
Applying Provenance in APT Monitoring and Analysis
Practical Challenges for Scalable, Efficient and Trustworthy Distributed Provenance

Graeme Jenkinson
Lucian Carata

Nikilesh Balakrishnan
Thomas Bytheway
Ripduman Sohan

Robert N. M. Watson
University of Cambridge

firstname.lastname@cl.cam.ac.uk

Jonathan Anderson
Brian Kidney

Memorial University
firstname.lastname@mun.ca

Amanda Strnad
Arun Thomas
BAE Systems Inc

firstname.lastname@baesystems.com

George Neville-Neil
Neville-Neil Consulting

gnn@neville-neil.com

Abstract
Advanced Persistent Threats (APT) are a class of security
threats in which a well-resourced attacker targets a specific
individual or organisation with a predefined goal. This typi-
cally involves exfiltration of confidential material, although
increasingly attacks target the encryption or destruction of
mission critical data. With traditional prevention and detec-
tion mechanisms failing to stem the tide of such attacks,
there is a pressing need for new monitoring and analysis
tools that reduce both false-positive rates and the cognitive
burden on human analysts.

We propose that local and distributed provenance meta-
data can simplify and improve monitoring and analysis of
APTs by providing a single, authoritative sequence of events
that captures the context (and side effects) of potentially ma-
licious activities. Provenance metadata allows a human ana-
lyst to backtrack from detection of malicious activity to the
point of intrusion and, similarly, to work forward to fully
understand the consequences. Applying provenance to APT
monitoring and analysis introduces some significantly differ-
ent challenges and requirements in comparison to more tra-
ditional applications. Drawing from our experiences work-
ing with and adapting the OPUS (Observed Provenance in
User Space) system to an APT monitoring and analysis use
case, we introduce and discuss some of the key challenges
in this space. These preliminary observations are intended

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page.

TaPP 2017, June 22-23, 2017, Seattle, Washington.
Copyright remains with the owner/author(s).

to prime a discussion within the community about the de-
sign space for scalable, efficient and trustworthy distributed
provenance for scenarios that impose different constraints
from traditional provenance applications such as workflow
and data processing frameworks.

CCS Concepts • Information systems → Data prove-
nance; •Software and its engineering → Distributed
systems organizing principles; •Security and privacy
→ Distributed systems security

Keywords Advanced Persistent Threat, APT, provenance,
distributed systems, security

1. Introduction
The motivating use case for our work is security, specifically
forensic analysis and real-time monitoring of Advanced Per-
sistent Threats (APT). The term APT refers to a class of se-
curity threats where a well-resourced attacker (typically a
nation-state or criminal actor) targets a specific individual
or organisation with a predefined goal1. Frequently that goal
is the exfiltration of confidential material, although increas-
ingly attacks target the encryption or destruction of mission
critical data. APT-style attacks target enterprise IT Systems:
large-scale distributed systems consisting of heterogeneous
servers and end-user devices running diverse applications.

The intrusion kill-chain (Hutchins et al. 2011), which
models potential attack stages, is commonly employed to de-
fend against advanced persistent threats. In this paper we de-
scribe how provenance metadata might support monitoring
and analysis of APT-style attacks as an attacker progresses
through the stages of the intrusion kill-chain.

1 This is in contrast to traditional attacks where attackers seek to compro-
mise somebody, but do not particularly care who that is.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/83940183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The application of provenance to monitoring and analysis
of APT-style attacks introduces the provenance system to a
whole host of distributed system concerns. Consider, for ex-
ample, an analyst’s effort to understand both how an attack
took place, and the persisting impact of the attack – not just
within a single host, but across many hosts, some of which
are by definition in a compromised and untrustworthy state.
Collecting and querying provenance data to serve such anal-
yses requires that the provenance system address a number
of challenging issues, such as:

• How do we monitor provenance across a heterogeneous
set of machines with different applications running on
different operating systems (OSes)?

• How does the provenance system determine causal re-
lations between distributed events, for example whether
sensitive file data read from a file server via NFS is sent
over the wide-area network using HTTP?

• How do we scale the provenance system to handle in-
creasingly large volumes of data as more systems are
monitored at fine granularities?

• How can we provide security properties such as integrity,
authenticity and non-repudiation under the assumption
that the system is in a partial state of compromise?

• How can we balance competing goals of fault toler-
ance, performance, and security when implementing dis-
tributed tracing?

Provenance systems are frequently exposed to distributed
systems concerns, even when the sources of provenance
aren’t themselves distributed systems. For example, in de-
signing and developing OPUS (Observed Provenance in
User Space) (Balakrishnan et al. 2013), we have addressed
concerns ranging from the reliable collection and commu-
nication of provenance records, to the scalability of graph
databases. Drawing upon our experiences of designing,
developing and using OPUS this paper will present an
overview of the key challenges for provenance in monitoring
and analysing APTs.

2. Background
Detection and prevention of APT-style attacks has proven to
be particularly challenging, with attackers frequently main-
taining access to compromised systems over many months
or even years, while hiding their presence within normal
background activity. With traditional mechanisms proving
ineffective, defensive strategies have increasingly focused
on monitoring. When looked at in isolation, it is often diffi-
cult to determine whether a given event (commonly referred
to as an Observable), such as a HTTP connection to a spe-
cific host, is malicious or benign. Existing commercial ap-
proaches — referred to as Security Information and Event
Management (SIEM) systems — provide context to discrete
events by integrating security logs from across an enterprise

IT system. However, such solutions are notorious for high
false-positive rates and imposing a high cognitive burden
on human analysts. Further, tracking complex attacker be-
haviours within a single host, or over many hosts, is chal-
lenged by inconsistent trace behaviours on different systems,
poor log granularity within hosts, and lack of explicit data-
oriented linkage, requiring analysts to manually re-impose
causal semantics on traces. We believe that provenance may
be able to assist substantially with these problems.

In data-processing pipelines, provenance provides the
context for improving confidence in computed outcomes.
Likewise in security applications, we believe that the con-
text provided by provenance metadata could be used by an-
alysts in determining why a given event happened, and to
help distinguish background (expected) use of the system
from potential threat indicators.

For provenance to be effective, it must be captured at the
right level of abstraction for attacker operation. For exam-
ple, if the threat model assumes attacks that target a device’s
firmware or the System Management Mode (SMM), then an
in-kernel provenance system risks missing important events.
However, the same system will prove effective in identify-
ing attacks vectored through the compromised networked
applications. While surface behaviours resulting from spe-
cific exploits may vary significantly (e.g., system-call inter-
actions), many attacker behaviours are intrinsic to APT-style
attacks; examples of stable behaviour include: establishing
a Command and Control channel and lateral network move-
ment. The stability of these behaviours makes them particu-
larly well-suited to deriving potential indicators of compro-
mise. Provenance offers greater access to those intrinsic be-
haviours – for example; by allowing end-to-end information
flows to be tracked, regardless of their specific route or sys-
tem calls used to propagate the information.

In general, the attacker will seek to provide persistent
“hands on keyboard” access to the target network by es-
tablishing a Command and Control (C2) channel. Beacon-
ing (or calling home) over known C2 channels is frequently
monitored (by security mechanisms such as an Intrusion De-
tection System) as an indicator of compromise. Once such
an indicator of compromise is detected, there are commonly
two questions that security analysts seek to answer:

1. What happened prior to the indicator of compromise? For
example: What was the first point of entry? How did the
attacker successfully evade earlier attempts at detection?

2. What happened after the initial compromise? For exam-
ple: What further systems did the attacker access? Did
the attacker exfiltrate or delete confidential data?

Answering such questions is essential in order to both
improve the organisation’s defensive posture and return the
system into a trustworthy state.

During APT-style attacks, an attacker may move laterally
through the target network seeking to elevate their privileges.



Prior to undertaking lateral movement, attackers frequently
orientate themselves within the network by executing com-
mon system-administration tools such as ifconfig or nmap.
Port scanning is another commonly employed indicator of
compromise. Provenance can help backtrack the attackers
lateral movements through the network in order to identify
the privileges acquired and ensure that the attacker is denied
further access to the target network.

In addition to assisting analysis once an indicator of com-
promise is detected, provenance might also be used to de-
rive additional indicators of compromise. A security analyst
may query provenance metadata to determine uncommon or
unique behaviours across the enterprise IT system; for exam-
ple, unique or uncommonly written files. Similarly, prove-
nance may be able to directly identify potential malicious
outcomes, such as exfiltration of sensitive data. Thus prove-
nance metadata can, potentially, guide a detailed forensic
analysis in order to identify new indicators of compromise.

Using provenance to support analysis of APT-style at-
tacks faces many of the same challenges as its application to
grid computing and data processing workflows: dealing with
distributed activities and ensuring security properties such as
integrity and non-repudiation. The case for provenance in se-
curity has been made a number times before (Muniswamy-
Reddy et al. 2006), (Zhou et al. 2010) and (Tan et al. 2013).
However, our use case forces significant departures from
much existing research in this space:

1. APT indicators of compromise commonly span broad
system-level behaviours. Despite several existing prove-
nance system working at the system-level (for example,
(Muniswamy-Reddy et al. 2006) and (Gehani and Tariq
2012)), practical challenges remain, for example, provid-
ing efficient synchronization and naming primitives.

2. In contrast to monitoring provenance in a single appli-
cation (such as Hadoop (Akoush et al. 2013)) or appli-
cations within a single language runtime (such as Java),
system-level provenance systems generate significantly
higher volumes of data resulting in potentially significant
scalability challenges.

3. Monitoring provenance across a large enterprise IT en-
vironment exposes the provenance system to numerous
distributed system concerns, such as fault tolerance and
performance. These concerns are likely to be in tension
with existing approaches of provided security properties
such as non-repudiation and integrity (Hasan et al. 2009).

4. It should be assumed that the system is perpetually op-
erating in a state of partial compromise. Compromise of
the Trusted Computing Base (TCB) allows an attacker
to make progress whilst repudiating their actions. How
should provenance be analysed under such assumptions?

These challenges are discussed in more detail in the fol-
lowing section.

3. Practical challenges for provenance in
APT monitoring

In this section we outline the key practical challenges that
arise in the capture and analysis of provenance for the pur-
poses of monitoring APTs.

3.1 Granularity of provenance
Consider the strategies that an attacker might use for infiltra-
tion and setup of a C2 channel. Those should be part of the
threat model and inform how much detail is needed from the
provenance subsystem: is provenance needed for every byte
passing through a CPU? What about DMA transfers for disk
and network I/O? Fortunately, most indicators of compro-
mise will not be identified at such a low level but higher up
in the stack, due to the existence of stable behaviour in the
kill chain (delivery of malicious code to OS-facing files, C2
signaling from remote endpoints via OS-provided sockets).

Practical overhead and storage constraints will also dic-
tate a trade-off between the amount of detail captured and
perfect identification of low-level malicious behaviours.

At a minimum, the collected provenance should support
direct backward and forward queries starting from indicators
of compromise. This implies that the raw event log captured
has enough information to track where data in the indicators
comes from, and, once the intrusion point was detected, what
other parts of the system were affected. In most scenarios,
this also assumes the ability to query and reconcile events
recorded on multiple hosts.

3.1.1 Distributed commit logs
Commit logs (append-only, total-ordered sequences of records)
describe what happened and when (Souilah et al. 2009).
Logs are widely used in distributed systems to apply changes
in a consistent order or to replicate data. As a solution of
maintaining consistent views about a large system, they are
a data source from which provenance can be derived.

When used as part of an OS-level provenance capturing
system, records in the commit log are typically describing
changes in the state of kernel abstractions (processes, files,
sockets). Enough extra metadata regarding timing and net-
work communications is needed for reconstructing this state
at time points in the past, across multiple machines. For ex-
ample, this means an analyst should be able to get a consis-
tent view of what the process tree was on each machine in a
network or what sockets were active 2 days ago.

The challenge lies in integrating distributed commit logs
in a secure provenance capture solution: The infrastructure
needed to collect them is in itself a new distributed system.
Mandatory collection of provenance metadata brings this
system into the Trusted Computing Base (TCB)

3.1.2 Naming
Collecting fine grained records comes with the challenge of
naming things in a meaningful way: there is a disconnect



between the set of things an analyst can point to (packet
flagged by an intrusion detection system, a file path on an
NFS server) and the kernel-level abstractions identified in
the commit log (processes, files, sockets).

The naming of such kernel-level abstractions is more
problematic than it may first appear. For example, although
it is “natural” to identify files by their path, doing so exposes
the provenance system to subversion by attackers exploiting
the race conditions present in the construction of filesystem
paths. Like process IDs, paths are also insufficiently unique
and may refer to unrelated files at different points in time2.

The first part of a solution consists in providing unique
identifiers to every kernel-level object. For example, using
version 5 UUIDs with the namespace set to the type of object
being named. While this provides supportable semantics, it
does not necessarily provide useful semantics. For example,
this does not solve the reverse lookup problem: given an
object and a partial set of its properties (contents, path,
endpoint information), how does one find the names used
in the commit log to describe its different versions?

Costs incurred when creating unique identifiers should be
proportional to the overall cost of object creation (in both
time and space). Ephemeral objects such as IPC messages,
for example, must to incur minimal overheads. Fortunately,
these objects are confined within a single host and simpler,
locally unique identifiers should suffice. In contrast, files
require globally unique identifiers but they also amortise the
cost of identifier creation over a longer period.

3.1.3 Fault tolerance
Failures are an inevitable port of ordinary system operation:
application or system overload, reboots for maintenance, full
disks, disk failures, kernel crashes, network outages, server
reboots, and other disruptions must be tolerated by a dis-
tributed provenance system. Further, attackers may them-
selves go to substantial lengths to induce failure modes not
just in the services provided directly by a system, but also its
security monitoring and potential provenance capture, which
must tolerate both non-malicious and malicious faults.

System-level provenance captures how the state of kernel-
level abstractions change over time, for example, recording
that process P1 has forked process P2. As the kernel has
limited capacity to store an unbounded stream of records,
provenance must be periodically sent to upstream consumers
for either longer-term storage and/or further processing.

In the event of network failures or crashes, responsibil-
ity for ensuring the durability of provenance records should
be limited to a single entity (the OS kernel). Similarly on
recovery, it is the kernel that needs to ensure any locally
stored provenance is transmitted while retaining its integrity
and completeness. Inevitable tradeoffs between performance
(achieved through asynchrony) and fault tolerance (reliant

2 This is also true for inode numbers used by the filesystem to identify a
file on disk.

on synchrony) arise. This very much mirrors the problems
encountered in databases as they try to maintain ACID prop-
erties, but now placed in an adversarial context.

3.1.4 Trust in provenance
Our confidence in this provenance is dependent on the prove-
nance system’s ability to answer the following questions:

1. Who created this proposition? And when was the propo-
sition created?

2. Is the creator of this proposition trusted and, more impor-
tantly, are they trustworthy?

3. Does the truth of this proposition depend on any other
propositions? If so what?

4. As further propositions become available, how does they
change our conclusions – especially as we learn retro-
spectively that provenance sources were compromised?

Provenance-of-provenance allows determining the origin
and validity of knowledge expressed within the provenance
system. For example, the provenance system may record that
a process P1 created file f1. System-level provenance can be
captured using a variety of techniques, each having different
implications for our confidence in that metadata:

Userspace - provenance captured in userspace (for exam-
ple, through interposition of library calls (Balakrishnan et al.
2013)) is essentially a discretionary form of provenance
monitoring. Although end-to-end encryption can be used to
ensure the integrity and authenticity of provenance records,
an attacker can repudiate their actions (by simply bypassing
the provenance monitoring).

In-kernel - capturing provenance within the Trusted Com-
puting Base (TCB) of the system enforces mandatory prove-
nance monitoring (actions can only be repudiated by com-
promising the TCB). Enabling and disabling provenance
monitoring (and copying provenance records from the ker-
nel into userspace) typically requires OS privilege (that is,
root access). Increasingly security primitives such as TLS
are finding application in kernel-space (for example, in or-
der to provide zero-copy semantics for webservers (Stew-
art et al. 2015)). Leveraging such mechanisms supports se-
curing provenance records without further intervention from
userspace components.

Below Ring 0 - hardware primitives can potentially sup-
port provenance capture in a number of ways. Trusted Com-
puting primitives such as Intel SGX (Software Guard Exten-
sions) can be used provide stronger non-repudiation (even
in the presence of a compromised OS). And new hardware
primitives could directly support provenance capture, for ex-
ample providing an append only log for use by the kernel to
store provenance records prior to sending over a network.



3.2 Provenance analysis
Once the primary data is captured, storing and post-processing
it into a format suitable for analysis and query becomes im-
portant. From a high level perspective, this amounts to taking
the sequence of low-level records in the log and transform-
ing them into a provenance graph, in accordance to known
semantics. From our perspective, this transformation should
be governed by a model such as PVM (Balakrishnan et al.
2013), that formalizes the ways in which an existing graph is
modified by each system-level event. For example, if a pro-
cess forks and then the child writes to a file, the model needs
to account for the fact that what is written may be influenced
by what the parent read from other files (due to the shared
pieces of state between related processes). Those elements
have a clear influence on how the provenance graph looks,
but are not explicitly present in the kernel event stream.

The model thus also provides guidance about how nodes
and relationships in the graph should be interpreted from
the perspective of somebody performing queries: a simple
model might lead to lots of false-positive relationships in the
graph (due to the n-by-m problem (Carata et al. 2014)); a
more complex one could take into account data from taint-
tracking or static analysis sources to provide more accurate
descriptions while incurring larger overheads.

3.2.1 Provenance views
While the full provenance graph is a valuable output in
terms of linking a large number of entities (files, processes,
sockets) in a coherent manner, a number of other restricted
views of the system can be constructed, either on the fly (i.e
the process tree) or maintained as abstracted views given
specific requirements (an abstracted view of the provenance
graph where host-level details are de-emphasized but inter-
host communication is summarized).

Such views are important in a distributed context: dif-
ferent hosts could hold different parts of the overall prove-
nance graph, with others managing abstracted views that al-
low for hierarchical distributed queries (effectively indexing
the available data) or for summary views created in order to
facilitate specific tasks (identifying intrusion points, leaked
pieces of information or lateral attacker movements). As an
example, a view containing nodes representing hosts along-
side limited metadata (process trees), and edges showing
inter-host network communications can be used to efficiently
query subsets of the graph when looking at how an attacker
got from an entry point to a host containing target data.

Given the potential of the graph data to occupy signifi-
cant disk space and other resources, parts of it could also be
removed or stored at a coarser granularity. Depending on op-
erational demands, the missing parts may be recreated from
the original event stream as needed (if that is kept in com-
pressed format). Typical log storage and rotation options,
with fidelity decreasing for older data after analysis has not
revealed any interesting activity, could also be applied.

3.2.2 Scalability
One of the main scalability challenges when considering raw
event data transformation into provenance graphs is the way
the model (in our case, PVM) manages to keep changes to
the graph local: this would imply the ability of applying
at least some of the events out-of-order, which allows for
parallel processing. Processing the kernel-level events in real
time poses its own challenges: our experience with using
existing graph databases (like Neo4J) for provenance graphs
has shown problems regarding data ingestion rates, as well
as huge size amplification and memory consumption issues.

As an example, we present a 3GB kernel-level trace col-
lected on a single host over 3 days. It contains 5.5 mil-
lion events, and we are treating this as one of the smaller
traces that we would like to process. Transforming this data
into a Neo4J provenance graph in accordance to the ini-
tial PVM model leads to a 11GB database with 30 million
nodes and 190 million edges. The process also requires more
than 30GB of RAM. This single machine case is relevant as
we want to maintain proportionality when moving to a dis-
tributed setting: each host should be able to keep up with
processing its own events. It thus became clear that moving
to a distributed system will require a significant rethinking of
the overall data ingestion architecture, as well as strategies
for coping with a workload that is both read and write-heavy
(in graphs, adding a new node involves at least a read to find
the location of a parent).

Beyond database optimisations, delaying the construction
of the full graph and preferring to compute just of some of
its views from the kernel event stream represents one of the
possible solutions.

3.2.3 Pluggable versioning models
The use of unique identifiers (UUIDs) during monitoring
simplifies provenance analysis. However, as unique identi-
fiers lack any meaningful semantics about the object they
identify (pure names in distributed-systems terminology)
they are difficult for analysts to reason about. This is why
the provenance system itself shouldn’t be constrained to the
identifiers obtained from the OS but be able to derive its own,
akin to composite keys in database tables: the UUID coming
from the kernel becomes just one attribute through which ob-
jects in the provenance graph can be referred to. Others are
possible: path names, uuids generated by the model (PVM),
hashes of file contents, etc.

When considered as a composite key, the set of object
identifier attributes would allow end-users to define their
own views on “what a new version means” or “what does
uniques or equality mean”. Similarly, this scheme allows for
scenarios where a named entity is “equivalent” in some sense
to another: perhaps it is a handle which represents the entity
on the local host (NFS handles) or the relation between a
socket and associated kernel-side buffers.



3.2.4 Dynamic trust in provenance
Knowledge involves belief, that is, an attitude that a sub-
ject holds towards a proposition. Belief is rarely static, and
is influenced by evidence. Our belief in a given result may
change over time as we determine that the evidence support-
ing the data is drawn into question. Unlike conventional uses
of provenance, collecting provenance for security analyses
must account for the presence of an active attacker. This at-
tacker may seek to subvert the provenance monitoring sys-
tem in order to disguise their attack. When the attacker’s
actions come to light, conclusions drawn from provenance
(which was trusted but untrustworthy) may be invalid. The
provenance system should support analysts in understanding
the implications of changes in confidence in provenance.

4. Conclusions and further work
Using provenance metadata for APT monitoring and anal-
ysis is particularly challenging due to the number and va-
riety of different applications, language runtimes and OSes
that must be monitored. Provenance metadata must be cap-
tured at the same granularity as the attacker behaviour being
monitored, so-called indicators of compromise. Typically
indicators of compromise express system-level behaviours
such as writing to a file or opening a connection to a re-
mote host. System-level provenance closely matches the use
case’s requirements for providing broad view of the sys-
tem behaviour without modifying applications, however the
sheer volume of system-level metadata brings significant
challenges for scalability.

Monitoring and analysis of distributed system-level prove-
nance systems introduces significant practical challenges.
Whilst many of these draw on existing distributed system
concepts, existing open source implementations are fre-
quently designed by Internet-scale business and rarely match
the specific requirements of a distributed provenance system.
Monitoring and analysis of system-level provenance analy-
sis can be simplified through changes to the OS, for example
the addition of unique identifiers to kernel-level abstractions.
For these such changes to be acceptable to kernel developers,
they need to be efficient and proportional to object creation
costs (in both time and space).

As part of our work on the CADETS (Causal, Adaptive,
Distributed and Efficient Tracing) we will continue adapting
the OPUS system to an APT monitoring and analysis use
case. As we implement the ideas presented in this paper we
expect to further refine our ideas about the design space for
provenance in modern, large-scale distributed systems.

Acknowledgments
This work is part of the CADETS Project sponsored by the
Defense Advanced Research Projects Agency (DARPA) and
the Air Force Research Laboratory (AFRL), under contract
FA8650-15-C-7558. The views, opinions, and/or findings
contained in this paper are those of the authors and should

not be interpreted as representing the official views or poli-
cies, either expressed or implied, of the Department of De-
fense or the U.S. Government.

References
S. Akoush, R. Sohan, and A. Hopper. Hadoopprov: To-

wards provenance as a first class citizen in mapreduce. In
Presented as part of the 5th USENIX Workshop on the
Theory and Practice of Provenance, Lombard, IL, 2013.
USENIX. URL https://www.usenix.org/conference/

tapp13/hadoopprov-towards-provenance-first-

class-citizen-mapreduce.

N. Balakrishnan, T. Bytheway, R. Sohan, and A. Hopper. Opus: A
lightweight system for observational provenance in user space.
In TaPP, 2013.

L. Carata, S. Akoush, N. Balakrishnan, T. Bytheway, R. So-
han, M. Seltzer, and A. Hopper. A primer on provenance.
Queue, 12(3):10:10–10:23, Mar. 2014. ISSN 1542-7730. doi:
10.1145/2602649.2602651. URL http://doi.acm.org/10.

1145/2602649.2602651.

A. Gehani and D. Tariq. Spade: support for provenance auditing
in distributed environments. In Proceedings of the 13th Interna-
tional Middleware Conference, pages 101–120. Springer-Verlag
New York, Inc., 2012.

R. Hasan, R. Sion, and M. Winslett. The case of the fake picasso:
Preventing history forgery with secure provenance. In Procced-
ings of the 7th Conference on File and Storage Technologies,
FAST ’09, pages 1–14, Berkeley, CA, USA, 2009. USENIX
Association. URL http://dl.acm.org/citation.cfm?id=

1525908.1525909.

E. M. Hutchins, M. J. Cloppert, and R. M. Amin. Intelligence-
driven computer network defense informed by analysis of ad-
versary campaigns and intrusion kill chains. Leading Issues in
Information Warfare & Security Research, 1:80, 2011.

K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and
M. Seltzer. Provenance-aware storage systems. In Proceed-
ings of the Annual Conference on USENIX ’06 Annual Technical
Conference, ATEC ’06, pages 4–4, Berkeley, CA, USA, 2006.
USENIX Association. URL http://dl.acm.org/citation.

cfm?id=1267359.1267363.

I. Souilah, A. Francalanza, and V. Sassone. A formal model of
provenance in distributed systems. In First workshop on on The-
ory and practice of provenance, page 1. USENIX Association,
2009.

R. Stewart, J.-M. Gurney, and S. Long. Optimizing tls for high–
bandwidth applications in freebsd, 2015.

Y. S. Tan, R. K. Ko, and G. Holmes. Security and data accountabil-
ity in distributed systems: A provenance survey. In High Per-
formance Computing and Communications & 2013 IEEE Inter-
national Conference on Embedded and Ubiquitous Computing
(HPCC EUC), 2013 IEEE 10th International Conference on,
pages 1571–1578. IEEE, 2013.

W. Zhou, A. Haeberlen, B. T. Loo, and M. Sherr. Tracking adver-
sarial behavior in distributed systems with secure network prove-
nance. 2010.

https://www.usenix.org/conference/tapp13/hadoopprov-towards-provenance-first-class-citizen-mapreduce
https://www.usenix.org/conference/tapp13/hadoopprov-towards-provenance-first-class-citizen-mapreduce
https://www.usenix.org/conference/tapp13/hadoopprov-towards-provenance-first-class-citizen-mapreduce
http://doi.acm.org/10.1145/2602649.2602651
http://doi.acm.org/10.1145/2602649.2602651
http://dl.acm.org/citation.cfm?id=1525908.1525909
http://dl.acm.org/citation.cfm?id=1525908.1525909
http://dl.acm.org/citation.cfm?id=1267359.1267363
http://dl.acm.org/citation.cfm?id=1267359.1267363

	Introduction
	Background
	Practical challenges for provenance in APT monitoring
	Granularity of provenance
	Distributed commit logs
	Naming
	Fault tolerance
	Trust in provenance

	Provenance analysis
	Provenance views
	Scalability
	Pluggable versioning models
	Dynamic trust in provenance


	Conclusions and further work

