation even more attractive as it
can cope with high packet rates on commodity NICs.

This paper investigates the properties of several high-
performance software packet generators based on the afore-
mentioned fast IO frameworks. We conduct an analysis to
study the implications which might rise when a given traffic
pattern needs to be reliably generated at high rates. This is
a core aspect in the evaluation of a packet generator because
the generated pattern can influence the performance of a sys-
tem under test [18]. RFC 1242, a collection of terminology
for benchmarking network devices, defines constant load as
“fixed length frames at a fixed interval time,” i.e., constant
bit-rate (CBR) traffic [15]. This definition is often used,
e.g., by the RFC 2544 benchmarking standard or modern
benchmarking efforts like the VSWITCHPERF project [28].

Hence, we focus most of the analysis on comparing soft-
ware packet generators against CBR traffic. Further, we dis-
cuss the impact of a non-CBR traffic pattern and different
CPU architectures on the performance of packet generators.
In particular, we choose the Poisson process as network traf-
fic assumes a self-similar distribution and traffic generated
by a Poisson process can approximate real traffic patterns
for short time spans [26]. Finally, we present a study on the
impact of fast IO frameworks over software timestamping
accuracy when a packet generator needs to be used for la-
tency measurements. By presenting our study we highlight
the limitations and misconceptions associated with today’s
packet generators fostering the development of better tools
for our research community. Our main contributions are:

• A comparative analysis of a number of software packet
generators when a CBR traffic pattern and a non-CBR
one need to be generated.

• The influence of different CPU microarchitectures on
the traffic generation process.

• The impact of fast IO frameworks on software times-
tamping accuracy when a packet generator needs to be
used for latency measurements.
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Figure 1: Relative observed latency of different burst sizes

The rest of the paper is organized as follows: Section 2
proposes a motivating example highlighting the effect of dif-
ferent packet generation schemes on experimental results.
Section 3 and Section 4 describe the packet generators being
analyzed in this paper and our measurement setup. We in-
vestigate the precision and accuracy of different rate control
mechanics in Section 5, while we study the influence of dif-
ferent CPU architectures on the packet generation process in
Section 6. Latency measurement capabilities are discussed
and evaluated in Section 7. Finally, we review related work
in Section 8 and conclude our paper in Section 9.

2. IMPACT OF PACKET GENERATION:
A MOTIVATING EXAMPLE

The behavior of a system under test changes measur-
ably when the traffic pattern on its ingress interfaces is al-
tered [18]. RFC 2544 [16] defines a number of tests that
may be used to describe the performance characteristics of
a network interconnecting device. It specifies, in particular,
CBR as required input traffic pattern. It is thus important
that a packet generator can generate CBR reliably.

State-of-the-art software packet generators rely on pro-
cessing packets in large batches in their default configura-
tion. Batching is a common technique to increase the per-
formance of packet processing frameworks (see Section 5.2).
These batches lead to bursts on the wire, resulting in traf-
fic patterns significantly different from the expected CBR
traffic1.

To this end we investigate the impact of the burst size
on the forwarding latency of a device under test: Open
vSwitch 2.0.0 on Debian running a Linux kernel v3.7.9 re-
stricted to a single 3.3 GHz CPU core. We measure the
forwarding latency of this system under increasing load in
steps of 0.05 Mpps up to its maximum capacity of 2 Mpps
at 64 byte packets. We first run the experiment with a CBR
traffic pattern, and then repeat the measurement with in-
creasing explicitly configured burst sizes. These burst sizes
effectively emulate a packet generator with a larger batch
size. We use the MoonGen packet generator with the CRC
rate control method [18] to precisely generate the burst sizes.
Latency measurements are performed using MoonGen’s sup-
port for hardware capabilities (Intel 82599 NIC), allowing
sub-microsecond measurements [18]. Figure 1 plots the me-

1We refer to internal processing of multiple packets together
as batches and to the resulting back-to-back frames on the
wire as bursts throughout this paper.

dian latency against the generated packet rates and burst
sizes. The latency is expressed as relative with respect to
the CBR case. Increasing burst size increases the observed
latency. Bursts of 4 packets have already a large impact:
the worst-case deviation is 32%. This figure demonstrates
that a system under test can report different behavior de-
pending on the input traffic pattern. As the aforementioned
RFC argues the need for CBR traffic, assessing the reliabil-
ity of the generator itself first is important. Moreover, ana-
lytically removing the additional latency introduced by the
burst is not possible. Given that transmitting each packet
on a 10 Gbit/s link takes 67.2 ns, a burst size of 128 packets
corresponds to 8.6µs time on the wire. The absolute differ-
ence in latency between CBR and bursts of 128 packets is
between 50µs and 100µs and varies with the packet rate.
This effect is visible for other burst sizes too, demonstrating
the impossibility to treat the effects of bursts as manageable
measurement artifacts.

Growing internal batch sizes lead to higher performance
for packet generators. However, bursty traffic by definition
does not generate a constant bit rate. If we want to ob-
tain meaningful results (RFC 2544 compliant), it is impor-
tant not to compromise the precision of CBR generation to
achieve greater overall throughput. We notice that by de-
fault, most of the software packet generators use batch sizes
between 16 and 512 packets resulting in bursts of equivalent
sizes. Therefore, it is crucial to understand the limitations
of the software packet generators being used for testing and
the trade-off between their precision and performance.

3. SOFTWARE PACKET GENERATORS
IN 2016

Software packet generators can be distinguished in two
different classes depending on the generation mechanism.

Traditional software packet generators rely on the
interface provided by the kernel for packet IO. Using a stan-
dard OS interface enables a high degree of compatibility and
flexibility. In fact, the wide range of features supported by
the network stack of an OS can be used by these packet gen-
erators. Therefore, the user does not have to re-implement
protocols already supported by the OS itself. The main
drawbacks are related to precision and performance. The
former is due to the employed timing functions [23], while
the latter is caused by the network stack itself which is op-
timized for compatibility and stability rather than high per-
formance or high precision [12,25].
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This paper investigates how packet generators designed
for 1 Gbit platforms (traditional ones) differ from packet
generators designed for 10 Gbit NICs. As these traditional
packet generators are still used, we want to investigate how
they perform on today’s 10 Gbit platforms. D-ITG [1] and
trafgen [9] are two examples, optimized for different de-
sign goals but using the same standard Linux IO APIs.
We choose trafgen as traffic generator specialized in high-
performance packet generation (in the context of 1 Gbit net-
works), while D-ITG because of its ability to generate both
realistic and synthetic traffic patterns [14] with high pre-
cision. Further, it supports distributions such as normal,
Pareto, Cauchy, gamma, and Weibull beside CBR.

Modern software packet generators use special frame-
works which bypass the entire network stack of an OS. They
are optimized for high speed and low latency at the expense
of compatibility and support for high-level features. The
user in this case has to re-implement protocols on top of
these frameworks. Those architectural changes overcome
the main drawbacks of traditional packet generators. They
reduce the number of costly context switches or avoid them
entirely [19] and rely on polling and busy waiting for precise
timing, eliminating the main cause of packet transmission
inaccuracy identified by Botta et al. and Paredes-Farrera et
al. [13,23]. The dependency of the packet generation process
on CPU load can be avoided by using dedicated cores for
packet generation on modern multicore CPUs. The main
drawback of these frameworks is the dependency on spe-
cialized drivers, creating hardware dependency and limited
compatibility.

As the main focus of the paper is a comparative analy-
sis of high-performance packet generators, we included, to
the best of our knowledge, as many as available to cover
a wide range of high-performance frameworks. Both Win-
driver System’s Pktgen-DPDK [8] and MoonGen [17] are
based on the DPDK framework. We deliberately choose not
the most recent version of Pktgen-DPDK but rather a ver-
sion which uses the same version of DPDK as MoonGen to
make a fair comparison: later versions of DPDK are slightly
slower in our tests due to increased overhead. The code af-
fecting precision and timing in Pktgen-DPDK was not mod-
ified since the version we use here.

Pkt-gen [4] is a widely used packet generator included in
netmap while PFQ offers pfq-gen [6]. PF RING ZC [7], a
high-performance framework found in production systems
provided by ntop [5], offers the packet generator zsend. Ta-
ble 1 summarizes the investigated software packet genera-
tors.

4. TEST SETUP
Our main test setup consists of two machines, directly

connected via a 10 Gbit/s fibre link. One is equipped with a
NetFPGA-10G [3] programmed with OSNT [10] for high
precision packet inter-arrival time characterization. The
other, which is used to run the software packet generators,
has an Intel i7-960 CPU with a base frequency 3.2 GHz and
an Intel X520 NIC (based on the Intel 82599 Ethernet con-
troller). Ubuntu Linux 14.04 LTS (kernel 3.16) is the chosen
OS.

4.1 OSNT
OSNT is a fully open-source hardware traffic generation

and capturing system. Its architecture is motivated by limi-

Version IO API

D-ITG [1] v2.8.1 Linux
trafgen [9] v0.5.7 Linux

Pktgen-DPDK [8] v2.8.0 DPDK (v1.8.0)
MoonGen [17] git 5cf96c72* DPDK (v1.8.0)

git bfe8b5b1†

git 39e0cb64‡

pkt-gen [4] git b24fce99 netmap
pfq-gen [6] v5.2.9 PFQ
zsend [7] v6.3.0.160209 PF RING ZC

*) Used for CBR traffic and hardware timestamping
†) Used for Poisson traffic
‡) Used for software timestamping

Table 1: Investigated software packet generators

tations in existing hardware network testing solutions: pro-
prietary/closed-source, high costs, and inflexibility. Primar-
ily designed for the research and teaching community, its
key design goals are low cost, high-precision time-stamping,
packet transmission, and scalability. In addition, the open-
source nature of the system allows extensibility and adding
new protocol tests to the system. The prototype implemen-
tation builds upon the NetFPGA-10G platform – an open-
source hardware platform designed to support full line-rate
programmable packet processing. The combination of traf-
fic generator and traffic monitor subsystems into a single
FPGA-equipped device allows a per-flow characterization of
a networking system within a single card. This paper con-
centrates on the use of OSNT for its monitoring capabili-
ties rather than packet generation. In particular, the OSNT
traffic capture subsystem is used to provide high-precision
inbound timestamping.

Timestamping mechanism
OSNT provides an accurate timestamp mechanic for incom-
ing packets. Packets are timestamped as close to the physi-
cal Ethernet device as possible to minimize jitter and permit
accurate latency measurement. A dedicated timestamping
unit stamps packets as they arrive from the physical (MAC)
interfaces with a practical resolution of 6.25 ns. OSNT uses
Direct Digital Synthesis (DDS), a technique by which arbi-
trary variable-frequencies are generated using synchronous
digital logic [27] to correct the frequency drift of the FPGA
oscillator. The addition of a stable pulse-per-second (PPS)
signal such as that derived from a GPS receiver permits both
high long-term accuracy and the synchronization of multiple
OSNT elements.

5. PACKET GENERATION: QUALITATIVE
AND QUANTITATIVE ANALYSIS

Rate control is the mechanism implemented by a traffic
generator to assure the generated traffic matches the re-
quired characteristics. The proposed analysis focuses on as-
sessing the rate control capabilities of the investigated packet
generators based on:

• Bandwidth: refers to the maximum throughput can
be obtained from the generation process (how fast is
it in terms of packets per second?).
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• Accuracy: describes the systematic errors, a measure
of statistical bias (how close is the average observed
rate to the configured one?).

• Precision: describes the random errors, a measure of
statistical variability (how much do individual inter-
packet gaps deviate from the configured value?).

We use the term accuracy to estimate how close the aver-
age of a set of measurements matches the target. Precision
refers to the deviation of an individual measurement, such as
the inter-arrival time between two packets, from the target.
For instance, a packet generator configured to produce con-
stant inter-arrival times which generates bursty traffic would
be classified as accurate if the overall average rate is correct.
The precision in contrast would be low due to differences of
inter-burst and intra-burst packet gaps.

5.1 Rate control: three different approaches
Rate control is a feature available in hardware on com-

modity NICs such as the Intel 82599 [20] or Intel XL710 [22].
Software packet generators can use this property to increase
their precision, which we define as hardware supported
approach.

The pure software approach simply waits for a config-
ured time between sending individual packets. This entails
precision problems: sleep functions provided by the OS are
not reliable as their granularity is limited [13, 23]. Busy
waiting techniques can solve this. However, abstractions
from the OS and driver can lead to unintended buffering
and high costs for the required system calls to send individ-
ual packets. Modern packet generators solve this issue with
specialized IO frameworks that provide full access to the
hardware. Unfortunately, drivers cannot send packet data
directly to a NIC: they can only place it in a DMA memory
region and inform the NIC to fetch it asynchronously. This
causes unwanted jitter in the required transmission time due
to the two required PCIe round trips, DMA coalescing on
the NIC, and potential buffering on the NIC – this jitter
cannot be removed by a pure software solution.

An alternative method of pure software rate control in-
jects null packets between real ones to adjust the desired
inter-packet gap [18]. For example, instead of waiting be-
tween the generation of two packets, MoonGen sends invalid
packets by corrupting the CRC checksum. The inter-packet
gap is determined by the length of invalid packets in be-
tween two valid packets. Tests show that it is also possible
to send invalid packets violating the 60 byte minimum for
even shorter gaps. This mechanism proves to be reliable
if the device under test is capable of dropping the invalid
packets efficiently in hardware without affecting the tested
processing steps, which is the case for most devices. We
refer to this as corrupted CRC approach.

5.2 Performance vs. precision
The most common practice to reach high IO throughput

is sending large batches of packets to the driver instead of
individual packets [19,25]. This leads to a trade-off between
speed and precision for packet generators when the user does
not require bursty distributions. Indeed, all the aforemen-
tioned frameworks for high-speed packet IO use large batch
sizes by default: Table 2 shows the defaults for the inves-
tigated packet generators. This implementation choice is
suitable for general purpose packet processing applications,

Throughput Throughput
Default (Default) (Precise)

Packet generator Batch size [Mpps] [Mpps]

MoonGen (HW) 63 14.88 13.521

MoonGen (CRC) N/A N/A2 5.74
MoonGen (SW) 1 N/A2 5.36
zsend 16 14.84 14.713

Pktgen-DPDK 16 14.88 4.54
pfq-gen 32 5.67 3.59
netmap pkt-gen 512 14.88 1.55

D-ITG 1 N/A2 0.22
trafgen ?4 0.40 N/A4

1) Intel 82599, highest reliable hardware setting
2) No imprecise generation possible
3) Not precise at high rates despite configuration
4) Batch size unclear, failed to hit target rate within±10%

Table 2: Achieved throughput on a Core i7-960

but not for precise packet generation. However, setting the
batch size to one packet allows estimating the precision of a
traffic generator in its best case scenario.

We first run performance tests using the default settings
for each packet generator. Then, we configure each of them
to be as precise as possible (forcing the batch size to one
packet) and determine the maximum rate by increasing the
packet rate setting in steps of 1 Mpps (0.05 Mpps for packet
generators that do not reach 1 Mpps). These tests allow us
to assess the impact of precise configuration over the per-
formance. Table 2 reports the obtained results. MoonGen
(HW) refers to the MoonGen version with hardware support
(Intel 82599) for the rate control, while MoonGen (CRC)
enables the rate control with the corrupted CRC approach.
Finally, MoonGen (SW) has a pure software implementation
of the rate control.

The impact of different CPU microarchitectures is evalu-
ated in Section 6. The low performance experienced with
netmap pkt-gen in its precise settings is due to netmap’s ar-
chitecture itself. netmap relies on system calls for packet IO
and uses a burst size of 512 in its default setting to compen-
sate for its costly transmit operation. While this solution
is beneficial for security and stability [25], it results in poor
performance when a precise packet generation time is re-
quired. In fact, reducing the batch size to one packet causes
a system call for every packet, affecting the overall through-
put.

Both trafgen and D-ITG do not rely on fast IO frame-
works. Indeed, they were architected for 1 Gbit links. D-
ITG can provide per-packet statistics. However, it reported
incorrect results at rates above 0.1 Mpps.

5.3 Accuracy
Accurately hitting the target rate is important for the re-

producibility of experiments. Most of the packet generators
reliably generate the requested packet rates (unless over-
loaded) within a relative error of less than 0.2%. Table 3
shows packet generators that fail to do so. Trafgen does
not claim to be accurate: the rate control setting is called
“Interpacket gap in us (approx)”. The versions of Moon-
Gen which rely on hardware features on commodity Intel
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Target Measured
Packet generator [Mpps] [Mpps] Rel. error

trafgen
0.1 0.069 31%

0.01 0.006 36%

MoonGen
(82599 HW)

1 1.00 < 0.1%
4 4.00 < 0.1%
8 7.98 0.28%

MoonGen
(XL710 HW)

1 1.03 3.3%
4 4.08 2%
8 8.17 2%

0.976 0.840 16%
Pktgen-DPDK 2.54 2.17 17%

4.1 3.45 19%

Table 3: Accuracy evaluation

NICs fail the test as well in some cases. The hardware rate
limiting features of these NICs are not designed for precise
packet generation but rather for limiting applications where
a coarse approximation is sufficient and short bursts may
even be desirable.

Pktgen-DPDK provides a granularity of 0.195 Mpps, lead-
ing to the odd target values shown in Table 3. In addition,
the rate control algorithm of Pktgen-DPDK is incorrect: it
assumes that generating and sending a packet does not take
a significant time and waits for a fixed time between send-
ing two packets. This assumption is not valid, leading to the
poor accuracy.

5.4 Precision
We target small inter-frame gaps (high load on the sys-

tem) to evaluate their precision under stress condition. In
fact, the higher the packet rate, the lower the requested
inter-frame gap, leading to higher requirements in terms of
precision as the generated traffic will likely be character-
ized by micro-bursts (back-to-back frames). Increasing the
rate impacts also the system itself, potentially decreasing
the precision, thus amplifying the problem.

As most of the packet generators fail to achieve high packet
rates (cf. Section 5.2), we use a packet size of 128 bytes (in-
cluding CRC) for the evaluation. Packet size typically does
not influence the performance of packet generation [25]. This
setting allows us to reduce the inter-frame gap and achieve
relatively high bandwidths.

CBR traffic is the hardest pattern to generate precisely
as each gap must have exactly the same length, i.e., the
resulting histogram should ideally consist of just a single
bucket. It also allows for an easy visual comparison of the
precision as well as an analytic quantification by determining
the mean squared error (MSE) in nanoseconds2.

5.4.1 Rate control: software implementations
Differences in precision between software packet genera-

tors stem from different rate control implementations. Short
time intervals are hard to measure due to the granularity of
underlying timers. x86 CPUs feature the RDTSC instruc-
tion which returns a cycle count of the CPU, enabling a
cycle-level granularity. This cycle counter is independent
of the actual frequency due to power-saving or Turbo Boost
and synchronized across CPUs on all modern CPUs. System
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Figure 2: Software rate control at 1 Mpps

calls can use timers with coarser granularity, which may not
be appropriate for nanosecond time spans that high-speed
packet generators need to deal with. In the following we
propose a brief description of the method being adopted by
each packet generator:

PF RING ZC zsend uses a separate thread with the pur-
pose of calling clock_gettime() (with parameters that map
to RDTSC on the system) and storing the result in a mem-
ory location in a tight loop to alleviate the overhead to the
system call. The transmit thread then uses another busy-
wait loop until the counter reaches the transmit time for a
packet before sending packets to the driver. Neither thread
uses memory fences. The transmit thread is therefore not
guaranteed to see the most recent store by the timestamping
thread.

Pktgen-DPDK uses RDTSC directly in a busy-wait loop
for a fixed time between passing packets to the driver. This
leads to a poor accuracy as explained in Section 5.3. For
better comparison of the precision in the following tests, we
opted to empirically determine the packet rate setting, and
hence the fixed wait time, such that its self-reported trans-
mit rate matches our target rate as closely as possible.
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Figure 3: Software rate control at 2 Mpps

PFQ pfq-gen consists of three parts: the userspace ap-
plication, the PFQ kernel module and the NIC driver. pfq-
gen stores the desired transmit time in the packet metadata
which is evaluated by the PFQ kernel module (running on
a separate core). The kernel module waits for the specified
time by calling the Linux kernel function ktime_get_real()

in a busy-wait loop. Note that this function does not use the
RDTSC instruction to determine time on each call, limiting
the precision.

netmap pkt-gen uses the clock_gettime() system call
(with parameters that map to RDTSC on the system) in
a busy-wait loop before passing packets to the driver via a
system call.

MoonGen pure software rate control adopts a solution
similar to PFQ pfq-gen. It embeds the desired inter-packet
gap in the packet metadata and send the packets via a lock-
free queue to a transmit thread running C code (opposed to
Lua in the main thread). The transmit thread uses a busy-
wait loop employing RDTSC to achieve the highest possible
precision.

5.4.2 Results at 1 Mpps
Figure 2 shows the measured inter-arrival time at 1 Mpps.

We judge the precision by the shape of the distribution and
the MSE value. High precision is expressed by a narrow
distribution accompanied by a low MSE. PF RING ZC’s
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Figure 4: Software rate control at 4 Mpps

timestamping thread suffers from the lack of memory fences
on a multi-core CPU: the transmit task does not see the
latest value. This effectively limits the timer’s granularity
as the value is not updated as often as expected, explaining
the large deviation present on its distribution resluting in
a high MSE. The deviation of the CRC-based approach is
within the precision of NetFPGA’s timestamping mechanic
and shows a narrow distribution, ergo a low MSE.

5.4.3 Results at higher rates
Figures 3 and 4 show the histograms at 2 Mpps and 4 Mpps

respectively for packet generators that are still able to cope
with these rates in the precise settings. Both zsend and
pfq-gen start to generate bursts. They follow a very similar
distribution at 2 Mpps, indicating that the root cause of the
bursty traffic is the same. The only component shared by
these two traffic generators is the Intel ixgbe kernel driver
in a slightly modified version. This explains how zsend was
able to generate 14.7 Mpps in the performance test even in
the precise settings: it is actually not precise at higher rates.
We tried to use DPDK to send packets without batching and
found a hardware limit of 12.9 Mpps (using 3 cores/queues,
adding another did not increase the performance) when not
using batches. This demonstrates that there must be unin-
tentional batching of packets to achieve high performance.
Pktgen-DPDK and MoonGen are not affected by this prob-
lem as both of them use the DPDK userspace variant of the
ixgbe driver which employs a completely different transmit
path.

Pktgen-DPDK exhibits another issue at higher rates: there
are additional peaks in the distribution between 6 000 ns and
7 000 ns. This leads to the MSE values that are far worse
than expected from a visual inspection of the histograms.
The problem is not caused by DPDK as MoonGen is not
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Figure 5: MoonGen with Intel 82599 hardware rate control

affected by this. The most likely reason is that the trans-
mit thread in Pktgen-DPDK calculates and reports statistics
regularly while in MoonGen this is done in a separate thread
and via hardware counters. The CRC-based approach also
shows a higher MSE than expected: there are a total of 10
outliers between 3µs and 46µs every 128 packets in the first
1 280 generated packets. This is caused by the insufficient
performance of the Lua code at higher rates before the initial
just-in-time compilation.

5.4.4 Hardware support on commodity NICs
The test campaign conducted so far studies the impact of

different software implementation for the rate control. This
section investigates the benefits that the hardware support
can bring for precision and accuracy in packet generation.
Hardware rate control features are available on NICs based
on Intel 82599, X540, and XL710 network chips. Tests show
that the Intel X540 10GBASE-T chip is more precise than
software implementations on DPDK and PF RING ZC [18].
However, this evaluation was restricted to 1 Gbit/s due to
restrictions of the measurement setup. Here, we evaluate
NICs based on Intel 82599 and XL710 chips which feature
SFP+ ports (10 Gbit/s). The software packet generator of
choice is MoonGen as it ships with the feature to enable
hardware rate control on both cards. After activating, the
NIC handles the entire rate control process.

The Intel 82599 datasheet outlines the rate control al-
gorithm used in Section 7.7.2.1 [20]. Figure 5 shows that
the hardware generates bursts of two packets at rates of
1, 4, and 7 Mpps on Intel 82599 NICs. The algorithm de-
scribed in the datasheet does not match this observation,
highlighting problems when relying on black-box hardware
for reproducible experiments. The newer XL710 rate con-
trol lacks a detailed explanation of its inner working. Our
measurements show that it generates bursts between 64 and
128 packets depending on the rate and packet size. Figure 6
shows the upper part of a CDF as these large bursts are not
easily visualized in a histogram.

5.4.5 Precision at low speeds
D-ITG and trafgen are both too slow for 10 Gbit/s connec-

0 0.5 1 1.5 2 2.5 3

·104

94

96

98

100

Inter-arrival time [ns]

C
D
F

[%
]

7Mpps

4Mpps

1Mpps

Figure 6: MoonGen with Intel X710 hardware rate control

1.3 1.4 1.5 1.6

·104

0

2

4

Inter-arrival time [ns]

R
el
.
p
ro
b
.
[%

]

0.1Mpps

1.3 1.4 1.5 1.6 1.7

·105

0

0.3

0.6

Inter-arrival time [ns]

R
el
.
p
ro
b
.
[%

]

0.01Mpps

Figure 7: trafgen precision

0.8 0.9 1 1.1 1.2

·104

0

1

2

Inter arrival time [ns]

R
el
.
p
ro
b
.
[%

]

0.1Mpps

0.98 0.99 1 1.01 1.02

·105

0

2

4

Inter arrival time [ns]

R
el
.
p
ro
b
.
[%

]

0.01Mpps

Figure 8: D-ITG precision

tions, so we handle these two separately with packet rates of
0.01 and 0.1 Mpps. Figure 7 and 8 show histograms of the
measured inter-arrival times of trafgen and D-ITG respec-
tively. Trafgen is not only inaccurate (note that the target
line does not even appear on the figure) and slow, but also
imprecise.

D-ITG generates a bimodal distribution oscillating around
the target rate. The two modes of the distribution are only
≈ 200 ns away from the target at both tested rates. It is,
however, prone to bursts as the rate increases. 0.5% of the
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Figure 9: Precision of Poisson traffic generation

packets are sent in bursts at 0.1 Mpps, compared to less than
0.01% at 0.01 Mpps. We categorize D-ITG as accurate and
precise at very low rates but not performant.

5.5 Precision with Poisson traffic pattern
This section investigates the traffic generation precision

when a non-CBR traffic pattern is required. In particular,
we study the generation behavior when the inter-packet gap
is set to be a Poisson process. The tests presented in this
section allow studying the impact of the cooperation of mul-
tiple threads on the generation precision. The previous tests
have been restricted to a single thread transmitting packets
to reliably generate CBR traffic. This is no longer the case
when using a Poisson process: overlaying several indepen-
dent Poisson processes forms a new Poisson process. Using
multiple threads to increase the performance is trivial and
allows overcoming performance restrictions. Although real
traffic resembles a self-similar pattern [24], traffic generated
by a Poisson process can approximate the self-similar pat-
tern for short time spans, e.g., in a synthetic benchmark [26].
Moreover, self-similar patterns are not implemented by any
readily available software packet generator. Poisson is imple-
mented in D-ITG, pfq-gen, and MoonGen. We skip D-ITG
here as we are interested in high packet rates.

We measure a maximum throughput of 12.1 Mpps with
pfq-gen on 4 threads and 12.9 Mpps with MoonGen soft-
ware rate control on 3 threads. This corresponds to the
previously measured limit for unbatched transmits; adding
another core does not improve the throughput. The CRC-
based rate control is able to generate any configured rate
as it can use batches consisting of valid and invalid packets
internally.

Figure 9 shows how the achieved precision degrades as
the rate and number of threads being used increases from
3 Mpps to 9 Mpps and 1 to 3 respectively. This measurement
highlights a shortcoming of the CRC-based implementation:
it cannot represent all possible gaps due to minimum packet
sizes of the invalid packets. Some NICs like the Intel XL710
NICs pad short packets to the minimum size of 64 bytes
while others (82599) allow smaller sizes. However, illegally
short packets can be troublesome for the device under test:
we experienced irregular behavior when the NetFPGA in-

terface controller was receiving such packets.
The higher the requested throughput and the number of

threads being used, the lower the precision of the generation:
overlaying Poisson processes is imperfect in practice. This
technique assumes that the Poisson processes cannot influ-
ence one another. However, this is not the case. A packet
incurs a queuing delay if a thread tries to send a packet while
a packet by another thread is still being transmitted. This
effect is visible at both 6 Mpps and 9 Mpps, it leads to more
bursts and fewer packets with larger inter-arrival times than
analytically expected.

5.6 Lessons learned
We have compared three methods for packet generation:

The hardware supported approach offers high perfor-
mance and reasonable accuracy. However, it shows low pre-
cision on the investigated NICs as they generate small bursts
instead of CBR traffic. Further, it is inflexible as it cannot
be used for arbitrary distributions.

The pure software approach can offer high accuracy as
long as overloading does not occur. Either high performance
or high precision are achievable, depending on the allowed
burst size leading to the previously presented issues (cf. Sec-
tion 2). Differences in performance and precision between
the IO frameworks are visible at high packet rates, with the
DPDK-based frameworks usually performing better.

The corrupted CRC approach offers high performance,
high accuracy, and high precision. Despite its advantages,
this method requires setups that can withstand the large
number of invalid packets used as fillers.

Trafgen and D-ITG are still not obsolete, despite the advan-
tages of modern software packet generators. D-ITG is ideal
for environments that do not require high packet rates. It is
precise and features a large set of traffic types and patterns.
The main advantage is that it works on any NIC supported
by Linux – the other investigated packet generators rely on
specialized drivers only available for certain NICs.
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CPU Pkt. Gen. Throughput

MoonGen 12.9 Mpps
Ivy Bridge @ 3.5 GHz

pfq-gen 7.2 Mpps

MoonGen 6.8 Mpps
Ivy Bridge @ 1.6 GHz

pfq-gen 3.6 Mpps

Table 4: Throughput at different clock frequencies

CPU [GHz] MSE [ns2]

1.6 29318
1.7 28364
1.9 24384
2.2 20185
2.5 16671

(Turbo) 3.5 15237

Table 5: MoonGen: MSE at different CPU clock frequencies
(2 Mpps)

6. INFLUENCE OF DIFFERENT CPU MI-
CROARCHITECTURES

Packet generation is a highly demanding task for the CPU.
This section investigates the impact of both CPU microar-
chitecture and clock speed on this process.

6.1 Throughput vs. CPU frequency
Table 4 shows the impact of clock frequency over the

throughput for pfq-gen and MoonGen (pure software ap-
proach for rate control). We selected the latter as an exam-
ple of the DPDK userspace driver against one with a patched
kernel driver as found in pfq, netmap and PF RING ZC.
The experiment is executed on an Intel Xeon E3-1265L v2
with a maximum frequency of 3.5 GHz with turbo-boost and
repeated with the CPU manually throttled to 1.6 GHz.

Both packet generators react similarly: the throughput
scales well with the CPU frequency. The sub linear be-
havior of the maximum throughput at 12.9 Mpps is due to
hardware limits for unbatched transmission identified in Sec-
tion 5.4.3. These results are expected as high-performance
IO frameworks are known to scale linearly with the CPU
frequency [19, 25]. Therefore, we consider the linear scaling
as a property of the underlying frameworks rather than a
property of the packet generators themselves.

6.2 Precision vs. CPU frequency
The following tests concentrate only on the MoonGen traf-

fic generator, as it proved to be the most precise at rates of
2 Mpps and above. We configure the software packet rate
control to generate 2 Mpps to quantify how the CPU clock
frequency influences the precision. Previous measurements
show this rate is well below the generation limit for any clock
frequency, i.e., enough processing cycles are available to cope
with the task. However, despite the availability of enough
clock cycles to fulfill the task, a difference in the MSE of the
packet distribution is visible in Table 5. The error decreases
as the CPU frequency increases, i.e., faster CPUs achieve a
higher precision, even if the CPU power is not needed for
the desired rate.
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Figure 10: MoonGen: comparison between microarchite-
cures, throughput and CPU frequency

6.3 Precision vs. CPU microarchitecture
The third investigation involves two different CPU mi-

croarchitectures: the Ivy Bridge released in 2012 (Intel Xeon
E3-1265L v2) and the Nehalem released in 2008 (Intel Core
i7-960). We generate 1, 2, and 3 Mpps with MoonGen’s
software rate control and measure the precision as MSE in
Figure 10. As with the previous results in Section 5.4.3, the
MSE improves for the software rate control with increas-
ing rates. This happens because the distance between the
target and the minimum possible gap decreases and acci-
dental bursts are less severe for this metric. There is only
a small difference between the analyzed microarchitectures
when clock frequencies are almost identical. The clock fre-
quency has a larger impact on the precision than the mi-
croarchitecture itself.

6.4 Lessons learned
The measurements in this section show the importance of

the clock frequency for performance and precision. Addi-
tionally, there is only a minor influence of the microarchi-
tecture on the precision, at least the investigated ones. The
higher the CPU frequency, the better performance and preci-
sion. With lowering silicon costs and rising consumer needs,
manufacturers push one of two things: clock speed or core
count. In particular, higher CPU frequencies entail lower
number of cores for the CPU, making a higher clock speed
more attractive when a CBR traffic needs to be generated.
A higher core count is attractive for more complex scenarios
that can be parallelized, i.e., poisson traffic generation.

7. PACKET GENERATORS FOR LATENCY
MEASUREMENTS

Packet generators are not only used to precisely and ac-
curately generate traffic, but they might be also helpful to
derive useful metrics about the device under test: through-
put and latency. Throughput can be measured by counting
the number of packets being successfully processed by the
device under test, latency requires more elaborated methods.
In particular, measuring the latency requires timestamping
the exact point in time a packet is sent or received.
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7.1 Approaches for measuring latency
We identify three different types of timestamping meth-

ods.
Software timestamping without framework sup-

port is the easiest implementation: the software simply
takes a timestamp before sending and after receiving a packet
to/from a high-level interface like socket APIs. Potential
problems are context switches and queuing delays as the
packet crosses the boundary between the program and the
driver in the kernel. Linux allows offloading the timestamp
to the kernel via a socket option to alleviate these problems.

Software timestamping with framework support
takes the timestamp at the framework or driver level. The
low-level nature of packet IO frameworks helps. For exam-
ple, DPDK moves the whole driver into the same process
as the packet generator. A packet generator based on it
can thus precisely control when a packet is sent and take
the transmission timestamp in a precise manner. Reception
typically works in a busy-waiting loop, polling the NIC for
new packets as often as every 100 CPU cycles.

A third and most reliable solution is hardware time-
stamping. This moves the timestamping process as close
as possible to the physical layer thus eliminating further
sources of error (i.e., CPU scheduling, driver overhead, or
PCIe transfer).

7.2 Evaluated metrics
Latency measurement features are rare in packet gener-

ators. To the best of our knowledge, and considering the
packet generators being analyzed in this paper, only D-ITG
and MoonGen provide support for latency analysis. Moon-
Gen uses hardware timestamping as it relies on hardware
capabilities present on Intel NICs. D-ITG implements times-
tamping without framework support, as it uses traditional
APIs without making use of the timestamp offloading avail-
able in Linux. We also implemented a version of Moon-
Gen with pure software timestamping to evaluate the perfor-
mance of software timestamping with a fast IO framework.

Latency measurement is affected by both a systematic er-
ror and a random error. The former is caused by deter-
ministic delays through processing, the latter from the time
spent in buffers and resource contention from concurrent
tasks. To minimize both of them, the timestamp should be
moved as close as possible to the actual physical transmis-
sion or reception of a packet. Without hardware support,
the timestamps can only be taken in software and queuing
delay can cause high jitter. Deterministic processing steps
contribute to the systematic error, providing a fixed offset
on the final timestamp.

The proposed tests aim to evaluate the accuracy (i.e.,
average of the measured values) and the precision (i.e.,
standard deviation) of latency measurements when one of
the three approaches is being used. An inaccurate times-
tamping mechanism has little impact on the results: the
systematic error can be determined and subtracted from la-
tency measurements. Poor precision is more problematic as
it limits the usefulness of the resulting data. While it is still
possible to determine the average latency if the precision is
poor, it is difficult to estimate important characteristics of
the device under test (e.g., buffer size). In addition, statisti-
cal parameters such as maximum latency or 99th percentile
cannot be evaluated properly when the precision is poor.

The third metric we take into account is the granularity
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of the packet generator itself. Software using RDTSC has
a granularity of the CPU’s clock frequency, i.e., typically
less than 1 ns. clock_gettime() has a granularity of 1 ns
on modern systems with proper arguments as it internally
relies on RDTSC as well. Hardware-assisted solutions as
implemented in MoonGen depend on the NIC being used.
The Intel 82599 offers a granularity of 12.8 ns [20], older
1 Gbit/s NICs often support only 64 ns [21].

7.3 Evaluation
In this section we evaluate the three different approaches

using an external loopback connection of a NIC port with
itself via a short (≈ 10 cm/2.5 in) fiber cable as test setup.
As D-ITG would require a second host echoing the traffic
back, we emulate its behavior by implementing a tool that
performs software timestamping without framework support
on raw sockets.

7.3.1 Hardware
We rely on MoonGen working with hardware support (In-

tel 82599 NIC) to evaluate the latency in this scenario. This
implementation offers a granularity of 12.8 ns on the Intel
82599 NIC and reports latencies between 294.4 ns and 320 ns
(23 to 25 units of measurement) depending on the packet
rate. The latency never varies by more than 12.8 ns for a
given packet rate. We use this result as our ground truth,
i.e., the maximum achievable precision and accuracy.

7.3.2 Software without framework support
Figure 11 shows how the precision of our implementa-

tion of software timestamping without fast IO framework
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support deteriorates as we apply an increasing load of back-
ground traffic using trafgen2. These rates are approximate
due to the poor accuracy of trafgen. However, the graph
shows a trend: the standard deviation is between 1µs and
2.4µs below 0.2 Mpps and then increases up to 5.6µs under
full load.

7.3.3 Software with framework support
Software timestamping with fast IO framework support

in MoonGen performs better by an order of magnitude as
visualized in Figure 12. The standard deviation increases
from 0.16µs to 0.24µs between no background load and
9 Mpps. However, a higher load causes a sudden increase in
both average latency and standard deviation. Rates above
9.3 Mpps show standard deviations of ≈ 0.5µs. High back-
ground traffic causes this software timestamping method to
become inaccurate while still staying reasonably precise. It
is, however, both imprecise and inaccurate in the area be-
tween 9 Mpps and 9.3 Mpps. The reason for this increase
remains unclear. We believe it is caused by the hardware
because only the accuracy suffers by factor of about 200
while the precision is only affected by a factor of 2.

We conducted this experiment with hardware rate control
on an Intel 82599 NIC for the background traffic to achieve
the highest possible rate. Using the best rate control method
identified earlier (i.e., CRC) requires loading the NIC with
full line at all times and hence suffers from poorer precision
and accuracy even at lower rates.

7.4 Lessons learned
The test campaign performed in this section assess the

precision of software timestamp (with and without IO frame-
work). We use hardware solution as our ground truth be-
cause it moves the timestamping process as close as possible
to the physical layer thus eliminating further sources of er-
ror.

We distinguish two measurement scenarios with different
requirements for the benchmarking precision: software de-
vices and hardware devices. The former has lower require-
ments as the experiments deal with higher latencies (in the
range between 10µs and 100µs). For example, our mea-
surements in Section 2 exhibit latencies between 14µs and
110µs. Based on this, we derive a precision requirement of
1µs to benchmark software devices. This means both soft-
ware timestamping with framework support and hardware
timestamping are precise enough for this task. Hardware
devices, on the other hand, exhibit latencies in the order
of hundreds of nanoseconds and consequently need a packet
generator with a precision lower than 100 ns. Only hardware
timestamping can be used in this case.

The feasibility of benchmarking software devices also de-
pends on the measured metric. It is always possible to
determine the average latency if the characteristics of the
packet generator are known. Histograms of observed laten-
cies, that can provide further insight into internals of a sys-
tem, can only be measured with framework support or hard-
ware timestamping. Measuring the maximum latency of a
system is limited by the worst-case behavior of the packet
generators: it is impossible to know whether an outlier in an
experiment comes from the packet generator or the tested
system. Timestamping with framework support shows out-

2Chosen because it achieves the highest rate without requir-
ing exclusive access to the NIC.

liers of up to 5 times the average value, while timestamping
without framework support has outliers up to 60 times the
average value.

Experimenters should calibrate their packet generators
before conducting experiments involving any latency mea-
surements. The reliability of the packet generator can be
checked by running the test on a setup where the tested
system is replaced with a simple cable. Not only preci-
sion is important: the accuracy or systematic error is in
the microsecond-range with the tested approaches and can
thus contribute a significant part of the overall latency. Mea-
suring it beforehand allows eliminating this error, i.e., the
accuracy of a packet generator does not matter in a well-
designed experiment with a calibrated packet generator.

8. RELATED WORK
The performance and precision of software packet gener-

ators has been subject of previous studies. In particular,
Paredes-Farrera et al. [23] in 2006 analyzed the accuracy
of packet generators. They found that timing primitives
available in Linux limit the achievable precision. Polling
techniques can be precise but at the same time are mas-
sively affected by the current CPU load of the system. In
2010 Botta et al. [13] performed a comparison between soft-
ware packet generators. In particular, they investigate the
inter-packet gap precision when the traffic being generated
follows different distributions. They showed that despite
meeting the required bandwidths, the actual distribution of
the generated traffic can differ substantially from the ex-
pected pattern impacting the measured results. Both of the
aforementioned papers investigate only traffic rates below
1 Gbit/s.

With the availability of high-performance IO frameworks,
traffic rates of 10 Gbit/s are easily possible [18, 25]. Bonelli
et al. [11] described a system for precise traffic generation
in 2012, pfq-gen evaluated by us is a successor of this sys-
tem. It is designed to support packet generation with CBR
or according to a Poisson process. The performed measure-
ments show high throughput but the precision has only been
validated with a software solution, limiting the precision of
the measurement. The packet generator MoonGen [18] re-
lies in its evaluation process on the hardware timestamping
feature available on commodity Intel 1 Gbit/s. Nowadays,
accurately evaluating the precision at higher rates with com-
modity hardware is not possible, as Intel’s 10 Gbit/s com-
modity NICs can only sample timestamps of a subset of the
received packets.

To this end, we performed our measurement campaign us-
ing OSNT [10]: an open source hardware based traffic gen-
erator and monitoring system based on the NetFPGA [29].
The system offers the ability to timestamp packets at line
rate for traffic of 10 Gbit/s, thus enabling an accurate esti-
mation of the trade-off between throughput and precision in
today’s solutions.

9. CONCLUSION
This paper proposes a comparison between different ap-

proaches in packet generation. Although previous papers
already have proposed a similar comparison, we investigate
the software packet generators in the light of new devel-
opments such as 10 Gbit/s Ethernet, high-performance IO
frameworks and modern CPUs. While the new generation
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of high performance software packet generators achieves the
required performance, precision problems appear for packet
rates above 1 Mpps. Hardware rate control features found
on Intel commodity NICs proved to be imprecise as well.

MoonGen using the rate control implemented with the
corrupted CRC approach proved to be the most precise so-
lution. However, it depends on the capabilities of the device
under test to handle the corrupted frames. Increasing the
performance can also be done by scaling the generation pro-
cess with multiple cores. In this case, the CBR traffic cannot
be anymore generated reliably. On the other hand, Poisson
generation might take advantage of its main feature: over-
laying several independent Poisson processes forms a new
Poisson process. Given the trade-off between number of
cores and per-core frequency, it is possible to get the most
out of the machine with Poisson traffic.

The fixation on CBR traffic arguably stems from the def-
inition of constant load as CBR in RFC 1242 [15]. Even
this standard from 1991 notes that it is an unrealistic traffic
pattern. Hence, we argue to consider a Poisson distribu-
tion instead of CBR traffic: Poisson traffic is both easier to
generate in a performant and reliable manner and a more
realistic test case.

Finally, fast IO frameworks can also be used for times-
tamping when benchmarking software forwarding devices.
Hardware timestamping solutions should be preferred in gen-
eral if available.
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