
Petry et al., page - 1 - 
 

Associations between a Fetal Imprinted Gene Allele Score and Late Pregnancy 

Maternal Glucose Concentrations 

 

Clive J. Petry1, Katrin Mooslehner1, Philippa Prentice1, M. Geoffrey Hayes2,  

Michael Nodzenski3, Denise M. Scholtens3, Ieuan A. Hughes1, Carlo L. Acerini1,  

Ken K. Ong1, 4, William L. Lowe Jr.2 and David B. Dunger1, 5 

 

1Department of Paediatrics, University of Cambridge, Cambridge, U.K. 

2Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, 

Northwestern University Feinberg School of Medicine, Chicago, Illinois, U.S.A. 

3Division of Biostatistics, Department of Preventive Medicine, Northwestern University 

Feinberg School of Medicine, Chicago, Illinois, U.S.A. 

4Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K. 

5Medical Research Laboratories, The Institute of Metabolic Science, University of 

Cambridge, Cambridge, U.K. 

 

Corresponding Author: Dr. Clive J. Petry, Department of Paediatrics, Box 116, 

Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, U.K. E-mail: 

cjp1002@cam.ac.uk, Tel. +44 (0)1223 762945, Fax. +44 (0)1223 336996. 



Petry et al., page - 2 - 
 

Abstract 

Aim We hypothesised that some of the genetic risk for gestational diabetes (GDM) is due to 

the fetal genome affecting maternal glucose concentrations. Previously we found associations 

between fetal IGF2 gene variants and maternal glucose concentrations in late pregnancy. 

Methods In the present study we tested associations between SNP alleles from 15 fetal 

imprinted genes and maternal glucose concentrations in late pregnancy in the Cambridge 

Baby Growth and Wellbeing cohorts (1,160 DNA trios). Results Four fetal SNP alleles with 

the strongest univariate associations: paternally-transmitted IGF2 rs10770125 

(p-value = 2x10-4) and INS rs2585 (p-value = 7x10-4), and maternally-transmitted 

KCNQ1(OT1) rs231841 (p-value = 1x10-3) and KCNQ1(OT1) rs7929804 (p-value = 4x10-3), 

were used to construct a composite fetal imprinted gene allele score which was associated 

with maternal glucose concentrations (p-value = 4.3x10-6, n = 981, r2 = 2.0%) and GDM 

prevalence (odds ratio per allele 1.44 (1.15, 1.80), p-value = 1x10-3, n = 89 cases and 899 

controls). Meta-analysis of the associations including data from 1,367 Hyperglycemia and 

Adverse Pregnancy Outcome Study participants confirmed the paternally-transmitted fetal 

IGF2/INS SNP associations (rs10770125, p-value = 3.2x10-8, rs2585, p-value = 3.6x10-5) and 

the composite fetal imprinted gene allele score association (p-value = 1.3x10-8), but not the 

maternally-transmitted fetal KCNQ1(OT1) associations (rs231841, p-value = 0.4; rs7929804, 

p-value = 0.2). Conclusion This study suggests that polymorphic variation in fetal imprinted 

genes, particularly in the IGF2/INS region, contribute a small but significant part to the risk 

of raised late pregnancy maternal glucose concentrations. 
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Abbreviations 

BMI  body mass index 

CI  confidence interval 

eQTL  expression quantitative trait locus 

GDM  gestational diabetes 

HAPO  Hyperglycemia and Adverse Pregnancy Outcome 

IADPSG International Association of Diabetes in Pregnancy Study Groups 

OGTT  oral glucose tolerance test 

GWAS  genome wide association study 

SNP  single nucleotide polymorphism 

T2DM  type 2 diabetes 
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Introduction 

Familial studies suggest that the risk for a pregnant woman developing gestational diabetes 

(GDM) might be partially genetically mediated. However knowledge of GDM genetics has 

lagged behind that of non-gravid diabetes [1, 2]. Only one genome-wide association study 

(GWAS) focussing on GDM has been published to date [3], with another one focussing on its 

endophenotype, maternal glucose concentrations in pregnancy [4]. Other studies have picked 

candidate genes from type 2 diabetes (T2DM) GWASs to test their associations with GDM, 

using the assumption that the genetic architecture of GDM is very similar to that of T2DM [5, 

6]. Meta-analyses have confirmed some of the associations between genetic variants and 

GDM [7, 8], and like with T2DM, pathway analysis of these variants show an enrichment of 

insulin secretion genes [1]. 

 

Despite the known GDM-related variants relatively little of its heritability has been explained 

[9]. Whilst further risk single nucleotide polymorphisms (SNPs) may emerge through the 

GWASs of larger populations with greater statistical power, other heritability may be 

explained by epistasis or copy number variants. Also, following the suggestion that the fetal 

genome may influence maternal pregnancy metabolism [10], we hypothesised that imprinted 

fetal growth genes might alter maternal glucose concentrations and GDM risk [11]. These 

genes are related to parent of origin effects reflecting the separate reproductive needs of each 

parent [12]. Paternally-expressed imprinted genes tend to enhance fetal growth, whereas 

maternally-expressed genes tend to reduce it, probably through changes in fetal demand and 

supply [13]. 

 

We first tested our hypothesis in a mouse model where H19 genes and Igf2 control elements 

(regulators of Igf2 expression) were disrupted [14].  On day 16 of the 21.5 days of pregnancy 
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essentially wild type mice carrying litters where half of the fetuses were H19 knockouts had 

higher blood glucose concentrations than those of genetically-matched controls. These 

studies were followed by genotyping in humans where 4 paternally-expressed fetal IGF2 

SNPs were associated with late pregnancy maternal glucose concentrations [15]. The effect 

of imprinting was confirmed through lack of associations with the equivalent maternally-

transmitted alleles. More recently we have found associations between various fetal imprinted 

gene SNP alleles and maternal blood pressure and risk of gestational hypertension [16]. 

Although the mechanism of how the fetal genotype can affect maternal glucose 

concentrations in pregnancy is unknown, we hypothesised that it involves the fetal-derived 

placenta through the secretion of hormones and regulatory proteins [11]. Hence in the present 

study, to explore the hypothesis further, we genotyped SNPs in a number of fetal imprinted 

genes that are expressed in the placenta at some stage of fetal development [17]. We tested 

their associations with late pregnancy maternal glucose concentrations in our Cambridge 

Baby Growth and Wellbeing cohorts, initially focussing on just paternally-expressed fetal 

genes because they are independent of confounding by the maternal genotype. We 

constructed a composite fetal imprinted gene allele score to estimate the extent to which 

polymorphic variations in these genes are associated with variance in late pregnancy maternal 

glucose concentrations and GDM in our cohorts. We then we used data from Hyperglycemia 

and Adverse Pregnancy Outcome (HAPO) Study participants [18] to perform replication 

testing and meta-analyses of the associations. 

 

Material and Methods 

Cohort 1: Cambridge Baby Growth Study 

The prospective, longitudinal Cambridge Baby Growth Study recruited mothers (and their 

partners and offspring) attending early pregnancy ultrasound clinics at the Rosie Maternity 



Petry et al., page - 6 - 
 

Hospital, Cambridge, U.K. between the years 2001-2009 [19]. At around 28 weeks of 

gestation the mothers underwent a 75g oral glucose tolerance test (OGTT) after fasting 

overnight. Venous blood was collected just prior to and 60 min. after the consumption of the 

glucose load for the measurement of plasma glucose and insulin concentrations. In total, 845 

DNA trios were collected from the families of 1,074 mothers recruited to the study for whom 

OGTT data were available. Blood and/or mouth swab samples for DNA extraction were 

collected from the father and the offspring after birth. In this cohort 96.9% of the offspring 

were White, 0.8% were mixed race, 0.6% were Black (African or Caribbean), 0.8% were 

Oriental and 0.9% were Indo-Asian. Using International Association of Diabetes in 

Pregnancy Study Groups (IADPSG) thresholds [20] the GDM prevalence was 10.2%. 

 

Cohort 2: Cambridge Wellbeing Study 

The Cambridge Wellbeing Study is a retrospective study of mothers, fathers and children 

where the mother had delivered a full term, singleton baby at the Rosie Maternity Hospital, 

Cambridge, U.K. between the years 1999-2000 [15]. Routinely collected clinical data were 

available on offspring birth weight and mother's whole blood glucose levels measured 60 

min. after the oral consumption of 50g glucose at 27-29 weeks of gestation. Exclusion criteria 

were pre-existing maternal hypertension and diabetes treatment during early pregnancy. All 

the offspring were White. We sought permission from the mother's General Practitioner to 

approach the family to collect their DNA sample by mouth swab kits. In total 315 DNA trios 

were collected out of 563 women who consented. Using IADPSG thresholds [20] the GDM 

prevalence was 8.2%. 

 

Cohort 3: Hyperglycemia and Adverse Pregnancy Outcome Study 
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HAPO is a large multi-national prospective study of pregnancy that has been described 

previously, including its exclusion criteria [18, 21]. Pregnant study participants, recruited 

early in gestation between the years 2000-2006, underwent a 75g OGTT as close to 28 weeks 

of gestation as possible. Glucose concentrations were measured centrally. Those women with 

plasma glucose concentrations > 5.8mmol/L (fasting) or 11.1mmol/L (two hours into the 

OGTT), 1.7% of the total population, were excluded from the study due to having overt 

diabetes. DNA samples from 1,424 mother and baby study participants of European ancestry 

were used for a GWAS of maternal glycaemic and newborn anthropometric traits [4]. Using 

IADPSG thresholds [20] the GDM prevalence was 14.8%. 

 

Ethical Approval 

The Cambridge Baby Growth and Wellbeing Studies were approved by the local ethics 

committee, Addenbrooke’s Hospital, Cambridge, U.K. In the HAPO Study the protocol was 

approved by each field centre’s local institutional review board. Written informed consent 

was obtained from the parents in each of the cohorts studied, including consent for inclusion 

of their infants in the study. 

 

Biochemical Measurements 

Blood glucose concentrations were measured using a routine glucose oxidase-based method. 

Maternal plasma insulin concentrations were measured using a DSL ELISA kit (London, 

U.K.) according to the manufacturer’s instructions. 

 

Gene Selection and Genetics 

For the Cambridge Baby Growth and Wellbeing Studies genomic DNA was extracted from 

blood samples or mouth swabs using an Autopure LS Machine (Qiagen Ltd., Crawley, U.K.). 
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The 15 imprinted genes that were studied (DLK1, FAM99A, GNAS, GRB10, IGF2, INS, 

KCNQ1OT1, MEST, NNAT, PEG3, PEG10, PLAGL1, SGCE, SNRPN, ZIM2) were chosen 

because they are all paternally- and placentally-expressed at some stage of development [17]. 

The variants that were genotyped were haplotype tag SNPs covering the gene and 20 kb 

either side of it, identified by Tagger (r2>0.8 and minor allele frequency >0.2) from the 

Centre d’Etude du Polymorphisme Humain population of HapMap Project Build 36 using 

Haploview [22] (Supplementary Table 3). The one exception to this was 11 tagging IGF2 

SNPs which were identified by Rodríguez et al. [23]. The DNA samples were genotyped 

using Kompetitive Allele Specific PCR assays, which are competitive allele-specific PCR 

SNP genotyping assays using fluorescence resonance energy transfer quencher cassette 

oligonucleotides (designed and performed by LGC Genomics, Hoddesdon, U.K.). The 

genotypes that were used in this study were consistent with Hardy Weinberg equilibrium 

(p>0.05 using the χ2 test) and had a repeat genotyping discordancy rate of <1.0%.  

 

HAPO DNA samples were genotyped using the Illumina Human 610 Quad v1 B SNP array 

(Illumina Inc., San Diego, U.S.A.) and additional SNPs were imputed using BEAGLE [24]. 

For the present study the SNP genotypes that were tested from the HAPO population were 

those that were used in the composite fetal allele imprinted gene allele score (namely 

paternally-transmitted fetal IGF2 rs10770125 and INS rs2585, and maternally-transmitted 

fetal KCNQ1OT1 rs231841 and KCNQ1OT1 rs7929804). 

 

Placental KCNQ1(OT1) Gene Expression 

KCNQ1 and KCNQ1OT1 expression were measured in term placentas by RT-qPCR with 

YWHAZ, TOP1 and UBC used as reference genes [25] (see the Supplementary Material for 
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detailed methodology). Expression was then related to the fetal KCNQ1OT1 SNP alleles that 

were associated with maternal glucose concentrations. 

 

Statistical Analyses and Composite Score Formulation 

With different glucose loads used in the two Cambridge cohorts, post-load maternal glucose 

responses were standardised by calculating z-scores separately in each cohort (using the mean 

and standard deviation for glucose concentrations from all the women in each cohort), and 

then analysed as a single group (with more statistical power) of 1,160 family DNA trios with 

maternal glucose z-scores [15]. The Cambridge Wellbeing Study glucose concentration z-

scores were also used (along with the mean and standard deviation glucose concentrations 

from the Cambridge Baby Growth Study) to convert the Wellbeing Study glucose 

concentrations to the equivalent glucose concentrations in the Cambridge Baby Growth 

Study. This approach, along with assuming a minor allele frequency for each SNP of 0.3 and 

consistency with Hardy Weinberg equilibrium, meant that there was 90% statistical power to 

be able to detect a difference of 0.23 maternal glucose z-scores (equivalent to 0.4 mmol/L) 

(α=0.05). 

 

SNP genotypes from both parents and their child were used to infer parental transmission (see 

Supplementary Table 4(a)). In HAPO, where paternal genotypes were unavailable, parental 

transmission was inferred as per Supplementary Table 4(b). 

 

Each parentally-transmitted fetal SNP allele was tested for association with the 60 min. post-

load maternal glucose concentration z-score in an unadjusted linear regression model (i.e. 

paternally- and maternally-transmitted SNP alleles were tested separately). Where needed 

robust regression was used where the standard errors were estimated using the Huber-White 
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sandwich technique to overcome minor concerns about failures to meet regression model 

assumptions. The p-values for the associations were recorded and ranked. The composite 

fetal imprinted gene allele score was then constructed starting with the association with the 

lowest p-value, and then adding one further fetal SNP allele at a time in gradually increasing 

order of p-values [16]. Allele scores from more than one variant per gene were allowed if the 

two variants were not in linkage disequilibrium (defined when the study was designed as 

r2>0.8) in the Thousand Genomes Project [26]. For each SNP that was included in the allele 

score, where the fetal SNP allele was known a score of 1 was added if it was the one that was 

associated with higher glucose concentrations and 0 if it was the one associated with lower 

concentrations. In cases where the allele was missing (due to genotyping error or 

uninformative trio genotypes) the combined frequency amongst both cohorts of the glucose 

increasing allele was added to the score. After each new allele was added to the gene score 

associations with the 60 min. post-load maternal glucose concentration z-score was retested 

in a linear regression model. This process was continued, adding scores from one SNP allele 

at a time, whilst the adjusted r2 of the linear regression model was increasing. Once the r2 of 

the model reduced (due to greater noise brought about by the addition of an allelic score from 

a SNP that was more weakly associated with the maternal glucose concentrations) this 

process was halted and the previous allele score was adopted as the final score (an 

unweighted estimated allele count). To remove potential overfitting due to linkage 

disequilibrium further allele scores were calculated removing effects due to each of the 

individual IGF2 SNP alleles in the full allele score. Associations with GDM were tested 

using logistic regression, both unadjusted and adjusted for pre-pregnancy maternal body mass 

index (BMI) and age. 
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The meta-analysis was performed using correlation coefficients of the associations between 

the fetal alleles and week 28 maternal glucose concentrations 60 min. after a glucose load. 

For the Cambridge cohorts correlation coefficients were available to us. For the HAPO Study 

participants standardised β-coefficients were available to us and correlation coefficients were 

estimated from these using the method of Peterson and Brown [27]. The meta-analysis used 

the DerSimonian-Laird approach [28] for random effects models to allow for any potential 

heterogeneity, implemented into the R package Metacor version 1.0-2 [29]. Meta-analysis 

heterogeneity was assessed using Medcalc version 17.2 (Ostend, Belgium). 

 

Correction for multiple testing was considered unnecessary as only one primary association 

was tested (i.e. the allelic score with the maternal glucose z-scores). All other associations 

were considered secondary and a p-value of <0.05 was considered statistically significant. 

Unless otherwise stated data are presented as mean (95% confidence interval (CI)). Effect 

sizes are presented as Cohen’s d (where there are two groups being compared) or adjusted r2 

values (where there are more than two groups being compared). All statistical analyses were 

performed using either Stata version 13 (StataCorp LP, College Station, Texas, U.S.A.) or R 

version 3.2.2 [30]. 

 

Results 

Associations with Maternal Glucose Concentration Z-Scores and Gestational Diabetes in the 

Cambridge Baby Growth and Wellbeing Studies 

The ten strongest unadjusted associations between fetal imprinted gene alleles and maternal 

60 min. glucose concentration z-scores are shown in Table 1, including 4 IGF2 SNPs 

previously reported [15]. All other SNP alleles were associated at p>0.01. The composite 

fetal imprinted gene allele score comprised the scores from the genotypes of the first four 
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variants listed in Table 1 (i.e. paternally-inherited rs10770125 and rs2585, and maternally-

inherited rs231841 and rs7929804). No associations with unadjusted maternal glucose 

concentrations were found with the same alleles transmitted from the other parents (Figs. 1a 

and 1b). For rs231841 and rs7929804, there were stronger associations observed with the 

transmitted rather than untransmitted alleles (correlation coefficients of 0.10 and 0.07, 

respectively, for rs231841, and 0.09 and 0 for rs7929804; Figs. 1b and 1c). 

 

The composite fetal imprinted gene allele score was strongly associated with unadjusted 

60 min. maternal glucose concentrations (p=4.3x10-6, n=981). The score explained 2.0% of 

the maternal glucose concentration variance and each increase of one in the score was 

associated with an increase in maternal 60 min. glucose concentration z-score of 0.15 

(0.26 mmol/L). Significant associations were seen in each of the two cohorts separately 

(Cambridge Baby Growth Study: p=4.8x10-4, adjusted r2=1.7%, n=664; Wellbeing Study: 

p=3.0x10-3, adjusted r2=2.5%, n=317). Supplementary Table 3 shows the p-values for the 

individual SNPs in each cohort. Supplementary Table 4 shows the p-values for the 

association with the composite fetal imprinted gene allele score minus effects of 

paternally-transmitted fetal IGF2 rs10770125 and rs2585 individually. The full 

composite fetal imprinted gene allele score was also associated with unadjusted GDM 

prevalence (Table 2). The mean (95 % CI) allele scores per group were: controls 1.53 (1.47, 

1.59) (n=899) v. cases 1.87 (1.68, 2.07) (n=89). 

 

The composite fetal imprinted gene allele score was also associated with the unadjusted 

fasting blood glucose concentrations (p=0.03; n=671 in the Cambridge Baby Growth Study). 

The score explained 0.6% of the maternal fasting glucose concentration variance and for each 

increase of the gene score by one there was an associated increase in maternal glucose 
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concentration z-scores of 0.02 (0.04 mmol/L). The composite allele score was also 

associated with the unadjusted maternal 60 min. plasma insulin concentrations (p=0.03; 

adjusted r2=0.4%, n=706) and with the unadjusted insulin increment after the glucose load 

(p=0.03; adjusted r2=0.5%, n=706). 

 

Replication in HAPO and Meta-analysis 

None of the four fetal SNPs used in the composite allele score or the composite allele score 

itself were significantly associated with unadjusted maternal glucose concentrations 60 min. 

into the OGTT in the HAPO Study participants (Table 3). However two of the univariate 

associations and the composite fetal imprinted gene allele score association were 

unidirectional with those from the Cambridge cohorts, so that in the meta-analysis the 

inclusion of the HAPO Study data strengthened the associations with maternal 60 min. 

glucose concentrations found in the Cambridge cohorts for the paternally-transmitted fetal 

SNP alleles from the INS/IGF2 region, rs2585 and rs10770125 (p=3.6x10-5 and p=3.2x10-8, 

respectively) (Fig. 2). In contrast the meta-analysis showed no significant associations with 

the maternally-transmitted fetal SNP alleles from the KCNQ1OT1 region, rs231841 and 

rs7929804 (p=0.4 and p=0.2, respectively). The composite fetal imprinted gene allele score 

association with maternal 60 min. glucose concentrations found in the Cambridge cohorts 

was strengthened in the meta-analysis (p=1.3x10-8) (Fig. 3). None of the meta-analyses had 

significant heterogeneity (Supplementary Table 5). 

 

Placental KCNQ1(OT1) Gene Expression 

Maternally-transmitted fetal rs231841 allele was associated with placental KCNQ1 

expression at birth adjusted for the expression of the panel of reference genes (n=21 

samples; p=0.04) in the Cambridge Baby Growth Study but not with placental KCNQ1OT1 
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expression (n=20; p=0.2) (Supplementary Table 6). Maternally-transmitted fetal rs7929804 

was not associated with the expression of either gene (n=20 for both; p=0.9 and 0.3, 

respectively). 

 

Discussion 

In this study we developed a composite fetal imprinted gene allele score that was strongly 

associated with late pregnancy maternal glucose concentrations and GDM in the two 

independent Cambridge cohorts. Significance of the association was not reached in HAPO 

Study participants with European ancestry, although the association was unidirectional with 

the associations in the Cambridge cohorts and genome wide significance was reached by 

meta-analysis. The lack of significant replication of associations outside of the meta-analysis 

for the individual SNP alleles and the composite score is perhaps not surprising given that the 

HAPO Study excluded those with the highest glucose concentrations and participants with 

European ancestry were recruited from 4 different sites in the U.S.A., 2 in the U.K., 2 in 

Australia and 1 in Canada [4] whereas both Cambridge cohorts were recruited via the same 

maternity hospital in the U.K. and so may be more homogeneous. The association between 

maternal glucose concentrations and the composite fetal imprinted gene allele score in the 

meta-analysis suggests that the fetal genes that were tested, with the INS/IGF2 region in 

particular, may make a small but significant contribution to the maternal glucose 

concentrations in pregnancy. This expands our previous finding of 4 paternally-transmitted 

fetal IGF2 SNP alleles that were also associated with maternal glucose concentrations in the 

two Cambridge cohorts [15]. In our meta-analysis the association of one of these IGF2 SNP 

alleles (rs10770125) with maternal glucose concentrations reached genome wide 

significance, the first fetal SNP allele to do so. 

 



Petry et al., page - 15 - 
 

Although variants were tested from 15 different paternally-expressed imprinted genes, the ten 

variants most strongly associated in our data were found in only two fetal regions, IGF2/INS 

and KCNQ1/KCNQ1OT1. Although another 4 loci from the 142 fetal imprinted gene SNPs 

tested were nominally associated with maternal glucose concentrations (0.01<p<0.05; data 

not shown) their associations did not contribute to the composite score. Each of the two fetal 

genetic regions represented in the composite score contributed two variants. The IGF2 and 

INS genes are adjacent on chromosome 11p15, separated by only 15 kb. Insulin is not a 

classically imprinted gene in humans but is imprinted and paternally-expressed in the 

embryonic human yolk sac [31] and parent-of-origin associations and linkage have 

previously been found with T2DM [32], whereas IGF2 is a key imprinted gene for fetal 

growth. Of the two SNPs that contribute to the construction of the composite score 

rs10770125 is intronic for IGF2 but missense for the INS-IGF2 readthrough transcript, 

coding for a leucine to proline substitution [15], and is also in linkage disequilibrium with 

rs1003483, an expression quantitative trait locus (eQTL) for IGF2. Similarly rs2585 is in 

linkage disequilibrium with rs11042594 which is also an eQTL for IGF2. Although there 

might be a degree of linkage disequilibrium between IGF2 rs10770125 and rs2585 

(r2 = 0.28 and D’ = 0.92 in our population) if the effects of either paternally-transmitted 

allele were removed from the gene score the associations with maternal glucose 

concentrations were still apparent, suggesting that the association with the composite 

gene score does not arise from overfitting. The other two fetal SNP alleles contributing to 

the composite score are in the KCNQ1OT1 region and are maternally-transmitted, despite the 

fact that this study was established to investigate associations with paternally-expressed 

genes. However the genetic region including the KCNQ1OT1 gene and 20 kb either side of it 

would encompass part of the maternally-expressed KCNQ1 imprinted gene and therefore the 

SNPs might reflect that gene as well. The placental expression data would also suggest that 
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the primary association is with KCNQ1 rather than KCNQ1OT1 per se, at least for rs231841. 

Interestingly a number of studies have previously found associations between genetic 

variation in KCNQ1 and GDM [7, 33-37]. Of the two SNPs used in the composite score 

rs231841 shows a degree of linkage disequilibrium (r2=0.75, D’=0.88) in the Thousand 

Genome Project [26] with rs231353 which itself is associated with T2DM [38]. The other 

SNP rs7929804 is in linkage disequilibrium with rs10766218 (r2=0.8, D’=1) [26] which is an 

eQTL for KCNQ1, whose expression is associated with insulin secretion in vitro [39]. This is 

consistent with the association that we found with the insulin increment after the glucose 

load. The associations with these fetal alleles therefore appear plausible. 

 

The fact that in the meta-analysis of the univariate fetal SNP allele associations the 

KCNQ1(OT1) associations were not significant raises the possibility that their associations in 

the Cambridge cohorts are confounded by the maternal ones. Indeed unlike associations with 

paternally-transmitted fetal alleles, associations with maternally-transmitted fetal alleles are 

extremely difficult to distinguish from maternal genotype effects. Maternal allelic 

transmission to the fetus obviously originates from the maternal genotype and is therefore not 

biologically independent of it. Indeed for rs231841 there is evidence in the Cambridge 

cohorts for a direct maternal genotype association with their glucose concentrations, its p-

value being lower than that with the maternally-transmitted fetal allele. However there is 

possibly an additional fetal genetic effect because the association with the maternally-

transmitted fetal allele always has a lower p-value than that with the untransmitted maternal 

allele and the association of the fetal genotype with placental KCNQ1 expression is stronger 

than that with the maternal genotype. We must be cautious about these interpretations, 

however, given the lack of replication of these univariate associations in HAPO; it remains 
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possible that all the fetal associations with maternal GDM-related phenotype are mediated 

through IGF2 once confounders have been fully accounted for. 

 

Although the associations between the maternal glucose concentrations and the composite 

fetal imprinted gene allele score appear robust given the meta-analysis, with their lack of 

heterogeneity, the study does have limitations in addition to those outlined previously [15]. 

Firstly the analysis used to construct the composite fetal imprinted gene allele score is post 

hoc in nature. However we set out to construct it this way due to the lack of established fetal 

imprinted gene allele associations with maternal glucose concentrations in pregnancy. This 

score is now available to be tested in other cohorts. Another limitation is the relatively 

modest size of the Cambridge cohorts, although this is mitigated somewhat by the meta-

analysis with HAPO. Also the association between maternal glucose concentrations and the 

composite fetal imprinted gene allele score reached significance in two independent cohorts, 

but the individual SNPs that contribute to that score needed the two independent cohorts to be 

analysed together to have sufficient statistical power for their associations to reach statistical 

significance. For a discovery set of SNPs used to create a composite score that is acceptable, 

however. A final limitation is that the glucose concentrations from the Cambridge Wellbeing 

Study had to be transformed to equivalent values from the Cambridge Baby Growth Study for 

comparison of them to IADPSG guidelines for GDM. This assumes that maternal glucose 

concentrations one hour into the OGTT are completely consistent with those from a 50g 

glucose load where the mother was not necessarily fasted (although a number would have 

been). However the two cohorts were drawn from essentially the same local population, and 

high glucose concentrations after the 50g load are used to predict those mothers who will 

have high glucose concentrations after fasting and the 75g oral glucose load, so the modelling 
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is not unrealistic. In addition the SNP genotype associations were very similar in each 

separate Cambridge cohort. 

 

In summary we have developed a composite fetal imprinted gene allele score that is 

associated with maternal glucose concentrations and GDM prevalence in two Cambridge 

birth cohorts, and genome wide significance is reached when the association with maternal 

glucose concentrations is analysed by meta-analysis using data from HAPO Study 

participants with European ancestry. The method used to develop the composite score 

bypasses the problem of certain DNA trio genotypes being uninformative if all three 

members of that family are heterozygous. It can be used with cohorts where there are DNA 

samples available from the offspring and only one of the parents, as demonstrated by the 

results from HAPO, despite there being a higher proportion of uninformative SNPs (and 

therefore probably wider confidence intervals) because only two rather than three samples 

need to be heterozygous for this. By meta-analysis of our univariate associations with 

maternal glucose concentrations, we have also shown for the first time that the association 

one of paternally-expressed fetal IGF2 alleles with late pregnancy maternal glucose 

concentrations is significant at the genome wide level. So far, with the limited number of 

imprinted genes that we tested, the contribution of the fetal genome to variation in maternal 

glucose concentrations appears to be small although highly statistically significant. In 

combination with maternal risk genotypes these fetal alleles may increase the risk of maternal 

GDM. 
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Legends to Figures 

Fig. 1 Associations between maternal glucose concentration z-scores one hour after the oral 

consumption of a glucose load and alleles from the 4 SNPs that are used in the composite 

fetal imprinted gene allele score: (a) the paternally-transmitted fetal allele, (b) the maternally-

transmitted fetal allele and (c) the maternal allele that was not transmitted to the fetus. Data 

are mean (95 % confidence interval).  

 

Fig. 2 Forest plots of the random effects meta-analysis of the associations of the 4 SNPs that 

are used in the composite fetal imprinted gene allele score with maternal glucose 

concentrations 60 min. into an OGTT showing contributing results from the Cambridge Baby 

Growth Study, the Cambridge Wellbeing Study and the HAPO Study participants with 

European ancestry: (a) paternally-transmitted fetal rs2585, (b) paternally-transmitted fetal 

rs10770125, (c) maternally-transmitted fetal rs231841and (d) maternally-transmitted fetal 

rs7929804. 

 

Fig. 3 Forest plot of the random effects meta-analysis of the associations of the composite 

fetal imprinted gene allele score with maternal glucose concentrations 60 min. into an OGTT 

showing contributing results from the Cambridge Baby Growth Study, the Cambridge 

Wellbeing Study and the HAPO Study participants with European ancestry. 
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Table 1 The ten associations between fetal imprinted gene SNP alleles and maternal glucose concentration z-scores one after the oral 

consumption of a glucose load in the Cambridge Baby Growth and Wellbeing Studies, with the lowest p-values in linear regression models. Also 

shown is the p-values of the associations of maternal glucose concentration z-scores with the equivalent maternal genotypes. 

Gene SNP Parental-

Transmission 

Non-Risk 

Allele 

Risk 

Allele 

Fetal 

Allele 

p-value 

Effect 

Size 

Maternal 

Genotype 

p-value 

Fetal Allele p-value in 

White participants only 

(n=672~760) 

IGF2, INS 

 

rs10770125 

 

Paternal -0.122 

(-0.222, -0.023) 

(n = 375) 

0.138 

(0.042, 

0.233)  

(n = 404) 

0.0002 

 

0.26 0.7 0.0004 

IGF2, INS 

 

rs2585 

 

Paternal 0.107 

(0.022, 0.193) 

(n = 694) 

0.433 

(0.265, 

0.602) 

(n = 178) 

0.0007 

 

0.29 0.6 0.005 

KCNQ1OT1 rs231841 Maternal 0.093 0.367 0.001 0.24 3.1 x 10-4 0.03 
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 (0.001, 0.185) 

(n = 607) 

(0.229, 

0.505) 

(n = 268) 

 

KCNQ1OT1 

 

rs7929804 

 

Maternal 0.052 

(-0.055, 0.158) 

(n = 377) 

0.279 

(0.170, 

0.387) 

(n = 476) 

0.004 

 

0.20 0.2 0.07 

KCNQ1OT1 

 

rs231352 

 

Maternal 0.051 

(-0.052, 0.155) 

(n = 425) 

0.281 

(0.165, 

0.397) 

(n = 441) 

0.004 

 

0.20 8.5 x 10-5 0.1 

KCNQ1OT1 rs231361 

 

Maternal 0.121 

(0.038, 0.203) 

(n = 741) 

0.378 

(0.217, 

0.538) 

(n = 195) 

0.005 

 

0.22 1.8 x 10-4 0.008 

IGF2, INS rs7924316 Paternal -0.087 0.109 0.006 0.20 0.8 0.004 
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  (-0.181, 0.007) 

(n = 423) 

(0.004, 

0.214) 

(n = 337) 

 

IGF2 

 

rs6578987 

 

Paternal -0.060 

(-0.138, 0.018) 

(n = 608) 

0.156 

(0.015, 

0.298) 

(n = 105) 

0.009 

 

0.22 1.0 0.02 

IGF2 

 

rs680 Paternal -0.065 

(-0.142, 0.013) 

(n = 613) 

0.144 

(0.001, 

0.288) 

(n = 180) 

0.01 

 

0.21 0.9 0.02 

IGF2 rs4320932 Paternal -0.026 

(-0.099, 0.046) 

(n = 719) 

0.224 

(0.046, 

0.403) 

(n = 118) 

0.01 0.25 0.8 0.01 

Data shown are mean (95 % confidence interval) z-scores. Effect sizes are Cohen’s d. 
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Table 2 Associations between the composite fetal imprinted gene allele score and the prevalence of GDM. 

Cohorts Statistical Model Odds Ratio per 

Allele 

p-value Pseudo r2 

(%) 

Number of 

observations 

Cambridge Baby Growth Study & Cambridge 

Wellbeing Study combined 

unadjusted 1.44 

(1.15, 1.80) 

1.3 x 10-3 1.7 988 

Cambridge Baby Growth Study & Cambridge 

Wellbeing Study combined 

adjusted for maternal age 1.42 

(1.14, 1.78) 

1.9 x 10-3 1.6 956 

Cambridge Baby Growth Study & Cambridge 

Wellbeing Study combined 

adjusted for 

pre-pregnancy  

maternal BMI 

1.38 

(1.02, 1.86) 

0.035 4.4 556 

Cambridge Baby Growth Study & Cambridge 

Wellbeing Study combined 

adjusted for maternal age 

and pre-pregnancy  

maternal BMI 

1.37 

(1.01, 1.84) 

0.041 4.4 534 

Cambridge Baby Growth Study unadjusted 1.42 

(1.09, 1.86) 

0.011 1.5 671 

Cambridge Wellbeing Study unadjusted 1.50 0.049 2.2 317 
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(1.00, 2.24) 

Odds ratios are mean (95 % confidence interval). 
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Table 3 Associations between the four fetal SNP alleles used in the composite fetal imprinted gene allele score, and the score itself, and 

maternal glucose concentrations one hour after the oral consumption of a 75g glucose load in HAPO Study participants with European ancestry. 

N/A = not applicable.    

 

Fetal SNP Directly 

Genotyped or 

Imputed? 

Imputation 

Quality 

Parental 

Transmission 

Risk 

Allele 

n Standardised  

β-Coefficient 

Standard Error of 

the  

β-Coefficient 

p-

value 

rs2585 Imputed 0.975 Paternal T 1,020 0.112 0.112 0.32 

rs231841 Genotyped N/A Maternal A 1,002 -0.106 0.119 0.37 

rs10770125 Imputed 0.96 Paternal A 961 0.080 0.104 0.44 

rs7929804 Genotyped N/A Maternal A 990 -0.024 0.104 0.81 

Composite fetal 

imprinted gene allele 

score 

N/A N/A Both N/A 1,424 0.048 0.047 0.31 

   


