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The mixing properties of statically stable density interfaces subject to imposed vertical1

shear are studied using direct numerical simulations of stratified plane Couette flow. The2

simulations are designed to investigate possible self-maintaining mechanisms of sharp3

density interfaces motivated by Phillips’ argument (Deep-Sea Res., vol. 19, 1972) by which4

layers and interfaces can spontaneously form due to vertical variations of diapycnal flux.5

At the start of each simulation, a sharp density interface with the same initial thickness is6

introduced at the midplane between two flat, horizontal walls counter-moving at velocities7

±Uw. Particular attention is paid to the effects of varying Prandtl number Pr ≡ ν/κ, where8

ν and κ are the molecular kinematic viscosity and diffusivity respectively, over two orders9

of magnitude from 0.7, 7 to 70. Varying Pr enables the system to access a considerable10

range of characteristic turbulent Péclet numbers Pe∗ ≡ U∗L∗/κ, where U∗ and L∗ are11

characteristic velocity and length scales, respectively, of the motion which acts to ‘scour’12

the density interface. The dynamics of the interface vary with the stability of the interface13

which is characterised by a bulk Richardson number Ri ≡ b0h/U2
w, where b0 is half the14

initial buoyancy difference across the interface and h is the half height of the channel.15

Shear-induced turbulence occurs at small Ri , whereas internal waves propagating on the16

interface dominate at large Ri . For a highly stable (i.e. large Ri) interface at sufficiently17

large Pe∗, the complex interfacial dynamics allow the interface to remain sharp. This ‘self-18

sharpening’ is due to the combined effects of the ‘scouring’ induced by the turbulence19

external to the interface and comparatively weak molecular diffusion across the core20

region of the interface. The effective diapycnal diffusivity and irreversible buoyancy flux21

are quantified in the tracer-based reference coordinate proposed by Winters & D’Asaro (J.22

Fluid Mech., vol. 317, 1996) and Nakamura (J. Atmos. Sci., vol. 53, 1996), which enables23

a detailed investigation of the self-sharpening process by analysing the local budget of24

buoyancy gradient in the reference coordinate. We further discuss the dependence of the25

effective diffusivity and overall mixing efficiency on the characteristic parameters of the26

flow, such as the buoyancy Reynolds number and the local gradient Richardson number,27

and highlight the possible role of the molecular properties of fluids on diapycnal mixing.28
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1. Introduction30

In stably stratified flows in the ocean and atmosphere, it is not uncommon to observe31

step-like structures in the vertical profile of density with layers of nearly uniform density32

separated by sharp interfaces, see e.g. figure 10.1 of Turner (1973) showing a step-33

like temperature profile (although in this example the temperature changes can be at34

least compensated by changes in salinity). Other examples include the microstructure35

measurements by Gregg (1980) and those described in section 7.1 of Thorpe (2005). The36

flux-gradient paradigm proposed by Phillips (1972) is often used to explain the formation37

of such structures (while alternative mechanisms including internal wave straining have38

also been proposed, see e.g. Thorpe 2005, 2016). Phillips argued that the decrease of39

buoyancy flux with increasing buoyancy gradient leads to a vertical divergence of flux40

which then drives the spontaneous layering of buoyancy from an initially linear profile.41

Such a mechanism was also considered by Posmentier (1977), and the formation of step-42

like structures was observed in laboratory, e.g. by Ruddick et al. (1989). In this paper,43

we adopt a similar perspective to Phillips, in that we examine the vertical variation44

of diapycnal mixing properties such as diapycnal diffusivity and flux. However, we are45

interested here in the robustness rather than the formation of a ‘sharp’ interface from46

an initially uniformly stratified fluid. We focus on whether these mixing properties47

can lead to the maintenance and possible reinforcement of an existing sharp density48

interface. Our considerations are based on analysing direct numerical simulations (DNS)49

of stratified plane Couette flows with a sharp density interface which is introduced, as an50

initial condition, at the midplane between two flat, counter-moving horizontal walls. The51

stratified interface may then evolve in time subject to the constant shearing imposed by52

the walls. The properties of the diapycnal mixing occurring across the density interface53

not only could vary with external flow parameters, but also may exhibit strong spatial54

variation in the vertical z-direction. This z-dependent variation is the key focus of our55

investigation.56

Central to Phillips’ argument is the flux-gradient relation due to the assumed inherent57

properties of stratified turbulence. The review by Linden (1979) of numerous experiments58

supported the existence of such a regime where flux decreases with gradient, i.e. the ‘right59

flank’ of Phillips’ curve (figure 1). Subsequently, various possible flux-gradient relations60

in the right-flank regime have been discussed, e.g. see figure 1 of Balmforth et al. (1998).61

Recently, statistical mechanics arguments developed by Venaille et al. (2017), assuming62

infinite Reynolds and Péclet numbers, suggest that some appropriate measure of the over-63

all mixing efficiency, characterising the fraction of the kinetic energy loss by the fluid that64

leads an irreversibly gain in the potential energy due to mixing, varies non-monotonically65

with the overall gradient Richardson number if the background buoyancy profile contains66

a layered structure, whereas such a mixing efficiency asymptotes to a constant value of67

approximately 0.25 if the background buoyancy gradient is uniform. This suggests that68

the mixing properties of a sharp density interface may vary significantly from that of69

a linearly varying density profile (e.g. Shih et al. 2005). In this paper, we investigate70

the following four specific questions about the mixing properties of a density interface71

subject to imposed vertical shear.72

(i) Does the diapycnal flux completely vanish when the stratification is particularly73

strong, or does the mixing efficiency saturate to a constant as in standard turbulence74

parameterizations (e.g. Mellor & Yamada 1982), and as apparently observed in vertically75

stratified Taylor-Couette flow between two concentric cylinders by Oglethorpe et al.76

(2013)?77

(ii) Does the molecular diffusivity of the fluid affect the overall mixing properties of78
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Figure 1: A schematic representation of the functional dependence of the irreversible
buoyancy flux φd in terms of the buoyancy gradient N2

∗ , i.e. Phillip’s flux-gradient curve.
The definitions of φd and N2

∗ are discussed further in §3. The shaded portion corresponds
to the regime in which the flux decreases with the gradient, i.e. the ‘right flank’ of the
curve, and the unshaded portion corresponds to the ‘left flank’. The asymptotic properties
at sufficiently high buoyancy gradient are deliberately left open.

the system? In particular, how does the mixing efficiency in the layered system compare79

to recent numerical results obtained in other flow configurations, e.g. those studied by80

Salehipour et al. (2016b) and Maffioli et al. (2016)?81

(iii) Does there exist a self-sustaining mechanism which can act to keep the interface82

sharp and maintain the layered structure?83

(iv) If so, what are the ingredients of the mechanism, and is it possible to relate the84

self-sharpening process to vertical variations in the mixing properties, analogously to85

Phillips’ argument?86

It is well known that interfacial internal waves are important dynamical features87

associated with strongly stratified density interfaces. These waves may contribute, along88

with other relatively large-scale stirring processes, to the reversible component of buoy-89

ancy flux, thus introducing ambiguity to inferences of mixing from the conventional90

definition of buoyancy flux, i.e. the correlation between density and vertical velocity91

fluctuations (see e.g. the detailed discussion by Venayagamoorthy & Koseff 2016). A92

rigorous framework concerning the potential energy balance in a control volume was93

developed by Winters et al. (1995) and employed for analysing the bulk properties (such94

as mixing efficiency) of mixing layers, e.g. by Caulfield & Peltier (2000). A variant of95

the above formalism involves a tracer-based reference ‘vertical’ coordinate which was96

formulated by Winters & D’Asaro (1996) and Nakamura (1996), which has been used,97

for example, to quantify mixing in idealised two-dimensional flows (Nakamura 1996;98

Shuckburgh & Haynes 2003) and in large-scale geophysical situations (Marshall et al.99

2006). In this paper, we use the formulation introduced by Winters & D’Asaro (1996)100

and Nakamura (1996) to examine the structural details of fluxes and diffusivities as they101

vary in the tracer-based coordinate, here employed to describe three-dimensional direct102

numerical simulation data. As will be shown, this approach provides a useful framework103

for analysing the irreversible mixing, as well as the sharpening, or maintenance of a104

density interface.105

The rest of the paper is structured as follows. In §2 we describe the numerical simu-106

lations of the layered stratified plane Couette flows and present qualitative observations107

on the time evolution of an originally sharp density interface. In §3 the formalism which108

involves a tracer-based reference coordinate is reviewed, and we propose a possible self-109
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sharpening mechanism by examining the local budget of buoyancy gradient in such110

reference coordinates. In §4 we focus on the dynamics of a highly stable density interface111

and discuss the proposed self-sharpening mechanism in the framework that is presented112

in §3 using direct numerical simulation data. In §5 the dependence of effective diffusivity113

and overall mixing efficiency on the characteristic parameters of the flow is discussed. In114

§6 we provide some concluding remarks.115

2. Numerical simulations116

2.1. Simulation set-up117

Direct numerical simulations (DNS) of layered stratified plane Couette (LSPC) flows118

are considered in this paper, and these simulations follow closely those of Deusebio et al.119

(2015) and Zhou et al. (2017). A full description of the DNS algorithms is presented in120

Taylor (2008). In these simulations, we consider the velocity vector u = (u, v,w) in the121

coordinate system x = (x, y, z), where x and y are the periodic (horizontal) directions122

and z the wall-normal (vertical) direction. The incompressible Navier-Stokes equations123

under the Boussinesq approximation, i.e.124

∂u

∂t
+ u ⋅ ∇u = −∇p

ρ0
+ ν∇2u + bez, (2.1a)

∂b

∂t
+ u ⋅ ∇b = κ∇2b, (2.1b)

∇ ⋅ u = 0 , (2.1c)

are solved numerically, where ν and κ are the kinematic viscosity and the scalar diffusivity125

respectively. The buoyancy126

b ≡ − ρ
ρ0
g (2.2)

is proportional to the gravity g and the density deviation ρ(x, t) from the reference127

density ρ0. Dirichlet boundary conditions for both velocity and buoyancy are applied at128

two horizontal non-slip walls as shown in figure 2. The walls move at the same speed Uw129

in opposite directions in x with a fixed buoyancy difference of 2b0 between them, i.e.130

(u, v,w, b) = (±Uw,0,0,±b0) at z = ±h (2.3)

respectively, resulting in a statically stable stratified shear flow system. Note that we use131

the ‘geophysical’ coordinate system, where z is the wall-normal vertical direction in which132

gravity acts, x is the streamwise direction with the flow driven by the relative motion133

of the walls, and y is the spanwise direction (see figure 2). Unless otherwise indicated in134

the remainder of the paper, velocities are normalised by Uw, lengths are normalised by135

h, buoyancy b is normalised by b0, and time t is normalised by h/Uw (i.e. the ‘advective’136

time unit).137

Three external parameters, i.e. the Reynolds number Re, the (bulk) Richardson number138

Ri and the Prandtl number Pr , can be used to describe the flow. They are defined,139

respectively, as140

Re ≡ Uwh
ν

, Ri ≡ b0h
U2
w

and Pr ≡ ν
κ
. (2.4)

A total of 17 simulations are performed varying all three control parameters. The details141

of these simulations are summarised in table 1. Symbol types and colours (associated142

with each of the simulations) which are used in the subsequent figures are also shown in143

table 1. The choice of grid resolution in each simulation follows the specifications of Zhou144
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Figure 2: Configuration of stratified plane Couette flow and boundary conditions.

Simulation Re Pr Ri Symbol Colour (Nx,Ny,Nz) (Lx, Ly, Lz) Dyn. state

1 4250 0.7 0.01 + Red (256,256,129) (4π,2π,2) T
2 0.02 × T
3 0.04 ▷ T
4 0.08 △ L
5 0.16 ◯ L
6 0.32 ◻ L

7 4250 7 0.01 + Green (512,512,257) (4π,2π,2) T
8 0.02 × T
9 0.04 ▷ T
10 0.08 △ T
11 0.16 ◯ L
12 0.32 ◻ L

13 4250 70 0.01 + Blue (768,768,769) (2π,π,2) T
14 0.04 ▷ T
15 0.08 △ T
16 0.32 ◻ H

17 14700 7 0.32 ◻ Magenta (768,768,769) (2π,π,2) L

Table 1: Summary of the numerical simulations of layered stratified plane Couette
(LSPC) flows. (Nx,Ny,Nz) are the number of grid points used in each direction, and
(Lx, Ly, Lz) are the lengths of computational domain. The last column lists the final
dynamical state approached by each simulation: T for ‘turbulent’; L for ‘laminarising’;
and H for ‘Holmboe’, all of which are described further in §2.3.

et al. (2017) for fully developed turbulent stratified plane Couette flows. The values of145

Pr considered in this paper include 0.7, 7 and 70. The first two values correspond to heat146

in air (Pr = 0.7) and heat in water (Pr = 7) respectively, and the largest value, i.e. 70, is147

included in an attempt to investigate the poorly diffusive regime corresponding to salt148

in water with Schmidt numbers of approximately 700 (which is currently prohibitively149

costly to simulate with available resources).150
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2.2. Initial conditions151

The simulations considered in this paper are designed to examine the time evolution152

of an initially sharp density interface subject to imposed vertical shear and buoyancy153

difference across the interface. We are specifically interested in how the interface interacts154

with pre-existing turbulent motions that are external to the interface, i.e. what we will155

later describe as the ‘scouring’ mechanism for mixing (see Woods et al. 2010). The initial156

conditions used in our simulations are, therefore, considerably different from typical157

initial value problems concerning stratified shear instabilities investigated by run-down158

simulations. The latter simulations are typically initialised by specific mean profiles of159

u(z) and b(z) within a ‘clean’ laminar background with turbulence generated only by the160

break down of the instability itself, as in e.g. computational studies of Kelvin–Helmholtz161

and Holmboe instabilities (Salehipour & Peltier 2015; Salehipour et al. 2016a).162

The initial velocity field u(x, t = 0) for our ‘production’ simulations is obtained by163

auxiliary simulations performed in two stages: first, unstratified plane-Couette flow (Ri =164

0) is simulated until it reaches a fully turbulent statistically stationary state. The purpose165

of this step is to produce a fully turbulent flow field spanning the channel gap. Second,166

in a ‘relaxation stage’ a sharp density interface with a hyperbolic tangent profile in z:167

b(z) = b0 tanh( z
δ0

), (2.5)

where δ0/h = 0.08, is introduced. The value of δ0/h controls the initial ‘sharpness’ of168

the interface, i.e. the thickness of the interface, δ0, as compared to the half channel gap169

length, h, which characterises the length scale typical of large-scale energy-containing170

eddies in the turbulence between and wall and the density interface. Although it would171

be of interest to explore the dynamical effects of varying this ratio, for clarity we here only172

consider one specific value, sufficiently small so that the interface is adequately ‘sharp’. All173

relaxation simulations are performed at (Ri ,Pr) = (0.08,0.7) and the Reynolds number174

is the same as in the unstratified simulation. The purpose of the relaxation stage is to175

reduce the excessive amount of turbulent kinetic energy (TKE) locally at the centre of the176

channel gap around the interface, so that the interface maintains its structural integrity177

at least at the beginning of the main ‘production’ simulations. This TKE reduction is178

achieved by resetting ⟨b⟩(z), i.e. the mean value of b averaged over a horizontal plane, to179

the initial hyperbolic tangent profile (2.5) at the end of every time step in the simulation,180

while allowing the perturbations b′(x, t) = b(x, t) − ⟨b⟩(z) and velocity field u(x, t) to181

evolve in time. The strong stratification which is artificially maintained by resetting the182

mean buoyancy profile suppresses the turbulent motions in the vicinity of the interface183

and hence reduces the local values of TKE.184

The volume-integrated TKE value reaches a minimum after running the relaxation185

procedure for t ≈ 60h/Uw, and the velocity field u(x) at this minimum TKE state is used186

to initialise the production simulations. A ‘fresh’ density field b(z) following (2.5) is also187

introduced at the beginning of the production simulations, when the values of Pr and188

Ri are reset to those defined in Table 1 of a particular simulation. Three sets of initial189

u fields are obtained using the same procedure (but varying Re or domain size), each190

applied to simulations 1–12, 13–16 and 17, i.e. for simulations within each of the three191

groups, the initial u fields are identical.192

Figure 3 shows typical vertical profiles describing the initial conditions of the simu-193

lations. The sharp buoyancy interface located at z = 0 is embedded within a sheared194

velocity profile. The mean vertical shear is stronger both at the centre of the channel195

gap where the density interface is located and in the viscous wall regions. As previously196

discussed, the initial u field is turbulent with the profile (as shown in figure 3(b)) of the197
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Figure 3: Vertical profiles of mean quantities corresponding to the initial condition used
in the layered stratified plane Couette (LSPC) flow simulations with Re = 4250. (a) Mean
velocity ⟨u⟩ (plotted with a solid line) and buoyancy ⟨b⟩ (plotted with a dashed line). (b)
Initial condition for the turbulent velocity scale q for a layered stratified plane Couette
flow simulation (plotted with a solid line) and a fully turbulent unstratified (Ri = 0)
plane Couette flow simulation at the same Re (plotted with a dashed line). (c) Profile of
initial gradient Richardson number Rig(z, t = 0), based on horizontal averages as defined
in (2.7), divided by the bulk Richardson number Ri.

turbulent velocity scale q(z, t) defined as198

q(z, t) ≡
√

⟨u′2 + v′2 +w′2⟩, (2.6)

where ⟨.⟩ indicates a spatial horizontal average over an x-y plane and (u′, v′,w′) denote199

fluctuation velocities from the horizontal mean. The magnitude of q in the channel interior200

is approximately 10% of the wall speed Uw and is reduced by approximately 40% from201

the unstratified fully turbulent plane Couette flow at the same Re. Again, this particular202

initial condition of u is designed specifically to prevent the interface from being broken203

up by strong turbulent motions when the interface is introduced at t = 0. The mean204

gradient Richardson number,205

Rig(z, t) ≡
N2

S2
= ∂⟨b⟩/∂z

(∂⟨u⟩/∂z)2
, (2.7)

which is based on horizontal averages denoted by ⟨.⟩, is plotted in figure 3(c) for t = 0. As206

expected, the Rig value peaks at the density interface centred at z = 0 and is virtually207

zero within the uniform density layers above and below the interface, i.e. ∣z/h∣ ≳ 0.4.208

2.3. Qualitative observations209

Once initialised at t = 0, the stratified interface is subject to the mean and turbulent210

motions maintained by the forcing of the walls. For flows with different external parame-211

ters, the interface exhibits different behaviours and approaches three possible dynamical212

states as tabulated in table 1. The three possible states shown in figure 4 are:213

(i) The ‘turbulent’ state T as shown in figure 4(a) for simulation 10. For relatively214

weakly stratified flows with Ri ⩽ 0.04 for Pr = 0.7 or Ri ⩽ 0.08 for Pr = 7 and 70215

(see table 1), the stratification is too weak to suppress the turbulence. The interface216

soon becomes highly disordered with spatially intermittent shear-induced local overturns217

where vigorous mixing occurs. As a result, the sharpness of the interface is not robust,218

with the thickness of the interface increasing with time and the system approaching a219

fully turbulent, stratified, yet not definitely not layered state.220

(ii) The ‘Holmboe’ state H is shown in figure 4(b) where the interface stays robust. The221
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Figure 4: Side view of typical buoyancy field b(x, z) at various times for (a) simulation
10: (Pr ,Ri) = (7,0.08), corresponding to T state, (b) simulation 16: (Pr ,Ri) = (70,0.32),
corresponding to H state, and (c) simulation 12: (Pr ,Ri) = (7,0.32), corresponding to L
state. The visualisation window is 2πh long in x (corresponding to half of the domain
length, 0.5Lx, for simulations 10 and 12, and the full domain length, Lx, for simulation
16) and 2h tall in z.

H state is observed in simulation 16 with large values of both Ri and Pr , i.e. Ri = 0.32 and222

Pr = 70. Structures strongly reminiscent of ‘Holmboe waves’ (see e.g. figure 4 of Smyth223

et al. (1988) and figure 4 of Salehipour et al. (2016a)) appear to develop on the interface,224

and these structures prove to be long-lived and robust. ‘Cusp’ structures at the crests225

of the wave, along with concentrated spanwise vorticity, i.e. ωy, appear on both sides226

of the interface associated with these Holmboe-wave-like structures. As is typical, the227

cusps above and below the interface are observed to propagate in opposite directions. The228

vortices on either side of the interface act to entrain fluid from the interface, contributing229

to the ‘wisps’ structure in the lee of the ‘cusps’ in their direction of propagation, similar230

to the simulations of Smyth et al. (1988) and Salehipour et al. (2016a). It is important to231

note that all the propagating disturbances observed on the interface have characteristic232

phase speeds in the range −Uw < cph < Uw, and so none of the wave-like motions observed233

on the interface should be interpreted as ‘pure’ interfacial internal waves, unrelated to234

flow instabilities (specifically the Holmboe wave instability). The interface is observed235

to stay sharp, and the dynamics is dominated by internal waves rather than shear-236

induced turbulent overturns. The dynamics of the H state are also strongly reminiscent237

of the experimental observations of Holmboe waves on a sheared density interface by238

Strang & Fernando (2001), who also reported buoyancy fluxes and entrainment rates239

based on planar laser-induced fluorescence measurements. The three-dimensional velocity240

and buoyancy fields obtained from direct numerical simulations allow us to consider the241

irreversible diapycnal mixing processes in detail, as is presented in the remainder of this242

paper.243

(iii) The ‘laminarising’ state L is shown in figure 4(c) for simulation 12. This L state244

exists at large Ri values for which stratification is able to suppress turbulence. Simulation245

12, shown as an example of the L state, has the same Re and Ri values as simulation 16,246

shown for the H state, but the Pr value is 7 instead of 70. Internal waves similar to those247

in the H state appear at early times of the L state. The amplitude of the wave motion,248
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profiles for: (a) simulation 10 at (Pr ,Ri) = (7,0.08) (T state); (b) simulation 16 at
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The profiles are sampled at the same times at which the buoyancy field is shown in figure
4 with lighter line shades corresponding to later times in each simulation.
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Figure 6: Typical structure of the vertical velocity eigenfunctions associated with the
fastest growing modes of linear theory corresponding to Holmboe-type instabilities. The
eigenfunctions are obtained for the mean profiles shown in figure 5(b) at t = 84 (darkest
line) for simulation 16 (H state). The eigenfunctions shown in both panels, (a) & (b), have
the same growth rate σ ≃ 0.00171 and equal and opposite real phase velocity cph ≃ ∓0.338
(the arrow in each panel indicates the direction of cph). The streamwise wavenumber
associated with these fastest growing modes is kx ≃ 1.75.

however, noticeably decays with time, while the thickness of the interface gradually249

increases, presumably due to molecular diffusion. The flow is observed to approach the250

laminar steady state solution with u/Uw = b/b0 = z/h (Eliassen et al. 1953).251

As an aside, we can investigate the linear stability properties of the flows described252

above by examining the horizontally-averaged, instantaneous velocity and buoyancy253

profiles shown in figure 5. Simulations presented in figure 5 and the times at which the254

mean profiles are sampled are identical to those shown in figure 4. In order to examine255
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the linear stability of these mean profiles, the viscous, diffusive and stratified eigenvalue256

problem, e.g. as described in equations (3.6)–(3.7) of Eaves & Caulfield (2017), is solved257

numerically using the procedure described in Smyth et al. (2011). Mean profiles associated258

with the T-state simulation 10 are shown in figure 5(a). While the gradient Richardson259

number, Rig associated with these averaged profiles is smaller than 0.2 (shown in the260

lower panel), the mean profiles are found to be linearly stable. However, the flow stays261

turbulent (see figure 4(a)) as it evolves from the already turbulent initial condition (see262

figure 3(b)) to reaching the fully developed turbulent state (see e.g. Zhou et al. (2017)).263

For the H-state simulation 16 shown in figure 5(b) and the L-state simulation 12264

shown in figure 5(c), the mean profiles analysed are all unstable to instabilities which265

can be identified as being of Holmboe-type. This identification can be made for several266

reasons. The Rig distribution has the peaked structure associated with Holmboe-type267

instabilities. Furthermore, the velocity structure has strong shear over a relatively sharp268

interface, dropping to weaker shear either side. Such a structure is entirely characteristic269

of Holmboe-type instabilities, which can be interpreted as arising due to the interaction270

of an internal wave localised at the density interface, and a Doppler-shifted vorticity271

or ‘Rayleigh’ wave localised at the edge of the shear layer (Caulfield 1994; Baines &272

Mitsudera 1994; Carpenter et al. 2011). Finally, the eigenfunction corresponding to the273

fastest growing Holmboe-type mode is plotted in figure 6, showing the characteristic274

structure centred above and below the ‘sharp’ density interface, leading to the character-275

istic propagation of the disturbance relative to the density interface (see Carpenter et al.276

(2010) for further discussion of instability classification in stratified shear flows).277

It also is important to note that the profiles at t = 348 for simulation 16 (H state)278

are unstable also to Kelvin-Helmholtz-type instabilities, centred on the density interface.279

However, the Holmboe-wave-like structures only survive in the H state, but not in the L280

state, even though the linear analysis predicts the mean profiles are unstable to Holmboe281

instability in both cases. This analysis suggests that linear stability analysis based on282

the mean profiles should be used with caution when predicting the evolution of these283

density interfaces, at least when the underlying base flows are initially turbulent and284

the mean profiles vary significantly in time. This is not entirely surprising, because285

the substantial temporal and spatial variation of the actual streamwise velocity and286

buoyancy profiles about the horizontally-averaged mean profiles precludes infinitesimal287

perturbations experiencing for any extended period of time the notional profiles in which288

those infinitesimal perturbations are predicted to be (linearly) unstable.289

As discussed above, our goal is to describe the behaviour of a pre-existing density290

interface subject to vertical shear from the perspective of diapycnal mixing. We are291

particularly interested in any self-sustaining (and hence inherently nonlinear) mechanism292

which keeps the interface sharp, and the existence of the H state described above provides293

a dataset which can be analysed to identify and describe such mechanisms. In the294

following section (§3), the mathematical formalism we employ to describe the diapycnal295

mixing is described, and in §4 we focus on investigating the H state by comparing it to296

the L state as both L and H can occur in large-Ri strongly stratified systems. All T, H297

and L states are included in the considerations of mixing properties discussed in §5.298

3. Mathematical formulation299

3.1. Tracer-based coordinate, flux and diffusivity300

The formalism developed by Winters & D’Asaro (1996) and Nakamura (1996) is used301

to quantify the diapycnal mixing of the stratifying agent, i.e. the dynamic scalar tracer302
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within the flow. This framework considers the mixing of a conserved tracer in a ‘sorted’303

reference coordinate z∗. The definition of this z∗ coordinate relates to the ‘background’304

buoyancy profile which is obtained by sorting all fluid parcels adiabatically to reach the305

minimum possible potential energy of the system, i.e. the background potential energy306

(see e.g. Winters et al. 1995). In the present study, we approximate the background307

buoyancy profile (or the ‘sorted’ profile) b(z∗, t) via the probability density function308

(pdf) method introduced by Tseng & Ferziger (2001) which avoids the explicit sorting309

procedure but is formally equivalent in the limit as the ‘bins’ used in constructing the310

pdf become arbitrarily small.311

Following the Winters–D’Asaro–Nakamura formalism, the diapycnal flux φd across a312

specific isopycnal (constant buoyancy b) surface corresponding to a particular reference313

position z∗ can be defined by a simple flux-gradient relation314

φd ≡ −κe
∂b

∂z∗
, (3.1)

where κe(z∗, t) is an effective diapycnal diffusivity and the gradient ∂b/∂z∗ can be315

obtained from the background buoyancy profile b(z∗, t). The flux φd can be determined316

exactly from the instantaneous (dynamic) scalar field b(x, t) via the following relation317

φd = −κ
∂z∗
∂b

⟨∣∇b∣2⟩z∗ , (3.2)

where ⟨.⟩z∗ indicates averaging over the isoscalar surface corresponding to the reference318

position z∗, and ∣∇b∣2 is given by the gradients of b in the physical space x. By definition,319

b increases monotonically with z∗, i.e. ∂z∗/∂b > 0, and the flux φd is negative definite320

(down-gradient). It follows from (3.1) and (3.2) that the effective diffusivity κe can be321

estimated by322

κe = κ(∂z∗
∂b

)
2

⟨∣∇b∣2⟩z∗ , (3.3)

which yields a positive-definite value of κe. The geometrical interpretation of (3.3) is323

given by equation (12) of Winters & D’Asaro (1996), i.e.324

κe = κ(As
A

)
2

⩾ κ, (3.4)

where As is the area of the isopycnal surface corresponding to buoyancy b at a given325

reference position z∗. A given value of z∗ corresponds to a set of points in the physical x =326

(x, y, z) coordinates. This set of points in x form the isopycnal surface(s) corresponding327

to the buoyancy value at the reference position z∗ in the sorted profile, i.e. b(z∗). It is328

important to appreciate that the isopycnal surface(s) may have a distorted shape which329

may not be simply connected. A in (3.4) is the area of the isopycnal surface projected330

onto a flat horizontal plane, i.e. the area of the flat undistorted surface. The increase331

of As above A is due to the straining imposed by the flow on the scalar field, and the332

effective diffusivity κe can thus be greatly enhanced from the molecular value κ due to333

the factor (As/A)2.334

3.2. Evolution of background buoyancy profile335

Winters & D’Asaro (1996) and Nakamura (1996) showed that the advection-diffusion336

equation of any conserved tracer in an incompressible flow can be written exactly as a337

one-dimensional diffusion equation in the reference z∗ coordinate:338

∂b

∂t
= −∂φd

∂z∗
= ∂

∂z∗
(κe

∂b

∂z∗
) . (3.5)
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Taking the derivative of (3.5) with respect to z∗ yields an evolution equation for the339

buoyancy gradient in the reference coordinate N2
∗ ≡ ∂b/∂z∗:340

∂N2
∗

∂t
= ∂2κe

∂z2∗
N2
∗

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Source S(t)

+ 2
∂κe
∂z∗

∂N2
∗

∂z∗
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Advection A(t)

+ κe
∂2N2

∗
∂z2∗

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Diffusion D(t)

(3.6)

The first bracketed term S(t) on the right hand side of (3.6) corresponds to a source/sink341

term for N2
∗ depending on the sign of the prefactor ∂2κe/∂z2

∗, the curvature of κe. The342

second bracketed term A(t) corresponds to the advection of N2
∗ with a ‘velocity’ of343

−2∂κe/∂z∗. The third bracketed term D(t) corresponds to the diffusion of N2
∗ with the344

effective diffusivity κe in the z∗ coordinate. Note that (3.6) can alternatively be written345

as346

∂N2
∗

∂t
= ∂

2κe
∂z2∗

N2
∗ +

∂κe
∂z∗

∂N2
∗

∂z∗
+ ∂

∂z∗
(κe

∂N2
∗

∂z∗
) , (3.7)

where the third term on the right hand side corresponds to the divergence of the diffusive347

flux κe∂N
2
∗ /∂z∗ in z∗, but we adopt the subdivision of terms in (3.6) for the rest of the348

paper. As will be shown in the following section (§4), the diagnostic framework described349

here yields a robust description of the dynamics of temporally evolving density interfaces.350

4. Dynamics of highly stable interfaces351

4.1. Structure of diapycnal flux and effective diffusivity352

In this section, we focus on simulations with Ri = 0.32, the largest bulk Richardson353

number which we have considered, and investigate the dynamics of interfaces with such354

strong stratification that is stable to shear-induced overturns. Figure 7 shows the profiles355

of effective diffusivity κe and diapycnal flux φd in the z∗ coordinate. Several times are356

shown for simulation 12 (L state) at (Pr ,Ri ,Re) = (7,0.32,4250) and for simulation357

16 (H state) at (Pr ,Ri ,Re) = (70,0.32,4250). Times associated with the profiles also358

correspond to the flow snapshots shown in panels (c) and (b) of figure 4 respectively.359

As shown in figure 7(a), the buoyancy gradient N2
∗ at the midplane of the interface360

at z∗ = 0 decreases with time, and the thickness of the interface grows. The effective361

diffusivity κe takes the molecular value κ within the density interface located near z∗ = 0,362

and as the interface grows thicker, κe approaches κ over a broader range of z∗. This363

broadening suggests that the isopycnal surfaces are flattening, i.e. As → A as in (3.4),364

and the system is laminarising. The diapycnal flux φd varies significantly in z∗, and the365

divergence of the flux drives the broadening of the interface.366

As is shown in figure 7(b), by varying Pr alone from 7 to 70, simulation 16 is in the H367

state rather than the L state. The gradient N2
∗ at the midplane is observed to increase368

(though weakly) with time and the interface thickness remains approximately unchanged,369

which is consistent with the observations in figure 4(b) that the interface is robust and370

long-lived. The ratio κe/ν now takes smaller values at the midplane as the lower bound371

determined by molecular diffusivity min(κe/ν) = κ/ν = 1/Pr is smaller due to the larger372

Pr , which allows for a wide range of κe/ν from slightly above 1/Pr ∼ O(0.01) around the373

midplane to O(1) away from the interface at z∗/h ≈ ±0.1. The flux φd is close to constant374

with z∗, and in the absence of a significant divergence of the flux, the strong gradient at375

the interface is expected to stay constant in time and last indefinitely.376

The profiles shown in figure 7 also allow us to consider the role of various terms on the377

right hand side of (3.6) which govern the time evolution of the buoyancy gradient N2
∗ .378

In both simulations considered in figure 7, the source term S(t) is positive and acts to379
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Figure 7: Profiles of: background buoyancy gradient N2
∗ (left column); effective diffusivity

κe normalised by molecular kinematic viscosity ν (middle column); and magnitude of
diapycnal flux φd normalised by κb0/h (right column). Upper row (a) corresponds to
simulation 12 with L state at (Pr ,Ri) = (7,0.32), and lower row (b) corresponds to
simulation 16 with H state at (Pr ,Ri) = (70,0.32). Both simulations are at Re = 4250.
Dotted vertical lines in the middle column correspond to the minimum possible value
of κe = κ, or equivalently, κe/ν = 1/Pr . Profiles at various times are shown, and flow
snapshots at these times can be found in figure 4. Note that the horizontal axes are shown
on different scales in the two subplots in the right column showing the −φd profiles.

sharpen the local gradient, but the prefactor corresponding to the curvature of κe, i.e.380

∂2κe/∂z2
∗, is significantly larger for the H state. The advection term A(t) is expected to381

be nonpositive as ∂κe/∂z∗ and ∂N2
∗ /∂z∗ tend to take opposite signs for a given z∗, but382

at the midplane of the interface A(t) is expected to be zero as ∂κe/∂z∗ = ∂N2
∗ /∂z∗ = 0383

at z∗ = 0 due to the symmetry of the profiles about the midplane. The diffusion term384

D(t) is expected to weaken the gradient within the interface as κe is positive definite.385

Therefore, in order for an interface to be maintained, the source term S(t) must be386

able to counterbalance the effects of the other two terms. We investigate this balance387

quantitatively in §4.2.388

The sign of ∂2κe/∂z2
∗ serves as a simple diagnostic quantity to examine if any sharpen-389

ing process is present around a density interface. Turbulence and/or vortical structures390

induced by Holmboe waves, which are displaced from the interface, could conceivably391

act on either side of the interface to ‘scour’ the material away from the interface via the392

‘wisps’ structures that are clearly visible in figure 4(b). (Such a behaviour appears at least393

qualitatively to be occurring in the run-down simulations susceptible to Holmboe wave394

instabilities described in Salehipour et al. (2016a).) In this case, an isopycnal surface away395

from the midplane z∗ = 0 would have a more convoluted shape and thus larger surface396

area As and hence larger κe following (3.4). On the other hand, in the middle of the397

interface the flow exhibits minimal wave disturbances or turbulence, and the isopycnal398
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surface is nearly flat with As ≈ A. Thus κe is expected to increase away from the midplane399

of the interface, consistent with the observations in figure 7. It is then possible to have400

a positive curvature of the κe(z∗) profile, i.e. ∂2κe/∂z2
∗ > 0, in the presence of mixing401

associated with scouring. When the scouring effect is large enough to overcome diffusion,402

i.e. ∣S(t)∣ > ∣D(t)∣, the flow may act to enhance the local gradient N2
∗ . The reverse is403

true when one considers mixing due to large overturns, e.g. due to Kelvin–Helmholtz404

instability (KHI). The isopycnal surface in the overturning case is expected to have405

the most convoluted surface with large As/A ratio in the core region of the KHI finite406

amplitude ‘billow’ where the maximum κe is attained. The magnitude of κe decreases407

with the distance to the midplane z∗ = 0, which may lead to ∂2κe/∂z2
∗ < 0 and thus408

negative values of S(t). The S(t) term then reduces the local N2
∗ value in concert with409

the diffusion term D(t), both acting to destroy the density interface through overturning410

dynamics.411

4.2. Time evolution of the buoyancy gradient with respect to z∗412

In this subsection, we further examine the time evolution of various budget terms in413

(3.6) for the local gradient N2
∗ . First, the integral thickness δ∗ of the density interface414

can be calculated from the buoyancy profile by415

δ∗ ≡
1

2b0h
[∫

0

−h
(−b0 − b)z∗dz∗ + ∫

h

0
(b0 − b)z∗dz∗], (4.1)

and the buoyancy difference across the interface ∆b can be calculated as416

∆b ≡ 1

2
[b(z∗ = δ∗) − b(z∗ = −δ∗)]. (4.2)

The volume (depth) averaged value of an arbitrary quantity F(z∗, t) over the density417

interface −δ∗ < z∗ < δ∗ is denoted with an overbar, and defined as418

F(t) ≡ ∫
δ∗
−δ∗ F(z∗, t)dz∗

2δ∗
. (4.3)

A set of ‘local’ scalings can then be applied to the density interface to form the following419

dimensionless variables:420

ẑ∗ ≡
z∗
δ∗
, b̂ ≡ b

∆b
, t̂ ≡ κt

δ2∗
and κ̂e ≡

κe
κ
. (4.4)

The governing equation for the buoyancy gradient N2
∗ given by (3.6) can be rewritten as421

∂

∂t̂
( ∂b̂

∂ẑ∗
) = ∂

2κ̂e
∂ẑ2∗

( ∂b̂

∂ẑ∗
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Source Ŝ(t)

+ 2
∂κ̂e
∂ẑ∗

∂2b̂

∂ẑ2∗
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Advection Â(t)

+ κ̂e
∂3b̂

∂ẑ3∗
,

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
Diffusion D̂(t)

(4.5)

with analogously scaled source, advection and diffusion bracketed terms.422

In order to examine the evolution of the buoyancy gradient governed by (4.5) it is423

necessary to evaluate the gradients with respect to the tracer-based coordinate ẑ∗ of424

the effective diffusivity κ̂e and the buoyancy b̂. However, the noise contained in the ẑ∗425

profiles associated with sampling issues (as shown in figure 8) tends to get amplified if426

finite differences are taken repeatedly on the ẑ∗ profiles to obtain the ∂2/∂ẑ2
∗ and ∂3/∂ẑ3

∗427

gradients associated with higher order derivatives. Instead, we obtain an estimate of these428

gradients by first fitting polynomial functions to the observed κ̂e(ẑ∗) and b̂(ẑ∗) profiles429

using a nonlinear least-squares algorithm and then calculate the gradients based on these430
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Figure 8: Sample profiles: of buoyancy (panels a & b); effective diffusivity (panel c);
and characteristic Péclet number Pe∗, as defined in (4.6) (panel d). Multiple profiles
are plotted for each simulation as the profiles evolve in time. Profiles are shown for:
simulation 6, an L state with (Pr ,Re) = (0.7,4250) (plotted in red); simulation 12,
an L state with (Pr ,Re) = (7,4250) (plotted in green); simulation 17, an L state with
(Pr ,Re) = (7,14700) (plotted in magenta); and simulation 16, an H state with (Pr ,Re) =
(70,4250) (plotted in blue). In (b) the vertical extent of the buoyancy profile is rescaled by
the interface thickness δ∗ defined in (4.1) and its magnitude is rescaled by the buoyancy
difference across the interface ∆b defined in (4.2).

fitted polynomial functions. Taking into account the symmetry of the profiles about the431

midplane ẑ∗ = 0, we assume that κ̂e follows a parabolic profile κ̂e = c1 + c2ẑ2
∗ and that432

b̂ follows a cubic profile b̂ = c3ẑ∗ + c4ẑ3
∗. It is worth noting that the rescaled buoyancy433

profiles b̂ collapse reasonably well as shown in figure 8(b).434

The gradients of b̂ with respect to ẑ∗ are O(1) and they do not vary significantly from435

one simulation to another, as shown for example in figure 9. On the other hand, the436

gradients of κ̂e vary strongly between the various simulations. This can be seen in figure437

8(c) where the rescaled κ̂e(ẑ∗) profiles do not collapse. The curvature of the κ̂e(ẑ∗) profile,438

i.e. ∂2κ̂e/∂ẑ2
∗, varies significantly between the various simulations and varies strongly in439

time, as is shown in figure 9(a).440

In figures 10(a) and (b), the time evolution of the buoyancy gradient at the midplane441

z∗ = 0 is shown for the four simulations with Ri = 0.32. Except for simulation 16 which is442

in the H state, the gradient decreases with time for simulations 6, 12 and 17, all of which443

are in the L state. In simulation 16 the density interface is maintained and the gradient444

at z∗ = 0 is weakly enhanced due to ‘scouring’ motions (see figure 4(b)). The time series445
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∗
=
0

(a)

0 100 200 300 400

t

0.5

1

1.5

2

∂
3
b̂/
∂
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Figure 9: Time evolution of (a) ∂2κ̂e/∂ẑ2
∗ and (b) ∂3b̂/∂ẑ3

∗ at the midplane of the interface
ẑ∗ = 0. The colour conventions for various simulations are the same as those used in figure
8.

of the source and diffusion terms in (4.5) which govern the time evolution of the local446

gradient ∂b̂/∂ẑ∗ are shown in figures 10(c) and (d). At the midplane of the interface, the447

advection term Â(t) is expected to be zero as both κe and ∂b/∂z∗ reach local extrema448

at z∗ = 0 due to symmetry (see figure 7). While for all simulations shown the source449

term Ŝ(t) takes positive values, i.e. there is ‘scouring’ acting on the interface in all these450

cases, only in simulation 16 is this source term large enough to overcome the diffusion451

term D̂(t), causing the local gradient ∂b̂/∂ẑ∗ to be enhanced. In the laminarising state452

cases, (simulations 6, 12 and 17) however, the scouring effect is weak compared to the453

molecular diffusion which is characterised by the D̂(t) term.454

In figure 11 we examine the ẑ∗-dependence of the budget terms in (4.5) for a ‘diffusing’455

interface in an L state simulation (simulation 12) for which the midplane gradient456

decreases (panel a) and a ‘sharpening’ interface in an H state simulation (simulation457

16) for which the midplane gradient increases (panel b) respectively. In both cases, the458

advection term Â and the diffusion term D̂ both reduce the local gradient. In order for459

sharpening to occur, the source term Ŝ has to outweigh Â and D̂, which is the case shown460

in panel (b). Note also that the enhancement of local gradients can only occur over a461

finite extent in ẑ∗, i.e. sharpening around the centre of the interface comes at the expense462

of the buoyancy gradient immediately above and below the midplane at ẑ∗ = 0.463

4.3. Effect of Péclet number and isopycnal displacement464

The terms ∂b̂/∂ẑ∗, κ̂e and ∂3b̂/∂ẑ3
∗ which appear in the source and diffusion terms in465

(4.5) are all of order unity at the midplane z∗ = 0, as can be seen in figures 8(c), 9 and466

10(b), respectively. Therefore, in order for Ŝ to dominate D̂, the ∂2κ̂e/∂ẑ2
∗ term needs to467

be at least order unity or larger. In figure 12, the values of ∂2κ̂e/∂ẑ2
∗ sampled at z∗ = 0468

are plotted against the characteristic Péclet number of the flow. The characteristic Péclet469

number, which is a function of z∗ and t is defined as470

Pe∗(z∗, t) ≡
U∗(z∗, t)L∗(z∗, t)

κ
, (4.6)

where the characteristic turbulent velocity scale is defined as471

U∗ ≡
√

⟨u′2 + v′2 +w′2⟩z∗ , (4.7)
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Figure 10: (a) and (b): Time evolution of the buoyancy gradient N2
∗ ≡ ∂b/∂z∗ at the

midplane of the interface z∗ = 0. In (a) the gradient is scaled by b0/h, and in (b) the local

scaling ∆b/δ∗ is used. (c): Time evolution of the source term Ŝ(t) solid lines) and the

diffusion term D̂(t) (dashed lines), as defined in (4.5), for z∗ = 0. (d): A zoomed view of
panel (c) for t < 200. Data are shown for: simulation 6 with (Pr ,Re) = (0.7,4250) (plotted
in red); simulation 12 with (Pr ,Re) = (7,4250) (plotted in green); simulation 17 with
(Pr ,Re) = (7,14700) (plotted in magenta); and simulation 16 with (Pr ,Re) = (70,4250)
(plotted in blue), i.e. the same colour conventions as those used in figure 8.

and the characteristic length scale is defined as472

L∗ ≡
U∗√
ε∗/ν

. (4.8)

In the definition above, ε∗ ≡ ⟨2νsijsij⟩z∗ is the kinetic energy dissipation rate averaged473

for a given reference position z∗, and sij is the rate of strain tensor associated with the474

full velocity field u. The definition of the length scale L∗ is analogous to the Taylor475

microscale which is often used to describe isotropic turbulence (see e.g. Pope 2000).476

The quantities U∗ and L∗ can be considered to be the characteristic velocity and length477

scales corresponding to the ‘scouring’ motion, and Pe∗ measures the relative magnitude478

of scouring over molecular diffusion. Pe∗ tends to increase weakly away from the midplane479

z∗ = 0 as shown in figure 8(d).480

As is plotted in figure 12, the magnitude of ∂2κ̂e/∂ẑ2
∗ increases strongly with Pe∗,481

the depth-averaged Péclet number of a given profile, where the overline indicates an482

average as defined in (4.3). This figure illustrates the fact that κ̂e profiles exhibit more483
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Figure 11: Variation with ẑ∗ of the various bracketed budget terms defined in (4.5) for:
(a) a representative ‘diffusing’ interface in simulation 12 at t ≈ 100; (b) a representative
‘sharpening’ interface in simulation 16 at t ≈ 200.
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Figure 12: Variation of the curvature of the κ̂ profile, i.e. ∂2κ̂e/∂ẑ2
∗, at the midplane of

the interface ẑ∗ = 0, with the characteristic Péclet number Pe∗. The colour conventions
for various simulations are the same as in figure 8. Darker filling colours of symbols
correspond to later times in each simulation.

curvature as the effects of scouring become increasingly more important than molecular484

diffusion. Significantly, the curvature does not appear to vary systemically with other485

characteristic flow parameters such as buoyancy Reynolds number and local gradient486

Richardson number (as discussed in §5), the magnitude of which vary little across the487

four simulations shown in figure 12. The magnitude of ∂2κ̂e/∂ẑ2
∗ becomes larger than488

order unity for simulation 16 (plotted in blue) with Pe∗ ≳ 400. As the flow evolves in this489

simulation (the filling colour of the symbol is darker and darker for later and later times),490

both Pe∗ and ∂2κ̂e/∂ẑ2
∗ increase with time. Other simulations with Pe∗ ≲ 300 do not have491

curvature ∂2κ̂e/∂ẑ2
∗ maintained at values larger than order unity. Although in simulation492

17 (plotted in magenta) the ∂2κ̂e/∂ẑ2
∗ value starts with magnitude of order unity, it493

decays with time as the flow laminarises. It appears that there exists a transitional Pe∗494
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with the depth-averaged (across the interface) length scale ratio `E,∗/δ∗. The colour
conventions for various simulations are the same as in figure 8. Darker filling colours of
symbols correspond to later times in each simulation.

between 300 and 400 above which the scouring is able to overcome diffusion so that the495

curvature in κ̂e can be maintained or enhanced.496

Interestingly, this observation is reminiscent of the grid-stirred experiments (Crapper497

& Linden 1974). In that paper, the behaviour of a density interface in the absence498

of mean shear is reported to vary significantly depending on whether an appropriate499

Péclet number is ‘large’ or ‘small’, i.e. whether the Péclet number based on the turbulent500

velocity and length scales at the interface is above or below about 200. For the highly501

stable, vertically sheared interfaces we examine here, the magnitude of the Péclet number502

appears to determine whether or not the scouring motion, which acts to sustain the503

interface, can overcome molecular diffusion, which acts to smooth the sharp gradient.504

We also examine the weak enhancement of the effective diffusivity κe relative to the505

molecular diffusivity κ in the simulations of very stable interfaces. Figure 13 shows the506

depth-averaged enhancement ratio of effective diffusivity, κe/κ − 1, plotted against the507

ratio of the Ellison length scale to the integral thickness of the interface, `E,∗/δ∗, (a508

measure of the vertical isopycnal displacements) where the Ellison length scale is defined509

as510

`E,∗(z∗, t) ≡
√

⟨b′2⟩z∗
∂⟨b⟩z∗/∂z∗

, (4.9)

and b′ ≡ b − ⟨b⟩ denotes the buoyancy fluctuation relative to the horizontal mean ⟨b⟩.511

Figure 13 suggests that the weak increase in κe relative to κ within the density interface512

is strongly correlated to the magnitude of isopycnal displacements. This observation513

reinforces the notion, which is encapsulated in (3.4), that diapycnal mixing is made more514

effective by a flow which creates larger isopycnal surface area for transport by molecular515

flux. In particular, enhancement of diffusion is achieved by the corrugation of isopycnal516

surfaces due to scouring motions acting on the very stable interfaces, an effect that is517

expected to be more significant as the isopycnal displacements increase in amplitude.518
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Figure 14: Variation of normalised κe(z∗, t)/ν with: (a) Reb,∗(z∗, t); and (b) Rig,∗(z∗, t).
Horizontal dashed lines in (a) correspond to κe/ν = κ/ν = 1/Pr for Pr = 0.7 (red), 7
(green or magenta) and 70 (blue) respectively. Symbol conventions are listed in table 1.

5. Mixing analysis in the tracer-based coordinate519

5.1. Scaling of effective diffusivity520

In this section, we consider the variation of irreversible mixing properties with char-521

acteristic flow parameters in all three flow states, L, H and T. We start by investigating522

the effective diffusivity κe as defined by (3.1). Following the Winters–D’Asaro–Nakamura523

formalism, κe values are sampled locally at each z∗ using (3.3). All data points considered524

here are for z∗ locations sampled over the entire depth of the channel, i.e. −h < z∗ < h and525

for t > 10 advective time units when the flow is observed to be free from initial transient526

effects due to the sudden introduction of the density interface at t = 0. The values of κe,527

normalised by molecular kinematic viscosity ν, are plotted against the locally sampled528

buoyancy Reynolds number Reb,∗ and gradient Richardson number Rig,∗, respectively, in529

figure 14. Specifically, Reb,∗ and Rig,∗ are defined in the tracer-based reference coordinate530

z∗ by531

Reb,∗(z∗, t) ≡
ε∗
νN2∗

and Rig,∗(z∗, t) ≡
N2
∗

S2∗
, (5.1)

where S∗ ≡ ⟨∂u/∂z⟩z∗ is the averaged vertical shear of streamwise velocity sampled over532

a given z∗ position.533

Figure 14(a) indicates a clear dependence of κe/ν on both Reb,∗ and Pr at least for534

Reb,∗ < 100. For Reb,∗ = O(1) or smaller, κe approaches the value κ, i.e. κe/ν → 1/Pr ,535

in this ‘molecular’ regime (see e.g. Shih et al. 2005; Bouffard & Boegman 2013). For536

O(1) < Reb,∗ ≲ 30, the scaling enters a ‘buoyancy-controlled’ regime where κe/ν ∝ Re
3/2
b,∗537

(c.f. Bouffard & Boegman (2013) and the references therein). Consistent with Bouffard538

& Boegman (2013), for a given Reb,∗ value, κe/ν decreases with increasing Pr . For539

30 ≲ Reb,∗ ≲ 100, i.e. the ‘transitional’ regime, κe/ν is proportional to Reb,∗, which agrees540

with the scaling of this regime described by Shih et al. (2005), although it is important to541

remember that the specific numerical values of the buoyancy Reynolds number depend542

on the choices for dissipation rate and buoyancy frequency made, which can of course543

vary between different analyses.544

Within this ‘transitional’ regime, the weak dependence of κe/ν on Pr can still be545
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Figure 15: Application of the weakly stratified ‘left-flank’ scaling, i.e. κe/ν = RebRig/(1−
Rig), proposed for fully developed stratified plane Couette flow (Zhou et al. 2017), to the
layered stratified plane Couette flow data. The ‘left-flank’ data points, with small bulk
Richardson numbers Ri ⩽ 0.02 are shown in (a) for t > 10 and (b) for t > 60. Dashed line
in (b) indicates one-to-one slope. Symbol conventions are listed in table 1.

observed in our data. A simple power-law relation for κe/ν in terms of Reb,∗ is not546

identifiable for Reb,∗ ≳ 100 and the Pr dependence is also less distinct. Figure 14(b)547

shows the variation of κe/ν with Rig,∗ where the reverse trend in Reb,∗ can be observed,548

i.e. κe/ν in general decreases with increasing Rig,∗. This reversed trend is because, as549

will be shown in figure 18, Reb,∗ and Rig,∗ are inversely correlated to each other in these550

simulations. The degree of scatter is greater in the Rig,∗ plot than in the Reb,∗ plot.551

We now turn our attention to the Reb,∗ ≳ 100 regime, where simple power laws in552

Reb,∗ do not appear to describe the data, as is shown in figure 14(a). These large Reb,∗553

values are observed exclusively in the T state where the flow remains turbulent despite554

the introduction of the density interface and approaches a fully-developed turbulent state555

(Zhou et al. 2017). In a fully turbulent stratified plane Couette flow, diapycnal mixing556

is characterised by a linear relation between the flux and gradient Richardson numbers,557

i.e. the turbulent Prandtl number Pr t ≡ Rif /Rig is close to unity, where Rif is the flux558

Richardson number defined as the ratio of buoyancy flux and shear production. In other559

words, this is the typical behaviour on the weakly stratified ‘left flank’ of Phillips’ flux-560

gradient curve (see figure 1). This results in a scaling of κe/ν = RebRig/(1 −Rig) (Zhou561

et al. 2017) which is tested in figure 15. In panel (a) some large deviations from this562

‘left flank’ scaling can be observed, as the data points plotted include early-time points563

(t < 60) where the interface is undergoing shear-induced overturns. As the transition to564

stronger turbulence is close to completion at t > 60, the κe/ν follows more closely the565

‘left-flank’ scaling Rif ≃ Rig for equilibrated weakly stratified shear flows, as shown for566

example in figure 13 of Deusebio et al. (2015).567

5.2. Scaling of volume-integrated mixing efficiency568

In this subsection, we consider the mixing efficiency of a density interface in the volume-569

integrated sense. The framework of the analysis focusing on the available potential energy570

change in a control volume was proposed originally by Winters et al. (1995) and was571

employed subsequently to characterise the irreversible mixing efficiency in a given system572

by e.g. Caulfield & Peltier (2000); Peltier & Caulfield (2003). Here, we focus on the region573

within the density interface where a significant buoyancy gradient, N2
∗ , is present and574

consider the integrated mixing properties over an interval in the z∗ coordinate with575

−δ∗ < z∗ < δ∗, where δ∗ is the integral thickness of the interface in the z∗ coordinate as576
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defined by (4.1). The integrated diapycnal flux is577

Φd(t) ≡ −φd ⋅ 2δ∗ = ∫
δ∗

−δ∗
−φd(z∗, t)dz∗ = ∫

δ∗

−δ∗
κe

∂b

∂z∗
dz∗, (5.2)

and the integrated dissipation is578

E(t) ≡ ∫
δ∗

−δ∗
ε∗(z∗, t)dz∗. (5.3)

The overall irreversible mixing efficiency across the interface, which is defined as579

Etot(t) ≡
Φd

Φd + E
, (5.4)

can then be estimated. In addition, it is possible to define a measure of mixing efficiency580

which excludes the laminar diffusion of the background profile with the laminar flux581

φd,lam ≡ −(∂b/∂z∗)κ, following the suggestion of Caulfield & Peltier (2000) in an attempt582

to isolate the irreversible mixing inherently due to turbulent mixing processes. The583

corresponding integrated diapycnal flux can be estimated as584

M(t) ≡ ∫
δ∗

−δ∗
−(φd − φd,lam)dz∗ = ∫

δ∗

−δ∗
(κe − κ)

∂b

∂z∗
dz∗, (5.5)

and the corresponding ‘turbulent’ mixing efficiency can be estimated as585

E(t) ≡ M
M + E . (5.6)

Figure 16 shows the total (turbulent and molecular) mixing efficiency Etot as a function586

of depth-averaged gradient Richardson number Rig,∗ and buoyancy Reynolds number587

Reb,∗, where the overbar indicates an average defined by (4.3). As shown in panel (a), Etot588

increases with Rig,∗ for Rig,∗ ≲ 0.1 corresponding to the T state. The relation Etot = Rig589

plotted in a dashed line is equivalent to setting the turbulent Prandtl number Pr t = 1,590

which appears to agree well with the data showing the typical ‘left-flank’ behaviour591

in Phillips’ flux-gradient curve (figure 1). The data enter the ‘right-flank’ regime for592

Rig,∗ ≳ 0.1 where Etot is observed to vary strongly with the molecular Prandtl number593

Pr . Data points in this regime correspond mainly to the L and H states. Specifically,594

for Pr = 0.7 (plotted in red) Etot continues to increase with Rig,∗, because laminar595

diffusion, at least for these simulations, becomes important immediately after the flow596

enters the strongly stratified right flank. Non-monotonic behaviour of Etot in Rig,∗ is597

observed for Pr = 7 (plotted in green) and 70 (plotted in blue) where Etot first decreases598

with Rig,∗ and increases again when Rig,∗ becomes sufficiently large due to the strength599

of the buoyancy gradient ∂b/∂z∗. Shown also in figure 16(a) is the relation between Etot600

and Rig,∗ proposed by Venayagamoorthy & Koseff (2016) plotted with a dashed-dotted601

line. While the relation is reasonably close to the data on the left flank, Etot does not602

asymptote to a constant value of 0.25 as is predicted to occur in a linearly stratified603

system by Venaille et al. (2017), although as usual, it is important to remember that604

the definitions of mixing efficiency and Richardson number vary between analyses, and605

indeed the mechanisms by energy is injected into the flow also vary markedly.606

When plotted against Reb,∗, as is shown in figure 16(b), Etot appears to collapse into607

single curves for each value of Pr . For Reb,∗ ≲ 100, Etot takes larger values for smaller608

Pr at a given Reb,∗, and for Reb,∗ ≳ 100, the dependence on Pr seems to disappear.609

Consistent with Shih et al. (2005), Etot decreases with Reb,∗ for Reb,∗ ≳ 100. The Shih610

et al. (2005) data of Pr = 0.72 (plotted as grey squares) show consistency with the LSPC611

data for simulations with Pr = 0.7 (plotted in red) for Reb,∗ > O(1).612
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Figure 16: Variation of the time-dependent total mixing efficiency Etot ≡ Φd/(Φd + E)
across the density interface −δ∗ < z∗ < δ∗ with the corresponding depth-averaged: (a)
Rig,∗; and (b) Reb,∗. Darker filling colours for the closed symbols and thicker lines for
open symbols correspond to later times in each simulation. Symbol conventions are shown
in table 1. Grey open squares in (b) correspond to data from Shih et al. (2005) with
Pr = 0.72. In (a), a dashed line shows the relation Etot = Rig,∗, and a dashed-dotted
line shows the relation proposed by Venayagamoorthy & Koseff (2016), Etot = 0.25[1 −
exp(−7 ⋅Rig,∗)].

Figure 17 shows the time-dependent ‘turbulent’ mixing efficiency E as a function of613

Rig,∗ and Reb,∗. Interestingly, in panel (a) where E is plotted against Rig,∗, the strong614

dependence on Pr on the ‘right flank’ with Rig,∗ ≳ 0.1 vanishes when the laminar diffusion615

is excluded. As the flow further laminarises in the L state, E decreases with time (as shown616

by increasingly darker symbol fill colour). For the H state plotted in blue squares, however,617

the efficiency E saturates to a value between 10−3 and 10−2. The same observation applies618

to the ‘left-flank’ in the Reb,∗ plot shown in panel (b). The behaviour of E follows closely619

that of Etot shown in figure 16 for Rig,∗ ≲ 0.1, as the contribution of laminar diffusion is620

negligible in flows where turbulent transport dominates, as expected. The data shown in621

panel (a) are also reminiscent of the results compiled by Fernando (1991) in his figure 16,622

although, again it is important to remember that the definitions of ‘Richardson number’623

are different.624

It is also important to appreciate the causes of the differences between the total mixing625

efficiency Etot (figure 16) and the turbulent mixing efficiency E (figure 17). The definition626
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Figure 17: Variation of the time-dependent turbulent mixing efficiency E ≡M/(M + E)
across the density interface −δ∗ < z∗ < δ∗ with the corresponding depth-averaged: (a)
Rig,∗; and (b) Reb,∗. Darker filling colours for the closed symbols and thicker lines for
open symbols correspond to later times in each simulation. Symbol conventions are shown
in table 1.

E removing the purely diffusive component was proposed by Caulfield & Peltier (2000)627

based on the assumption that the dominant mixing properties in flows unstable to Kelvin–628

Helmholtz instabilities (KHI) are associated with the breakdown of the primary KHI629

billows. By their very character, KHI billows are large-scale and dominated by inertial630

processes. As the Reynolds number of the flow increases, it is a reasonable hypothesis631

that the laminar ‘mixing’ dynamics will become increasingly insignificant. In the layered632

flow considered here, it is not at all clear that this assumption is valid, as even as the633

external Re gets large, it is still expected that in the immediate vicinity of the density634

interface, diffusive ‘laminar’ dynamics will remain significant. This remaining significance635

is clearly implied by the spatial variation of κe in strongly layered flows as shown in figure636

7.637

5.3. Comparison to mixing associated with Kelvin-Helmholtz instabilities638

In this section, we compare the mixing efficiency measured in our layered stratified639

plane Couette (LSPC) flows to the results obtained by simulating the turbulence induced640

by Kelvin-Helmholtz instabilities (KHI), a canonical flow configuration often employed641

to study mixing, e.g. by Caulfield & Peltier (2000), Smyth et al. (2001), Mashayek et al.642
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Figure 18: Comparison with the dual-parameter scaling for mixing efficiency E ≡M/(M+
E) in (Rig,Reb) proposed by Salehipour et al. (2016b). In (a) the Salehipour et al. (2016b)
predictions, denoted by EKH , are plotted as contours, and the points in the parameter
space accessed by LSPC simulations are plotted in circles where the colour conventions
follow table 1. The grey dashed line corresponds to where the maximum E occurs for a
given Rig. The horizontal and vertical dashed-dotted lines correspond to Reb = 20 and
Rig = 1/4 respectively. The predicted EKH values are plotted against the LSPC results
in (b) and (c) for Reb > 20 and Reb < 20 respectively. Darker fill colour corresponds to
larger values of Reb,∗ in (b) and larger values of Rig,∗ in (c). The dashed line in (c) and
the insert plot corresponds to E = EKH .
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(2013) and Salehipour & Peltier (2015). Figure 18 compares our LSPC data to a recent643

study by Salehipour et al. (2016b) which attempted to parameterize E as a function of644

appropriate measures of gradient Richardson number and buoyancy Reynolds number645

based on data from direct numerical simulation of KHI. As previously noted, it is very646

important to be cautious when comparing results from different analyses using different647

definitions of key parameters, and as described in detail in Salehipour & Peltier (2015),648

the definitions of the gradient Richardson number and buoyancy Reynolds number used649

in Salehipour et al. (2016b) are somewhat different from those used here. To re-iterate,650

the Rig,∗ and Reb,∗ values for our LSPC data are first calculated ‘locally’ as a function651

of z∗ using the definitions given in (5.1), and are then averaged using the ‘depth’ integral652

(denoted with an overbar) as defined in (4.3). As can be seen in panel (a) of figure 18,653

Rig,∗ and Reb,∗ are strongly correlated to each other in the LSPC flows, i.e. Reb,∗ tends654

to decrease with larger values of Rig,∗. As a result, our data only access a subset of the655

parameter space. Interestingly, our data for 20 ≲ Reb ≲ 1000, which fall in the weakly656

stratified ‘left flank’ of Phillips curve, follow closely the trajectory of maximum E for a657

given Rig,∗ observed by Salehipour et al. (2016b). The LSPC data points do not access658

the most efficient regime observed by Salehipour et al. (2016b) when Reb,∗ ≳ 20 and659

Rig,∗ ≳ 0.25. For Reb,∗ ≳ 20, the LSPC data agree reasonably well with Salehipour et al.660

(2016b)’s prediction EKH , as is shown in panel (b). The agreement, which seems to be661

improved for data points of larger Reb,∗ values, is presumably due to the fact that the662

underlying flow dynamics is similar in LSPC and KHI simulations for these data points,663

i.e. shear-induced overturns dominate the diapycnal mixing in both cases. For the less664

energetic, more stratified data points with Reb,∗ ≲ 20 (or Rig,∗ ≳ 0.25), there is poor665

agreement between EKH and E, as is shown in panel (c). The Salehipour et al. (2016b)666

scaling predicts larger efficiencies than those observed in the LSPC flow for small values of667

Rig,∗ ≲ 1/2, as shown in the insert of panel (c). As Rig,∗ increases further to Rig,∗ ≳ 1/2,668

EKH becomes virtually zero, whereas E stays at small but significantly non-zero values.669

This weak but non-negligible mixing occurs in L and H states at the right flank of Phillips670

curve for which the diapycnal transport due to the scouring acting on a highly stable671

density interface plays a key role.672

5.4. Comparison to body-forced turbulence mixing673

Another highly relevant flow configuration in studying stratified turbulence is triply674

periodic forced turbulence simulations, e.g. by Brethouwer et al. (2007). Here we also675

compare our results with a recent study by Maffioli et al. (2016) who measured mixing676

efficiency from a series of body-forced stratified turbulence simulations (figure 19).677

Crucially, the flow in their study is energised by the use of body forcing in contrast678

to applying vertical shear driven at the boundaries in LSPC flow simulations, and only a679

statistically steady state is considered in Maffioli et al. (2016), whereas time-dependent680

mixing properties are captured in the LSPC flow data. Maffioli et al. (2016) observed681

the dependence of mixing efficiency on the turbulent Froude number Frh ≡ ε/(NU2),682

an equivalent of which can be estimated as Frh,∗ = ε∗/(N∗U2
h,∗) in the z∗ coordinate,683

where Uh,∗ ≡ ⟨u′2 + v′2⟩z∗ is the turbulent horizontal velocity scale, though once again684

caution must be applied when comparing specific numerical values of differently defined685

quantities. As shown in figure 19(a), plotting E against the depth-averaged Frh,∗ does686

not collapse the LSPC flow data completely, and the Maffioli et al. (2016) simulations687

have a significantly larger mixing efficiency. Furthermore, the LSPC flow never accesses688

the small Froude number regime identified by Maffioli et al. (2016), associated with an689

asymptotic (and constant) mixing efficiency.690
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Figure 19: (a) Mixing efficiency E ≡ M/(M + E) as a function of the depth-averaged
horizontal Froude number Frh,∗. The data from Maffioli et al. (2016) are plotted as
grey circles. (b) Rig,∗ as a function of Frh,∗, where the dashed line corresponds to the
Rig ∝ Fr−2

h scaling for fully developed turbulent plane Couette flow (Zhou et al. 2017).
Darker fill colour corresponds to larger values of Reb with samples shown in panel (a).
Data points with Reb,∗ > 20 are shown, consistent with the range investigated by Maffioli
et al. (2016).

This difference appears to be related to the fundamental difference in the forcing, with691

the external wall-forcing always leading to weaker mixing. Interestingly, the Fr−2
h scaling692

in the weakly stratified regime (Frh > 1) of Maffioli et al. (2016) seems to apply also to693

the large-Reb,∗ data points from LSPC flow, although the value of E is roughly one order694

of magnitude smaller in LSPC flow for a given turbulent Froude number. Note that the695

scaling E ∝ Fr−2
h may be inherently connected to the scaling E ∝ Rig, because it can be696

shown in fully turbulent stratified plane Couette flow (Zhou et al. 2017) that Rig ∝ Fr−2
h ,697

a relation which appears to hold, at least approximately, for the LSPC flow data shown698

in figure 19(b).699

6. Concluding remarks700

We have examined irreversible diapycnal mixing quantified in the tracer-based co-701

ordinate z∗ following the Winters–D’Asaro–Nakamura formalism for layered stratified702

plane Couette flow simulations. The results presented include not only the bulk (volume-703

averaged) properties of irreversible mixing, but also the structural details of effective704

diffusivity κe and diapycnal flux φd (figure 7). The structure of the κe(z∗) profile is705

particularly important as its curvature, i.e. ∂2κe/∂z2
∗, determines if diapycnal mixing is706
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able to ‘sharpen’ the local gradient. The sign of ∂2κe/∂z2
∗ could also provide a simple707

test for whether the mixing process is dominated by ‘overturning’ (∂2κe/∂z2
∗ > 0) or708

‘scouring’ (∂2κe/∂z2
∗ < 0). Overturning-dominated mixing is reminiscent of the ‘internal’709

mixing mechanism following the classification by Turner (1973). The turbulence which710

drives internal mixing occurs within the region where a large gradient of buoyancy is711

present. The ‘external’ mixing mechanism, however, is driven by turbulence external712

to the region with large gradient of buoyancy. It follows that the scouring processes713

examined here, which are critical in the maintenance of density interfaces, are ‘external’714

in nature following Turner’s terminology. When Richardson and Péclet numbers are715

both sufficiently large, we found the possibility of a density interface surviving due716

to the suppression of overturning shear instabilities by large Richardson number, and717

comparatively weak laminar diffusion at large Péclet number. Scouring by the external718

turbulence is key to the robustness of very stable ‘sharp’ interfaces. The framework719

employed in this analysis is effective for examining the spatial inhomogeneity of diapycnal720

mixing in the vertical direction and can be readily applied to investigate similar flows721

where layers and interfaces are the dominant features.722

We have highlighted the relevance of molecular properties of the fluid (i.e. Prandtl723

number Pr) in the ‘right-flank’ of Phillips’ flux-gradient curve in determining the mixing724

properties of a sheared density interface (see e.g. figure 16), and this is critically because725

diapycnal transport does not vanish when the stratification is particularly strong and726

the molecular flux becomes important in such ‘right-flank’ situations. The kinetic energy727

available for mixing is supplied by vertical shear maintained by the walls in the layered728

stratified plane Couette (LSPC) flow configuration, and an important feature of this729

simple shear flow is the strong correlation between the gradient Richardson number and730

the buoyancy Reynolds number (as shown in figure 18(a)). When the gradient Richardson731

number is small, i.e. Rig,∗ ≲ 0.25, shear-induced overturns dominate in the T state of732

LSPC simulations, and the mixing efficiency is comparable to the data reported by733

Salehipour et al. (2016b) based on Kelvin-Helmholtz simulations (see figure 18(b)). The734

same observation applies when we compare the LSPC flow results to forced statistically735

stationary turbulence in the limit of large turbulent Froude number (weak stratification)736

Frh,∗ ≳ 1, where the scaling E ∝ Rig,∗ ∝ Fr−2
h,∗ (see figure 19) seems to hold regardless737

of the forcing mechanism. However, turbulence cannot be sustained at large gradient738

Richardson numbers ≳ 0.25 in our LSPC flow configuration where the only forcing comes739

from vertical shear, and laminar diffusion immediately becomes relevant in determining740

the mixing properties for strongly stratified interfaces (see figure 16). This is in contrast to741

body-forced turbulence studies, e.g. Maffioli et al. (2016), where the flow stays energised742

under strong stratification by internal body forcing, and hence ‘internal’ mixing in the743

sense of Turner (1973). The mixing efficiency does not saturate to a constant, as is in744

standard turbulence parameterizations, e.g. Mellor & Yamada (1982), in the limit of745

strong stratification, and molecular diffusivity does affect the mixing properties.746

In this paper, we have investigated the self-sustaining mechanism of a sharp density747

interface when the Péclet number is sufficiently large, i.e. the external effects of the748

‘scouring’ induced by the turbulence away from the interface and comparatively weak749

molecular diffusion across the core central region of the interface. It appears that a sharp750

density interface can be maintained by a subtle yet robust balance and interplay between751

molecular processes in the ‘interface’, where there is a strong density gradient suppressing752

vertical motions, and vigorous scouring turbulence in the much more weakly stratified753

‘layers’ above and below the interface. This self-sustaining mechanism might explain754

how layers and interfaces may be robust structures in stably stratified geophysical flows,755

and this mechanism is intrinsically related to the mechanism proposed by Phillips (1972)756
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regarding how these structures may form. On the other hand, we have only considered757

the ‘robustness’ of an existing density interface with a fixed initial thickness in this758

paper. Possible formation mechanisms of such layered structures from initially linearly759

stratified flows is the topic of a separate study (Taylor & Zhou 2017).760
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