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Abstract 

A new early tetrapod, Mesanerpeton woodi gen. et sp. nov., collected by Stanley 

Wood from the Ballagan Formation, Tournaisian CM palynozone, at Willie’s Hole, 

Scottish Borders, is described. It includes vertebrae like those of Crassigyrinus with 

poorly developed neural arches, a well ossified ulna with a large olecranon, and a 

humerus that is structurally intermediate between the pleisiomorphic condition of 

Devonian taxa and that of all later forms. A comparative analysis of this new material 

and other tetrapodomorph humeri revealed how an increase in humeral torsion 

transformed the course of the brachial artery and median nerve through the bone, from 

an entirely ventral path to one in which the blood vessel and nerve passed through the 

entepicondyle from the dorsal to the ventral surface.  Increasing humeral torsion is 

suggested to improve walking in early tetrapods by potentially contributing to an 

increase in stride length, and is one of a number of changes to limb morphology during 

the early Carboniferous that led to the development of terrestrial locomotion. 
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Introduction 

The development of limbs from fins was a defining stage in the evolution of 

tetrapods (Clack 2012). The earliest limbs with digits are thought to have been used to 

facilitate underwater bottom walking (Coates & Clack 1995), but the critical next step 

was their use in terrestrial locomotion. Although improved understanding of limb 

development in both extant and many fossil tetrapods (Shubin & Alberch 1986; 

Wagner & Larrson 2007; Callier et al. 2009), and a greater knowledge of limb structure 

in Devonian tetrapods (Lebedev & Coates 1995; Coates 1996; Jarvik 1996; Ahlberg 

2011; Pierce et al. 2012) have provided new insight into limb development, the 

evolution of limbs enabling tetrapods to use quadrupedal gaits on land is still poorly 

understood (Nyakatura et al. 2013; Pierce et al. 2013).  

Here we name and describe new material from the early Carboniferous of the 

Scottish Borders collected by Stanley Wood that reveals an early adaptation for 

walking. It forms part of a rich assemblage of early tetrapods discovered recently in 

rocks dating from Romer’s Gap (Coates & Clack 1995), an apparent hiatus in the fossil 

record, which lasted for up to 20 my following the end-Devonian extinction. It was 

previously characterised by a paucity of tetrapod fossils, which has now been shown 

by Wood and others to be the result of collection failure (Smithson et al. 2012; Clack et 

al. 2016).  The new material includes a humerus structurally intermediate between the 

plesiomorphic tetrapod condition found in Devonian tetrapodomorph fishes and the 

tetrapod Acanthostega (Coates 1996) and that seen in the humeri of more derived 

tetrapods from the later Carboniferous, which was carried forward into modern forms. 

Our new data document one of the earliest modifications of the forelimb in its 
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adaptation for terrestrial walking. Combined with data from fossil tetrapodomorph 

fishes, later Palaeozoic tetrapods, and extant taxa, we show how increasing the angle 

of humeral torsion not only transformed the course of the brachial artery and median 

nerve through the bone, but also potentially improved walking in early tetrapods by 

contributing to an increase in stride length. 

1. Material and methods 

The material comprises a right clavicle, humerus and ulna, with a neural arch, 

centrum and rib, preserved on a single block of matrix, National Museums Scotland 

(NMS) G 2012.39.13 (Fig. 1).  It was collected from Bed 3 at Willie’s Hole, near 

Chirnside, Scottish Borders, in the Ballagan Formation, dated as Tournaisian, CM 

palynozone (Smithson et al. 2012; Clack et al. 2016). Bed 3 is a laminated micaceous 

grey siltstone with abundant plant remains, exposed near the base of c 1 m thick 

sequence containing three distinct fossiliferous horizons (see Ross et al. this volume 

figure 4, for a detailed stratigraphic log). The associated fauna includes lungfish, 

actinopterygians, crustaceans and myriapods. An isolated left ilium NMS G 

2012.39.138, the only other tetrapod element recovered from this horizon, is tentatively 

referred to this new species.  

The humerus was removed from the block using a dental mallet and mounted 

needles. A small portion of the ectepicondyle remains in the matrix, and the proximal 

posterior edge of the bone and the latissimus dorsi process were damaged slightly 

during the original collection, but otherwise the bone is intact. The fibula and right side 

of a neural arch had originally been prepared from the matrix by Mr Wood and then 

glued back in place.  This glue was softened with acetone and the bones removed 

from the block.  The humerus has been compressed slightly, constricting the foramen 
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for the brachial artery and median nerve, but otherwise there is no other evidence of 

significant post mortem crushing on any of the bones.  

 

 

Figure 1 here 

 

 

2. Systematic palaeontology 

Zoobank reference   to be added  

Genus.   Mesanerpeton woodi gen.et sp. nov. 

Derivation of name. From  μεσαίος  mesaios, intermediary,  and ερπετό, erpeto, 

crawler, referring to the intermediate condition of the humerus  

Species.   woodi sp. nov. 

Derivation of the name. In honour of Stanley Wood who discovered the tetrapod 

fauna at Willie’s Hole and collected the material. 

Type specimen. NMS G 2012.39.13 right clavicle, humerus and ulna, with a neural 

arch, centrum and rib, preserved on a single block of matrix. 

Type horizon and locality. Laminated micaceous grey siltstone (Bed 3) at Willie’s 

Hole, near Chirnside, Scottish Borders, in the Ballagan Formation, dated as 

Tournaisian, CM palynozone (Smithson et al. 2012).  

Diagnosis: neural arch consists of separate bilateral halves lacking clear 

zygapophyses, humerus with low angle of torsion, a prepectoral space between the 

proximal head and deltopectoral crest and a foramen for the brachial artery and 

median nerve which pierces the posterior edge at the base of the entepicondyle, 

ulna with well-developed olecranon and pronounced lateral keel.  
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Referred specimen. Left ilium NMS G 2012.39.138. 

3. Description 

3.1. Axial skeleton 

The axial skeleton is represented by the two bilateral halves of a neural arch, 

a centrum and a rib (Fig. 1). The left side of the neural arch has been freed from the 

matrix (Fig. 2 A-C) but the other elements remain attached to the block. 

3.1.1. Centrum 

The centrum is preserved in dorsal view. It is a gently curved strap of 

unfinished bone, 6 mm long in the midline, tapering to 3 mm long at the lateral ends 

and 10 mm in diameter. One face is straight while the other bulges outwards to 

create the extra length in the middle. The centrum presumably formed a thin bony 

sheath around the ventral half of the notochord. None of the external surface is 

visible and the areas of articulation with the neural arch are ill-defined.  

3.1.2. Neural arch 

The description is based on the left side of the neural arch (Fig. 2). This is half 

of a bilateral pair which are unfused along the midline. The neural arch most closely 

resembles those of Crassigyrinus (Panchen 1985; Panchen & Smithson 1990). The 

zygapophyses are poorly developed and, as in Crassigyrinus, it is difficult to 

determine which are the prezygapophyses and which are the postzygapophyses 

(see discussion in Panchen & Smithson 1990, p39). Here, the kidney-shaped 

process, in anterior view,  that projects slightly from the edge of the arch is 

interpreted as the prezygapophysis, and the recess on the inner surface of the arch, 

which receives it, is interpreted as the postzygapophysis (Fig. 2). This is consistent 

with Panchen’s interpretation of Crassigyrinus (1985; Panchen & Smithson 1990) 

where the projecting process was also considered to be the prezygapophysis.  
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Figure 2 here 

 

 The left half is almost complete, missing only the dorsal part of the neural 

spine. It is lightly built and lacks the buttressing of the zygapophyses. The transverse 

process is more clearly defined than those figured from Crassigyrinus and projects 

laterally from the anteroventral edge of the arch. The articulation for the rib is tall and 

narrow, extending from a position level with the ventral edge of the 

postzygapophysis down to the base of the arch. The postzygapophysis is an 

unfinished area on the internal surface of the arch’s posterior edge and is only visible 

in posterior view. It is bounded laterally by a fine, gently curved ridge, which has the 

same contour as the lateral edge of the prezygapophysis.  This process projects 

slightly from the arch’s anterior edge. The unfinished articulating surface is kidney-

shaped with a convex lateral edge and a concave medial edge.  

Inspection of the neural arches of Crassigyrinus described by Panchen (1985) 

revealed that undamaged specimens had a similar morphology. The 

prezygapophysis of neural arch 17 has a convex lateral edge and a concave medial 

edge. It has an unfinished surface that is raised slightly above the smooth lateral 

surface of the arch. The postzygapophysis is a gently curved unfinished area on the 

internal surface of the posterior edge.  In neural arch 14 (Panchen 1985, figure 17g, 

18b), the prezygapophysis on the left is damaged and has been slightly over-

emphasised in the reconstruction. The postzygapophysis is similar to that of neural 

arch 17. In the vertebra associated with the hind limb material of Crassigyrinus 

described by Panchen & Smithson (1990, figure 8d-f)), the morphology of the arch is 

the same but the zygapophyses are mislabelled. The posterior view of the neural 
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arch is mislabelled as anterior view and the unfinished area on its internal surface of 

the arch is mislabelled as prezygapophysis.  

3.1.3. Rib 

 The double headed rib is 53 mm long. Overall, it is nearly straight, but with a 

slight dorsal curvature (Fig. 1). The proximal end is flat and the two rib heads are 

adjacent.   

3.2. Appendicular skeleton 

 The appendicular skeleton is represented by a right clavicle, humerus and 

ulna, preserved together on the same block with the vertebral elements and rib, and 

a left ilium. These two specimens are the only tetrapod postcranial remains collected 

from Bed 3 at Willie’s Hole.  They are most likely to be from the same animal, but it is 

possible that the ilium is from a different individual and taxon.  However, given that 

the ilium is of a size expected in an animal with fore limb bones of the size found on 

NMS G 2012.35.13, it is described alongside the other material of Mesanerpeton.    

3.2.1. Clavicle 

 The clavicle is preserved in internal (dorsal) view (Fig. 1). It has a flat, 

triangular-shaped clavicular blade and thickened clavicular stem. The blade is 

approximately 50 mm long with a maximum width of 25 mm and has similar 

proportions to the clavicles attributed to Doragnathus (Smithson & Clack 2013).  

Although the blade lacks the dorsal ridge seen in Doragnathus, which was thought to 

have strengthened the union with the interclavicle, it does bear a number of ridges 

and grooves along the long axis of the posterior half of the blade which probably 

served the same purpose. The clavicular stem projects dorsally at an angle of about 

40 degrees. On its posterior edge is a thin curved lamina of bone that probably 

received the ventral half of the cleithrum.   
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3.2.2. Humerus 

The humerus of Mesanerpeton (Fig. 3) has the characteristic L-shape of early 

tetrapods with a broad proximal articulation and large rectangular entepicondyle.  It 

is 55 mm long. The bone is twisted midway along its shaft and the angle of torsion 

between the proximal and distal articulations is c. 25 degrees. The insertions of the 

principal locomotory muscles from the pectoral girdle to the proximal end of the 

humerus are well developed.   

The proximal posterior edge is slightly concave.  Despite the slight damage in 

this area, there is no evidence of the pre-entepicondylar ridge found in 

Acanthostega. The foramen for the brachial artery and median nerve pierces the 

edge of the bone at the junction where the proximal posterior edge of the humerus 

meets the medial edge of the entepicondyle. It is clearly visible in posterior view but, 

unlike in the humeri of other Carboniferous tetrapods, where the foramen pierces the 

body of the entepicondyle, the entrance is not visible in dorsal view.  The exit is 

conspicuous in the centre of the ventral surface of the entepicondyle.  In the area 

immediately distal to the ventral edge of the humeral head is a shallow depression 

marking the insertion of the coracobrachialis muscle 

 

Figure 3 here 

 

On the dorsal surface is a prominent ectepicondyle.  This starts as a low 

swelling in front of the entrance of the entepicondylar foramen and extends 

anterodistally as a dorsally curved, gently rounded ridge.  It terminates immediately 

before the distal edge of the humerus, between the radial and ulna condyles.  In the 

centre of the humerus, midway between the proximal articulation and the start of the 
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ectepicondyle, is a low ridge which formed the insertion of the latissimus dorsi.  It 

may have terminated proximally in a distinct process, but the bone is slightly 

damaged in this area and the height of the ridge is uncertain.   

The well preserved anterior edge on the humerus shows the insertions of the 

deltoideus and pectoralis muscles very clearly.  They form a swelling on the proximal 

third of the anterior edge, the deltopectoral crest.  Each insertion is a slightly 

excavated area of unfinished bone almost triangular in outline.  The pectoralis 

insertion lies proximal to that for the deltoideus and is visible in both anterior and 

ventral views.  In contrast, the deltoideus insertion is only visible in anterior view.  

Lying between the pectoral insertion and the proximal head of the humerus is a deep 

recess, the prepectoral space.  Its ventral margin forms the ventral edge of the 

humerus but its dorsal edge curves towards the latissimus dorsi process so that the 

space is visible in both anterior and dorsal views.  In tetrapods the prepectoral space 

has only previously been described in Ichthyostega (Jarvik 1996; Callier et al. 2009).  

In tetrapodamorph fishes this space is a large area on the proximal part of the 

anterior surface of the humerus, between the dorsal and ventral edges. It appears to 

have been lost as the dorsal and ventral edges came together uniting the widely 

separated deltoid process on the dorsal edge and the pectoral process on the ventral 

edge to form the tetrapod apomorphy the deltopectoral crest. 

On the ventral surface, extending from the pectoralis insertion to the 

anteroproximal edge of the entepicondyle, is a low, poorly differentiated ventral 

ridge.  The distal slope of the pectoralis articulation is scarred by shallow grooves 

which mark the origin of the brachialis muscle.  An oval-shaped swelling on the 

anterior edge of the humerus distal to the deltoid articulation marks the origin of the 

supinator muscle.  This area of unfinished bone lies proximal to the exit of the 
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entepicondylar foramen, as it does in Eoherpeton (Smithson 1985), in contrast to 

Acanthostega (see below) where the supinator process lies distal to the foramen.  

The anterior edge terminates with the radial condyle. It is an oval-shaped, unfinished 

area that is raised in the centre and is partially visible in ventral view. The ulnar 

condyle is an oval-shaped recess with a pronounced dorsal lip, lying partially below 

the distal end of the ectepicondyle, and is only visible in distal view. 

3.2.3. Ulna 

The ulna of Mesanerpeton (Fig. 4) is a short rod 30 mm long, expanded 

proximally to form a relatively large area of articulation with the humerus, and 

tapered distally to form a small area of articulation with the carpus.  When compared 

with the length of the humerus, it is relatively longer than the ulnae of the Devonian 

taxa Acanthostega (Coates,1996), Ichthyostega (Jarvik 1996) and Tulerpeton 

(Lebedev & Coates 1995), and instead is similar to the ulna of Archeria (Romer 

1957). 

 

Figure 4 here 

 

Unlike in many early tetrapods, the olecranon is well ossified and it makes up 

approximately one-third of the length of the ulna. It fully surrounds the articulation 

with the humerus. It is tear drop-shaped in medial view (Fig. 4c), with a narrow 

proximal rim and wide distal lip. Its dorsal (flexor) surface is embayed laterally to 

expose the articulating surface, but it is concealed ventrally (cf Fig 4 b, d). The ulnae 

of Archeria (Romer 1957 figure 5) and Proterogyrinus (Holmes 1980 figure 7) are 

similar in this regard, in contrast to Eryops (Pawley & Warren 2006 figure 7) where 

the area of articulation is essentially only visible in medial view. In amniotes, both the 
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dorsal and ventral surfaces are embayed to produce the sigmoid notch that 

articulates with the trochlea on the humerus (Romer 1956).  

The lateral edge of the ulna is essentially straight and bears a strong ridge, 

the lateral keel, along its length which separated the extensor and flexor 

musculature. The medial edge below the distal lip of the humeral articulation is also 

mainly straight before curving medially immediately above the distal articulating 

surface. It also bears a sinuous ridge along much of its length.  

The distal end is very narrow. It is approximately half as wide as the proximal 

end in both lateromedial and dorsovental views. It bears two articulating surfaces of 

similar size, set at an angle of 120 degrees to each other, for the intermedium and 

ulnare. 

3.2.4. Ilium 

 The left ilium attributed to Mesanerpeton (Fig. 5) is a robust, well ossified, 

biramus bone, with an iliac blade and post iliac process dorsally and a long suture 

with the puboischiadic plate ventrally. In between, the waist is relatively thick.  

The iliac blade and post iliac process are slightly off set (Fig. 5C). The iliac blade 

occupies a more medial position and the dorsal edge of the post iliac process forms 

a continuation of the anterior edge of the ilium, as it extends upwards and backwards 

above the acetabulum. When the ventral edge of the ilium is orientated horizontally, 

as in Fig. 5, the post iliac process projects gently posterodorsally and the iliac blade 

extends slightly above it. The post iliac process tapers to a thin blade posteriorly, 

with a sharp edge ventrally. Its posterior tip is unfinished and it probably continued in 

cartilage in life. The dorsal portion of the medial surface of the iliac blade is roughly 

textured probably marking its connection with the sacral rib. A faint transverse line 

extends across the lateral surface of the ilium between the top of the acetabulum 
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and the dorsal edge of the post iliac process. It is less prominent than in 

Acanthostega (Coates 1996) and Eoherpeton (Smithson 1985).  

The ventral portion of the ilium is well ossified and formed the dorsal half of the 

acetabulum.  The anterior tip of the ventral edge is broken and a small area is 

missing. We estimate the suture between the ilium and the pubo-ischiadic plate was 

34 mm long. The acetabulum occupies approximately 80% of its length. There is a 

well-developed supra-acetabular buttress in the anterior half of the acetabulum and a 

relatively deep supra-acetabular notch above the posterior half. As in Acanthostega 

(Coates 1996, page 389), the buttress lies far forward, in front of the iliac blade, and 

thus in front of the sacrum. On the mesial surface below the waist, a faint ridge 

extends ventrally down the centre the ilium dividing it into anterior and posterior 

halves. A faint ridge occupies a similar position on the Blue Beach pelvis described 

by Anderson et al. (2015, figure 13A). It is more prominent in Archeria (Romer 1957 

figure 3) where it continues on to the pubis. 

A small portion of the pubis is preserved in NMS G 2012.39.138 below the ilium 

(Fig. 5). The anterior edge was broken during collection but the other incomplete 

edges appear to have been eroded prior to preservation. The ventral part of the 

acetabulum is preserved in lateral view and the pubo- iliac suture is marked on the 

medial surface by a slight depression along its length. This surface is rough and 

appears to lack the complete periosteal covering found on the ilium. 

 

Figure 5 here 

 

4. Discussion 
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Our description of the humerus of Mesanerpeton prompted a re-examination 

and reinterpretation of the humerus of Acanthostega, based on Geological Museum, 

Copenhagan, MGUH 29020 (Fig. 6) and further preparation of the left humerus MGUH 

29019. In Coates (1996) the entry point for the brachial foramen was shown in both 

dorsal and ventral views of the humerus (Coates 1996, figure 16C, D). However, 

examination of MGUH 29020 shows that it lies on the ventral surface, close to, but not 

on, the edge of the entepicondyle. It is not visible in dorsal view, but penetrates the 

ventral aspect of the thickened edge of the entepicondyle, described by Callier et al. 

(2009) as part of the distal portion of the ventral ridge. The posterior edge of the 

humeral head is essentially straight, here labelled the pre-entepicondylar ridge, and 

lacks the sigmoid curvature of the humeri of most stem tetrapods which is also seen in 

Mesanerpeton (cf Fig. 5 and 6). The indentation at the inception of the entepicondyle 

shown by Coates (1996, figure 16C, D), results from damage to MGUH 29019 in that 

area. It is not present in MGUH 29020 

 

Figure 6 here 

 

4.1. Humerus evolution 

New information on the morphology of the Acanthostega humerus and the 

discovery of Mesanerpeton allows us to reassess the early evolution of the tetrapod 

humerus and forelimb.  

 In Devonian tetrapodomorph fishes such as Tiktaalik (Shubin et al. 2006) and 

Gogonasus (Holland 2013), the course of the brachial artery and median nerve was 

entirely ventral and they passed through the ventral ridge. The vessels follow the same 

course in Acanthostega, and this probably represents the pleisiomorphic tetrapod 
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condition. Most living amniotes and most stem tetrapods show the condition in which 

the brachial artery and median nerve passed from the dorsal (or anterior) to the ventral 

(or posterior) surface of the entepicondyle (eg Gregory 1949; Landry 1958; Smithson 

1985; Godfrey 1989; Lombard & Bolt 1995; Clack & Finney 2005; Saber 2013; Bishop 

2014). Mesanerpeton represents an intermediate condition in which the vessels 

passed into the humerus through the posterior edge of the entepicondyle, between the 

ventral and dorsal faces of the bone. The same intermediate condition is present in the 

humerus of Ossirarus (Clack et al. 2016). This is a small, unrelated tetrapod with 

gastrocentrous vertebrae and well-ossified neural arches. It was collected from a 

horizon in the Ballagan Formation at Burnmouth which is slightly younger than the 

beds exposed at Willie’s Hole (Clack et al. 2016), and will be described by the authors 

in due course.  

This list of tetrapodomorph fishes, stem tetrapods and amniotes should not be 

regarded as a temporal or phylogenetic sequence, as some Devonian tetrapods also 

show the typical tetrapod condition with a dorsal point of entry.  These include material 

attributed by Callier et al. (2009) to Acanthostega (UMZC T.1295) and the scanned 

and rendered material of Ichthyostega (MGUH 29017a) (Callier et al. 2009).  

Tulerpeton (Lebedev & Coates 1995) may also have the typical tetrapod condition 

although the humerus is damaged in the critical area. These observations do not help 

resolve the identity of the Red Hill humerus, ANSP 21350 (Shubin et al. 2004; Ruta & 

Wills 2016). This humerus, thought to be that of a tetrapod (Shubin et al. 2004; 

Ahlberg 2011), shows little torsion and is pierced by a number of different foramina, 

but the course of the brachial artery and median nerve through the bone is uncertain. 
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The change of course of the brachial artery and median nerve through the 

humerus is brought about by humeral torsion. During evolution, twisting of the distal 

half of the humerus relative to the proximal half appears to have brought the bone 

across the path of the vessels and changed their positional relationship. Primitively, in 

a humerus with little or no torsion, the vessels ran under the bone and passed through 

the ventral ridge. Humeral torsion depressed the entepicondyle, initially causing the 

vessels to pass through the edge of the entepicondyle and eventually through the 

condyle itself (Fig. 7).  

 

Figure 7 here 

 

The angle between the long axis of the head of the humerus and the proximal 

edge of the entepicondyle increases along a morphocline starting with Acanthostega, 

and reaches its greatest angle in large Permian stem amniotes like Diadectes and 

Limnoscelis (Gregory 1949) and early amniotes like Captorhinus (Holmes 1977) and 

some sphenacodonts (Romer & Price 1940). Twisted humeri which retain a brachial 

foramen are found in many extant amniotes with a sprawling gait. These include the 

reptiles Sphenodon (pers. ob. UMZC R2586) and Varanus (pers. ob. UMZC R9410) 

and the monotremes Ornithorynchus (pers. ob. UMZC A2-2/2) and Tachyglossus 

(pers. ob. UMZC A1.3\1). 

Increasing humeral torsion appears to be one way in which early tetrapods 

improved walking. Plesiomorphically, the elbow joint had limited excursion so that 

elbow flexion and extension was minimal (Jenkins 1973; Hopson 2015).  As a 

consequence the whole forelimb moved as a unit at the glenoid and locomotion was 

achieved by a combination of movements of the humerus (Romer 1922). Increasing 
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humeral torsion has its largest impact on walking at the beginning of the power stroke 

when the head of the humerus is horizontal. With a greater angle of twist, the 

epipodials can achieve a greater elevation and step further in front of the anterior edge 

of the glenoid.  This leads to an increase in stride length, the distance travelled 

between the end of one power stroke, when the epipodials are essentially vertical 

(Jenkins 1973), and the start of the next.  If all other components of the locomotory 

cycle remain constant, increasing the angle of torsion increases stride length by the 

simple relationship:   

s = e sin a 

where s is increase in stride length, e is epipodial length and  sin a is sine angle of 

torsion (Fig. 8A).  At low angles of torsion the effect is relatively small but an angle of 

45 degrees increases stride length by more than 70% (Fig. 8B). Further twisting 

increases stride length even more.  The increase in angle is usually accompanied by 

an increase in epipodial and digit length, the earliest examples of which are observed 

in the Viséan stem amniotes Casineria (Paton et al. 1999) and Westlothiana (Smithson 

et al. 1994) with angles of torsion of c. 60 and 70 degrees respectively (pers. ob.).  

Figure 8 here 

 Humeral torsion in early tetrapods has been discussed by numerous authors. It 

was noted by Watson (1917), Romer (1922, 1957, Romer & Price 1941) and Miner 

(1925), and more recently by Holmes (1980), Smithson (1985) and Coates (1996), but 

it was considered in most detail first by Evans & Krahl (1945) and later by Andrews & 

Westoll (1970). In these detailed studies, a number of axes were identified along the 

proximal and distal ends of the humerus and the angle between them measured. The 

angle we have measured above is the same as Andrews & Westoll’s axis of the 

‘flattened extremities’ (Andrews & Westoll 1970 p 249).  However, in none of these 
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studies was the changing position of the brachial foramen discussed or the possible 

impact of humeral torsion on stride length considered.  

Humeri with a typical entepicondylar (brachial) foramen and angle of twist 

greater than 45 degrees have recently been described from the Blue Beach Formation 

at Blue Beach in Nova Scotia (Anderson et al. 2015). These strata are coeval with the 

Ballagan Formation of the Scottish Borders in which we have also found the earliest 

five digited autopod (Smithson et al. 2012). This suggests that tetrapods in the early 

Carboniferous were experimenting with limb morphology and developing new ways of 

walking. Compelling evidence of this comes from the large number of trackways that 

have been found at Blue Beach where at least five different trackway morphotypes 

have been identified, in varying sizes and demonstrating different gaits (Mansky & 

Lucas 2013; Clack 2016).  

5. Conclusions 

During the evolution of tetrapods, the course of the brachial artery and median 

nerve through the humerus changes. This change is due to humeral torsion, the 

twisting of the distal end of the bone relative to its proximal end. Torsion transformed 

the course of the vessels through the bone, from an entirely ventral path, found in 

Devonian tetrapodomorph fishes and the tetrapod Acanthostega, to one in which the 

vessels pass through the entepicondyle from the dorsal to the ventral surface. This 

arrangement is seen in most fossil and extant tetrapods which retain the 

entepicondylar (brachial) foramen. The humerus of Mesanerpeton from the early 

Carboniferous of Scotland shows an intermediary condition.  Humeral torsion is 

suggested to improve walking in early tetrapods by contributing to an increase in stride 

length.  
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Figure captions 

Figure 1. Mesanerpeton woodi gen. et sp. nov.  Type specimen NMS G 2012.39.13, 

pectoral girdle, forelimb and axial skeleton bones from Willie’s Hole, Scottish 

Borders, Scotland. Scale bar, 50 mm. 

 

Figure 2.  Mesanerpeton woodi gen. et sp. nov.  (A–C) left neural arch NMS G 

2012.39.13. (A) posterior view; (B) anterior view; (C) lateral view. (D–F) 

reconstruction of vertebra; (D) anterior view; (E) posterior view; (F) lateral view. 

Scale bar, 10 mm. 

 

Figure 3.  Mesanerpeton woodi gen. et sp. nov.  (A–D) right humerus, NMS G 

2012.39.13.  (A) posterior view; (B) dorsal view, plane of the proximal dorsal surface; 

(C) ventral view, plane of the proximal dorsal surface; (D) anterior view;   

(E–J) reconstruction of right humerus. (E) posterior view; (F) dorsal view, plane of 

the proximal dorsal surface; (G) ventral view, plane of the proximal dorsal surface; 

(H) anterior view; (I) proximal view; (J) distal view.  Scale bar, 10 mm. Abbreviations: 

br for, brachial foramen; d, deltoid; dp, deltopectoral crest; ect, ectepicondyle; ent, 

entepicondyle; lat d, latissimus dorsi; p, pectoralis; pre, prepectoral space; pre-ent, 

pre-entepicondylar ridge; rad, radial condyle; s, supinator; ul, ulnar condyle. 

 

Figure 4. Mesanerpeton woodi gen. et sp. nov.  (A–D) right ulna, NMS G 2012.39.13.  

(A) lateral view; (B) dorsal (flexor) view; (C) medial view; (D) ventral (extensor) view. 

(E-J) restoration of right ulna.  (E) lateral view; (F) dorsal (flexor) view; (G) medial 

view; H ventral (extensor) view; (I) proximal view; (J) distal view. Abbreviations: lat k, 

lateral keel; ole, olecranon.  Scale bar, 10 mm. 
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Figure 5. Mesanerpeton woodi gen. et sp. nov. (A-B) left ilium, NMS G 2012.39.138. 

(A) lateral view; (B) medial view. (C-E) restoration of left ilium. (C) lateral view; (D) 

medial view; (E) dorsal view. Abbreviations: supra b, supra-acetabula buttress; supra 

n, supra-acetabular notch.  Scale bar, 10 mm. 

 

Figure 6.  Acanthostega gunnari.  (A-D) right humerus, MGUH 29020.  (A) posterior 

view;  (B) dorsal view, plane of the proximal dorsal surface; (C) ventral view, plane of 

the proximal dorsal surface; (D) anterior view. (E–J) reconstruction of the right 

humerus. (E) posterior view; (F) dorsal view, plane of the proximal dorsal surface; 

(G) ventral view; plane of the proximal dorsal surface; (H) anterior view; (I) proximal 

view; (J) distal view. Scale bar, 10 mm. For abbreviations see Fig. 3. 

 

Figure 7.  Humeri of tetrapodomorphs in dorsal (left) and ventral (right) views 

showing the course of the brachial artery and median nerve. (A) Gogonasus (after 

Holland 2013); (B) Tiktaalik (after Shubin et al. 2006); (C) Acanthostega; (D) 

Mesanerpeton; (E) Eoherpeton (after Smithson 1985);  (F) Captorhinus (after 

Holmes 1977); (G) Dimetrodon (after Romer & Price 1940); (H) Ornithorhynchus 

based on UMZC A2.2/2. Scale bar, 10 mm. 

 

Figure 8. Changes in manus placement with increasing angles of humeral torsion. 

(A) the geometry of humeral torsion and its relation to manus placement. (B) 

representation of changes in manus placement with increasing angle of humeral 

torsion, lateral view. The taxa represented here have been studied by the authors. 

The angles of torsion of other early tetrapods are listed in Appendix 1. 
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Appendix 1. Angle of torsion and position of entrance of the brachial foramen in 

early tetrapods. 

 

Tetrapod taxon Torsion angle Brachial foramen 
entrance 

Acanthostega pers. ob.     c. 20 Ventral 

Baphetes (Milner & Lindsey 1998)     c. 30 Dorsal 

Crassigyrinus (Panchen 1985)     c. 40 Dorsal 

Casineria pers. ob.     c. 60 Dorsal 

Doragnathus pers. ob     c. 45 Dorsal 

Eoherpeton (Smithson 1985)     c. 45 Dorsal 

Greererpeton (Godfrey 1989)    25-30 Dorsal 

Mesanerpeton pers. ob.     c. 25 Posterior 

Ossinodus (Bishop 2013)    25-30 Dorsal 

Pederpes (Clack & Finney 2005)     c. 35 Dorsal 

Proterogyrinus (Holmes 1980)     c. 37 Dorsal 

Tulerpeton (Lebedev & Coates 1996)     c. 60 Dorsal? 

Westlothiana pers. ob.     c. 70 Dorsal 

Blue Beach humerus 1 (Anderson et al. 2015)     c. 60 Dorsal 

Blue Beach humerus 2 (Anderson et al. 2015)     c. 45 Dorsal 

 


