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We investigate fully developed turbulence in stratified plane Couette flows using direct1

numerical simulations similar to those reported by Deusebio, Caulfield & Taylor (J. Fluid2

Mech., 781, 2015) expanding the range of Prandtl number Pr examined by two orders3

of magnitude from 0.7 up to 70. Significant effects of Pr on the heat and momentum4

fluxes across the channel gap and on the mean temperature and velocity profile are5

observed. These effects can be described through a mixing length model coupling Monin–6

Obukhov (M-O) similarity theory and van Driest damping functions. We then employ7

M-O theory to formulate similarity scalings for various flow diagnostics for the stratified8

turbulence in the gap interior. The mid-channel-gap gradient Richardson number Rig is9

determined by the length scale ratio h/L, where h is the half channel gap depth and L10

is the Obukhov length scale. As h/L approaches very large values, Rig asymptotes to11

a maximum characteristic value of approximately 0.2. The buoyancy Reynolds number12

Reb ≡ ε/(νN2), where ε is the dissipation, ν is the kinematic viscosity and N is the13

buoyancy frequency defined in terms of the local mean density gradient, scales linearly14

with the length scale ratio L+ ≡ L/δν , where δν is the near-wall viscous scale. The15

flux Richardson number Rif ≡ −B/P , where B is the buoyancy flux and P is the16

shear production, is found to be proportional to Rig. This then leads to a turbulent17

Prandtl number Pr t ≡ νt/κt of order unity, where νt and κt are the turbulent viscosity18

and diffusivity respectively, which is consistent with Reynolds analogy. The turbulent19

Froude number Frh ≡ ε/(NU ′2), where U ′ is a turbulent horizontal velocity scale, is20

found to vary like Ri−1/2g . All these scalings are consistent with our numerical data21

and appear to be independent of Pr . The classical Osborn model based on turbulent22

kinetic energy balance in statistically stationary stratified sheared turbulence (J. Phys.23

Oceanogr., 10, 1980), together with M-O scalings, results in a parameterization of κt/ν ∼24

νt/ν ∼ RebRig/(1−Rig). With this parameterization validated through direct numerical25

simulation data, we provide physical interpretations of these results in the context of M-O26

similarity theory. These results are also discussed and rationalized with respect to other27

parameterizations in the literature. This paper demonstrates the role of M-O similarity28

in setting the mixing efficiency of equilibrated constant-flux layers, and the effects of29

Prandtl number on mixing in wall-bounded stratified turbulent flows.30
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1. Introduction32

Stratified plane Couette flow is bounded by two horizontal walls moving in opposite33

directions with a constant velocity. The fluid density at each wall is held at a constant34

value with a lower density at the upper wall, resulting in a stably stratified system.35

Stratified plane Couette flow is one of several canonical geometries used to investigate36

the dynamics of stratified shear flows. Much of the research on stratified plane Couette37

flow has focused on transition and coherent structures (Deusebio et al. 2015; Eaves &38

Caulfield 2015), turbulent characteristics (Garćıa-Villalba et al. 2011a) and diapycnal39

mixing (Caulfield et al. 2004; Tang et al. 2009; Garćıa-Villalba et al. 2011b; Scotti 2015;40

Deusebio et al. 2015). In this paper, we consider the dynamical properties of turbulent41

stratified plane Couette flow. Our consideration has three main themes: (i) the effects of42

varying Prandtl number; (ii) the applicability of Monin–Obukhov similarity theory; and43

(iii) the parameterization of diapycnal mixing in stratified plane Couette flows. Each of44

the themes is associated with key open questions in the literature.45

A stratified plane Couette flow can be characterised by three external parameters: the46

bulk Reynolds number Re; the bulk Richardson number Ri ; and the Prandtl (Schmidt)47

number Pr ≡ ν/κ (or Sc), where κ is the scalar diffusivity and ν is the kinematic viscosity.48

While existing stratified plane Couette flow research spans a considerable range of Re and49

Ri , the Pr (or equivalently Sc) values examined have heretofore been limited to order50

unity. On the other hand, there has been growing evidence indicating that Pr (or Sc) can51

indeed have some first-order effects on stratified shear flows. For example, the effects of52

Pr on the characteristics of secondary instabilities and diapycnal mixing were reported by53

Salehipour et al. (2015) through simulations of growing Kelvin-Helmholtz instabilities.54

Motivated by these observations, we aim to investigate the effects of variations in Pr55

systematically in stratified plane Couette flows through direct numerical simulation56

(DNS), and this investigation constitutes the first theme of this paper.57

Stratified plane Couette flows transfer momentum and heat fluxes across the upper58

and lower walls which provide shear and stratification to the system. In fully developed59

statistically stationary turbulent stratified plane Couette flows, which are the focus60

of the present study, the total momentum and active scalar fluxes are constant in61

the wall-normal (vertical) direction y. The very fact that these fluxes are constant62

in y contrasts stratified plane Couette flows with other wall-bounded flows, such as63

channel flows (Armenio & Sarkar 2002; Garćıa-Villalba & del Álamo 2011; Karimpour &64

Venayagamoorthy 2014, 2015), where the total momentum flux is maximised at the walls65

and zero at mid-channel (see e.g. Armenio & Sarkar (2002)). Turner (1973) argued that66

stably stratified flows may adjust to a tuned vertical flux from rearrangement of the mean67

flow and scalar profiles, and the turbulent characteristics in such generic constant-flux68

layers warrant further study.69

For decades (see Foken (2006) for a review), the Monin–Obukhov similarity theory has70

provided a powerful tool to characterise such constant-flux layers. More recently, Monin–71

Obukhov theory has also been used to interpret stratified turbulence characteristics in72

homogeneous shear flows (Chung & Matheou 2012). In the context of stratified plane73

Couette flows, Deusebio et al. (2015) demonstrated the usefulness of Monin–Obukhov74

scaling by delineating the intermittency boundary in (Re,Ri) parameter space at a single75

Prandtl number Pr = 0.7. The Obukhov length scale76

L ≡ u3τ
kmgαV qw

, (1.1)

was found to be of dynamical significance in stratified plane Couette flows. Here, uτ is77
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Figure 1: Comparison of a ‘weakly stable’ atmospheric boundary layer (see e.g. Mahrt
(2014)) and a stratified plane Couette flow. The heights of various layers are not drawn
to scale.

the friction velocity, km is the von Karman constant for momentum, g is gravity, αV is78

the thermal expansion coefficient relating fluid temperature θ to density ρ via a linear79

equation of state80

ρ = ρ0(1− αV θ), (1.2)

with ρ0 being the reference density, and qw is the wall heat flux. The ratio of length81

scales,82

L+ ≡ L

δν
, (1.3)

where δν ≡ ν/uτ is the near-wall viscous length scale, needs to be above approximately83

200 for a stratified plane Couette flow to stay fully turbulent, while when L+ < 20084

the flows become intermittent, i.e. laminar and turbulent flow patches coexist. This85

observation is consistent with Flores & Riley (2011) who reported similar behaviour86

in stably stratified boundary layers. Consistent with the L+ criterion, Deusebio et al.87

(2015) were not able to find fully developed turbulence (see their figure 18) in the SPC88

system for Ri > 0.2 even for Re up to 280000, as the flow inevitably relaminarises due to89

the strong buoyancy effects, although it is important to appreciate that the simulations90

had imposed periodicity in the streamwise and spanwise directions, and the extent of the91

computational domain may play a non-trivial role. Subsequently, Scotti & White (2016)92

also used Monin–Obukhov similarity theory to consider, among other issues, the mixing93

properties of stratified plane Couette flow, but they restricted their attention to five94

simulations at relatively low Ri 6 0.1 for 14250 6 Re 6 55000, using our conventions,95

and the single value of Pr = 1, and so did not consider the parameter regime where this96

intermittency at high Re for sufficiently high Ri appears to arise.97

In this paper, we employ Monin–Obukhov similarity theory to formulate scalings for98

relevant stratified flow diagnostics in stratified plane Couette flows, which forms the99

second theme of the paper. It is important to contrast the behaviour of stratified plane100

Couette flows with the more geophysically realistic flow in a stable atmospheric boundary101

layer, where the flow is only wall-bounded from below. In stable atmospheric boundary102

layers, Monin–Obukhov theory is only valid for the ‘weakly stable’ regime in the surface103
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layer where the momentum and buoyancy fluxes do not vary with height, as shown in104

the left panel of figure 1. Monin–Obukhov theory does not apply, for example, in the105

overlying outer layer, or in the ‘very stable’ regime where the constant-flux surface layer106

does not exist (see e.g. Mahrt (2014)). However, in the doubly bounded set-up of stratified107

plane Couette flows, as shown in the right panel of figure 1, the momentum and buoyancy108

fluxes do not vary over height under the condition of statistical stationarity, and Monin–109

Obukhov theory is indeed expected to hold throughout the domain, crucially because110

the flow is wall-bounded above and below, and so there is a y-independent vertical flux111

through the domain.112

One of the specific goals of the paper is to examine whether stratified plane Couette113

flow (or any stable constant-flux layer to which Monin–Obukhov scaling applies) supports114

the strongly stratified turbulence regime (Lilly 1983; Billant & Chomaz 2001; Brethouwer115

et al. 2007; Riley & Lindborg 2012), a regime which requires Reb � 1 and Frh � 1,116

where Reb is the buoyancy Reynolds number and Frh is the horizontal turbulent Froude117

number. Reb and Frh are defined as118

Reb ≡
ε

νN2
and Frh ≡

U ′

N`h
, (1.4)

where ε is the dissipation rate, N is the buoyancy frequency, U ′ is a characteristic119

turbulent horizontal velocity, and `h is the horizontal integral scale of the turbulence.120

Such a strongly stratified regime can be reached numerically in homogeneous and sta-121

tionary flows with body forcing (Brethouwer et al. 2007; de Bruyn Kops 2015), and122

in unforced nonstationary flows with specific initial conditions (Riley & de Bruyn Kops123

2003; Diamessis et al. 2011; Zhou 2015; Maffioli & Davidson 2015). However, the existence124

of the strongly stratified regime has not been reported in wall-bounded stratified flows125

(Garćıa-Villalba et al. 2011a; Garćıa-Villalba & del Álamo 2011; Deusebio et al. 2015).126

Whether this regime is realizable in such flows is a key issue that we investigate in this127

paper. As demonstrated in Scotti & White (2016), Monin–Obukhov scaling allows the128

construction of an estimate for Reb, and so for flows exhibiting Monin–Obukhov scaling129

there is a convenient theoretical approach to consider the realizability of the strongly130

stratified regime.131

Diapycnal mixing in stratified flows is a focal point of research (see the reviews of132

Linden (1979); Fernando (1991); Peltier & Caulfield (2003); Ivey et al. (2008)). Existing133

parameterizations of the diapycnal diffusivity κt, when normalised by the molecular134

viscosity ν, often involve Reb as a parameter (Shih et al. 2005; Bouffard & Boegman135

2013), although it has been widely debated if Reb is the only parameter of relevance.136

For example, the additional effects of Rig and Pr have been highlighted by laboratory137

and numerical studies (Barry et al. 2001; Mater & Venayagamoorthy 2014; Salehipour138

& Peltier 2015; Salehipour et al. 2015; Maffioli et al. 2016; Scotti & White 2016) in139

parameterizing κt, where Rig is the gradient Richardson number defined as140

Rig ≡
N2

S2
, (1.5)

with S being an appropriate mean vertical shear. A recent study by Maffioli et al. (2016)141

proposed an alternative scaling based upon the turbulent Froude number Frh defined in142

(1.4). Stratified plane Couette flow is an effective test bed for these parameterizations,143

as the parameters (Reb,Rig,Pr ,Frh) can be varied readily by adjusting the external144

properties (such as wall velocity, density difference, viscosity, etc) in simulations of145

stratified plane Couette flow. The final theme of this paper is, therefore, to characterize146

the diapycnal mixing due to stratified turbulence in stratified plane Couette flow at as147
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large a range of Rig, Reb and Pr as possible and to identify the relevant parameters in148

determining the turbulent diffusivities in such flows.149

In summary, the three main aims of this paper and the corresponding open questions150

are as follows:151

(i) Prandtl number effects. For given values of (Re,Ri), how do the mean flow and152

temperature profiles depend on Pr? How do the wall fluxes of momentum and heat153

depend on Pr? How does the intermittency boundary in (Re,Ri) parameter space vary154

with Pr?155

(ii) Similarity scaling. How well does Monin–Obukhov theory characterise fully de-156

veloped stratified plane Couette flow? How do diagnosed quantities such as Rig, Reb157

and Frh, arising as outputs of the simulations, relate to the wall fluxes? How do those158

diagnostics relate to each other? Is the strongly stratified regime accessible in stratified159

plane Couette flows?160

(iii) Mixing parameterization. How should one parameterize the turbulent diffusivities161

in stratified plane Couette flows? Which of the possible parameters (Reb,Rig,Pr ,Frh)162

play a role in these flows? Are these parameters independent of each other?163

To address these questions, the rest of the paper is structured as follows. In §2 we164

describe our numerical simulations of stratified plane Couette flows. In §3, we review165

Monin–Obukhov similarity theory and develop a mixing length model incorporating166

Monin–Obukhov theory at various Prandtl numbers and applying near-wall corrections167

(unlike the Pr = 1 model presented in Scotti & White (2016) not specifically focussed on168

stratified plane Couette flow), to predict the wall fluxes in stratified plane Couette flow169

as a function of external parameters (Re,Ri ,Pr). In §4 we present the Prandtl number170

effects in stratified plane Couette flows through the modification of the near-wall layer171

and thus the wall fluxes, and explore the implications of these effects for the intermittency172

boundary in the (Re,Ri) plane. In §5 we employ Monin–Obukhov similarity theory to173

characterize the turbulence in the channel gap interior and formulate scalings for various174

flow diagnostics. In §6 we develop parameterizations for turbulent diffusivities in the175

channel gap interior and discuss the results in the context of Monin–Obukhov scalings176

presented in §5 and existing parameterizations in the literature. In §7 we provide some177

concluding remarks.178

2. Numerical simulations179

In this section we describe DNS of stratified plane Couette flows considered in this180

paper. These simulations follow closely those of Deusebio et al. (2015) (hereinafter181

referred to as DCT). With a brief summary provided here, we refer the interested reader182

to DCT for further details on the formulation of the stratified plane Couette simulations.183

Full descriptions of the DNS algorithms can be found in Taylor (2008) and Bewley (2010).184

Consider the velocity vector u = (u, v, w) in the coordinate system (x, y, z), where x185

and z are the periodic (horizontal) directions and y the wall-normal (vertical) direction.186

Two non-slip solid walls, moving in opposite directions in the x−direction at velocity187

±Uw, are located at y = ±h respectively. The temperatures θ at the upper and lower188

walls are fixed at ±Tw respectively, resulting in a statically stable stratified system. We189

consider the incompressible Navier-Stokes equations under the Boussinesq approximation190
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with a linear equation of state as given in (1.2):191

∂u

∂t
+ u · ∇u = −∇p

ρ0
+ ν∇2u− αV θg, (2.1a)

∂θ

∂t
+ u · ∇θ = κ∇2θ, (2.1b)

∇ · u = 0 , (2.1c)

where ν and κ are the kinematic viscosity and thermal diffusivity respectively, and g ≡192

−gey represents gravity. (It is important to remember that the vertical axis in which193

gravity acts is denoted by y as is conventional in engineering wall-bounded flow contexts,194

whereas in geophysical contexts this direction is often denoted by z.)195

Stratified plane Couette flows are characterized by three external parameters:196

Re ≡ Uwh

ν
, Ri ≡ αV Twgh

U2
w

and Pr ≡ ν

κ
. (2.2)

We denote the mean velocity and temperature by197

U ≡ 〈u〉 and Θ ≡ 〈θ〉, (2.3)

respectively, where 〈...〉 represents horizontal averages over the statistically homogeneous198

x-z plane. The friction velocity uτ and temperature θτ are defined as199

u2τ ≡
τw
ρ0

= ν

∣∣∣∣∂U∂y
∣∣∣∣
y=±h

and θτ ≡
qw
uτ

(2.4)

respectively, where τw ≡ ρ0u2τ is the wall shear stress and200

qw ≡ κ
∣∣∣∣∂Θ∂y

∣∣∣∣
y=±h

(2.5)

is the wall heat flux. The Obukhov length scale L, defined in (1.1), is the only (up to201

a multiplicative constant) length scale that can be formed using u2τ and qw, the wall202

momentum and heat fluxes, along with the buoyancy parameter gαV , where αV relates203

temperature to buoyancy via the linear equation of state (1.2). The friction velocity uτ204

can be used to form the friction Reynolds number205

Reτ ≡
uτh

ν
, (2.6)

and qw can be made dimensionless to form the Nusselt number206

Nu ≡ qwh

κTw
=

h

Tw

∣∣∣∣∂Θ∂y
∣∣∣∣
y=±h

. (2.7)

Reτ and Nu are not known a priori, but are rather output parameters which vary with207

the external parameters (Re,Ri ,Pr).208

In order to investigate the flow properties as the external parameters vary in the209

three-dimensional parameter space (Re,Ri ,Pr), we first revisit the existing simulations210

performed by DCT who focused on a fixed Pr = 0.7 and varied Re and Ri extensively.211

A set of simulations performed by DCT at a wide range of Re from 865 to 280000 are212

reanalysed in the present study, and the parameters covered are listed in Table 1. In213

addition, new simulations are performed at a fixed Reynolds number Re = 4250 for214

various Pr and Ri . The Re value in the new simulations is large enough to support215

fully developed turbulence at finite values of Ri, (i.e. there is no observed spatial or216
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temporal intermittency in the turbulent flow in this geometry) and yet the Re value is217

small enough to allow, within available computing resources, a parametric study in the218

(Ri ,Pr) parameter space through DNS, which is one of the main aims of this paper.219

The input and output parameters of these simulations, both newly performed (simula-220

tions 1–12) and reanalysed from the work of DCT (simulations 13–23), are tabulated in221

Table 1. Pr values spanning two orders of magnitude, i.e. Pr ∈ {0.7, 7, 70}, are considered222

in this paper. The choices of the first two Pr values correspond to the geophysically223

relevant scenarios of heat (as the active scalar) in air (Pr = 0.7) and heat in water224

(Pr = 7) respectively. While the direct geophysical relevance the third examined value225

of Pr = 70 is not immediately apparent, it has been chosen as an intermediate value226

between 7 and 700, the latter of which corresponds to the relevant Schmidt number Sc227

of salt in water. Simulation of flows with Sc = 700 incurs prohibitive computational228

costs presently. The Pr = 70 simulations are examined in an attempt to probe into the229

extremely poorly conductive/diffusive regime expected to occur for Sc = 700.230

In addition to the requirements to resolve the near-wall dynamics adequately, which231

was described by DCT, the elevated Pr values pose their own requirement on the spatial232

resolution of the DNS, i.e. to resolve adequately the Batchelor scale of the scalar field `B233

(Batchelor 1959), where `B is defined as234

`B ≡
η

Pr1/2
, (2.8)

and η ≡ (ν3/ε)1/4 is the Kolmogorov scale. Equation (2.8) suggests that the grid resolu-235

tion needs to be approximately tripled when Pr is increased by one order of magnitude,236

given a fixed η. In setting up our simulations, simulation 3 (which is replicated from237

DCT’s simulation 9 as tabulated in their table 1) with (Re,Ri ,Pr) = (4250, 0.04, 0.7), is238

used as a reference. When Pr is increased from 0.7 (as in DCT’s simulations) to 7 (as in239

our simulations 4–8), the resolution is only doubled. However, grid-independence tests at240

Pr = 7 employing a 384×193×384 grid yield no significant differences in the turbulence241

statistics, suggesting that the resolutions of our Pr = 7 simulations are sufficient. When242

Pr is increased from 7 to 70 in simulations 9–12, the resolution is tripled, as required by243

(2.8).244

In stratified plane Couette flow simulations, the size of the computational domain245

may affect the results when the flow is intermittent, as suggested by DCT. All but246

one of the new simulations (1–12) performed have horizontal domain dimensions of247

(Lx, Lz) = (4πh, 2πh), following the baseline cases adopted by DCT (i.e. simulations248

16–22). Due to the constraint of computational resources, however, the simulation of249

(Ri ,Pr) = (0.04, 70) (simulation 9) is performed with the domain dimensions in x and250

z reduced to 50% of the other simulations, while keeping the same spatial resolution.251

As reported by DCT, the turbulence statistics are not expected to be sensitive to the252

domain size if the flow is fully turbulent, which is the case of simulation 9. Throughout253

this paper, we focus on examining the turbulence characteristics during the statistically254

stationary phase of the simulations where key statistics such as dU/dy, dΘ/dy and ε are255

observed to have reached a steady state. The spatially averaged statistics may fluctuate256

weakly with time (see DCT’s figure 2(b) for example), and the statistics reported in257

the following are also time-averaged over a time scale of no shorter than 5h/Uw, i.e. five258

advective time units, for the simulations with Pr = 70. For the simulations with Pr = 0.7259

and 7, the time-averaging window is typically longer than 50h/Uw.260
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Run Re Pr Ri (Lx, Ly, Lz)/h (Nx, Ny, Nz) Reτ Nu L+

1 4250 0.7 0 (4π, 2, 2π) (256, 129, 256) 233 10.6 ∞
2 4250 0.7 0.01 (4π, 2, 2π) (256, 129, 256) 215 9.26 2180
3 4250 0.7 0.04 (4π, 2, 2π) (256, 129, 256) 181 6.40 394

4 4250 7 0 (4π, 2, 2π) (512, 257, 512) 233 31.8 ∞
5 4250 7 0.01 (4π, 2, 2π) (512, 257, 512) 221 29.7 7660
6 4250 7 0.04 (4π, 2, 2π) (512, 257, 512) 206 25.9 1640
7 4250 7 0.08 (4π, 2, 2π) (512, 257, 512) 180 19.0 653
8 4250 7 0.12 (4π, 2, 2π) (512, 257, 512) 129 8.47 261

9 4250 70 0.04 (2π, 2, π) (768, 769, 768) 231 69.3 9590
10 4250 70 0.16 (4π, 2, 2π) (1536, 769, 1536) 204 50.2 2020
11 4250 70 0.96 (4π, 2, 2π) (1536, 769, 1536) 145 17.0 259
12 4250 70 1.44 (4π, 2, 2π) (1536, 769, 1536) 107 11.2 78.0

13 865 0.7 0.02 (64π, 2, 32π) (1024, 65, 1024) 47 2.17 256
14 2130 0.7 0.04 (32π, 2, 16π) (1024, 97, 1024) 85 2.89 170
15 3925 0.7 0.06 (16π, 2, 8π) (768, 129, 768) 130 3.56 148
16 12650 0.7 0.08 (4π, 2, 2π) (512, 161, 512) 349 7.95 249
17 15000 0.7 0.05 (4π, 2, 2π) (768, 257, 768) 497 13.9 666
18 15000 0.7 0.1 (4π, 2, 2π) (512, 193, 512) 318 5.46 142
19 15600 0.7 0.1 (4π, 2, 2π) (512, 193, 512) 335 5.81 152
20 25000 0.7 0.05 (4π, 2, 2π) (768, 385, 768) 764 20.0 930
21 25000 0.7 0.1 (4π, 2, 2π) (768, 257, 768) 520 8.80 227
22 35000 0.7 0.125 (4π, 2, 2π) (768, 289, 768) 520 6.08 134
23 280000 0.7 0.175 (2.66, 2, 1.33) (512, 513, 512) 1578 6.59 117

Table 1: Summary of numerical simulations of stratified plane Couette flows. Simulations
1–12 are performed specifically for the present study with a fixed Re = 4250 and varying
Pr and Ri , and simulations 13–23 were first reported by Deusebio et al. (2015) with a
fixed Pr = 0.7 and varying Re and Ri . The computational domains are of dimensions
(Lx, Ly, Lz), and the number of grid points in each direction is (Nx, Ny, Nz) respectively.

3. First-order closure model261

Key quantities in describing stratified plane Couette flows in the framework of Monin–262

Obukhov similarity theory are the momentum flux u2τ and wall heat flux qw which are263

directly linked to the wall gradients via (2.4) and (2.5). It is thus desirable to develop a264

model to predict the fluxes for varying external parameters. DCT proposed such a model265

applying Monin–Obukhov theory to the Reynolds-averaged Navier-Stokes equations.266

However, the model only applied to a single Prandtl number (Pr = 0.7). A refined267

version of the model, which now uses a mixing length formulation to provide a first-268

order closure for the turbulent fluxes as a function of mean local gradients, is described269

here. The mixing length specifications are consistent with Monin–Obukhov theory, and270

near-wall corrections through damping functions (van Driest 1956; Pope 2000) ensure271

the reliable presentation of the effects of Pr on the wall fluxes.272
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3.1. Model formulation273

In order to obtain the vertical profiles of mean velocity and temperature in fully274

developed turbulent stratified plane Couette flow, we integrate the following set of275

equations of U and Θ in time (using the laminar profiles as initial conditions) until276

reaching a steady state:277

∂U

∂t
= ν

∂2U

∂y2
+

∂

∂y

(
νt
∂U

∂y

)
, (3.1)

278

∂Θ

∂t
= κ

∂2Θ

∂y2
+

∂

∂y

(
κt
∂Θ

∂y

)
, (3.2)

where νt and κt are the turbulent (eddy) viscosity and diffusivity respectively.279

The closure for νt in the Reynolds-averaged momentum equation (3.1) can be obtained280

by specifying a mixing length (see e.g. Pope (2000)):281

νt = `∗2m

∣∣∣∣∂U∂y
∣∣∣∣ = `∗mu

∗, (3.3)

where `∗m is the mixing length for momentum and the fluctuation velocity282

u∗ = `∗m

∣∣∣∣∂U∂y
∣∣∣∣ . (3.4)

Similarly, the turbulent flux of scalar in (3.2) can be modelled as283

−〈v′θ′〉 = κt
∂Θ

∂y
= u∗θ∗ = `∗m

∣∣∣∣∂U∂y
∣∣∣∣ `∗s ∂Θ∂y , (3.5)

where `∗s is the scalar mixing length, and it follows that284

κt = `∗s`
∗
m

∣∣∣∣∂U∂y
∣∣∣∣ = `∗su

∗. (3.6)

It remains to specify the two mixing lengths `∗m and `∗s.285

To do this, we start by considering unstratified flows, i.e. L → ∞. We define yw as286

the wall-normal (vertical) distance to the closer wall, i.e. yw ≡ min(h − y, h + y). The287

length yw can be normalised in wall units as y+ ≡ yw/(ν/uτ ). The ‘law of the wall’288

of unstratified wall-bounded flows (see e.g. Bradshaw & Huang (1995)) prescribes the289

wall-normal gradients of U and Θ in the log-law region, i.e. y+ > 30 (Pope 2000), as290

∂U

∂y
=

uτ
kmyw

and
∂Θ

∂y
=

θτ
ksyw

=
θτ P̂r t
kmyw

. (3.7)

where km and ks are the von Karman constants for momentum and scalar respectively,291

and P̂r t = km/ks is a turbulent Prandtl number which applies for the log-law region.292

With293

u2τ
∼= νt

∣∣∣∣∂U∂y
∣∣∣∣ and qw = θτuτ ∼= κt

∣∣∣∣∂Θ∂y
∣∣∣∣ , (3.8)

in the log-law region and following the model prescriptions in (3.3) and (3.6), the mixing294

lengths `∗m and `∗s corresponding to (3.7) read295

`∗m = kmyw and `∗s = ksyw = `∗mP̂r
−1
t . (3.9)

As a result, the velocity scale u∗ in (3.3) and (3.6) can be specified as296

u∗ = uτ . (3.10)
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When the fluid is stratified, Monin–Obukhov similarity theory prescribes the vertical297

gradients of U and Θ as298

∂U

∂y
=

uτ
kmyw

Φm (ξ) and
∂Θ

∂y
=

θτ
ksyw

Φs (ξ) . (3.11)

In these expressions, Φm and Φs are Monin–Obukhov functions which are linear in the299

non-dimensional variable ξ ≡ yw/L for stable stratification:300

Φm(ξ) = 1 + βmξ and Φs(ξ) = 1 + βsξ. (3.12)

Here we take km = 0.41 and ks = 0.48 following Bradshaw & Huang (1995). The choice of301

βm = 4.8 follows the recommendation of Wyngaard (2010) and βs = 5.6 is used following302

the specific choice of km and ks. These model constants are determined empirically using303

field observations of stable atmospheric boundary layers, and their values can exhibit304

some uncertainties (see Foken (2006) for a review). The form of the similarity functions305

may also require additional corrections in order to match the field situations (see e.g.306

Tastula et al. (2015)), such as varying fluxes with height. In the idealised situation307

considered here, where the entire flow between the walls is a constant-flux layer by308

construction, we use the classical canonical forms of Monin–Obukhov functions described309

in (3.12) for clarity and simplicity.310

The mixing length formulation corresponding to Monin–Obukhov theory becomes311

`∗m = kmywΦ
−1
m (ξ) and `∗s = ksywΦ

−1
s (ξ). (3.13)

Taking ξ → 0 in (3.13), one recovers the unstratified formulation (3.9). Since `∗m and `∗s312

are specified in (3.13) in very similar ways, the ratio `∗m/`
∗
s is expected to be of order313

unity.314

3.2. The near-wall layer315

Here we focus on the viscous wall region, i.e. y+ < 50 (Pope 2000), where the316

(molecular) Prandtl number Pr plays a critical role. The mean velocity and temperature317

differences relative to the closer wall can be written in wall units as318

U+ =
min (U + Uw, Uw − U)

uτ
and Θ+ =

min (Θ + Tw, Tw −Θ)

θτ
, (3.14)

where the velocity and temperature at the upper and lower walls are fixed at ±Uw and319

±Tw, respectively. In the viscous/conductive sublayer near the wall (as shown in figure320

2 for Θ+),321

U+ = y+ and Θ+ = y+Pr . (3.15)

As y+ increases, the viscous/conductive sublayer transitions into the log-law region for322

which the mean profiles can be obtained by integrating (3.7) to yield323

U+ =
1

km
ln y+ + Cm and Θ+ =

1

ks
ln y+ + Cs =

P̂r t
km

ln y+ + Cs. (3.16)

DNS of stratified plane Couette flows recover such behaviour in the near-wall region, as324

shown in figure 2. Unlike Cm which is a constant (we take Cm = 5.0 following Bradshaw325

& Huang (1995)), Cs is thought to be a function of Pr , e.g. following Schlichting &326

Gersten (2003),327

Cs = 13.7Pr2/3 − 7.5, (3.17)

or following Davidson (2004),328

Cs = 1.67(3Pr1/3 − 1)2. (3.18)
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Figure 2: Normalized temperature difference from the wall value, Θ+ as defined in (3.14),
plotted as a function of normalized wall distance y+. Upper panel: Pr = 0.7,Ri = 0
(simulation 1); lower panel: Pr = 7,Ri = 0 (simulation 4). Circles show DNS data; the
conductive law (3.15) is plotted with a solid line; the logarithmic law (3.16) in which the
additive constant Cs varies with Pr , is plotted with a dashed line; and the dot-dashed
line shows the location of y+ = ∆y+, where ∆y+ marks the characteristic height of the
conductive sublayer as defined in (3.19).

Figure 2 confirms such an effect of Pr on the log-law layer. The empirical estimates of329

Cs as a function of Pr , i.e. (3.17) and (3.18), agree well with DNS, as shown in figure 3.330

The value of Cs effectively determines the height of the conductive sublayer which can331

be measured by ∆y+ (as marked with vertical dot-dashed lines in figure 2), the intersect332

of the conductive law (3.15) and the log law (3.16), i.e.333

∆y+Pr =
1

ks
ln∆y+ + Cs(Pr). (3.19)

The quantity ∆y+ is observed to decrease with Pr (see figures 2 and 3), and, in particular,334

for Pr � 1 (Davidson 2004),335

∆y+ ∝ Pr−1/3. (3.20)

With (3.15), the temperature difference across the conductive sublayer, i.e.336

∆Θ+ ∼ Pr∆y+ ∝ Pr2/3, (3.21)

varies strongly with Pr .337

It is thus shown that Pr has a significant effect on the near-wall structure of the mean338

scalar field. A thinner conductive layer is expected at higher values of Pr , as suggested by339

(3.20). Moreover, as the temperature gradients (in wall units) are sharper at a larger Pr ,340

as quantified by (3.15), the temperature jump across the conductive sublayer increases341

with Pr , as quantified by (3.21). This generic behaviour of the ‘law of the wall’ for varying342
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constant Cs in the log law for scalar (3.16) as determined by simulations 1 and 4 of
stratified plane Couette flows and empirical relations (3.17) and (3.18). Right panel: The
height of the conductive sublayer ∆y+ as a function of Pr . ∆y+ values obtained by
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Pr has implications for the overall temperature profile across the channel gap in stratified343

plane Couette flows, as we discuss in detail in §4.344

3.3. Damping functions345

To complete the mixing length specifications by taking into account the near-wall346

layer and the effect of Pr mentioned above, one can apply the van Driest damping347

functions (van Driest 1956) to the mixing lengths in (3.13). This near-wall correction348

improves the modelling of the turbulent fluxes in terms of their dependence on yw in the349

viscous/conductive sublayer (Pope 2000). The momentum mixing length is corrected by350

the damping function Dm(y+) to become351

`∗m = kmywΦ
−1
m (ξ)Dm(y+) = kmywΦ

−1
m (ξ)[1− exp(−y+/A+

m)], (3.22)

where the van Driest constant for momentum A+
m is set to be 26 (van Driest 1956; Pope352

2000).353

Similarly, the scalar mixing length becomes354

`∗s = ksywΦ
−1
s (ξ)Ds(y

+) = ksywΦ
−1
s (ξ)[1− exp(−Pr−1y+/A+

s )], (3.23)

where the constant A+
s is inherently related to the Pr -dependent additive constant Cs355

in (3.16) (Pope 2000) and is thus also a function of Pr .356

As y+ → 0, the turbulent diffusivity κt in the conductive sublayer, following (3.23),357

scales as358

κt = `∗su
∗ = `∗s`

∗
m|
dU

dy
| ∼ kskm

y+4

A+
s A

+
m

ν

Pr
∼ kskm

y+4

A+
s A

+
m
κ. (3.24)

Note that (3.24) does not yield the expected power law, i.e. κt ∝ y3, that describes the359

near-wall variation of κt, which is a shortcoming of the van Driest model (see Pope (2000),360

pg 305). We use the standard van Driest model for its simplicity. More sophisticated near-361

wall treatments for large Prandtl (Schmidt) number can be found in e.g. van Reeuwijk362
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Figure 4: Comparison of the model prediction of L+ and Reτ with DNS data from the
present study and Deusebio et al. (2015). L+

model and Reτ,model are the results of the
mixing length model as described in §3; L+

DNS and Reτ,DNS are the results of DNS which
are tabulated in Table 1. Varying Reynolds numbers are used in the simulations with
Pr = 0.7 (plotted with circles) and the fill colour is made darker for larger values of Re.

& Hadžiabdić (2015). The inclusion of Pr−1 in the scalar damping function Ds(y
+) in363

(3.23) is such that κt in the near-wall limit is proportional to the molecular diffusivity κ364

(rather than ν = κPr).365

The quantity A+
s is, by definition, a dimensionless wall distance below which the366

damping takes place. A natural choice for A+
s is to take A+

s ∼ ∆y+ where the latter367

is a characteristic height of the conductive sublayer as defined by (3.19). In this model,368

we take A+
s = 0.65∆y+. This results in A+

s values of {7.9, 4.3, 2.1} respectively for369

Pr ∈ {0.7, 7, 70}.370

3.4. Comparisons with DNS371

This Monin–Obukhov mixing length model as described above can be implemented to372

produce predictions of wall fluxes u2τ and qw and the dimensionless parameters defined373

in terms of the various fluxes, given the external parameters Re, Ri and Pr . Figure 4374

shows the comparisons between the model predictions of L+ ≡ L/δν and Reτ ≡ h/δν375

(see definitions in (1.3) & (2.6) respectively) and DNS results at Re = 4250 (the present376

study) and a (crucially) wider range of Re values (Deusebio et al. 2015) as listed in table377

1. Given the considerable range of parameters, the agreement of the model predictions378

with DNS data is reasonable, with the L2 norm of percentage relative errors being 16.4%379

for L+ and 13.9% for Reτ over all simulations tested in figure 4. We believe that the380

model is thus validated and can be employed to produce an estimate of the wall fluxes381

given the (externally set) (Re,Ri ,Pr) parameters.382

4. Effects of Prandtl number383

In this section, we examine the DNS results focusing on the effects of the Prandtl384

number Pr , which is the first main theme of this paper. In particular, we will address the385

three main questions already posed in the Introduction: i) how does Pr modify the mean386

flow/temperature profiles; ii) what do these modifications imply for the momentum and387
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(c) gradient Richardson number Rig at (Re,Ri) = (4250, 0.04). The results of simulation
3 with Pr = 0.7 are plotted with a solid line; the results of simulation 6 with Pr = 7 are
plotted with a dashed line; and the results of simulation 9 with Pr = 70 are plotted with
a dot-dashed line. For reference, in panels a & b, grey lines with the corresponding line
type for each Pr show the predictions of the mixing length model described in §3.

heat fluxes through the wall; and iii) how does the intermittency boundary, delineated388

in the (Re,Ri) space, vary with Pr?389

Figure 5 shows the effects of Pr on the mean velocity (U) and mean temperature (Θ)390

profiles in the wall-normal y-direction. At fixed values of (Re,Ri) = (4250, 0.04), the391

mean temperature gradient dΘ/dy (plotted in figure 5(a)) sharpens significantly in the392

near-wall region, as Pr increases by two orders of magnitudes from 0.7 to 70. On the393

other hand, the vertical variation of Θ weakens in the interior of the channel gap away394

from the walls with increasing values of Pr . The gradient Richardson number (plotted395

in figure 5(c)), is defined as396

Rig(y) ≡ N2

S2
=
−(g/ρ0)(dρ/dy)

(dU/dy)2
=
gαV (dΘ/dy)

(dU/dy)2
, (4.1)

where S ≡ dU/dy denotes the mean vertical shear and U is the mean velocity as defined397

in (2.3). Rig varies sharply in the near-wall region and reaches a plateau in the channel398

gap interior. Given that the mean shear S (plotted in figure 5(b)) is less sensitive to Pr ,399

the Rig values at mid-gap (y = 0) decrease with Pr at fixed values of (Re,Ri), which400

is mainly attributed to the sharpening of dΘ/dy in the near-wall region and weakening401

of those gradients (and thus the strength of stratification, as measured by N2) in the402

channel gap interior.403

We now examine the effects of Pr on Nu, Reτ and L+, dimensionless quantities which404

are determined by the wall fluxes of heat and momentum. As shown by DCT, critical to405
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the transition from intermittent behaviour to fully turbulent behaviour is the parameter406

L+, which can be rewritten in terms of the bulk input external parameters (Re,Ri ,Pr)407

and the output parameters (Reτ ,Nu) as408

L+ =

(
1

kmRe2Ri

)(
Re4

τ

Nu/Pr

)
. (4.2)

Consider the scenario where (Re,Ri) are fixed and Pr is adjusted by varying κ. The first409

bracket on the right hand side of (4.2) is thus fixed, and the second bracket includes410

all parameters that are Pr -dependent. The term Re4
τ is a measure of momentum flux411

(shear stress), and the term Nu/Pr = qwh/(Twν) quantifies the stabilizing effect of412

stratification. By inspecting the values of Reτ and Nu in table 1 as they vary with Pr ,413

(in particular, simulations 3, 6 and 9 which share the same (Re,Ri)) it appears that414

Reτ increases and Nu/Pr decreases as Pr increases. In combination, these two effects415

result in larger values of L+. Therefore, at given (Re,Ri) values, larger Pr enhances416

the destabilizing wall shear stress and inhibits the stabilizing heat flux. The flow thus417

becomes more prone to turbulence due to the increase of Pr .418

Figure 6 demonstrates the effect of Pr on the intermittency boundary dividing the fully419

turbulent flow regime from the intermittent regime. Contours corresponding to L+ = 200,420

i.e. the intermittency boundary proposed by DCT, are plotted on the (Re,Ri) plane. At421

a given Re, increasing Pr effectively allows fully turbulent flows to exist at higher values422

of Ri . This can be understood from two perspectives. First, as discussed previously,423

increasing Pr destabilizes the flow due to the combined effects of larger shear and smaller424

stratification. Second, Pr reshapes the mean temperature and velocity profiles which425

results in smaller gradient Richardson number Rig values in the channel gap interior as426
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Pr increases (as shown in figure 5) allowing shear to dominate stratification away from427

the walls. While large values of Pr can raise the transitional Ri value for a given Re,428

figure 6 suggests that fully developed turbulence is not likely to exist for Ri � 1, at429

least within the range of Re and Pr values which has been investigated, both for the430

simulations conducted specifically for this paper at Re = 4250, and the simulations at a431

range of Re presented by DCT, as listed in table 1.432

5. Monin–Obukhov similarity scaling433

It has been shown in §4 that Pr plays a significant role in the near-wall region by434

modulating the wall heat flux qw, the momentum flux u2τ and thus the dimensionless435

parameters such as L+ and Reτ . In this section, we turn our attention to our second436

main theme, i.e. assessing the validity of Monin–Obukhov similarity scaling. We focus437

on the turbulence in the interior of the channel gap and examine how the turbulence438

characteristics relate to the wall fluxes qw and u2τ . Scalings for various flow diagnostics439

are formulated in the context of Monin–Obukhov theory (see details in appendices440

A and B, and the similar formulations considered independently by Scotti & White441

(2016)). These predictions are then compared to DNS data shown in figure 7 and the442

dynamical implications of these scalings are discussed in detail in this section. Simulations443

specifically performed for the present study, i.e. simulations 1–12 as listed in table 1, which444

cover a wide range of Pr , as well as those performed by DCT, i.e. simulations 13–23,445

which cover a wide range of Re, are included in our discussions.446

5.1. Equilibrium Richardson number447

We first revisit the mid-gap gradient Richardson number Rig|y=0 for fully developed448

stationary (equilibrium) stratified plane Couette flows as prescribed by Monin–Obukhov449

scaling. The concept of just such a characteristic equilibrium Rig value was discussed450

by Turner (1973) in the context of constant flux layers. There also exists a large body451

of literature considering the ‘stationary Richardson number’ in homogeneous sheared452

stratified turbulence, e.g. see Shih et al. (2000), where the particular value of the gradient453

Richardson number is imposed by construction, and the references therein. A more recent454

discussion by Galperin et al. (2007) questioned whether such a unique ‘critical Richardson455

number’ exists, although the flows considered there differed in several significant ways456

from the flows considered here. Specifically, and most importantly, stratified plane457

Couette flow exhibits intermittency for the bulk Richardson number Ri . O(1). Also,458

as we discuss in more detail below, the turbulent Prandtl number, i.e. the ratio of459

eddy diffusivities of heat and momentum, behaves in a qualitatively different manner in460

stratified plane Couette flow from the behaviour of the ‘quasi-normal scale elimination’461

(QNSE) model used in Galperin et al. (2007). Under the plausible assumption that462

a critical Richardson number exists at least in the flow geometry under consideration463

here, it may help us to assess if the turbulence would be self-sustained if the externally464

imposed Richardson number matches the equilibrium condition, or if the flow would self-465

adjust under the non-equilibrium conditions (Turner 1973). Examples of the adjustment466

in the latter scenario include the formation of ‘layer’ and ‘interface’ structures through467

the rearrangement of velocity and density profiles so that the equilibrium Richardson468

number is maintained everywhere in the vertical direction (see §10, Turner (1973)).469

Figure 7(a) compares the mid-gap equilibrium Rig|y=0 values from DNS data (from470

both the present study and those by DCT crucially at a range of Re) with the model471
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Figure 7: DNS verification of the Monin–Obukhov scalings (5.1), (5.3), (5.4) and (5.7).
(a) Equilibrium gradient Richardson number Rig|y=0 at mid-gap, as a function of length
scale ratio h/L. (b) Buoyancy Reynolds number Reb as a function of length scale ratio
L+. Reb values are computed pointwise in y for the channel gap interior with y+ > 50.
(c) Flux Richardson number Rif ≡ −B/P as a function of gradient Richardson number
Rig. Rif and Rig values are computed pointwise in y in the channel gap interior with
y+ > 50. Symbol types are the same as panel b. (d) Turbulent Froude number Frh as
a function of mid-gap gradient Richardson number Rig. Frh is estimated as ε/(Nu2τ ),
where ε and N are sampled at mid-gap y = 0. Symbol types are the same as in panel
a. The dashed line corresponds to Frh = 0.95Ri−1/2g , the least-squares fit to the scaling
(5.7). In panels a & d, the fill colours of the circles (corresponding to simulations with
Pr = 0.7) are made darker for larger values of Re.

prediction (B 3) derived in appendix B, i.e.472

Rig|y=0 =
km
ks

(h/L)−1 + βs

[(h/L)−1 + βm]
2 , (5.1)

which suggests that such an equilibrium Rig value is determined solely by the length473

scale ratio h/L (note that km, ks, βs and βm are model constants defined in §3). The474

data points indeed collapse in figure 7(a) for the wide range of external parameters (in475
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particular, Prandtl number Pr , but also Reynolds number Re) examined, and the DNS476

results compare well with the Monin–Obukhov prediction (5.1).477

Two scenarios in stratified plane Couette flows arise from (5.1) when h/L approaches478

different limits. First, when h/L→∞, the mid-gap equilibrium Rig saturates at479

Rig|y=0 =
km
ks

βs
β2
m

' 0.21. (5.2)

This scenario is at least superficially similar to the discussion of constant-flux layers480

in ‘very stable’ stratification (Ellison 1957; Turner 1973), although as discussed further481

below, the behaviour of the turbulent Prandtl number is qualitatively different from482

that assumed by Ellison (1957). When ξ = h/L � 1, the linear dependence of Monin–483

Obukhov functions Φm and Φs on ξ dominates (see (3.11) and (3.12)). Fluid in the484

channel gap interior does not ‘feel’ the impact of the wall directly (but still indirectly485

though the wall fluxes u2τ and qw), because the vertical motions are strongly damped by486

stratification. In the channel gap interior, the distance to the wall yw (or the channel487

gap half-height h) becomes irrelevant, as shear and temperature gradients both become488

constant (by taking the limit of (3.12) at ξ →∞), which renders the turbulence close to489

homogeneous in the wall-normal direction. Interestingly, the maximum stationary Rig490

reported in homogeneous sheared turbulence is also approximately 0.2 (see e.g. Shih491

et al. (2000)). This reinforces the notion that Monin–Obukhov scaling may also apply to492

such homogeneous triply-periodic flows (Chung & Matheou 2012). There remains some493

debate as to whether the standard Monin–Obukhov theory holds in the ξ →∞ limit in a494

stable atmospheric boundary layer, see for example the discussion on ‘z-less’ stratification495

by Mahrt (1999), and any such differences between the standard theory and boundary496

layer flow are likely linked to the variation of fluxes with height in a real boundary497

layer. However, the statistically stationary stratified plane Couette flows examined here,498

which are constant-flux layers by construction, appear to be consistent with the standard499

Monin–Obukhov theory.500

As an aside, we note that this maximum observed Richardson number is close to501

Rig = 1/4 which arises in the well-known Miles–Howard criterion for linear normal mode502

stability of inviscid parallel steady stratified shear flows (Miles 1961; Howard 1961). This503

closeness is apparently fortuitous, as the arguments leading to the prediction of the value504

in (5.2) are entirely constructed under the assumption of statistically stationary turbulent505

flow. Therefore, it is at least possible that observations of Rig close to 1/4, as, for example,506

in the Equatorial Undercurrent (Smyth & Moum 2013), are due to turbulent balances,507

not ‘marginal stability’ of the flow, as argued by Thorpe & Liu (2009), although, it is also508

important to remember, as shown for example by Pham et al. (2013), that the dynamics509

of the Equatorial Undercurrent is inevitably non-stationary, due to diurnal forcing.510

Second, when h/L is O(1) or smaller, the equilibrium Rig at mid-gap varies strongly511

with h/L, which can be seen from figure 7(a). Under this scenario, the stabilising effects512

due to stratification are relatively weak. The direct influence of the walls on the interior513

turbulence becomes significant, and both h and L become relevant scales for the channel514

gap interior.515

5.2. L+, Reb and intermittency516

The parameter L+ is a useful diagnostic quantity to predict if stratified plane Couette517

flows can sustain a fully turbulent state or become intermittent (as discussed by DCT).518

On the other hand, the buoyancy Reynolds number Reb ≡ ε/(νN2) ∼ (`O/η)4/3, which519

describes the scale separation between the Ozmidov scale `O and the Kolmogorov scale520

η, is often used to predict whether small scale turbulence can exist given the level of521
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turbulent dissipation and stratification (see e.g. Riley & Lindborg (2012)), typically in522

homogeneous simulations (Brethouwer et al. 2007).523

A natural question to ask is then whether L+ and Reb are related to each other, at524

least in stratified plane Couette flows. The analysis in Appendix B has, through Monin–525

Obukhov similarity theory, predicted a linear scaling between L+ and Reb as given by526

(B 5) shown in Appendix B, i.e.527

Reb ∼ L+km. (5.3)

In figure 7(b) this scaling is confirmed from DNS data (shown for simulations 1–12), and528

has already been noted by Scotti & White (2016) in a more limited range of Ri 6 0.1,529

Re 6 55000 and Pr = 1. Reb estimates presented here are based on ε and N values530

that are sampled pointwise in the vertical direction y. However, in open flows, there are531

different possible choices of averaging volumes for ε and N (see e.g. Salehipour et al.532

(2016)), and caution needs to be exercised when comparing specific numerical values of533

Reb between different flow geometries, or indeed between different analyses. A reanalysis534

of DCT’s data (simulations 13–23, not shown) suggests the same linear scaling for a wide535

range of Re and Ri . This indicates that the L+ criterion for predicting intermittency,536

which is specific to wall-bounded flows, is also linked to this more general Reb argument.537

The critical (minimum) Reb for fully developed turbulence, as inferred from the L+ > 200538

criterion reported by DCT and the scaling (5.3), is approximately 80 (as km ≈ 0.4) for539

stratified plane Couette flows. This critical Reb of 80 is close to the cut-off value Reb = 100540

between the ‘intermediate’ and ‘energetic’ regimes of Shih et al. (2005) which is discussed541

in detail in §6, although one needs to be careful about whether the Reb value is a ‘bulk’542

or local estimate when comparing the numerical values. Here simulation 12 is in the543

intermediate regime (Reb < 35, see figure 7(b)), and in what follows, we focus instead544

on the other simulations (Reb > 60) which are close to or within this ‘energetic’ regime545

in terms of the Reb value.546

5.3. Turbulent Prandtl number547

In appendix B, it is shown through scaling arguments that the flux Richardson number548

Rif is proportional to Rig. The particular scaling derived in Appendix B is given by (B 7)549

i.e.550

Rif ∼ Rig, (5.4)

and is compared to DNS results (simulations 1–12) in figure 7(c). In general, Rif is551

proportional to Rig with a multiplicative constant of approximately unity, which is552

consistent with DCT. The group of points which appear to be outliers, correspond to553

simulation 12 (Pr = 70,Ri = 1.44). As discussed previously, the atypical behaviour554

associated with this simulation is likely to be due to low-Reb, and hence inherently555

viscously dominated effects.556

With the turbulent viscosity νt defined through the flux-gradient relation557

νt ≡ −
〈u′v′〉
S

, (5.5)

and turbulent diffusivity κt defined in (A 5), the turbulent Prandtl number Pr t ≡ νt/κt558

can be expressed as559

Pr t =
Rig
Rif

. (5.6)

The Rif ' Rig scaling can thus be interpreted alternatively as the turbulent Prandtl560

number Pr t being approximately unity, which is consistent with the Reynolds analogy,561
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as noted independently by Scotti & White (2016). This result can be derived from562

Monin–Obukhov theory (appendix B) and is consistent with DNS data for the present563

study (simulations 1–12) shown in figure 7(c)), as well as from revisited DCT datasets564

(simulations 13–23) which exhibit the same behaviour (not shown).565

Pr t is often parameterized as a function of Rig in the literature (see, for example,566

Venayagamoorthy & Stretch (2010)). Pr t being unity, as we observe in stratified plane567

Couette flows (see figure 7(c)), appears to be typical for gradient Richardson numbers568

Rig < 0.2 which are sufficiently small in this context – again, one needs to be careful about569

the exact definition of Rig when comparing across different studies, and also it is necessary570

to remember that this is distinct from keeping the bulk Richardson number Ri (set by571

the boundary conditions) small. This observation is consistent with previous studies of572

stably stratified wall-bounded flow simulations (Armenio & Sarkar 2002; Garćıa-Villalba573

& del Álamo 2011; Garćıa-Villalba et al. 2011a) and in homogeneous stratified turbulence574

(Rohr & Van Atta 1987; Chung & Matheou 2012).575

The behaviour of Pr t becomes more complex at higher values of Rig, i.e. for Rig > 0.2576

(Taylor et al. 2005; Venayagamoorthy & Stretch 2010; Karimpour & Venayagamoorthy577

2014, 2015; Salehipour & Peltier 2015; Wilson & Venayagamoorthy 2015). However,578

turbulent flows with larger gradient Richardson numbers Rig > 0.2 do not appear to be579

accessible in stratified plane Couette flows, for reasons that have been discussed in §5.1.580

There also exist Reb-based parameterizations for Pr t in the literature. Shih et al. (2005)581

and Salehipour & Peltier (2015) reported Pr t approaching order unity for intermediate582

to large values of Reb, which is consistent with our observations. Salehipour & Peltier583

(2015) also observed larger than O(1) values of Pr t when the values of Reb are small,584

i.e. O(1) to O(10). This is consistent with our outlier group (simulation 12) in figure585

7(c) whose Reb value is O(10) (see figure 7(b)) and the Pr t value is larger than unity586

(Rig � Rif ).587

Crucially, all the evidence points towards Pr t ∼ O(1) while the flow is turbulent, with588

the flow becoming intermittent before Rig reaching large values. This is qualitatively589

different behaviour to that assumed by Ellison (1957), who stated that ‘it seems more590

likely’ that turbulence could be ‘maintained’ at large values of Rig with still finite Rif <591

1, and so, from (5.6) and consequences derived from it with further turbulence modelling592

assumptions, Ellison (1957) was led to the conclusion that Pr t inevitably reaches large593

values. Galperin et al. (2007) analogously arrived at the conclusion that Pr t reaches large594

values in strongly stratified, yet still ‘turbulent’ flows, in the relatively weak sense that595

the eddy diffusivities (particularly in the horizontal) remain elevated above molecular596

values. A potential major point of difference is the central role played in open flows of597

propagating internal waves, which is not possible in stratified plane Couette flow.598

5.4. Realizability of strongly stratified regime599

Finally, we test the scaling in (B 11) in appendix B, i.e.600

Frh ∼
1√
Rig

, (5.7)

for the turbulent Froude number Frh. Figure 7(d) shows the DNS results for which an601

empirical scaling of602

Frh '
0.95√

Rig
(5.8)

applies, which is consistent with the Monin–Obukhov prediction in appendix B. The603

outlier once again corresponds to simulation 12 for which the Reb value may not be high604
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enough for the inertially-dominated forward cascade assumption underlying (B 8), i.e.605

ε = U ′3/`h, to hold.606

Given that the maximum Rig in fully developed stratified plane Couette flow is607

approximately 0.2 (see §5.1), the minimum Frh that can be obtained in the interior608

of an stratified plane Couette flow (at large enough Reb) is approximately 2, following609

(5.8). However, for the turbulence to reach the strongly stratified regime, it is typically610

argued that Frh needs to be smaller than 0.02 (Brethouwer et al. 2007). Therefore,611

the strongly stratified regime, which is characterised by layering in the density field612

with characteristic vertical length scale U ′/N , may be fundamentally nonrealizable in613

stratified plane Couette flows, at least under the equilibrium conditions we have been614

considering. Once again, it is important to emphasise that it is the mid-gap gradient615

Richardson number Rig which cannot become large in quasi-steady turbulent stratified616

plane Couette flow, for any choice of Re and Ri set by the boundary conditions.617

5.5. Summary618

To summarize the results in §5, we have identified certain generic characteristics of619

the turbulence in the interior regions of stratified plane Couette flows. We find that: the620

length scale ratio h/L determines the mid-gap Rig; Reb scales linearly with L+ ≡ L/δν ;621

Pr t is of order unity for the range of accessible Rig associated with turbulence; and Frh622

is proportional to Ri−1/2g . The scalings, consistent with, and extending the observations623

of Scotti & White (2016) into the crucially important regime where the externally set624

bulk Ri > 0.1 , apply not only to the DNS performed for the present study which cover625

a wide range of Pr (simulations 1–12), but also to those by DCT as listed in table 1626

which covered a wider range of Re (simulations 13–23). These characteristics of stratified627

plane Couette flows fundamentally relate to the fact that it is the upper and lower walls628

which impose momentum and heat fluxes on the fluids. These fluxes then dictate the self-629

similar behaviour of both the mean flow (as characterised by Rig) and the turbulence (as630

characterised by Reb, Pr t and Frh) in the interior. These results are expected to hold not631

only for stratified plane Couette flows but also for other constant-flux layers to which the632

Monin–Obukhov scaling applies. These Monin–Obukhov scalings are intended for regions633

sufficiently far from the walls. Through the wide range of Prandtl numbers examined,634

our DNS data suggest that the dynamics away from the walls are Pr -independent for635

given wall fluxes.636

6. Mixing and its parameterization637

6.1. Osborn formulation for stratified plane Couette flow638

Now we turn our attention to the third main theme of interest, namely the parameter-639

ization of mixing. Here we use the framework proposed by Osborn (1980) to formulate640

a parameterization for the turbulent diffusivity κt ≡ −〈ρ′v′〉/(dρ/dy) = −B/N2. As641

described in appendix C, key to this formulation is the turbulent flux coefficient, Γ ≡642

B/ε ≈ Rif/(1 − Rif ). With Γ appropriately parameterized, the Osborn formulation643

yields an expression for κt, i.e.644

κt
ν
≈ Rif

1− Rif

ε

νN2
= ΓReb. (6.1)

It is important to appreciate that key aspects of the Osborn (1980) framework are based645

on the theoretical considerations of Ellison (1957) and the experimental data of Britter646

(1974), both associated with stratified flows in the presence of boundary forcing and647
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thus expected to have at least some similar properties to the turbulence in stratified648

plane Couette flows. Osborn (1980), following Ellison (1957), postulated that Γ 6 0.2,649

or equivalently Rif 6 0.15, although the inequality in Osborn’s original paper has often650

been ignored subsequently. Interestingly, the experimental data by Britter (1974) (see651

e.g. pg 8-37 of the thesis) led to his conclusion that ‘a critical Richardson flux number652

(i.e. Rif ) of approximately 0.2 is predicted’. This is entirely consistent with our results653

presented in §5 that654

Rif ' Rig . 0.2 (6.2)

in stratified plane Couette flows for turbulence to be maintained, although as already655

noted we observe the turbulent Prandtl number remaining of order one, unlike in the656

model developed by Ellison (1957). Indeed, using this scaling, Γ can be written as a657

function of the gradient Richardson number Rig:658

Γ ≈ Rig
1− Rig

, (6.3)

remembering that Rig appears to have an upper bound above which turbulence cannot659

be maintained, even for asymptotically large Re (see figure 18 of DCT), In the literature,660

however, Γ is often parameterized as a function of Reb (see e.g. Shih et al. (2005)). The661

connection between the Rig-based and Reb-based scalings for Γ is discussed further in662

§6.3.1. It follows from (6.1) and (6.3) that663

κt
ν
≈ Rig

1− Rig
Reb (6.4)

in the context of stratified plane Couette flows. Noting that Pr t ≡ νt/κt ≈ 1 in stratified664

plane Couette flows (as shown in §5) and as also noted by Scotti & White (2016), we can665

also approximate the turbulent viscosity νt with the same scaling for κt in (6.4), i.e.666

νt
ν
≈ Rig

1− Rig
Reb. (6.5)

6.2. Numerical results667

These κt and νt values are estimated directly using their definitions through the flux-668

gradient relation (A 5) and (5.5) at all locations in the wall-normal direction y that are669

at least 50 wall units (y+ > 50) away from the walls, where the local equilibrium (A 3) is670

expected to hold (Garćıa-Villalba et al. 2011b). These results are first plotted in figure671

8 to test the Reb-based parameterizations that are commonly seen in the literature, e.g.672

those reviewed by Ivey et al. (2008) and also discussed in Scotti & White (2016). Our673

results are plotted in figure 9 to validate the scalings (6.4) and (6.5). Simulation 12, in674

which the flow is viscously controlled and exhibits spuriously small (O(1) or smaller) or675

negative (counter-gradient) values of κt/ν or νt/ν, is not included in the plots to allow676

the discussion to stay focused on the fully turbulent simulations.677

Figure 8 compares the DNS results of κt/ν against the classical Reb-based parame-678

terizations of Osborn (1980) and Shih et al. (2005). The DNS data points in figure 8679

are sampled locally (pointwise) at various y locations across the channel gap interior680

of stratified plane Couette flows. Within each simulation, the Reb value stays relatively681

constant, while the diffusivities span a wider range – the latter is somewhat expected682

because κt and νt scale linearly with the mixing lengths `∗s and `∗m respectively, both of683

which increase with the wall distance yw, as described in §3.1. These Reb-based scalings684

are effective in describing the homogeneous flow dataset of Shih et al. (2005), but they685

do not provide a good agreement with our DNS data from stratified plane Couette flows686



Mixing in stratified plane Couette flow 23

10
1

10
2

10
3

10
4

Reb

10
0

10
1

10
2

κ
t/
ν

Pr0.7Ri0.01

Pr0.7Ri0.04

Pr7Ri0.01

Pr7Ri0.04

Pr7Ri0.08

Pr7Ri0.12

Pr70Ri0.04

Pr70Ri0.16

Pr70Ri0.96

10
1

10
2

10
3

10
4

Reb

10
0

10
1

10
2

ν
t/
ν

Figure 8: κt and νt, as defined by (A 5) and (5.5), and both normalised by ν, as a function
of Reb. κt, νt and Reb values are computed pointwise in y in the channel gap interior
with y+ > 50. Scaling laws of κt/ν = 0.2Reb (Osborn 1980) plotted with a solid line,

and κt/ν = 2Re
1/2
b (Shih et al. 2005) plotted with a dashed line, are also shown.

which are inherently inhomogeneous due in particular to the presence of the wall. The687

data for νt, which are also plotted in figure 8, behave similarly to κt, since the turbulent688

Prandtl number Pr t ≡ νt/κt is approximately unity (as shown in §5.3).689

Figure 9 compares the DNS data against the scalings (6.4) and (6.5). The collapse of the690

DNS data improves significantly when Rig is included in the parameterizations, as they691

capture the critical (linear) dependence of Rif on Rig. At sufficiently large values of Reb,692

i.e. Reb & 60, the κt/ν ∼ νt/ν ∼ RebRig/(1−Rig) scaling, based on the turbulent kinetic693

energy budget argument by Osborn (1980) and incorporating Monin–Obukhov scaling for694

constant-flux layers to account for the importance of the (coupled) value of Rig, provides695

an accurate description of the turbulent diffusivity in stratified plane Couette flows. It is696

certainly of interest that the Osborn scaling appears to hold, at least qualitatively, even697

though the underlying assumption of Ellison (1957) (on which the Osborn scaling is at698

least partially based) that Pr t becomes large is violated in stratified plane Couette flow.699

We further discuss this scaling with respect to other previously proposed scalings in the700

next subsection.701

6.3. Discussions702

6.3.1. Γ vs. Reb703

The Shih et al. (2005) scalings parameterize the turbulent flux coefficient Γ as a704

function of the buoyancy Reynolds number Reb, whereas in the context of stratified plane705

Couette flow, we propose to parameterize Γ as a function of the gradient Richardson706

number Rig, i.e. Γ ≈ Rig/(1− Rig). Here we discuss our results further with respect to707

the two approaches. Following Shih et al. (2005), for 7 < Reb < 100, i.e. the ‘intermediate’708

regime, a constant turbulent flux coefficient of Γ = 0.2, as originally proposed by Osborn709

(1980) as an upper bound, is used. For Reb > 100, i.e. the ‘energetic’ regime, Γ was710

observed by Shih et al. (2005) to decrease with Reb as Γ ∝ Re
−1/2
b , although their711

data only extend to Reb ' 900. The scaling for Reb > 100 appears to be consistent with712

numerical data of mixing layers (Salehipour & Peltier 2015) and field observations (Davis713
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Figure 9: κt and νt, both normalised by ν, as a function of RebRig/(1−Rig). κt, νt, Reb
and Rig values are computed pointwise in y in the channel gap interior with y+ > 50.
The dashed line marks equality between the abscissa and the ordinate.
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Figure 10: Turbulent flux coefficient Γ (as defined in (C 3)) approximated by Rig/(1 −
Rig), where Rig is evaluated at mid-gap, plotted as a function of Reb which is
approximated by kmL

+ (as shown in figure 7(b)). Symbols correspond to DNS data.
Lines correspond to two different Monin-Obukhov predictions: at Re = 4250 (the same
Re value as the shown DNS results) plotted with a solid line; and at Re = 42500 plotted
as a dashed line. Power-law scalings Γ ∝ Renb with various n values are plotted with
dot-dashed lines marked with the values of n.

& Monismith 2011; Walter et al. 2014). One shortcoming of this scaling is, however, that714

the value of κt/ν = ΓReb ∝ Re
1/2
b becomes infinite when one considers the mixing of715

a passive scalar, since Reb → ∞ as N2 → 0 and ε and ν remain finite. In contrast,716

experiments by Holford & Linden (1999) suggested that the eddy diffusivity approaches717

a finite value in the zero-stratification limit. Moreover, Chung & Matheou (2012) also718

reported saturation of eddy diffusivity for large-to-infinite values of Reb and offered a719

phenomenological explanation from the perspective of competing length scales.720

The scalings (6.4) and (6.5), by including the Rig-dependence, circumvent this problem721

at the zero-stratification limit where Reb → ∞ as Ri → 0, as Γ ∝ Re−1b in the limit of722

Reb →∞ (as shown in figure 10). These scalings also provide a convenient framework to723

interpret the change of power-law exponent in Reb in the scaling of Γ (Barry et al.724
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2001; Shih et al. 2005). This is demonstrated in figure 10, where the characteristic725

values of turbulent flux coefficient Γ in the interior of stratified plane Couette flow,726

as approximated by Rig/(1 − Rig), are plotted against the corresponding Reb values.727

The Monin–Obukhov predictions from the model presented in §3 are also shown in figure728

10 for two values of bulk Reynolds number Re, i.e. Re = 4250 and Re = 42500.729

As shown in figure 10, when Reb is smaller than O(100), which corresponds to the730

h/L > 1 regime in terms of the characteristic Rig value (see figure 7(a)), Rig remains731

a constant value of approximately 0.2 at mid-gap as given in (5.2). The characteristic732

turbulent flux coefficient Γ ≈ Rig/(1 − Rig) ≈ 0.25 is thus a constant. This regime733

is reminiscent of Shih et al. (2005)’s ‘intermediate’ regime where Γ is a constant of734

0.2 independent of Reb, the upper bound as argued by Osborn (1980). Consequently,735

κt/ν = ΓReb ∝ Reb in this regime. This regime may be thought of as a saturated regime736

for Γ , as Rig is close to its maximum value for sustained turbulence, consistent with the737

underlying assumptions of Osborn (1980).738

When Reb is large, e.g. Reb > O(1000) for Re = 4250, which corresponds to the739

h/L� 1 limit in terms of Rig (figure 7(a)), the characteristic Rig can be estimated via740

(B 3) by taking the limit of h/L→ 0 or L+ →∞, which yields741

Rig =
km
ks

h

L
=
km
ks

Reτ,∞
L+

≈ k2m
ks

Reτ,∞
Reb

, (6.6)

where Reτ,∞ denotes the friction Reynolds number for the case of passive scalar (L+ →742

∞,Reb → ∞). With Rig � 1 in this limit, Γ ≈ Rig/(1 − Rig) ≈ Rig. Following (6.6),743

the turbulent flux coefficient Γ ≈ Rig ∝ Re−1b holds for large Reb in the limit of zero744

Richardson number. It is important to appreciate that this is not in itself inconsistent745

with Osborn (1980)’s argument, as 0.2 is the upper bound he proposes for Γ . It follows746

from (6.6) that, in the limit of Reb → ∞, κt/ν = ΓReb = k2mk
−1
s Reτ,∞ approaches a747

constant which depends solely on Reτ,∞ (which itself is a function of the bulk Reynolds748

number Re). This regime corresponds to the scenario of mixing a nearly passive scalar,749

a regime that finds no counterpart in the regimes presented in Shih et al. (2005). As is750

apparent in figure 10, this regime only really becomes clearly identifiable for Reb & 1000,751

larger values than those presented in Shih et al. (2005).752

There exists a transitional regime where Γ decays monotonically with Reb, but with a753

slower rate than the Γ ∝ Re−1b power law in the weakly stratified limit. This transitional754

regime at least superficially resembles Shih et al. (2005)’s ‘energetic’ regime where Γ ∝755

Re
−1/2
b and κt/ν ∝ Re

1/2
b in the sense that Γ starts to decrease with Reb. Of course it is756

important to remember that this resemblance may be entirely fortuitous, due not least to757

the necessity of connecting two different asymptotic regimes, and the marked difference758

of the two flow geometries and forcing mechanisms of the turbulence. The critical Reb,759

which marks the transition from the small-Reb regime to this intermediate-Reb regime,760

appears to be approximately 100 for Re = 4250. However, as shown by Monin–Obukhov761

predictions plotted in figure 10 for Re = 42500, the exact value of the critical Reb is not762

unique but rather moves to larger values for larger Re, and also the specific numerical763

values are dependent on the averaging volumes for ε and N in spatially inhomogeneous764

flows.765

To summarize, in the small-Reb regime with Reb . 100, Γ and Rig are independent766

of Reb, and in the weakly stratified Reb & 1000 regime with small Ri , Γ ≈ Rig ∝ Re−1b767

where the mixing resembles that of a nearly passive scalar. It is within the transitional768

regime between these two where Rig, and thus also Γ ≈ Rig/(1 − Rig), both become769

dependent on Reb. The coupling between Rig and Reb, as is dictated by Monin–Obukhov770
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scalings in stratified plane Couette flow, may offer some explanation for the commonly771

observed variations of Γ with respect to Reb (as presented, for example, in Shih et al.772

(2005)). It is very important to stress that this picture emerges from wall-bounded773

stratified shear flows, consistent with the arguments and data underpinning the model of774

Osborn (1980). In particular, the picture depends strongly on the observation in stratified775

plane Couette flow that Rif ' Rig and that Rig . 0.2 for sustained turbulence.776

6.3.2. Γ vs. Frh777

A recent study by Maffioli et al. (2016) utilised the parameter Frh to scale turbulent778

flux coefficient Γ in triply periodic body-forced turbulence. Critically its forcing is very779

different from the forcing which we consider. In stratified plane Couette flow, the forcing780

at the boundary has to penetrate into the interior to drive turbulent mixing, while the781

forcing in the flow considered by Maffioli et al. (2016) is introduced throughout the782

interior of the flow, and so there is no dynamical ‘barrier’ to the energy being available783

to stratified turbulent mixing throughout the flow. For the Frh > 1 regime, which784

corresponds to our small-Rig weakly stratified regime, they proposed that Γ ∝ Fr−2h . A785

similar dependence of Γ on the bulk Froude number Fr0 = U/
√
G′H cos θ (defined using786

characeristic scales for the current velocity U along a slope of angle θ to the horizontal,787

depth H and reduced gravity G′ cos θ) i.e. Γ ∝ Fr−20 , has also been reported for relatively788

weakly stratified density currents when Fr0 � 1 (Wells et al. 2010). It has been shown789

that Frh ∝ Ri−1/2g holds in stratified plane Couette flows (see §5.4), and therefore the790

Γ ∝ Fr−2h scaling for Γ is consistent with our approximation Γ ≈ Rig/(1 − Rig) ≈ Rig791

(for small Rig). For the small-Frh regime, Maffioli et al. (2016) reported a Γ value792

approaching a constant 0.33 at Frh values of O(10−2) which are accessible in their forced793

simulations. In stratified plane Couette flows, where the minimum Frh is of O(1) as794

shown in figure 7(d), our results suggest a fixed value of 0.2/(1 − 0.2) = 0.25 that is795

closer to the upper bound of the Osborn (1980) formulation, i.e. Γ = 0.2, which is also796

the value reported by Wells et al. (2010) in their intermediate Fr0 ∼ 1 regime.797

6.3.3. Non-monotonic mixing?798

Pioneering work on turbulent mixing in stratified flows (Linden 1979, 1980; Fernando799

1991; Park et al. 1994; Holford & Linden 1999) revealed the possibility of non-monotonic800

behaviour in the stratified mixing, i.e. the buoyancy flux does not necessarily increase801

monotonically but rather can plateau and then decrease with increasing stratification.802

Non-monotonic mixing was proposed to be the mechanism for the formation of generic803

features in stratified fluids such as relatively well-mixed and deep ‘layers’ separated by804

relatively shallow and sharp ‘interfaces’, as originally proposed by Phillips (1972). Such805

non-monotonic mixing has also been observed in time-dependent stratified shear layers806

(Caulfield & Peltier 2000; Smyth et al. 2001; Mashayek et al. 2013; Salehipour & Peltier807

2015). Potentially associated spontaneous layer formation has been observed in stratified808

Taylor-Couette flows in the annular region between two concentric cylinders (Oglethorpe809

et al. 2013) and in flows where the mixing is induced by translating rods (Park et al.810

1994; Holford & Linden 1999).811

In fully developed turbulent stratified plane Couette flow, however, such non-monotonic812

mixing is not observed. The turbulent flux coefficient Γ ≡ B/ε, which measures the813

buoyancy flux in dimensionless form, increases monotonically with Rig, a dimensionless814

measure of the stratification. We hypothesize that this behaviour is due to the range of815

Rig which is accessible in turbulent stratified plane Couette flows where the maximum816

gradient Richardson number is approximately 0.2 (as discussed in §5.1). Effectively, it817

appears that stratified plane Couette flows can only access the weakly stratified ‘left flank’818
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of the non-monotonic mixing curve with stratification postulated by Phillips (1972) and819

observed widely in experiments (see, for example, the classic review of Linden (1979)).820

6.3.4. Effect of Prandtl number821

Throughout our discussion in this section, there is no explicit dependence of the822

normalised values of κt/ν (or νt/ν) on the molecular Prandtl number Pr . This is823

probably due to the fact that the Reb values examined here are sufficiently large, i.e.824

Reb & 60 (see figure 8), so that the molecular properties of the fluid have no effect on825

the turbulent mixing in the channel gap interior. Variation in Prandtl number Pr may826

indeed be important for a small-Reb ‘molecular’ regime with Reb ∼ O(1 − 10) (Shih827

et al. 2005; Ivey et al. 2008; Bouffard & Boegman 2013) which is not the focus of the828

present study. Motivated by experimental results, Barry et al. (2001) included Pr in their829

parameterizations of κt even at large values of Reb up to O(104−105). This discrepancy,830

similarly to the situation with respect to Maffioli et al. (2016), is most likely associated831

with the differences in turbulence forcing mechanisms, i.e. shear driven by the walls as832

in the present study, versus grid stirring as in Barry et al. (2001) .833

7. Concluding remarks834

In this paper, we have investigated stratified turbulence in fully developed stratified835

plane Couette flows, through DNS at a wide range of Pr . We use Monin–Obukhov836

similarity theory as a guide to interpret the numerical results. In particular, we have837

highlighted the relevance of heat and momentum fluxes to the turbulence characteristics838

in the channel gap interior, as well as the implications of these similarity scalings for839

diapycnal mixing.840

The dynamical role of Prandtl number appears to be subtle in stratified plane Couette841

flows. On one hand, the near-wall temperature structure (see in figure 5) is strongly842

Pr -dependent (as discussed in §3). Therefore, Pr has an explicit effect on the heat flux843

qw through the wall (as shown in §4). This quantity is relevant for the Monin–Obukhov844

scalings of the interior turbulence as presented in §5. On the other hand, there is no direct845

impact of Pr on the interior turbulence whose self-similar characteristics are determined846

solely by the wall fluxes (u2τ and qw) and the buoyancy parameter (gαV ), which is in847

agreement with Monin–Obukhov similarity theory and the DNS results covering a wide848

range of Pr .849

Monin–Obukhov similarity theory has motivated several useful scalings which are850

found to be consistent with DNS results, as shown in §5. The roles of the length scales h,851

L and δν are highlighted through their connections to flow diagnostics such as Rig (which852

is determined by h/L) and Reb (which is determined by L/δν). It is somewhat surprising853

to discover an upper limit for Rig (or equivalently, a lower limit of Frh ∝ Ri−1/2g )854

in stratified plane Couette flow, irrespective of the externally set boundary conditions,855

where the turbulence is influenced strongly by the wall fluxes. This suggests that the856

‘strongly stratified regime’ in the sense described in Brethouwer et al. (2007) might not857

be realizable in this type of flows, at least under equilibrium conditions. This observation858

motivates the further question as to how this strongly stratified regime can be accessed859

‘naturally’, i.e. without specific forcing or initial conditions.860

Within the range of Rig accessible in stratified plane Couette flows, i.e. Rig . 0.2, the861

κt/ν ∼ RebRig/(1−Rig) scaling holds for the diapycnal diffusivity as shown in §6. This862

reinforces the now commonly held belief that Reb is not the only relevant parameter in863

describing diapycnal mixing, and in particular, we have further highlighted the role of864

Rig which has also been addressed by recent studies by Salehipour & Peltier (2015) and865
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Maffioli et al. (2016) (although Maffioli et al. (2016) used Frh as the parameter instead,866

Frh may be related to Rig). As noted by Lozovatsky & Fernando (2013) and discussed867

in detail in this paper in §6.3, Reb and Rig may or may not be independent parameters868

depending on the parameter range and flow geometry. Indeed, in statistically stationary869

turbulent stratified plane Couette flow, we find that the characteristic mid-gap value870

of Rig is set by the prevailing properties of the turbulent flow, and is not an external871

parameter independently adjustable from the turbulence. This property is instrumental872

in explaining the variation of the turbulent flux coefficient Γ ≈ Rig/(1− Rig). No non-873

monotonic mixing behaviour is observed, which we hypothesize to be due to the range of874

Rig accessible in such constant-flux layers. Moreover, our results strongly indicate that875

the Prandtl number Pr does not have an effect on turbulent mixing away from the walls,876

at least for the intermediate to large Reb values examined, i.e. Reb & 60, as shown in877

figure 8.878

In the present study, we have investigated fully developed stratified plane Couette879

flows for which the turbulent kinetic energy balance is, to a good approximation, in880

a simple local equilibrium (A 3) that involves shear production, viscous dissipation881

and diapycnal mixing, consistently with the classical modelling assumptions of Osborn882

(1980) – mixing is thus not particularly ‘efficient’ with Γ 6 0.25. Possible nonlocal and883

nonstationary behaviour in stratified plane Couette flows is of great interest, particularly884

with regard to its mixing properties, and is the topic of ongoing investigations. Finally, it885

is important to remember that the analysis in this paper has focused on doubly-bounded886

constant-flux layers with momentum and buoyancy fluxes injected through smooth887

boundaries. Flows in geophysical settings can be considerably more complex due to888

surface roughness or imposed pressure gradient, (mentioning just two examples) and889

such additional complexities are not captured by this investigation of stratified plane890

Couette flows. For example, the turbulent diffusivities may exhibit strong anisotropy891

in horizontal and vertical directions which needs to be treated by more sophisticated892

models (e.g. Sukoriansky & Galperin 2013; Tastula et al. 2015) than the canonical893

Monin–Obukhov theory.894
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Appendix A. Monin–Obukhov scaling: dimensional quantities902

A.1. Mean shear and temperature gradient903

Monin–Obukhov similarity theory (see e.g. Wyngaard (2010)) suggests that the friction904

velocity uτ , the wall heat flux qw and the buoyancy parameter gαV are the only relevant905

dimensional quantities for the dynamics of the turbulence sufficiently far away from the906

walls. These quantities form the similarity length scale L as defined in (1.1). According907

to Monin–Obukhov theory, the mean shear S and temperature gradient dΘ/dy vary908

self-similarly with respect to the transformed wall-normal coordinate ξ ≡ yw/L, i.e. the909

wall-normal distance yw normalised by L. These formulae for S and dΘ/dy are shown in910
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(3.11), and they can be rewritten, for simplicity, as911

S ≡ ∂U

∂y
=
uτ
`∗m

and
∂Θ

∂y
=
θτ
`∗s

=
qw/uτ
`∗s

, (A 1)

where `∗m and `∗s are the mixing lengths for momentum and scalar respectively. The912

lengths `∗m and `∗s are both functions of yw (or ξ ≡ yw/L), and their closed-form913

expressions for the channel gap interior, following Monin–Obukhov theory, are shown914

in (3.13). With (A 1) and (1.1), the squared buoyancy frequency can be written as915

N2 ≡ gαV
∂Θ

∂y
= gαV

qw/uτ
`∗s

=
u2τ

kmL`∗s
. (A 2)

A.2. Turbulent kinetic energy budget916

Far enough away from the walls, i.e. y+ ≡ yw/δν > 50, in fully developed turbulent917

stratified plane Couette flows, the balance of the turbulent kinetic energy involves shear918

production P , dissipation ε and buoyancy flux B ≡ −〈ρ′v′〉/(gρ0) as the dominant terms919

(Garćıa-Villalba et al. 2011b), i.e.920

P ≈ ε−B, (A 3)

where the shear production scales as921

P ≡ 〈u′v′〉S ∼ u2τS ∼
u3τ
`∗m
. (A 4)

Invoking the definition of turbulent diffusivity κt via the flux-gradient relation, i.e.922

κt ≡ −
〈ρ′v′〉
dρ/dy

, (A 5)

the buoyancy flux B can be written as B = −κtN2. Following the mixing length923

specifications (3.6) and (3.10), as well as the expression forN2 in (A 2),B can be rewritten924

as925

B = −`∗suτN2 = − u3τ
kmL

. (A 6)

As is shown in §5, in figure 7 in particular, the flux Richardson number, defined as926

Rif ≡ −B/P , is typically smaller than 0.2 in stratified plane Couette flows. One may927

make the further approximation −B � P in (A 3), which results in the following scaling928

for ε:929

ε ≈ (1− Rif )P ∼ P ∼ u3τ
`∗m
. (A 7)

Appendix B. Monin–Obukhov scaling: dimensionless quantities930

The gradient Richardson number Rig can be evaluated from (A 1) and (A 2):931

Rig ≡
N2

S2
=

u2τ
kmL`∗s

`∗2m
u2τ

=
`∗2m

kmL`∗s
. (B 1)

With `∗m and `∗s prescribed by Monin–Obukhov theory shown in (3.13), Rig can be written932

as a function of the transformed wall-normal coordinate ξ, i.e.933

Rig(ξ) =
km
ks

ξ−1 + βs

(ξ−1 + βm)
2 , (B 2)
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where km, ks, βm and βs are all dimensionless constants in Monin–Obukhov theory (§3.1).934

We are particularly interested in the Rig value at y = 0 (yw = h or ξ = h/L), a935

location characteristic of the mid-gap plateau as shown in figure 5. Such a characteristic936

Rig value can be obtained by evaluating (B 2) at ξ = h/L:937

Rig|y=0 =
km
ks

(h/L)−1 + βs

[(h/L)−1 + βm]
2 , (B 3)

an expression that has no explicit dependence on the Prandtl number Pr . The influence of938

Pr on the interior Rig is indirect through the modulation of wall fluxes which determine939

the Obukhov length scale L as defined in (1.1).940

Combining (A 2) and (A 7), one can obtain an estimate for the buoyancy Reynolds941

number Reb:942

Reb ≡
ε

νN2
∼ uτL

ν

`∗s
`∗m
km = L+ `∗s

`∗m
km. (B 4)

As discussed in §3.1, the ratio `∗s/`
∗
m is typically of order unity, as prescribed by Monin–943

Obukhov theory. The above scaling (cf. Scotti & White (2016)) thus becomes944

Reb ∼ L+km. (B 5)

Following (A 4) and (A 6), the flux Richardson number Rif can be estimated as945

Rif ≡
−B
P
∼ `∗m
kmL

. (B 6)

With (B 1), the above scaling becomes Rif ∼ (`∗s/`
∗
m)Rig. Again, with `∗s/`

∗
m being O(1),946

one obtains947

Rif ∼ Rig, (B 7)

which is consistent with the observations of DCT (see e.g. their figure 13).948

The other relevant parameter is the horizontal turbulent Froude number Frh ≡949

U ′/(`hN) (e.g. Billant & Chomaz (2001); Brethouwer et al. (2007)) which can be950

estimated by assuming951

ε =
U ′3

`h
(B 8)

for the horizontal motions of the integral scale `h undergoing a forward cascade. Frh can952

then be estimated as (see e.g. Maffioli et al. (2016))953

Frh ≡
U ′

`hN
∼ ε

NU ′2
∼ ε

Nu2τ
, (B 9)

for stratified plane Couette flows. Upon substituting (A 2) and (A 7) into (B 9), we obtain954

Fr2
h ∼

ε2

N2u4τ
∼ u6τ

`∗2m
u2
τ

kmL`∗s
u4τ

=
kmL`

∗
s

`∗2m
. (B 10)

Using (B 1), one obtains a scaling for Frh as a function of Rig:955

Frh ∼
1√
Rig

. (B 11)
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Appendix C. Osborn formulation for the turbulent flux coefficient956

The steady-state turbulent kinetic energy balance P ≈ ε−B leads to957

−B ≈ Rif
1− Rif

ε. (C 1)

Dividing the above equation by νN2 and using B = −κtN2,958

κt
ν
≈ Rif

1− Rif

ε

νN2
= ΓReb, (C 2)

where959

Γ ≡ B

ε
≈ Rif

1− Rif
(C 3)

is the turbulent flux coefficient, and it is a fundamental question how Γ (commonly960

referred to as ‘mixing efficiency’ in the oceanographic literature) is to be parameterized961

(see e.g. Ivey et al. (2008)).962
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Garćıa-Villalba, M. & del Álamo, J. C. 2011 Turbulence modification by stable1014

stratification in channel flow. Phys. Fluids 23, 045104.1015
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