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Abstract A new Bayesian state and parameter learn-

ing algorithm for multiple target tracking (MTT) mod-

els with image observations is proposed. Specifically,

a Markov chain Monte Carlo algorithm is designed to

sample from the posterior distribution of the unknown

time-varying number of targets, their birth, death times

and states as well as the model parameters, which con-

stitutes the complete solution to the specific tracking

problem we consider. The conventional approach is to

pre-process the images to extract point observations

and then perform tracking, i.e. infer the target trajecto-

ries. We model the image generation process directly to

avoid any potential loss of information when extracting

point observations using a pre-processing step that is

decoupled from the inference algorithm. Numerical ex-

amples show that our algorithm has improved tracking
performance over commonly used techniques, for both

synthetic examples and real florescent microscopy data,

especially in the case of dim targets with overlapping

illuminated regions.

1 Introduction

The multiple target tracking (MTT) problem is to in-

fer the states or tracks of multiple moving objects from

noisy measurements. The problem is very challenging

because the number of targets is unknown and changes

over time as it is a birth-death process. Other com-

pounding factors include the non-linearity of both the

target’s motion and observation models. In applications
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such as radar (or sonar) tracking (Bar-Shalom and Fort-

mann, 1988) and Fluorescence Microscopy (Weimann

et al, 2013), the measurements (or observations) are

images. For example, a pixel’s illumination intensity

is a measure of the energy captured from nearby tar-

gets (e.g. through a reflected radar signal) and back-

ground noise. These images are usually pre-processed

prior to actual tracking to extract point measurements.

Each point is a spatial coordinate and is assumed to

be either a noisy measurement of a target’s state or

spuriously generated. The latter is an artefact of the

method that extracts point measurements. Converting

images to point measurements is advantageous because

it yields a simpler observation model and also quite sig-

nificantly simplifies the design of tracking algorithms

(Bar-Shalom and Fortmann, 1988; Mahler, 2007), e.g.

(Weimann et al, 2013) connects the point measurements

using a nearest neighbour method to form target tra-

jectories. However, the pre-processing step can intro-

duce information loss in the low signal-to-noise (SNR)

regime, which can be near complete as the targets be-

come more closely spaced and background noise inten-

sifies. In low SNR it can be difficult to isolate bright

regions in the image (see a frame of real data in Fig.

8) whose centres would be the candidate point mea-

surements, and then attribute them to distinct targets.

Thus, MTT algorithms that track using the images

directly can be preferable (called track-before-detect

(TBD) techniques) and a selection of works is (Streit

et al, 2002; Rutten et al, 2005; Boers and Driessen,

2004; Punithakumar et al, 2005; Davey et al, 2007; Vo

et al, 2010; Papi and Kim, 2015). These assume known

model parameters but differ in how tracking is achieved

(Bayesian, maximum likelihood or otherwise) and the

specific assumptions imposed on the image model. For

example, Punithakumar et al (2005); Vo et al (2010);
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Papi and Kim (2015) use specific but different Poisson

approximations for the MTT posterior which is then

approximated using a Particle Filter.

Given images recorded over a length of time, say

from time 1 to n, our aim is to jointly infer the tar-

get tracks and the MTT model parameters. We adopt

a Bayesian approach and one of our main contribu-

tions is the design of a new Markov chain Monte Carlo

(MCMC) algorithm for an image measurement model

that can jointly track and calibrate the model. The

MCMC algorithm is a trans-dimensional sampler that

combines Particle Markov Chain Monte Carlo (PM-

CMC) (Andrieu et al, 2010) steps to sample from the

exact MTT posterior distribution for (entire) target

tracks and model parameters. This is in contrast to nu-

merous MTT techniques that use specific variational

approximations, e.g. spatial Poisson in the cited refer-

ences above, of the MTT posterior to simplify inference.

We infer entire tracks, as opposed to point estimates of

target locations at each time as in Vo et al (2010), be-

cause these are then needed to infer the aggregate diffu-

sion characteristics of the tracked molecules (Weimann

et al, 2013). Model calibration is needed because in

real fluorescence microscopy data, the molecules to be

tracked bleach over time and the noise characteristics

of the acquired images also drift. These changes can

be captured by time varying image model parameters,

which are indeed unknown to the analyst, as are other

parameters such as those describing the molecule mo-

tion model. To the best of our knowledge, our trans-

dimensional MCMC tracker for image observations ad-

dresses this practical tracking problem in greater gen-

erality without major limiting assumptions like well

separated molecules with non-overlapping illumination

regions (Vo et al, 2010) or aforementioned principled

simplifications using a variational approximation of the

MTT posterior (Papi and Kim, 2015). In numerical

examples we demonstrate the superior performance of

our method over the TBD technique of Vo et al (2010)

for closely spaced targets. We also apply it to real flo-

rescence microscopy data and show it outperforms a

method currently used by biologists (Weimann et al,

2013) which pre-processes the images to extract point

observations. Such comparisons, which are absent in the

literature, highlight the gain in performance by target-

ing the exact MTT posterior and avoiding simplifica-

tions like disallowing overlaps.

We do not advocate that our MCMC method should

replace techniques that extract point observations,

those that use variational approximations to simplify

the posterior (Mahler, 2007; Vo et al, 2010; Papi and

Kim, 2015; Schlangen et al, 2016), or those that do not

extract point observations but are optimised for non-

overlapping targets (Vo et al, 2010). Our MCMC tech-

nique should be viewed as a complement to these other

techniques. It could be applied in an online tracking

scenario by processing a window of data at a time or as

a post-processing tool to refine the trajectories identi-

fied by any other online algorithm (Jiang et al, 2014).

This is similar to the role MCMC plays in the related

field of Particle Filtering, which is an online estimation

method, where MCMC is used to refine the online es-

timates (Del Moral et al, 2006; Doucet and Johansen,

2009; Kantas et al, 2015).

MTT methods have very recently been applied to

tracking in fluorescence microscopy data in Rezatofighi

et al (2015); Schlangen et al (2016). Both works extract

point measurements and use a specific but different

variational approximation of the MTT posterior distri-

bution which is then approximated in Rezatofighi et al

(2015) using Gaussian quadrature and in Schlangen

et al (2016) using a Particle filter. The obtained point

estimates of molecule locations are then post-processed

to obtain tracks. Model calibration is done in a limited

sense in Rezatofighi et al (2015), i.e. only some parame-

ters are learned from the data while others are assumed

known.

For point measurement models in general, there is

a growing literature on using MCMC for tracking as

it is recognised that sampling the true MTT posterior,

although challenging, is feasible in offline applications

and can serve as a track refinement tool in the on-

line setting (Oh et al, 2009; Vu et al, 2014). Oh et al

(2009); Kokkala and Sarkka (2015) assume the under-

lying state-space and observation model is linear and

Gaussian, Vu et al (2014); Jiang et al (2015) consider

the non-linear and non-Gaussian setting while (Duck-

worth, 2012; Jiang et al, 2015; Kokkala and Sarkka,

2015) simultaneously estimate the model parameters.

Although some of the above works incorporate param-

eter estimation, it is a topic in MTT that has only re-

cently gained attention, see Singh et al (2011); Yıldırım

et al (2014).

The remainder of the paper is organised as follows.

Section 2 describes the MTT model and presents the

framework for joint state and parameter learning al-

gorithm. In Section 3, we present details of our novel

MCMC kernel for detecting and maintaining tracks,

which constitutes the core part of our tracking algo-

rithm. (More detailed derivations are given in the Ap-

pendix.) Section 4 presents numerical results for both

synthetic and real florescent microscopy data.
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2 Multiple target tracking model

2.1 The single target model

We commence with a description of the image based

tracking problem assuming a single target and then en-

large the model for the multi-target case. Let the dis-

crete time Markov process {Xt}t≥1 = {X1, X2, . . .} rep-

resent the state values of a single evolving target. In this

work it is assumed that Xt = (Xt(1), . . . , Xt(5)) ∈ R5

where Xt(i) denotes its ith component. Xt(1) is the

target’s illumination intensity or amplitude (to be dis-

cussed in detail next), (Xt(2), Xt(3)) is the spatial co-

ordinate of the target and (Xt(4), Xt(5)) are the corre-

sponding spatial velocities. Frequent reference will be

made to the intensity (amplitude), spatial coordinate

and spatial velocity components of a target state Xt.

As such we will denote these components by At =

Xt(1), St = (St(1), St(2)) = (Xt(2), Xt(3)) and Vt =

(Vt(1), Vt(2)) = (Xt(4), Xt(5)).Xt is a time-homogeneous

Markov process,

X1 ∼ µψ(·), Xt|X1:t−1 = x1:t−1 ∼ fψ(·|xt−1) (1)

where µψ and fψ are, respectively, the initial and state

transition probability density function (pdf), parame-

terised by the common real valued vector ψ ∈ Ψ ⊂ Rdψ .

(As a rule, a random variable (r.v.) is denoted by a cap-

ital letter and its realisation by small case.) In our nu-

merical example we use linear Gaussian state dynamics,

µψ(x) = N (x;µb, Σb), fψ(x′|x) = N (x′;Fx,Σ), where

N (·;Fx,Σ) denotes the Gaussian pdf with mean Fx

and covariance matrix Σ. Typically the matrix F is

known and thus ψ = (µb, Σb, Σ). ψ and other parame-

ters of the model detailed below are to be learnt from

the data.

A two dimensional image measurement model is as-

sumed with m pixels in total. Let

Yt = (Yt,1, . . . , Yt,m),

denote the observed image at time t where Yt,i is the

value (illumination intensity) of pixel i. Yt,i is defined

as

Yt,i = hi(Xt) + Et,i, (2)

where Et,i is the observation noise of pixel i at time

t and hi(Xt) is the illumination of pixel i by a single

target with state Xt. As in Vo et al (2010), for x =

(a, s, v) ∈ R × R2 × R2 where a is the intensity, s =

(s(1), s(2)) the spatial coordinate and v = (v(1), v(2))

the spatial velocity, hi(x) is the point spread function

hi(x) = IL(s)(i)
a∆1∆2

2πσ2
h

× exp{− (∆1r − s(1))2 + (∆2c− s(2))2

2σ2
h

}

=: a h̄i(s) (3)

where IA is the indicator function, (r, c) denotes the row

and column number of pixel i, ∆1 and ∆2 are constants

that map pixel indices to spatial coordinates and σh is

the blurring parameter. It is assumed that the spatial

coordinate of the pixel with index corresponding to row

and column number (0, 0) is the origin of R2. As in

Vo et al (2010), we also assume for each state value

x = (a, s, v) there is a square truncation region L(s)

where hi(x) = 0 if i /∈ L(s). Specifically, L(s) is the set

of l × l pixels, l an odd integer, whose centre pixel has

spatial coordinate closest to s. Henceforth we assume

∆1 = ∆2 = ∆.

For later use, (3) defines the function h̄i(s) to be

hi(x)/a when x = (a, s, v). In addition, extend the do-

main of the truncation region L and point spread func-

tion h̄i to included pixel indices j ∈ {1, . . . ,m}. That

is, let (r′, c′) be the row and column number of pixel j

and define

L(j) = L(s), h̄i(j) = h̄i(s) where s = (r′∆, c′∆).

(4)

Equivalently L(j) is the square of l × l pixels centered

at pixel j.

The pixel noise is assumed to be Gaussian with

mean value bt, representing the background intensity,

and variance σ2
r,t, both time varying but common across

pixels, i.e.

Et,i
i.i.d.∼ N (·|bt, σ2

r,t), i = 1, . . . ,m, t = 1, . . . , n.

Thus, the conditional pdf of the observed image at time

t due to a single target with state Xt is

gt(yt|xt) =

m∏
i=1

N (yt,i;hi(xt) + bt, σ
2
r,t).

where subscript t of gt indicates the observation model

is time-inhomogeneous. Given n images, all the model

parameters, (ψ, b1, σr,1, . . . , bn, σr,n), will be estimated.

See Fig. 8 for a real captured image and the correspond-

ing synthesised image based on estimated tracks and

model parameters.
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2.2 The model for multiple targets

In this section we partially adopt the mathematical for-

mulation in Jiang et al (2015) for the MTT model.

(Note though that the model in Jiang et al (2015) is for

point-observations and not for images as in our case.)

In an MTT model, the MTT state at time t is the con-

catenation of all individual target states at t:

Xt =
(
Xt,1, Xt,2, . . . , Xt,Kx

t

)
(5)

where each sub-vector Xt,i is the state (as in (1)) of

an individual target. The number of targets Kx
t under

surveillance changes over time due to the death of exist-

ing targets and the birth of new targets. Independently

of the other targets, a target survives to the next time

with survival probability ps and its state evolves ac-

cording to the transition density fψ, otherwise it ‘dies’.

In addition to the surviving targets, the model intro-

duces Kb
t new targets at each time t ∈ {1, . . . , n} where

Kb
t is distributed according to the Poisson probability

mass function with parameter λb. The states of the new

targets are then sampled independently from µψ, which

is the common pdf for the initial states of all new tar-

gets. The states of the new born targets and surviving

targets from time t make up Xt+1.

To describe the evolution of Xt due to survivals and

births, a series of random variables are defined below.

Let Kx
t and Kb

t denote the number of targets and new

births at time t respectively. We assume that at time

t = 1 there are only new born targets, i.e. no surviving

targets from the past and thus Kx
1 = Kb

1. For t > 1 and

i = 1, . . . ,Kx
t−1, let

Ct(i) =

{
1 if the ith target from t− 1 survives,

0 if it does not survive to time t.
(6)

Ct is the Kx
t−1 × 1 binary vector where 1’s indicate

survivals and 0’s indicate deaths of targets from time

t−1. Let Ks
t denote the number of surviving targets at

time t, thus

Ks
t =

Kx
t−1∑
i=1

Ct(i). (7)

The Ks
t surviving targets from time t − 1 evolve to

become the first Ks
t targets in Xt. Specifically, define

the Ks
t × 1 ancestor vector It, t > 1, as

It(i) = min
{
k :

k∑
j=1

Ct(j) = i
}
, i = 1, . . . ,Ks

t , (8)

so that Xt−1,It(i) evolves to Xt,i for i = 1, . . . ,Ks
t . In

addition to the surviving targets (Xt,1, . . . , Xt,Ks
t
), we

have Kb
t newly born targets denoted by Xt,Ks

t+1, . . . ,

Fig. 1: A realisation from the MTT model. States of a target
are connected with arrows and all targets at time t contribute
to image yt.
MTT random variables:
Time t = 1 : No prior targets (C1 = (),Ks1 = 0, I1 = ()), three
targets are born (Kx1 = Kb1 = 3) with states X1,1, X1,2, X1,3.
Time t = 2 : All targets X1,1, X1,2, X1,3 survive to become
X2,1, X2,2, X2,3. Thus C2 = (1, 1, 1), Ks2 = 3, I2 = (1, 2, 3).
No new born targets, Kb2 = 0, Kx2 = Ks2 +Kb2 = 3.
Time t = 3 : Targets X2,1 and X2,3 survive to become X3,1

and X3,2 respectively while X2,2 dies. Thus C3 = (1, 0, 1),
Ks3 = 2, I3 = (1, 3). One new born target, Kb3 = 1, denoted
X3,3. Kx3 = Ks3 +Kb3 = 3.
Time t = 4 : All targets survive, no new born, same as time
t = 2.
MTT variables in the parameterisation of Sec. 2.4:
t1b = 1, X1 = (X1,1, X2,1, X3,1, X4,1); t2b = 1, X2 =
(X1,2, X2,2); t3b = 1, X3 = (X1,3, X2,3, X3,2, X4,2); t4b = 3,
X4 = (X3,3, X4,3).

Xt,Kx
t
. The state Xt is formed of the new born targets

together with the surviving targets, and thus Kx
t =

Kb
t +Ks

t . An ordering rule is adopted for the new born

targets to avoid labelling ambiguity. Specifically, the

new born targets at each time t are labelled in ascending

order of their first component value. Let Z1 = Kb
1 and

Zt =
(
Ct,K

b
t

)
, t > 1, (9)

which is the discrete component of the MTT state at

time t. Figure 1 illustrates all the MTT random vari-

ables.

2.3 The law of MTT model

The image observation Yt = (Yt,1, . . . , Yt,m) generated

by multiple targets at time t is the superposition of the

contributions of all targets at time t, the background

intensity and noise, i.e.

Yt,i = hi(Xt) + Et,i, hi(Xt) =

Kx
t∑

k=1

hi(Xt,k), (10)

where hi(Xt,k) is the contribution of the k-th target at

time t to the illumination of pixel i (see (3)). The MTT
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observation model is

gt(yt|xt) =

m∏
i=1

N (yt,i;hi(xt) + bt, σ
2
r,t). (11)

Given the vector of the MTT model parameters

θ = (ψ, ps, λb, b1, σ
2
r,1, . . . , bn, σ

2
r,n) (12)

(recall ψ describes the motion model (1), ps is the sur-

vival probability, λb the birth rate of new targets, while

the remaining parameters describe the observed image

pixel intensities (11)) the law of the MTT model can be

expressed with the joint density of (Z1:n,X1:n, Y1:n),

pθ(y1:n|x1:n, z1:n)pθ(x1:n|z1:n)pθ(z1:n),

where ai:j , i ≤ j, denotes the sequence ai, ai+1 . . . aj ,

pθ(y1:n|x1:n, z1:n) =

n∏
t=1

gθ(yt|xt), (13)

pθ(z1:n) = P(kb1;λb)

n∏
t=2

p
kst
s (1− ps)k

x
t−1−k

s
tP(kbt ;λb),

(14)

pθ(x1:n|z1:n) =

n∏
t=1

[ kst∏
j=1

fψ(xt,j |xt−1,it(j))

kbt !IO(xt,kst+1:kxt
)

kxt∏
j=kst+1

µψ(xt,j)

]
.

(15)

P(k;λ) = exp(−λ)λk/k!, the Poisson probability mass

function and gθ(yt|xt) in (13) is only dependent on com-

ponents (bt, σr,t) of θ and is precisely gt of (11). In (14),

kst is the number of surviving targets from time t − 1

defined in (7) and kxt is the total number of (alive) tar-

gets at time t (5). Variable it(j) in (15) denotes the

ancestor of the time-t target j (8). IO is the indicator

function of the particular ordering rule O for the new

born targets,

IO(xt,kst+1:kxt
) =

{
1 if xt,kst+1(1) < · · · < xt,kxt (1),

0 else.

The ordering rule O will allow us to deterministically

assign a unique label to each target track; see Section

2.4. Finally, the marginal likelihood of the data y1:n is

given by

pθ(y1:n)=
∑
z1:n

∫
pθ(z1:n,x1:n, y1:n)dx1:n. (16)

2.4 An equivalent representation of (Z1:n,X1:n)

This section introduces an equivalent parameterization

for the MTT problem. Essentially, we define a new set of

random variables which are an alternative to those de-

fined in Section 2.3 without any loss of information. The

idea here is to introduce notation that explicitly isolates

the state trajectories of individual targets. We need to

use both the parameterization in this section and that

in Section 2.3 to adequately describe the MCMC moves

and proposal distributions in Section 3.

Let K =
∑n
t=1 k

b
t denote the total number of tar-

gets that have appeared from time 1 to n. Each target

appearing in this time span can be assigned a distinct

label or index k ∈ {1, . . . ,K} with the convention that

targets born earlier are given a smaller label than those

born at a later time and targets born at the same time

are sorted by the ordering rule O.

Consider a target assigned labelled k ∈ {1, . . . ,K},
let its birth time be tkb , death time be tkd and its life

span be lk = tkd − tkb . (Note tkd − 1 is the final time

of its existence.) The entire continuous state trajectory

of this target can be extracted from the MTT state

sequence (Xtkb
, . . . ,Xtkd−1) and denote it by

Xk = (Xk
0 , . . . , X

k
lk−1)

where Xk
i−1 is the i-th state of target k. Note that Xk

is a Markov process with initial and state transition

densities µψ and fψ respectively. It is straightforward to

extract {(k, tkb ,Xk)}Kk=1 from (Z1:n,X1:n) as illustrated

in Figure 1. The main point is that we can use one of

the two equivalent descriptions for latent variables of

the MTT model, i.e.

(Z1:n,X1:n)⇔ {(k, tkb ,Xk)}Kk=1. (17)

On the other hand, (Z1:n,X1:n) can be obtained from

{(k, tkb ,Xk)}Kk=1 since the underlying transformation is

a bijection. (Again see Figure 1 for an example.)

2.5 Bayesian tracking and parameter estimation for

MTT

The inference task is to estimate the discrete variables

Z1:n, target states X1:n and the MTT parameter θ given

the observations y1:n. Regarding θ as a random variable

taking values in Θ with a prior density η(θ), the goal is

to obtain Monte Carlo samples from

p(z1:n,x1:n, θ|y1:n) ∝ η(θ)pθ(z1:n,x1:n, y1:n). (18)

We achieve this by iteratively performing the MCMC

sweeps given in Algorithm 1. A single call of Algorithm
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1 will transform a current sample (θ, Z1:n,X1:n) from

the posterior to a new sample (θ′, Z ′1:n,X
′
1:n). The en-

tire sequence of samples yielded by the repeated calls

to Algorithm 1 will constitute the desired set of Monte

Carlo samples from (18). We need though to discard

an initial sequence of this set so that the remaining

samples retained are correctly distributed. Section 3

Algorithm 1: MCMC for state and parameter

learning

Input: Current sample (θ, z1:n,x1:n), data y1:n,
number of inner loops n1.

Output: Updated sample (θ′, z′1:n,x
′
1:n).

1 for j = 1 : n1 do
2 Update (z1:n,x1:n) by invoking Algorithm 2.

3 Isolate target trajectories (see (17)) {(tkb ,xk)}Kk=1.
4 for k = 1 : K do
5 Update xk using the CSMC (conditional SMC)

smoother with other trajectories ( 6= k) and θ fixed.

6 Call the updated sample (z′1:n,x
′
1:n).

7 Conditioned on (z′1:n,x
′
1:n), update θ to θ′ using the

Gibbs move for each component.

is dedicated to the exposition of the first loop of Algo-

rithm 1 while the second loop is more easily described.

The principal aim of the second loop is to resample the

continuous state trajectory of each target using the con-

ditional SMC (CSMC) sampler of Andrieu et al (2010)

but using the implementation in Whiteley (2010) as de-

tailed in Appendix C. This step enhances our MCMC

algorithm’s efficiency. The CSMC step is done by first

explicitly isolating the state trajectories of individual

targets as in Section 2.4 and then updating the targets’
trajectories in turn using the CSMC sampler. When

conjugate priors are available for the components of θ,

as in our numerical examples, it is possible to sam-

ple p(θ|z1:n,x1:n, y1:n) ∝ p(θ)pθ(z1:n,x1:n, y1:n) exactly

in the final step; details in Appendix D. Otherwise,

one can run a Metropolis-Hastings (MH) algorithm to

sample from this pdf. When the MTT parameters are

known, the final step of Algorithm 1 is to be omitted

and we refer to the resulting algorithm as the MCMC

tracker.

3 MCMC moves

In this section, we present the MCMC moves to sam-

ple (Z1:n,X1:n) for the first loop in Algorithm 1. No-

tice that the dimension of X1:n, which is proportional

to
∑n
t=1K

x
t , changes with Z1:n. Therefore, the poste-

rior distribution pθ(z1:n,x1:n|y1:n) is said to be trans-

dimensional.

3.1 A brief on trans-dimensional MCMC

A general method for sampling from a trans-dimensional

distribution is the reversible jump MCMC (RJMCMC)

algorithm of Green (1995). We briefly describe RJM-

CMC for a (general) distribution π(m,xm) where m

is a discrete variable e.g. m ∈ {1, 2 . . .} known as the

model index and xm ∈ Rdm . Note though that in gen-

eral m′ 6= m does not imply dm′ 6= dm. We will then

connect this generic RJMCMC description with the

specific moves of the MCMC procedure for tracking,

described in Section 3.2 onwards, to aid the latter’s ex-

position.

For each (m,xm), let Q(m′|m,xm) be a probabil-

ity mass function satisfying
∑
m′ Q(m′|m,x) = 1 and

Q(m′|m,xm) = 0 if dm′ = dm. Furthermore, for each

m′ such that dm′ > dm, let Q(u|m,xm,m′) be a pdf

on Rdm′−dm . Q will be the proposal distribution and

Q(m′|m,xm) = 0 if dm′ = dm implies Q only proposes

moves across dimension.

Let (m,xm) ∼ π. First sample m′ from Q(·|m,xm)

and if dm′ > dm, then sample u from Q(·|m,xm,m′),
which are the extra so called dimension matching con-

tinuous r.v.’s needed to generate the candidate sample

xm′ ∈ Rdm′ . Assume dm′ > dm. (The reverse case is

considered below.) The candidate sample is obtained

by applying a bijection, to be chosen by the practitioner

just as Q was, to yield xm′ = βm,m′(xm, u). The accep-

tance probability for the proposed sample (m′, xm′) is

α(m′, xm′ ;m,xm) = min{1, r(m′, xm′ ;m,xm)} where

r(m′, xm′ ;m,xm) is

π(m′, xm′)

π(m,xm)

Q(m|m′, xm′)
Q(m′, u|m,xm)

|∇βm,m′(xm, u)| (19)

where the right most term is the Jacobian of βm,m′ . If

however dm′ < dm, let (x′m, u) = β−1
m′,m(xm) and the

candidate sample for the move to the lower dimension

model is x′m. The proposal (m′, xm′) is accepted with

probability min{1, r} where r(m′, xm′ ;m,xm) is

π(m′, xm′)

π(m,xm)

Q(m,u|m′, xm′)
Q(m′|m,xm)

|∇βm′,m(xm′ , u)|−1
(20)

In the MTT model, each target configuration z1:n

corresponds to a model index m, x1:n corresponds to

the continuous variable xm, and pθ(z1:n,x1:n|y1:n) cor-

responds to π(m,xm). The bijections βm,m′ are per-

mutations of the input variables to preserve the MTT

ordering rule O and thus all Jacobians are 1.

3.2 MCMC to sample (Z1:n,X1:n) in loop 1 of

Algorithm 1

Algorithm 2 proposes a change to (Z1:n,X1:n) by se-

lecting one of the following proposals at random:
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1. birth/death proposal to create or delete a target;

2. multi-step extension/reduction proposal to extend

or reduce an existing track by multiple time units;

3. one-step extension/reduction proposal to extend or

reduce an existing track by one time unit;

4. state proposal to exchange states between targets.

All but the state proposal changes the dimension of

X1:n and hence the corresponding RJMCMC accep-

tance probability in (19) needs to be derived. However

the bijections are such that the Jacobian in (19) is al-

ways 1. Each proposal type is now described in detail

in the sub-sections below

Algorithm 2: MCMC moves to sample

(Z1:n,X1:n)

Input: Sample (z1:n,x1:n), data y1:n, parameter θ
Output: Updated sample (z′1:n,x

′
1:n)

1 Randomly select a proposal type from
{birth/death,multi-step extension/reduction, state,
one-step extension/reduction}.

2 Propose (z′1:n,x
′
1:n) by executing the chosen proposal.

3 Calculate acceptance prob. α(z′1:n,x
′
1:n; z1:n,x1:n)

(see (21)/(22), (31)/(32), (34)). Output (z′1:n,x
′
1:n)

with prob. α, otherwise (z1:n,x1:n).

3.3 Birth/Death Proposal

The birth/death proposal of Algorithm 2 initiates a new

track or deletes an existing track and thus only gener-

ates proposed samples (z′1:n,x
′
1:n) that move across di-

mension, i.e. is never intra-dimensional. Birth creates a

track sequentially in time, until a stopping rule is met,

by using the observed images to increase the probability

of acceptance and we describe this sequential process in

detail in Sec. 3.4 below.

The current MCMC input sample (Algorithm 2) is

(z1:n,x1:n) or {(k, tkb ,xk)}Kk=1 in the alternative param-

eterization of 2.4. Sampling from the birth/death pro-

posal commences by first choosing to create or delete

a track with probability 0.5. If death is chosen, one of

the K targets are randomly deleted, say target k with

probability 1/K. If birth is chosen, a new track with

birth time tb and states

x = [x0, . . . , xl−1], xi = (ai, si, vi)

are proposed, where (ai, si, vi) denote the intensity, spa-

tial coordinates and velocity components of the state

at time t = tb + i. Using (z1:n,x1:n) and the newly cre-

ated track, the ordering rule of Section 2.4 is invoked to

obtain the MTT proposed sample (z′1:n,x
′
1:n). Assume

the newly created target has label k′ in the alternative

parameterization of (z′1:n,x
′
1:n). The acceptance proba-

bility is α1 = min{1, r1} where r1(z′1:n,x
′
1:n; z1:n,x1:n)

is

pθ(z
′
1:n,x

′
1:n, y1:n)

pθ(z1:n,x1:n, y1:n)

(K + 1)−1

qb,θ(tb,x|z1:n,x1:n, y1:n)
(21)

The term qb,θ(tb,x|z1:n,x1:n, y1:n), defined in Sec. 3.4

below, is the pdf of the newly created target states

which corresponds to term Q(m′, u|m,xm) in the de-

nominator of (19).

If death is chosen, delete target k of {(i, tib,xi)}Ki=1

with probability K−1 and let (z′1:n,x
′
1:n) be the new

MTT state excluding target k. The acceptance proba-

bility is α1 = min{1, r1} where the function

r1(z′1:n,x
′
1:n; z1:n,x1:n) is

pθ(z
′
1:n,x

′
1:n, y1:n)

pθ(z1:n,x1:n, y1:n)

qb,θ(t
k
b ,x

k|z′1:n,x
′
1:n, y1:n)

K−1
(22)

3.4 Birth proposal for creating a new target

The birth procedure, summarised in Alg. 3, proposes

a new target trajectory, or track, by using the residual

images to first construct the intensity and spatial coor-

dinates of the entire track. The track’s velocity values

are then sampled conditionally on the created spatial

components under Gaussian assumptions.

Algorithm 3: Birth proposal

Input: Sample (z1:n,x1:n), data y1:n, parameter θ
Output: A new target trajectory x = [x0, . . . , xl−1]

where xi = (ai, si, vi) ∈ R5.
1 Randomly choose a birth time tb ∈ {1, . . . , n}, set
t0 = tb, k = 0.

2 repeat
3 Calculate residual image yrtk in (23), match filtered

image yftk in (24), local maxima set Gtk in (25).

4 Exit loop if Gtk is empty, otherwise randomly
choose pixel i ∈ Gtk and perform test (26).

5 Exit loop if test failed, otherwise sample target
intensity and position, (ak, sk), from (27).

6 Set tk+1 = tk + 1, set k = k + 1. Exit loop with
probability 1− psI[tk ≤ n].

7 until Exit
8 If tk = tb, exit birth proposal with null output.
9 Set td = tk, set l = k and sample velocity components
v0, . . . , vl−1.

3.4.1 Residual and match filtered images

The birth proposal commences by choosing a random

birth time and then calculates the residual and matched
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filtered images as follows: using the current MCMC in-

put sample (z1:n,x1:n), subtract the contribution of the

kxt targets and background intensity bt from the image

yt to get the residual image yrt where

yrt,i = yt,i − hi(xt)− bt, i = 1, . . . ,m. (23)

Match filter yrt to get the image yft where the j-th pixel

in the filtered image is

yft,j =
1

Eh̄

m∑
i=1

yrt,ih̄i(j) (24)

where h̄i(j) is defined in (3)-(4) and Eh̄ =
∑m
i=1 h̄i(j)

2

is the energy of the filter {h̄i(j)}mi=1. (The sum that

defines yft,j can be truncated to i ∈ L(j).) The rationale

is that the presence of a target at or close to pixel j

will likely result in yft,j being a local maxima among

pixels. Put another way, local maxima of yft,j are likely

locations of targets. Let

Gt = {1 ≤ i ≤ m : yft,i is a local maxima, yft,i ≥ γt(θ)}
(25)

where γt(θ) is a time-dependent threshold chosen to

avoid peaks that are not likely to be target generated.

A definition is given in Sec. 4, the numerical section.

3.4.2 Proposing state values

Line 4 of Alg. 3 randomly chooses a pixel i ∈ Gt.

As a local intensity maxima is not necessarily target

generated, perform a hypothesis test on the square of

l× l pixels L(i) centered at chosen maxima i ∈ Gt. Let
yrt,L(i) = {yrt,j , j ∈ L(i)}, H1 the hypothesis that yrt,L(i)

is generated by a new born target and H0 the converse

that it is purely background noise generated. Calculate

the test ratio

ρ(yrt,L(i)) =
p(yrt,L(i)|H1)

p(yrt,L(i)|H0)
(26)

While p(yrt,L(i)|H0) :=
∏
j∈L(i)N (yrt,j ; 0, σ2

r,t) can be

calculated analytically, p(yrt,L(i)|H1) is intractable but

can be estimated, e.g. we use the Laplace approxima-

tion. (See Appendix A for details.) H1 is accepted with

probability min{1, ρ(yrt,L(i))}. The loop of Alg. 3 is ex-

ited if H1 is rejected. If H1 is accepted, sample the

intensity and position components of the target state

from

(At, St) ∼ Nt,i(·) (27)

where Nt,i(·) is a Gaussian derived when calculating

the hypothesis test and is given in Appendix A. The

subscript (t, i) indicates this approximation is specific

to pixel i of time t; recall i ∈ Gt was the chosen maxima.

The birth loop continues for t = tb + k, k > 0,

until a stopping criteria is met. The birth loop stops

at some time t = td, yielding a target lifespan l =

td − tb, when either t > n, the target does not sur-

vive to the next state with probability 1− ps, set Gt is

empty or H1 is rejected. The output of the birth loop

is (a0, s0), . . . , (al−1, sl−1) which is the complete trajec-

tory of intensity and positions of the new born target.

The velocity components are now generated to yield

x = [x0, . . . , xl−1], xi = (ai, si, vi).

For linear Gaussian state dynamics, the velocity can be

sampled conditionally on the spatial locations s0, . . . ,

sl−1 and more generally, a Gaussian approximation tech-

nique could be employed. The numerical examples (syn-

thetic and real data) assume Gaussian targets.

3.4.3 Proposal density of the birth move

Denoting tk = tb + k, k = 0, . . . , l, we can write the pdf

for proposing (tb,x) in the birth move as

qb,θ(tb,x|z1:n,x1:n, y1:n) = q0(tb)q1(a0, s0|yrt0)

×
l−1∏
k=1

q2(ak, sk|a0:k−1, s0:k−1, y
r
tk

)

× q3(stop|a0:l−1, s0:l−1, y
r
tl

) q4(v0:l−1|a0:l−1, s0:l−1)

(28)

where q0(tb) is the probability of choosing the birth

time tb, q1 corresponds to proposing the target’s initial

intensity and position, and can be written as

q1(a0, s0|yrt0) ∝ I[Gt0 6= ∅]

×
∑
i∈Gt0

q(i|Gt0) min(1, ρ(yrt0,L(i)))Nt0,i(a0, s0) (29)

where I[Gt0 6= ∅] is 1 if Gt0 is non-empty; q(i|Gt0) is

the probability of choosing local intensity peak i ∈ Gt0 ;

min(1, ρ(yrt0,L(i))) is the probability of accepting hy-

pothesis H1 at peak i ∈ Gt0 ; Nt0,i is the Gaussian

density approximation for the initial value.

The law q2 is that for adding more states sequen-

tially and may be written as

q2(ak, sk|a0:k−1, s0:k−1, y
r
tk

) = I[Gtk 6= ∅]

× ps
∑
i∈Gtk

q(i|Gtk) min(1, ρ(yrtk,L(i)))Ntk,i(ak, sk)

(30)

which is similar to q1 except that the previously created

states a0:k−1 and s0:k−1 are used to calculate ρ(yrtk,L(i)),
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which is defined as in (26) with the difference here being

p(H1) = ps (target survival probability.) The likelihood

ratio term in (26) is derived in Appendix A, as is the

Gaussian term Ntk,i in (30).

When tl = tb + l > n stopping at tl is certain. Oth-

erwise, the law q3 corresponds to stopping due to the

target not surviving, Gtl being empty, or the hypothesis

test failing and is given by

q3(stop|a0:l−1, s0:l−1, y
r
tl

)

= 1− psI[Gtl 6= ∅]
∑
i∈Gtl

q(i|Gtl) min(1, ρ(yrtl,L(i)))

For linear and Gaussian state dynamics, conditioned on

a0, s0, . . . , al−1, sl−1, the velocity can be sampled (ex-

actly) since q4 will be a Gaussian distribution as well.

3.5 Multi-step Extension/Reduction proposal

This proposal extends or reduces the trajectory of a

randomly chosen target. A target’s trajectory is ex-

tended (/reduced) by bringing forward its birth (/death)

time or delaying its death (/birth) time. The extra state

values are then appended (/discarded) accordingly. Like

the birth/death proposal, this proposal only moves the

MCMC sample across dimension.

The current MCMC input sample (Algorithm 2) is

(z1:n,x1:n) or {(k, tkb ,xk)}Kk=1 in the alternative param-

eterization of ‘sec. 2.4. Sampling from the multi-step

extension/reduction proposal commences with choos-

ing between extension and reduction equiprobably and

then doing one of the following:

Extension: From the subset of targets with lifetimes

less than n, randomly select a target and extension

direction. (Without the lifetime restriction the chosen

target cannot be extended further.) The direction of

extension is chosen equiprobably if both forward and

backward extensions are permissible. Assume target k

is selected for a forward extension, denoted k+. A new

(delayed) death time and corresponding trajectory ex-

tension x = (x1, x2, . . .) is proposed to yield the new

extended trajectory x̂k = (xk,x). For a backward ex-

tension of target k, the event denoted by k−, a new

(earlier) birth time, denoted τkb and trajectory exten-

sion x is proposed to yield x̂k = (x,xk). The order-

ing rule of Section 2.4 is invoked to obtain the MTT

proposed sample (z′1:n,x
′
1:n) from the unaltered targets

{(tib,xi)}Ki=1,i6=k and the extended target (τkb , x̂
k). The

acceptance probability, denoted α2, is min{1, r2} where

function r2(z′1:n,x
′
1:n; z1:n,x1:n) is

pθ(z
′
1:n,x

′
1:n, y1:n)

pθ(z1:n,x1:n, y1:n)

qr,θ(z1:n,x1:n|z′1:n,x
′
1:n)

qe,θ(k+/−,x|z1:n,x1:n, y1:n)
. (31)

Here qe,θ(k+/−,x|z1:n,x1:n, y1:n) is the probability den-

sity of choosing target k, the extension direction and

states x, which can be calculated similarly to the ex-

pression (28) of the birth move and it is not repeated

here. We denote the total probability of making the re-

turn transition from (z′1:n,x
′
1:n) to (z1:n,x1:n) via the

reduction, described next, with the term qr,θ above.

Reduction: Randomly select a target from the sub-

set of targets with lifetimes exceeding one and then

the reduction direction, either forwards or backwards,

equiprobably. Let k+ denote target k for forward re-

duction and k− for backward reduction. In the forward

case, a reduction time point t ∈ {tkb + 1, . . . , tkd − 1}
is chosen randomly and discard the time {t, . . . , tkd − 1}
section of the track, causing t to be the new death time.

If backwards then t ∈ {tkb , . . . , tkd − 2} is chosen ran-

domly and the {tkb , . . . , t} portion is discarded to yield

a new birth time of t + 1. Let τkb denote the (possibly

new) birth time, x̂k the retained trajectory and x the

discarded forward/backward state trajectory of target

k. The ordering rule of Section 2.4 is invoked to obtain

the MTT proposed sample (z′1:n,x
′
1:n) from the the un-

altered targets {(tib,xi)}Ki=1,i6=k and the reduced target

(τkb , x̂
k). Let qr,θ(z

′
1:n,x

′
1:n|z1:n,x1:n) denote the total

probability of making the transition from (z1:n,x1:n) to

(z′1:n,x
′
1:n) via the described reduction step, then

qr,θ(z
′
1:n,x

′
1:n|z1:n,x1:n) =

1∑K
j=1 I[lj > 1]

1

2

1

lk − 1
.

Assume the reduced target has label k′ in the alter-

native parameterization of (z′1:n,x
′
1:n). The acceptance

probability is α2 = min{1, r2} where r2(z′1:n,x
′
1:n; z1:n,x1:n)

is

pθ(z
′
1:n,x

′
1:n, y1:n)

pθ(z1:n,x1:n, y1:n)

qe,θ(k
′
+/−,x|z

′
1:n,x

′
1:n, y1:n)

qr,θ(z′1:n,x
′
1:n|z1:n,x1:n)

(32)

3.6 One-step Extension/Reduction proposal

In addition to the multi-step extension/reduction pro-

posal, a one-step extension/reduction proposal is also

employed. This proposal proceeds as in multi-step but

with the following two differences: i) it extends or trun-

cates the trajectory of the selected target by one time

point only. ii) The trajectory extension is sampled from

the prior distribution of the target motion model.

Like the birth proposal, the multi-step extension

uses the intensity threshold γt(θ) (as described in Sec.

3.4) to sample the extended trajectory. This may result

in the next state of a momentarily dim target not being

detected but one-step extension/reduction will be able

to extend the target.
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Algorithm 4: One-step Extension/Reduction

Input: Sample (z1:n,x1:n) or {(k, tkb ,xk)}Kk=1 in
alternative parameterisation, parameter θ

Output: A shortened or extended target trajectory
(k, τkb , x̂

k).
1 Choose between extension (e) or reduction (r)

equiprobably then choose a target k and direction +
or −. Assume xk = (xk0 , . . . , x

k
lk−1

)

2 If (k, e,+) extend target k’s trajectory to x̂k = (xk, x)

by x ∼ fψ(x|xk
lk−1

). Set τkb = tkb .

3 If (k, e,−) extend target k’s trajectory to x̂k = (x,xk)

by x ∼ µψ(x)fψ(x
k
0
|x)∫

µψ(x′)fψ(xk0 |x
′)dx′

and set τkb = tkb − 1.

4 If (k, r,+) set x̂k = (xk0 , . . . , x
k
lk−2

) and τkb = tkb .

5 If (k, r,−) set x̂k = (xk1 , . . . , x
k
lk−1

) and τkb = tkb + 1.

Note that for a backward extension, the appended

state is sampled from initial distribution µψ conditioned

on the value of its next state for Gaussian targets. The

MTT proposed sample (z′1:n,x
′
1:n) is the unaltered tar-

gets {(tib,xi)}Ki=1,i6=k and the altered target (τkb , x̂
k).

The acceptance probability is α3 = min{1, r3} with r3

is defined similarly as in the multi-step case (31) and

(32).

3.7 State proposal

This proposal chooses a pair of targets and swaps a

section of their state trajectories. In particular, it ran-

domly chooses a time t < n and then randomly changes

It+1, which is the vector that links targets in Xt and

Xt+1, as illustrated in Figure 2. When Xt,i has descen-
dant Xt+1,g, it can propose to swap its descendant with

that of Xt,j (case 1), or change its descendant to the

initial state Xt+1,h of a target born at time t+ 1 (case

2), or to delete the link (case 4). When Xt,i has no

descendant, it can be merged with a new born target

at time t + 1 by linking to its initial state (case 3),

or steal another surviving target’s descendant (case 5).

The state proposal is purely intra-dimensional (or in

the context of Sec. 3.1 it moves between models pairs

(m,m′) satisfying dm = dm′ .)

Xt,i

Xt,j X t+1,h

(1)

Xt,i

Xt,j

Xt,i

Xt,j

(2)
Xt,i

Xt,j

Xt,i

(3)

(4)

Xt,i

Xt,i

Xt,j

(5)

Xt,i

Xt,j

X t+1,g

Xt+1,h

Xt+1,g

Xt+1,h

X t+1,g

Xt+1,h

Xt+1,g

X t+1,gXt+1,g

Xt+1,h

Xt+1,g

Xt+1,h

Xt+1,g

Fig. 2: State move.

The current MCMC input sample (Algorithm 2) is

(z1:n,x1:n) or {(k, tkb ,xk)}Kk=1 in the alternative param-

eterization of 2.4. Sampling from the state proposal

commences with choosing a time t < n and a pair of

targets (labels) U = {i, j} from the total set of tar-

gets {1, . . . ,K} subject to targets i and j being alive at

times t and t+1 respectively. Choosing i = j is permit-

ted (then U = {i}) and target i must be alive at time

t and t+ 1. (For example, in implementation we chose

a target i from time t, and a target state value from

the set of time t + 1 targets with probability inversely

proportional to the distance from target i’s state value

at time t.) We denote the probability of a particular

selection by qs,θ(t, U |x1:n, z1:n). If i = j then split tar-

get i into two targets as in case 4 of Figure 2. If i 6= j,

pair the ancestors of i with the descendants of j in the

manner shown in Figure 2 (all cases except 4), i.e. the

swap alters trajectories xi and xj to

xi → (xi0, . . . , x
i
s, x

j
s′ , . . . , x

j
lj−1) =: x̂i

xj → (xj0, . . . , x
j
s, x

i
s′ , . . . , x

i
li−1) =: x̂j (33)

where tib + s = t, tjb + s′ = t+ 1. Note the birth time (of

at most one target) may change. Call the birth times

after the swap τ ib , τ
j
b

The next part of the state move then proposes a

change to the continuous variables of the affected tar-

gets k ∈ U = {i, j} form x̂k to x̃k to increase the chance

of the move being accepted. This is because changing

the links between targets at time t and t+ 1 can cause

a mismatch in the velocity and intensity of the newly

formed links. As such, the state move will then propose

a change to the velocity and intensity components of the

affected targets while retaining their original spatial po-

sition components. Let qs,θ(t, U, (x̃
k)k∈U |x1:n, z1:n, y1:n)

denote the joint pdf of selecting (t, U) and the change

(x̂i, x̂j) → (x̃i, x̃j). (See Appendix B for the expres-

sion.) Finally, we let (z′1:n,x
′
1:n) denote MTT state (in

the original parameterization) of the combined collec-

tion of unaltered {tkb ,xk}k∈{1...,K}/U and altered tar-

gets {τkb , x̃k}k∈U . The acceptance probability of the

state move is then α3 = min{1, r3} where function

r3(z′1:n,x
′
1:n; z1:n,x1:n) is

pθ(z
′
1:n,x

′
1:n, y1:n)

pθ(z1:n,x1:n, y1:n)

qs,θ(t, U
′, (xk)k∈U ′ |x′1:n, z

′
1:n, y1:n)

qs,θ(t, U, (x̃k)k∈U |x1:n, z1:n, y1:n)

(34)

U ′ is the label set of the targets with swapped compo-

nents in the alternate parameterisation of (z′1:n,x
′
1:n).

4 Numerical examples

This section presents the two main numerical examples.

The first one uses synthetic data and assumes known
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MTT parameters so that a fair comparison can be made

between our MCMC tracker (Algorithm 1 excluding pa-

rameter learning) and the multi-Bernoulli (MB) filter of

(Vo et al, 2010). (The MB tracker does not learn pa-

rameters.) The numerical results will demonstrate the

performance improvements of our method when track-

ing targets that are close to each other with overlapping

illumination regions. The second example is a real-data

example that applies Algorithm 1 to track Fab1 la-

belled Jurkat T-cells. The tracking method currently

used by biochemists (Weimann et al, 2013) extracts

point measurements from the images and then connects

them to form trajectories using a nearest neighbour

type method. Our algorithm will be shown to outper-

form theirs when tracking dim targets as well as targets

with overlapping illumination regions. All simulations

were run in Matlab on a PC with an Intel i5 2.8 GHZ

×2 processor.

Gaussian targets and θ: Recall from (1) an individ-

ual target’s state is Xt = (At, St(1), St(2), Vt(1), Vt(2)).

For the numerical examples, we use a drifting intensity

and near constant velocity motion model,

At = At−1 + Ut, Ut
i.i.d.∼ N (0, σ2

i ),

[St(j), Vt(j)] = [St−1(j) + δVt−1(j), Vt−1(j)] + Ut,j ,

UT
t,1

i.i.d.∼ N (0, σ2
xΣ), UT

t,2
i.i.d.∼ N (0, σ2

yΣ),

where δ is the (known) sampling interval and

Σ=

(
δ3/3 δ2/2

δ2/2 δ

)
.

The initial hidden state is assumed to be Gaussian

distributed with mean µb = (µbi, µbx, µby, 0, 0)T and
covariance Σb = diag(σ2

bi, σ
2
bp, σ

2
bp, σ

2
bv, σ

2
bv). Note the

common variance σ2
bp for the spatial coordinate. (Simi-

larly for the velocity.) The mean of the initial velocity

is set to be 0 in the absence of more information but

this still can yield directional motion if the observations

support this. All the parameters ψ of the hidden state

dynamics are (see (1))

ψ = (µbi, µbx, µby, σ
2
bi, σ

2
bp, σ

2
bv, σ

2
i , σ

2
x, σ

2
y). (35)

and augmenting ψ with the parameters of the target

birth/death and observation models gives

θ = (ψ, ps, λb, b1, σ
2
r,1, . . . , bn, σ

2
r,n). (36)

Prior for θ: All the variance components above have

identical independent priors, which is the inverse gamma

distribution IG(α0, β0) with common shape α0 and scale

β0 parameters. Given σ2
bi, σ

2
bp, σ

2
r,t (for t = 1, . . . , n), the

1 Fab (Fragment antigen-binding) is a region on an anti-
body that binds to antigens.

priors of µbi, µbx, µby and bt are µbi|σ2
bi ∼ N (µ0, σ

2
bi/n0),

µbx|σ2
bp ∼ N (µ0, σ

2
bp/n0), µby|σ2

bp ∼ N (µ0, σ
2
bp/n0),

bt|σ2
r,t ∼ N (µ0, σ

2
r,t/n0). The conjugate prior of ps is

the uniform distribution U(0, 1) and for λb the Gamma

distribution G(α0, β0), α0 is the shape and β0 the scale

parameter α. We set α0 � 1, β0 � 1 to make the prior

less informative.

Intensity threshold γt(θ): The illuminated region L(s)

is an l × l square region of pixels centered at s, with

l = 1 + d4σhe/∆ where d·e rounds up its argument.

The intensity threshold γt(θ) is chosen to be γt(θ) =

min(µbi − 3σbi, 3σr,t/
√
Eh̄) using the following ratio-

nale. We expect yft,j in (24) to exceed µbi− 3σb,i (mean

birth illumination minus 3 times its standard deviation)

with high probability if a target is present in pixel j

of the residual image in (23). However, assuming no

targets illuminate pixels L(s) of the residual image,

σr,t/
√
Eh̄ is the standard deviation of yft,j . With high

probability, yft,j should not be exceed 3σr,t/
√
Eh̄ and

avoids triggering detection.

4.1 Comparison with the multi-Bernoulli tracker

We compared our algorithm with the MB tracker (Vo

et al, 2010). Unlike the subsequent real data example,

this synthetic case assumed bt = 0 and σ2
r,t = σ2

r for

all t (see (11).) We synthesised 50 frames (images) of

168× 184 pixels each using the parameter vector

ψ∗ = (30, 0, 0, 4, 25, 3, 0.5, 0.3, 0.7) (37)

θ∗ = (ψ∗, 0.95, 0.3, 1). (38)

We set σ2
h = 1, ∆ = 1. This gives a 5 × 5 pixel

square for the illuminated region L(s) (see (3)). From

(3), define SNR = 20 log(
a∆2/2πσ2

h

σr
). For a = µbi = 30,

the initial SNR is 13.6 dB. The synthetic data had 20

targets whose trajectories are shown in Figure 3 along

with the trajectories obtained by running the MCMC

tracker, i.e. Alg. 1 with θ update omitted, with n1 =

30and 15 particles per target for the CSMC step.

Figure 3 shows all targets being tracked completely

by Alg. 1 in contrast to the MB tracker of Vo et al

(2010). The birth process assumed by the MB tracker

has four terms each of which has the same initial distri-

bution N (·|µb, Σb) and existence probability 0.1. Prun-

ing and merging targets are performed as suggested in

Vo et al (2010) to eliminate tracks with existence prob-

ability less than 0.01 and merge two tracks when they

fall within a fraction (3/4) of a pixel size in distance.

The number of particles assigned for each hypothesised

target in MB tracker is restricted between 5000 and

8000. In Figure 3, it is seen that some tracks are lost

after they cross, which is the main limitation of the MB
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Fig. 3: Left column (top and bottom figures) tracked targets
of Alg. 1, right column the multi-Bernoulli filter in Vo et al
(2010). Tracks labelled−∗− (red) is ground truth while (blue)
circles are the estimates. Multi-Bernoulli displays some error
in tracking.

tracker as pointed out in Vo et al (2010). This is because

crossing targets invalidates the crucial assumption, nec-

essary to derive the MB tracker, that the illuminated

region of the targets do not overlap. In terms of the

computation time, the MB tracker take less than one

minute to run while the MCMC tracker takes 6 minutes.

Closely spaced targets are common place in many ap-

plications, an example being the real-data experiment

reported below. Our MCMC tracker should be viewed

as a method applicable to closely spaced targets and

not as a competitor of a technique optimized for non-

overlapping targets like the MB tracker.

The previous comparison was done assuming known

model parameters. The current example revisits the

same data set assuming θ∗ in (38) is unknown to Al-

gorithm 1, which was re-run with the initial parameter

set to

θ(0) = (45, 10, 5, 8, 50, 6, 3, 1, 1.5, 0.6, 1, 4),
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Fig. 4: Comparing the OSPA tracking error of the multi-
Bernoulli filter assuming known θ∗ (top solid black line) with
Alg. 1 (lower traces) when θ∗ is known (red) and when θ∗

is inferred (blue). OSPA errors of MCMC almost equal for
known and inferred θ∗.

while MB output of the previous example was used.

(The MB was given the true parameter as it does not

incorporated parameter learning. The MCMC outputs

of Algorithm 1 will be denoted (z
(i)
1:n,x

(i)
1:n, θ

(i)).) OSPA

distances (Vo et al, 2010) of the three algorithms are

plotted in Figure 4. The OSPA, or optimal sub-pattern

assignment, error between two set of points (u1, . . . , um)

and (v1, . . . , vn) in Rd, assuming n > m, is the sum of

location and cardinality error

min
j1:m⊂1:n

m∑
i=1

1

n
(||ui − vji || ∧ c) + c(1− m

n
).

Figure 4 shows that the tracking error (penalty c = 20)

with unknown parameters is similar to the known case

reported earlier. A further verification is the probability

density values plotted in Figure 5 where pθ∗(z
(i)
1:n,x

(i)
1:n, y1:n)

was calculated from the previous experiment (Algo-

rithm 1 with known parameters) and pθ(i)(z
(i)
1:n,x

(i)
1:n, y1:n)

are the density values from Algorithm 1 with parameter

learning.

Figure 6 shows the histograms of 2000 post burn-in

parameter samples of Algorithm 1 as the approxima-

tion of p(θ|y1:n). The (red) dashed lines show the MLE

estimate θ̂ obtained using the true value of the latent

variables, i.e. (z∗1:n,x
∗
1:n). Specifically, θ̂ is comprised of

(see (13), (14), (15))

(p̂s, λ̂b) = arg max
ps,λb

p(z∗1:n), ψ̂ = arg max
ψ

p(x∗1:n|z∗1:n),

σ̂r = arg max
σr

p(y1:n|x∗1:n, z
∗
1:n). (39)

As a correctness check, for an uninformative prior, the

posterior modes should be consistent with MLE of θ∗.
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Fig. 5: Plot of pθ∗(z
(i)
1:n,x

(i)
1:n, y1:n) of Alg. 1 assuming known

θ∗ (black line) and pθ(i)(z
(i)
1:n,x

(i)
1:n, y1:n) (blue line) of Alg.

1 when θ∗ is also inferred. Horizontal axis is MCMC itera-
tion number i. Horizontal (red) line indicates ground truth
pθ∗(z∗1:n,x

∗
1:n, y1:n).
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Fig. 6: Histograms of 2000 parameter samples obtained by
Algorithm 1. The estimates of model parameters in (35) and
(36) shown as histograms. Unlike the subsequent real data
example, this synthetic case assumes bt = 0 and σ2

r,t = σ2
r for

all t. Vertical (red) lines indicate the idealised MLE estimate
in (39). Agreement of Bayesian and idealised MLE (latter
centred in histograms) indicative of correct performance.

The true MLE is arg maxθ pθ(y1:n), which will be dif-

ferent from (38), is not available as pθ(y1:n) in (16) is

intractable. We use θ̂ of (39) as the surrogate. Note the

modes of the posterior do coincide with the surrogate

MLE.

4.2 Experiments on Fab labelled Jurkat T-cells

The source of the data were Jurkat T-cells, an immor-

talised cell line of human T-lymphocytes which plays an

important function in immune response. Cells were im-

aged using a microscopy technique called total internal

reflection fluorescence microscopy. The cell’s molecules

of interest were bound to antibodies labelled with a

bright green-fluorescent dye (Alexafluo48). It is known

that the number of labeled molecules (or ‘targets’) can

be high; at physiological levels there can be several

molecules per square micron.

The data is comprised of 20 frames of 115 × 120

pixel images with a pixel size 176nm and a frame rate

of 17.8 frame/s. The diffusion coefficient D is expected

to be in the region of 0.01-0.1um2/s. This implies the

displacement of molecules between consecutive frames

is expected to be in the order of 0.1-1 pixel. The esti-

mated initial SNR here is around 10dB (estimated from

the tracking result). Figure 8 (left) shows one frame of

the observed images.

4.2.1 Parameter initialisation

In choosing the initial parameter vector θ(0), some com-

ponents were chosen arbitrarily while others were in-

formed choices guided by the observed images. (Note

that the initialisation step does not need to be overly

precise as our algorithm does not depend on specific

initial values to work.) We set ps = 0.6, λb = 0.2 ar-

bitrarily; µ
(0)
bx = µ

(0)
by = 60 to coincide with the image

centres since the centres appear much brighter than the

periphery; µ
(0)
bi = 70 is calculated from (3) assuming a

target is in the middle of the brightest pixel of the first

frame; set (σ2
bp)

(0) = 400 by roughly observing that

the bright spots are sparse and span the whole image;

(σ2
bv)

(0) = 1 covers the velocity range of the molecules

(0.1-1 pixel per image) and flat enough to allow differ-

ent possible diffusion coefficients; (σ2
bi)

(0) = 100 arbi-

trarily; (σ2
x)(0) = (σ2

y)(0) = 0.1 for small initial driving

state noise; (σ2
i )(0) = 25 arbitrarily. The time-varying

observation noise statistics, mean (bt)
(0) and variance

(σ2
r,t)

(0), are initialised to equal the mean and variance

of the pixel intensities at that time since bright pixels

are sparse in the images.

The point spread parameter σh is not estimated and

fixed at σh = 2 (normalised with ∆2). The illuminated

region L(s) has 9 × 9 pixels. The value of σh if often

known to the experimentalist otherwise, a bit tuning

is required.2 It could also be estimated as part of θ.

Algorithm 1 was run for 8000 iterations and its inner

2 When σh is too small, the illuminated region taken into
account is smaller than it should be which would cause many
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value loop is n1 = 50. Burn-in was observed to have

occurred after about 1500 iterations.

4.2.2 Comparison with Weimann et al (2013)

The tracking algorithm of Weimann et al (2013) is a

nearest-neighbour method with image pre-processing

steps to extract point measurements. Tracks are then

created by connecting point measurements nearest to

each other. A set of consecutive frames are considered

at the same time to allow temporary mis-detections.

(See Weimann et al (2013) for more details.) One of the

main disadvantages of this heuristic method is that it

may miss targets moving close to each other with over-

lapping illumination regions, as only one point measure-

ment may be extracted from a comparably big bright

region. Another disadvantage is the user-defined hard-

threshold which may cause the targets with lower in-

tensities to be completely missed. Weimann et al (2013)

mentions indeed targets were missed in the marginal re-

gions and Figure 7 also indicates so. Figure 7 compares

the tracked positions of the molecules of these two al-

gorithms. As a verification of our result, in the absence

of ground truth, we compare in Figure 8 the true and

synthesised image (based on our estimated tracks and

model parameters) at frame t = 15. Their likeness offers

some reassurance.

5 Conclusion

We have proposed a new MCMC based MTT algo-

rithm for joint tracking and parameter learning that

works directly with image data and avoids the need to

pre-process to extract point observations. In numerical

examples, we demonstrated improved performance in

difficult tracking scenarios involving many targets with

overlapping illumination regions, over competing meth-

ods (Weimann et al, 2013; Vo et al, 2010), which was

achieved by targeting the exact posterior using MCMC.

We do not advocate that our MCMC technique should

replace an online method or optimised methods for non-

overlapping targets such Vo et al (2010). It is an alter-

native that works without major underlying limiting

assumptions (like non-overlapping) and can be used to

refine online estimates.

We have constructed all our MCMC moves to obey

detailed balance. A measure of the sampler’s efficacy

is its ability to recover tracks and learn the model pa-

rameters in our synthetic data example. Likewise for

the real-data experiment, the inferred target locations

more targets than expected. In that case, we should increase
σh.
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Fig. 7: Real data experiment. Top figure is the tracking result
of Alg. 1 (with parameter learning), bottom figure the method
in Weimann et al (2013) which appears to miss many tracks.
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Fig. 8: Left figure is the real observed image at frame t = 15.
(Expert hand annotated ground truth not available.) Right
figure is the synthesised image at frame t = 15 based on the
inferred tracks and model parameters using Alg. 1 (see Fig. 7
for the tracks.) Their similarity is an indication of correctness
of inferred tracks and parameters.

and model parameters are consistent with the recorded

images. However, we have not proven that the chain we

have is irreducible for the MTT model. MTT is a very

challenging inference problem as it can be viewed as a

problem of inferring the states of an unknown number

of Hidden Markov Models as each target is a sequence

of partially observed Markov states in its own right.

Theoretical issues such as identifiability, irreducibility

etc are important issues to be pursued in future work.

Other possible future works include the design of more

efficient proposals for our MCMC routine, parelleliza-
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tion and performance optimization for very high density

tracking.

A Hypothesis testing

The term of (26) to be calculated is p(yrt,L(i)|H1) where

yrt,L(i) = {yrt,j}j∈L(i) and i ∈ Gt is a pixel that is a lo-

cal maximum of yft . Let (r, c) be its row and column number
and

(ā, s̄) = (yft,i,∆r,∆c).

Vector (ā, s̄) can be interpreted as the likely intensity ā and
location s̄ of an undetected target. Below we just write L as
the set of pixels under consideration instead of L(i).

Let x = (a, s, v) ∈ R × R2 × R2 where as before a de-
notes intensity, s = (s(1), s(2)) spatial coordinates and v =
(v(1), v(2)) spatial velocity. (Recall that a pixel illumination
is not a function of velocity.) The aim is to calculate

p(yrt,L|H1) =

∫ ∏
j∈L
N (yrt,j ; ah̄j(s), σ

2
r,t)


× p(a, s, v|H1)dadsdv

=

∫
p(yrt,L|a, s)p(a, s|H1)dads (40)

where p(a, s|H1) is either the marginal (or restriction to in-
tensity and spatial position only) of the law of the birth µψ
(see (1)) if proposing the initial state of the birth move, or
the pdf p(a, s|a0:k, a0:k) (to be defined below) if extending
the target intensity and position trajectory after having cre-
ated the initial intensity and position. p(yrt,L|a, s) is implicitly
defined.

Let p(yrt,L, a, s|H1) = p(yrt,L|a, s)p(a, s|H1). Use the ap-
proximation

ln p(yrt,L, a, s|H1) ≈ ln p(yrt,L, ā, s̄|H1)

−
1

2
[(a, s)− (ā, s̄)]D[(a, s)− (ā, s̄)]T (41)

where −D is the second order derivative∇2 ln p(yrt,L, a, s|H1)

evaluated at (ā, s̄). Expression (41) is like the Laplace ap-
proximation except that the second order Taylor expansion
is computed at (yft,i,∆r,∆c) and not the true maximum

arg maxa,s p(yrt,L, a, s|H1) to save on the maximization step,
which we find in the numerical examples to be still effective
as a component of the birth move. (Moreover, it is a fair sim-
plification for a diffused prior.) Thus

p(yrt,L|H1) ≈ p(yrt,L, ā, s̄|H1)
(2π)3/2√
|D|

and the Gaussian distribution in (29) is

N (·|(ā, s̄), D−1). (42)

Sec. 4 (numerical examples) assumes a linear and Gaus-
sian model for the targets in both the synthetic and real data
examples. The description is now completed by specifying
p(ā, s̄|H1).

When the birth move is constructing the initial/first state
of the target,

p(a, s|H1) =

∫
µψ(a, s, v)dv (43)

and the expression in (26) now simplifies to

ρ(yrt,L(i)) =
p(H1)

p(H0)

p(yrt,L|ā, s̄)
p(yrt,L|H0)

p(ā, s̄|H1)
(2π)3/2√
|D|

. (44)

Finally, we derive p(a, s|H1) in (40) when the birth move
is extending the target intensity and position trajectory after
having created the initial intensity position pairs (a0, s0), . . . ,
(ak−1, sk−1) for some k ≥ 1. For a target with a linear Gaus-
sian model (1), the pdf of vk−1 (or v0:k−1) conditioned on
s0:k−1, which is denoted pψ(vk−1|s0:k−1), is a Gaussian.
Thus p(a, s|H1) is∫
fψ(a, s, v|ak−1, sk−1, vk−1)pψ(vk−1|s0:k−1)dvdvk−1

and the corresponding expression for ρ(yrtk,L(i)) in (30) is the

same as in (44).

B State proposal

The state proposal of Sec. 3.7 alters the state values of the tar-
gets whose trajectories have been partially exchanged. This
proposal is defined for the Gaussian model in Sec. 4.

Let
{

(k, tkb ,x
k)
}K
k=1

be the MTT state and assume with-
out loss of generality U = {1, 2}. The state proposal is de-
composed into

qs,θ(U, t, x̃1, x̃2|x1:K , t1:Kb , y1:n)

= qs,θ(U, t|x1:K , t1:Kb )qs,θ(x̃1, x̃2|x1:K , t1:Kb , y1:n, U, t)

where the first term is the probability of selecting (U, t) and

is not y1:n dependent. Using y1:n and
{

(k, tkb ,x
k)
}K
k=3

, gen-
erate the residual image as in (23) by subtracting the back-
ground intensity and the contribution from all targets except
(t1b ,x

1) and (t2b ,x
2). Let yrt = (yrt,1, . . . , y

r
t,m) denote the

residual images at time t. The state proposal samples (x̃1, x̃2)
from the pdf qs,θ(x̃1, x̃2|x̂1:2, τ1:2b , yr1:n) where (x̂1, x̂2) is de-
fined in (33). Note the dependancy on targets k > 2 is cap-
tured through the residual image.

For brevity, instead of (x̂1, x̂2), we write (x1,x2). Also, to
highlight the intensity, spatial coordinates and velocity com-
ponents, xi = (ai0, s

i
0, v

i
0, . . . , a

i
li−1

, si
li−1

, vi
li−1

) is written

as (ai, si,vi).
The proposal qs,θ does not alter the spatial components,

i.e. s̃1 = s1 and s̃2 = s2.
The velocities (ṽ1, ṽ2) ∼ pψ(ṽ1|s1)pψ(ṽ2|s2), i.e. are

sampled independently from pψ, which is the prior pdf of the
velocity conditioned on the spatial coordinates values, which
is Gaussian.

If targets 1 and 2 exist at time t then their state values
are x1t−τ1

b
and x2t−τ2

b
and respectively. We assume (for pixel

i) yrt,i ∼ N (·|0, σ2
r,t) if targets 1 and 2 both do not exist at

time t, yrt,i ∼ N (·|a1t−τ1
b
hi(s1t−τ1

b
), σ2

r,t) if only target 1 ex-

ists and yrt,i ∼ N (·|a1t−τ1
b
hi(s1t−τ1

b
)+a2t−τ2

b
hi(s2t−τ2

b
), σ2

r,t) if

both exists. The prior probability model (see (1)) for the in-
tensities are independent Gaussians, denoted pψ(a1)pψ(a2).
Conditioned on yr1:n, (τ1b , s

1) and (τ2b , s
2), the posterior pdf

for the joint intensities is also a Gaussian, which is denoted
by qs,θ(ã1, ã2|s1:2, τ1:2b , yr1:n). Thus

qs,θ(x̃1, x̃2|x1:2, τ1:2b , yr1:n) = pψ(ṽ1|s1)pψ(ṽ2|s2)

× qs,θ(ã1, ã2|s1:2, τ1:2b , yr1:n).
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C CSMC step of Algorithm 1

(Initialisation.) Denote target k’s trajectory by (tkb ,x
k) with

xk = (x0, . . . , xl−1). Let x′1:n denote the MTT state, in the
representation of Sec. 2.3, omitting target k. Define target k’s
state likelihood to be

gt(x) =

m∏
i=1

N (yt,i|hi(x′t) + hi(x) + bt, σ
2
r,t)

(c.f. (11).)
Execute the CSMC algorithm of Whiteley (2010), with

backward sampling, for the partially observed Markov model
with state law µψ(x0), fψ(xt|xt−1) (see (1)), state likelihood
gtk
b
+t(xt) above and input trajectory (x0, . . . , xl−1) to yield

an updated target k trajectory (x′0, . . . , x
′
l−1). The CSMC

implementation used proposes particles from the state law.

D Gibbs step of Algorithm 1 for the MTT

model of Sec. 4

Recall Kst is a Binomial r.v. with success probability ps and
number of trials Kxt−1. Kbt is a Poisson r.v. with rate λb.
Thus their posteriors are the Beta and Gamma pdfs:

ps|z1:n,x1:n, y1:n ∼ B
(

1 +
n∑
t=1

kst , 1 +
n∑
t=2

(kxt−1 − kst )

)
,

λb|z1:n,x1:n, y1:n ∼ G
(
α0 +

n∑
t=1

kbt , (β−1
0 + n)−1

)
.

The updates for bt and σr,t require the following empirical
means and variances (c.f. (10), (11)): ēt = m−1

∑m
i=1 yt,i −

hi(xt), β1 =
∑m
i=1(yt,i−hi(xt)−ēt)2, β2 = n0m

n0+m
(µ0−ēt)2,

σ2
r,t|z1:n,x1:n, y1:n ∼ IG(α0 +m/2, β0 + β1/2 + β2/2),

bt|σ2
r,t, z1:n,x1:n, y1:n ∼ N (

n0µ0 +mēt

n0 +m
,

σ2
r,t

n0 +m
).

The Gibbs update for means and variances of the remaining
Gaussians of the MTT model of Sec. 4 follow similar update
formulae.
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