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Active fluids are a class of non-equilibrium systems where energy is injected into the system
continuously by the constituent particles themselves. Many examples, such as bacterial suspensions
and actomyosin networks, are intrinsically chiral at a local scale, so that their activity involves torque
dipoles alongside the force dipoles usually considered. Although many aspects of active fluids have
been studied, the effects of chirality on them are much less known. Here we study by computer
simulation the dynamics of an unstructured droplet of chiral active fluid in three dimensions. Our
model only considers the simplest possible combination of chiral and achiral active stresses, yet
this leads to an unprecedented range of complex motilities, including oscillatory swimming, helical
swimming, and run-and-tumble motion. Strikingly, while the chirality of helical swimming is the
same as the microscopic chirality of torque dipoles in one regime, the two are opposite in another.
Some of the features of these motility modes resemble those of some single-celled protozoa, suggesting
that underlying mechanisms may be shared by some biological systems and synthetic active droplets.

Non-equilibrium fluids in statistical physics fall into
two main categories: they may be externally driven or
active (or possibly, both). In driven fluids, the energy
is injected continuously into the system globally or at
boundaries, e.g. by steady shearing. On the other hand
in active fluids, the energy is injected into the system
locally by the constituent particles themselves [1]. (This
energy is then subsequently dissipated as heat.) Many
examples of active fluids are biological in nature, such
as bacterial suspensions [2], tissues [3] and actomyosin
networks in the cytoskeleton of eukaryotic cells [4].

In the case of bacterial suspensions, the flagella of the
bacteria continuously stir the solvent, driving the system
out-of-equilibrium, and also yielding self-propulsion. In
the case of actomyosin, the myosin motors pull the actin
filaments together causing them to contract lengthwise.
Actomyosin contraction, in particular, is implicated in
the swimming motility in MDCK tumour cells [5] and in
some single-celled micro-organisms [6, 7]. In addition to
these local sources of energy injection, many such fluids
also have microstructures that show liquid-crystal-like or-
dering [2], albeit with polar rather than nematic order [4].
Importantly, many of these active polar liquid crystals
are also microscopically chiral [2, 8]. For instance, the
actin filaments which make up the actomyosin network
are twisted into right-handed helices, while the flagella
in bacterial self-propulsion are left-handed helices. Al-
though many aspects of active fluids have been exten-
sively studied, much less is known about the effects of
chirality, particularly under confinement such as within
a droplet.

Droplets of active fluid have been shown to display
interesting swimming and crawling motility modes [9–12],
which resemble those of biological cells. Our aim here is
to study the effects of chirality on the swimming motility

of an active droplet in three dimensions. In particular
we show that a droplet of chiral active fluid can display
complex swimming dynamics including screw-like, run-
and-tumble, helical and oscillatory motion: these new
motility modes emerge as a consequence of chirality, and
of the coupling between active torque and force dipoles.

Intriguingly, the helical swimming mode displayed by
our simple model may be relevant to explain some fea-
tures of the motility of single-celled protozoans such
as Toxoplasma gondii [6] and Plasmodium ookinete [7].
(Toxoplasmosis is a common infection in cats and immun-
odeficient humans whereas Plasmodium is the parasite
responsible for malaria.) When measured in vitro and in
vivo, the trajectories of these organisms in 3D almost in-
variably follow a left-handed helical path. Yet the actin
filaments are right-handed helices, hence, as explained in
detail later on (Fig. 1), the natural microscopic chirality
of actomyosin (thought to be responsible for the motil-
ity itself) is also right-handed. Thus there seems to be
a mismatch between the microscopic and the observed
macroscopic chiralities. One suggested explanation for
this mismatch is that the actin filaments are somehow
oriented along microtubules, which are left-handed [13].
We show here however that, in general, chirality selection
in macroscopic motion need not involve any contest be-
tween chiralities at the molecular or local scale. Instead,
at least within our model torque dipole system, the com-
petition between local twisting (chiral) and contraction
(achiral) can reverse the handedness of the macroscopic
motion without the presence of a second chiral compo-
nent. The mechanism of chirality reversal involves the
polarization pattern of the active fluid at the droplet
scale; this influences droplet shape and locomotion, and
in turn depends on the competition between contractile
and twisting forces locally. Note that this mechanism is
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Figure 1. Left column: Actomyosin contraction inside the eu-
karyotic cells generates a force (F,−F) and a torque dipole
(τ,−τ). (Only two actins cross-linked by a single myosin mo-
tor are shown.) Right column: Flagella rotation in bacterial
suspensions also generates a force (−F,F) and a torque dipole
(−τ, τ), but in opposite directions. (Only a single bacterium
is shown.) The blue arrows in the figure indicates the fluid
flows. Image of actin provided courtesy of the Mechanobiol-
ogy Institute, National University of Singapore [14].

different from spontaneous rotational or chiral symmetry
breaking in active droplets with extensile forces and/or
anchoring conditions [11, 15, 16], in diffusiophoretic ne-
matic droplets [15], or in swimmer aggregates [17, 18].
In all those cases, the droplets or the aggregates lack
any intrinsic chirality, but start rotating following spon-
taneous breaking of chiral symmetry, so that they can
rotate clockwise or anti-clockwise with equal probabili-
ties.

MODEL AND SIMULATIONS

We consider a droplet of active polar liquid crystal
immersed in a passive isotropic fluid. The dynamical
variables are a conserved scalar composition field φ(r, t),
the polarization field p(r, t), and the fluid velocity field
u(r, t). Phenomenologically, the scalar field φ represents
the concentration of active particles such as bacteria (in
a swarm) or actin filaments (in the cytoskeleton). The
polarization field p then represents the average orienta-
tion of these particles. Finally u is the local average fluid
velocity of active particles and solvent.

Our model includes two sources of active stress, arising
from force dipoles and torque dipoles respectively. These
force and torque dipoles arise naturally in the biological
examples given above. In the case of actomyosin con-
traction, the myosin motor pulls two actin filaments to-
gether, creating a quadrupolar fluid flow (see blue arrows
in Fig. 1 top left), which can be represented as a contrac-
tile force dipole. The filaments have a plus (or poly-
merizing) and a minus (or depolymerizing) end and they
are aligned on average in the same direction as p. Also,

since the actin filaments are twisted in a right-handed di-
rection [19], the myosin motor tends to rotate them as it
pulls, creating a pair of counter-rotating vortex flows (see
blue arrows in Fig. 1 bottom left), which we approximate
as a right-handed torque dipole. Note that the helicity of
a fiber is reversed by reflection but not physical rotation.
Hence the torque dipole is unchanged if the polarization
is reversed, and indeed would still be present if only one
of the filaments was flipped over, creating a state of zero
net polarization locally.

In the case of bacterial suspensions e.g. E. coli, the ac-
tivity is provided by the rotation of the flagella. The flag-
ella rotate anti-clockwise whereas the body rotates clock-
wise resulting in a pair of counter-rotating vortex flows
(see blue arrows in Fig. 1 bottom right). Since the flag-
ella are also helical, their rotation expels the fluid away
from the bacterium, resulting in an extensile quadrupolar
fluid flow (see blue arrows in Fig. 1 top right). These two
processes can then be approximated as an extensile force
dipole and a left-handed torque dipole. Note that the
directions of the force and the torque dipoles in bacteria
are opposite to those in actomyosin contraction.

In our generic model, we therefore assume that a force
and a torque dipole are embedded in each active parti-
cle with directions parallel or anti-parallel to p. While
we could also consider cases where the force dipole lies
parallel and the torque dipole perpendicular to p, and
vice versa, we are not aware of biological examples of
this situation. Since the force and the torque dipoles
have a head-tail symmetry (but not the active particle
itself), all the equations of motion below are symmetric
under a global reversal of polarity: p(r, t) → −p(r, t),
for all r. There is an exception to this. If the active
particles are swimming (as in the case of bacteria) or if
there is an overall polymerization in one direction (as in
the case of actomyosin), the global p → −p symmetry
will be broken by a so-called ‘self-advection’ term. (This
causes the polarization pattern to move with fixed speed
along p itself.) Although it can be easily incorporated
in the model [12], for simplicity we do not consider self-
advection in this paper. The same applies to anchoring
terms that can also break p↔ −p symmetry [11]. Even
without such complications, we find a very rich dynamic
phase diagram once local chirality is allowed for.

We consider a droplet of active polar fluid, defined such
that φ ' |p| ' 1 (active and polar) inside the droplet
and φ ' |p| ' 0 (passive and isotropic) outside the
droplet. This is achieved by introducing an equilibrium
free energy (analogous to that of binary fluid) which sta-
bilizes a phase coexistence between an active polar and
a passive isotropic phase [11]. The equation of motion
for the variable φ is then simply a conserved convective-
diffusion equation whereas that for p is similar to the
Leslie-Ericksen equation in liquid crystals [20].

Finally the fluid velocity u is described by the Stokes
equation, basically a momentum balance equation:

0 = −∇P + η∇2u +∇ · σp +∇ · σa (1)
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where P is the isotropic pressure, η is the fluid viscos-
ity and σp is the passive elastic stress, which can be ex-
pressed as a combination of derivatives of the free energy.
The explicit form for σp is analogous to that of standard
equilibrium liquid crystals [20] (see also Materials and
Methods). However as we have seen from Fig. 1, the force
and the torque dipole from each active particle also pump
the fluid solvent around it (resulting in quadrupolar fluid
flow in the case of force dipoles or a pair of counter-
rotating flows in the case of torque dipoles). Therefore,
there exists an additional non-equilibrium stress term in
the Stokes equation which cannot be written as a deriva-
tive of the equilibrium free energy. This additional stress
term is derived explicitly by coarse-graining the force and
the torque dipoles [21, 22], and the resulting expression
is:

σaαβ = ζ̃1φpαpβ︸ ︷︷ ︸
force dipoles

+ ζ̃2εαβµ∂ν(φpµpν)︸ ︷︷ ︸
torque dipoles

+ . . . (2)

where the Greek indices indicate Cartesian coordinates,
εαβγ is the Levi-Civita symbol and ∂α is the partial
derivative with respect to rα. Here ζ̃1,2 are activity
parameters that quantify the force dipoles and torque
dipoles respectively. The sign of ζ̃1 determines whether
the force dipoles are contractile as in actomyosin or ex-
tensile as in bacteria (see Fig. 1); we shall focus only on
contractile active stress, for which ζ̃1 > 0.

Only the ζ̃2-term in Eq. 2 (which comes from the
torque dipoles) is chiral; its divergence is the force den-
sity associated with an ensemble of microscopic torque
dipoles. A different way of introducing chirality in our
model is by adding a passive cholesteric term to the
free energy; we do not discuss this here. In both cases,
the sign of the chiral term determines whether the sys-
tem is right- or left-handed at the local scale defined by
the equations of motion. Therefore the chiral symme-
try breaking is not spontaneous here, but imposed. For
ζ̃2 > 0 (right-handed), the fluid flow from the torque
dipole is as shown on the bottom left of Fig. 1; this is
similar to the motion of closing a bottle cap. On the
other hand for ζ̃2 < 0 (left-handed), the fluid flow is re-
versed (see the bottom right of Fig. 1) and hence resem-
bles opening a bottle cap. We define the torque dipole
on the bottom left of Fig. 1 to be right handed because if
we imagine applying such a pair of torques on both ends
of a piece of rope, it will tend to twist the rope into a
right-handed helix. With this convention, the activity of
actomyosin contraction in eukaryotic cells is right-handed
whereas that of bacterial suspension is left-handed. In
this paper it is sufficient to focus only on right-handed
activity ζ̃2 > 0 since the result for ζ̃2 < 0 is just its mirror
image.

The forms for the active stress in Eq. 2 is rather gen-
eral and can be obtained without any knowledge of ac-
tomyosin contraction in the cytoskeleton or flagellar ro-
tation in bacteria. Indeed, these follow from a hydrody-
namic multipole expansion [23, 24] so long as the net force

and the net torque are both zero. (Otherwise, the sys-
tem is no longer active but a driven system like a colloid
being pulled by an optical tweezer or gravity.) In such
an expansion, the lowest order contribution to the active
stress comes from the force dipole whereas the lowest
order chiral contribution comes from the torque dipole
which is effectively a force quadrupole (since a point
torque can be decomposed into a pair of forces). Higher
order terms come from other force quadrupoles, six-poles,
eight-poles, etc. The far-field flow from the force dipole
scales with distance r as u ∼ 1/r2, whereas that of the
force quadrupoles is one order higher: u ∼ 1/r3. There
are three independent types of force quadrupole [23, 24]
of which the torque dipole is the only chiral one. By re-
taining only this term, our model isolates the new physics
introduced by leading-order chirality.

To characterize the motion of the droplet, we first de-
fine the centre of mass (CM) velocity of the droplet to
be: Ṽ(t) =

´
drφ(r, t)u(r, t)/

´
drφ(r, t) where the inte-

gration range is over the droplet phase (for all r such
that φ(r, t) > 0.5). We then also define the angular
velocity of the droplet about its CM to be: Ω̃(t) =´
drφ∆r×∆u

|∆r|2 /
´
drφ where ∆r = r − R with R(t) the

CM of the droplet and ∆u = u − V. The integration
range is again over the droplet phase.

We perform 3D hydrodynamic simulations using a hy-
brid lattice Boltzmann method [25, 26]. All the results
below are presented in dimensionless units: V = ṼηR/κ,
Ω = Ω̃ηR2/κ, ζ1 = ζ̃1R

2/κ and ζ2 = ζ̃2R/κ. (R is the
radius of the droplet and κ is the elastic constant of the
active gel; for more details see Materials and Methods.)

RESULTS

Force dipoles only

First, we recapitulate the behavior of contractile
droplets without chirality, i.e., ζ1 > 0 and ζ2 = 0. This
case has been considered previously as a minimal model
for cell swimming in 3D matrigel [11, 27] and extended to
cell crawling on a 2D surface [12, 28, 29]. Fig. 2A shows
the magnitudes of the CM velocity 〈V 〉 and angular ve-
locity 〈Ω〉 of the droplet as a function of force-dipole ac-
tivity ζ1. (The angle brackets indicate time-averaging at
steady state.) For small values of activity 0 < ζ1 < ζc11 ,
the droplet only slightly contracts in the direction of p
(red arrows) without any translational or rotational mo-
tion (〈V 〉 = 〈Ω〉 = 0, stationary phase).

At higher values of activity ζc11 < ζ1 < ζc21 , the droplet
spontaneously swims in a straight line without any ro-
tation (〈V 〉 > 0 and 〈Ω〉 ' 0, linear swimming phase).
This spontaneous swimming is mediated by a splay in-
stability in the polarization field p which creates an
asymmetric flow field inside and outside the droplet [11].
The (continuous) transition between quiescent and self-
motile droplet occurs as the dimensionless parameter
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Figure 2. (A) Phase diagram for an active droplet with only
force dipole activity (ζ1 > 0, ζ2 = 0). The plot shows the av-
eraged centre of mass speed 〈V 〉 and angular speed 〈Ω〉 as a
function of force dipole activity ζ1. Insets show the snapshots
of the droplet morphology (grey surface) and the correspond-
ing polarization field p (red arrows) for the three different
phases. Numerical precision is ±0.01 for V and Ω. (B) Simi-
lar phase diagram for an active droplet with only torque dipole
activity (ζ1 = 0, ζ2 > 0). (All quantities are in dimensionless
units, see main text.)

ζ1 = ζ̃1R
2/κ, measuring the ratio between active dipolar

force and elasticity, exceeds a critical threshold (see SI).
Finally at even larger values of activity ζc21 < ζ1, the

contractile activity can stabilize an aster defect in the
polarization field p and the droplet becomes stationary
again (〈V 〉 = 〈Ω〉 = 0, stationary-aster phase).

Torque dipoles only

We next examine the effects of the torque dipole term
∝ ζ2 in Eq. 2. For simplicity, we first consider a droplet of
active fluid with only torque dipoles, and no force dipole
contribution (ζ1 = 0, ζ2 > 0).

Fig. 2B shows the averaged CM speed 〈V 〉 and angu-
lar speed 〈Ω〉 as a function of torque dipole activity ζ2 at
steady state. For small values of activity 0 < ζ2 < ζc12 ,

the droplet remains stationary (〈V 〉 = 〈Ω〉 = 0, station-
ary phase). The polarization field p inside the droplet, in
this stationary state, is slightly twisted (through about
a quarter of a helical pitch). Interestingly, the flow field
u outside the droplet forms a pair of counter-rotating
vortices (see Fig. 3A left). Thus the droplet behaves co-
herently as a single, right-handed torque dipole. Similar
counter-rotating flows have also been observed in C. ele-
gans embryos [8], possibly indicating that eukaryotic cells
have intrinsic chirality.

At higher values of the chiral activity, ζc22 < ζ2 < ζc32 ,
the droplet acquires both translation and rotation (〈V 〉 >
0 and 〈Ω〉 > 0, rotating phase). This rotation is medi-
ated by a bend-instability in p (in contrast with the splay
produced by force dipoles) which causes an asymmetric,
counter-rotating flow field u (see Fig. 3A right). Mean-
while, the interface of the droplet also follows the direc-
tion of p, forming a chiral bent shape. The direction of
rotation Ω aligns with that of bending (∇×p)×p, i.e.,
perpendicular to the overall polarization p. Also note
that in the rotating phase, the droplet’s swimming ve-
locity V points roughly parallel to Ω. Qualitatively, the
motion of the droplet is like the motion of a right-handed
screw going into the wall (see Supplementary Movie 1).
(It is also like the motion when the screw is extracted
from the wall, since both V and Ω are then reversed.)
Here, therefore the chirality of the trajectory is deter-
mined by the underlying microscopic chirality.

There also exists a small window at ζc12 < ζ2 < ζc22

where the droplet oscillates between the rotating and the
stationary phase (oscillatory phase), corresponding to a
subcritical Hopf bifurcation in dynamical systems (see
Supplementary Figure 1). If we look at the time evolution
of the CM angular speed Ω(t) in this window (e.g. ζ2 =
4.71 in Fig. 3B), Ω(t) oscillates between some large values
(rotating) and small values (approximately stationary).
Qualitatively, the droplet remains stationary for some
time then suddenly rotates for a while, then becomes
stationary again and so on (see Supplementary Movie 2).

Finally, at much higher values of activity ζc32 < ζ2, the
fluid flow inside and outside the droplet becomes turbu-
lent with large interfacial fluctuations (turbulent phase
in Fig. 2A).

The transition between quiescent and spontaneously
rotating droplet is governed by the dimensionless param-
eter ζ2 = ζ̃2R/κ, which measures the ratio between active
forces, due to the torque dipole, and elastic forces. As a
result, the critical torque threshold ζ̃c12 scales with R dif-
ferently with respect to the critical force dipole discussed
in the previous Section. A distinct important quantity
is the capillary number Ca2 = ζ̃2/γ, where γ is the sur-
face tension of the droplet: when this number is large,
active torques lead to a change in droplet shape. The
analogous capillary number relevant for force dipoles is
Ca1 = ζ̃1R/γ.
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Figure 3. (A) The fluid velocity u for the stationary phase
(left) and the rotating phase (right) corresponding to left and
middle pictures in Fig. 2B. (B) shows the time evolution of the
angular speed Ω(t) for different values of torque dipole activity
ζ2 (while ζ1 = 0). At some intermediate value ζ2 = 4.71, Ω(t)
oscillates at steady state (see Suppl. Mov. 2). (The residual
small oscillations at ζ1 = 5.1 and ζ2 = 5.7 are likely due to
wobbles in the moving droplet.)

Force and torque dipoles combined

Now we consider the effects of both force and torque
dipoles being simultaneously present in an active droplet,
which is the generic case. Fig. 4A shows the phase di-
agram in the ζ1-ζ2 parameter space (assuming both ζ1
and ζ2 are positive as before). From this phase diagram,
we can distinguish several different dynamical regimes or
‘phases’ for the behavior of the droplet at steady state.
First, on the lower left hand corner, we have a stationary
phase (labelled IV), where the droplet remains station-
ary without any translational or rotational motion. This
droplet has a lentil shape similar to that depicted on the
left picture of Fig. 2 A (see also [11]). On the right hand
side of the phase diagram, we have another stationary
phase (labelled V) with an aster defect at the centre of
the droplet, now similar to that depicted on the right
picture of Fig. 2A. In these two limiting regimes, the chi-
ral activity barely changes the phases seen for a purely
contractile system.

Next, we observe two helical phases (labelled I and II)
in the phase diagram. In these two phases, the droplet

swims in a helical trajectory at steady state (see Fig. 4C
for a typical helical trajectory). As announced earlier, we
can have both a right-handed helix (phase I) and a left-
handed helix (phase II) on the same phase diagram, even
though the torque-dipole activity ζ2 is always positive or
right handed. In the case of a right-handed helix (phase
I), the angle between V and Ω is always less than 90◦

(see Fig. 4B left panel). On the other hand for a left-
handed helix (phase II), the angle between V and Ω is
always larger than 90◦ (see Fig. 4B middle panel). These
identifications swap over if the chiral activity parameter
ζ2 is reversed in sign. Among these helical trajectories
are screw-like ones in which V and Ω are almost parallel,
but also others where the angle between these is large.

The presence of both right-handed and left-handed
helical motion from a purely right-handed microscopic
chirality can now be understood as follows. The right-
handed helix (phase I) arises when the torque dipole is
large and the force dipole weak. To explain it, consider
adding a small force dipole perturbation to the purely
torque dipolar rotating phase in the middle of Fig. 2B.
The contractile perturbation induces a translational ve-
locity along (∇.p)p ∼ ±p as stated previously; because
of the pre-existing bending created by the chiral activity
(see Fig. 5A), the resulting angle between V and Ω will
be less than 90◦. Conversely, for the left-handed helix
(phase II), consider adding a small torque dipole pertur-
bation to the purely contractile linear-swimming phase
in the middle of Fig. 2A. The torque dipole now induces
an angular velocity perpendicular to the overall polariza-
tion p (see Fig. 5B). Because of the pre-existing splay in
the contractile swimming state, the resulting angle be-
tween V and Ω will be larger than 90◦. We see that the
left-right helix distinction is due to having very differ-
ent configurations of the polarization field p inside the
droplet, depending on the outcome of a competition be-
tween chiral and contractile activity. In the case of phase
I (large chirality) bend deformation dominates, whereas
in the case of phase II (large contractility), splay dom-
inates. Consequently phase I droplets also have quite
distinct morphology from phase II droplets, with chiral
bent shape for the former and a dimple for the latter (see
Fig. 5A,B respectively).

We emphasise again that our study addresses the ef-
fects of nonzero chirality at microscopic scales on macro-
scopic droplet trajectories. Similar, macroscopically he-
lical motions can also be obtained via spontaneous sym-
metry breaking (SSB) from zero microscopic chirality.
The two cases are easily distinguished, however, since in
the SSB scenario each swimmer chooses between left and
right helicity at random; both states exist at the same
point in the phase diagram. In our case, left and right
macroscopic helicity are located at different state points.

In the phase diagram Fig. 4A, we also have a linear-
swimming phase (labelled III), where the droplet swims
in a nearly-straight line, similar to the picture in the
middle of Fig. 2. In this phase, Ω is approximately zero
(within numerical precision ±0.01) while V is approxi-
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Figure 4. (A) Phase diagram in the full ζ1-ζ2 parameter space
can be divided into several different phases. Note that there
are two helical swimming phases: left- (phase I) and right-
(phase II) handed helix. (B) shows the typical time-averaged
CM velocity vector 〈V〉 and angular velocity vector 〈Ω〉 for
phase I (left panel), phase II (middle panel), and phase III
(right panel). (C) shows the typical right-handed helical tra-
jectory corresponding to phase I (parameters used: ζ1 = 10.8
and ζ2 = 7.8, the lengths are in units of droplet’s radius).

mately constant at steady state (see Fig. 4B right panel);
because of small residual helicity this is separated from
phase II by a crossover rather than a sharp transition
line. On the ζ2-axis in the phase diagram, we have the
oscillatory phase (labelled VI), where V (t) and Ω(t) os-
cillate at steady state as discussed above. Intriguingly,
we also discover a run-and-tumble phase (labelled VII),
where the droplet is observed to swim in a straight line for
some period of time (run) and then abruptly changes its
direction (tumble) before swimming again in a straight
line and so on (see Supp. Mov. 3). Note that due to
the absence of noise in our system, at each tumble phase,
the droplet changes its direction at fixed angle. (This is
similar to zig-zag motion in a particle model [30].) The
run-and-tumble motion, again, arises here as an example
of oscillatory behaviour: it requires simultaneous pres-
ence of force and torque dipoles, as well as proximity to
the transition between stationary and helical phase.

𝛀

𝐕
𝐕

𝛀

BA
𝜃 < 90° 𝜃 > 90°

Figure 5. A purely right-handed microscopic chirality can
give rise to both right-handed and left-handed macroscopic
motion due to two different ways the polarization field p (red
arrows) is arranged inside the droplet. (A) Right handed he-
lix: bend deformation dominates. The green arrows indicate
two possible directions for V (B) Left handed helix: splay de-
formation dominates. Similarly, the blue arrows indicate two
choices of many possible directions for Ω.

DISCUSSION

We have shown within a simplified model how the mi-
croscopic chirality of active particles (such as actin fila-
ments or bacteria) can translate into a macroscopically
chiral motion at the scale of a droplet. While other
models for helical droplet swimming have been proposed
based on particle dynamics (e.g. [31, 32]), the current
one is the simplest to our knowledge based on active gel
theory. In our framework, helical trajectories can arise
for swimming droplets from a combination of contractile
and chiral activities. A right-handed microscopic chiral-
ity does not necessarily translate into a right-handed heli-
cal trajectory, because the macroscopic helicity is mainly
controlled by the pattern of the polarization field p (de-
scribing the average alignment of particles) within the
droplet (see Fig. 5). This configuration is determined by
a contest between contractility and chirality, not between
two different sources of chirality. While our study ad-
dresses an active gel droplet, the helical swimming mode
we found may be relevant to understand some features
of the 3D swimming of protozoans such as Toxoplasma,
whose motility mechanism is still elusive [33]. Notably,
such organisms often display a mismatch between micro-
scopic and macroscopic chirality not unlike the one we
discovered here.

Interestingly, we are also able to obtain an oscilla-
tory state without any built-in dynamical oscillator in
our model. This oscillatory behaviour is also observed in
simple models of cell crawling [12] and actin cortex [34].
This illustrates how simple physical mechanisms can give
rise to oscillatory behaviour in biological systems without
the need of an internal chemical oscillator.

In conclusion, hydrodynamic instabilities in a droplet
of generic chiral active fluids can lead to a striking vari-
ety of swimming motilities in 3D. It would be of interest
in the future to search for biological analogues of these
mechanisms, which rely on the coupling between orienta-
tional order and active torques and forces. This work has
focussed on the effects of chirality on swimming through
a bulk medium rather than crawling across a solid sur-
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face. Since molecular chirality is present at some level in
all cell types and micro-organisms, it would be very in-
teresting to look for its signatures in crawling processes
also; we hope to return to this in future work.

MATERIALS AND METHODS

We introduce a free energy functional F [φ,p] to stabi-
lize a droplet of active polar phase (φ ' |p| ' 1) in the
bulk of a passive isotropic phase (φ ' |p| ' 0):

F [φ,p] =

ˆ
dr

{
aφ2(φ− 1)2 +

k

2
|∇φ|2

− α

(
φ− 1

2

)
|p|2 +

α

4
|p|4 +

κ

2
(∇p)

2

}
(3)

where a, k, α and κ are positive constants. a and k
are related to the surface tension γ and interfacial width
` via: γ = 8

3

√
ka and ` =

√
k
2a . κ is the (single, for

simplicity) elastic constant controlling bend, twist and
splay deformation in p.

The dynamics of φ(r, t) follows a conserved diffusion-
reaction equation:

∂φ

∂t
+∇ ·

(
φu−M∇δF

δφ

)
= 0 (4)

whereM is the mobility. The dynamics of p(r, t) is simi-

lar to the Leslie-Ericksen equation for liquid crystals [20]:

∂p

∂t
+ u · ∇p = −Ω · p + ξv · p− 1

Γ

δF

δp
(5)

where v and Ω are the symmetric and anti-symmetric
part of the velocity gradient tensor ∂αuβ respectively.
Here ξ is the shear aligning parameter (ξ > 1 for shear-
aligning rod-shaped particles) and Γ is the relaxation
timescale for p. Finally the equation for u(r, t) is de-
scribed by the Stokes equation (see main text). The
form of the passive elastic stress σp in the Stokes equa-
tion is again similar to nematic liquid crystals (with
h = − δFδp ) [20]:

σpαβ =
1

2
(pαhβ − pβhα)− ξ

2
(pαhβ + pβhα)− κ∂αpγ∂βpγ

(6)
These equations have been used in many other studies [1,
2, 4].
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