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Brain networks predict metabolism, diagnosis
and prognosis at the bedside in disorders of
consciousness

Srivas Chennu,"2 Jitka Annen,3 Sarah Wannez,3 Aurore Thibaut,3’4 Camille Chatelle,z”s"6
Helena Cassol,3 Géraldine Martens,3 Caroline Schnakers,7’8 Olivia Gosseries,3
David Menon’ and Steven Laureys®

Recent advances in functional neuroimaging have demonstrated novel potential for informing diagnosis and prognosis in the
unresponsive wakeful syndrome and minimally conscious states. However, these technologies come with considerable expense
and difficulty, limiting the possibility of wider clinical application in patients. Here, we show that high density electroencephal-
ography, collected from 104 patients measured at rest, can provide valuable information about brain connectivity that correlates
with behaviour and functional neuroimaging. Using graph theory, we visualize and quantify spectral connectivity estimated from
electroencephalography as a dense brain network. Our findings demonstrate that key quantitative metrics of these networks
correlate with the continuum of behavioural recovery in patients, ranging from those diagnosed as unresponsive, through those
who have emerged from minimally conscious, to the fully conscious locked-in syndrome. In particular, a network metric indexing
the presence of densely interconnected central hubs of connectivity discriminated behavioural consciousness with accuracy com-
parable to that achieved by expert assessment with positron emission tomography. We also show that this metric correlates
strongly with brain metabolism. Further, with classification analysis, we predict the behavioural diagnosis, brain metabolism
and 1-year clinical outcome of individual patients. Finally, we demonstrate that assessments of brain networks show robust
connectivity in patients diagnosed as unresponsive by clinical consensus, but later rediagnosed as minimally conscious with the
Coma Recovery Scale-Revised. Classification analysis of their brain network identified each of these misdiagnosed patients as
minimally conscious, corroborating their behavioural diagnoses. If deployed at the bedside in the clinical context, such network
measurements could complement systematic behavioural assessment and help reduce the high misdiagnosis rate reported in these
patients. These metrics could also identify patients in whom further assessment is warranted using neuroimaging or conventional
clinical evaluation. Finally, by providing objective characterization of states of consciousness, repeated assessments of network
metrics could help track individual patients longitudinally, and also assess their neural responses to therapeutic and pharmaco-
logical interventions.
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Introduction

Recent years have seen rapid advancement of research
that has built the evidence base for neurotechnology in
assessment of consciousness after brain injury, which
can result in prolonged disorders of consciousness, includ-
ing unresponsive wakefulness syndrome (UWS), minimally
conscious state minus (MCS—) and positive minimally
conscious state (MCS +). The exclusive use of clinical con-
sensus of behaviours observed at the bedside has repeat-
edly been shown to result in high rates of misdiagnosis of
the true level of consciousness in such patients (Childs
et al., 1993; Schnakers et al., 2009). This misdiagnosis
can be due to the inability to communicate with patients,
who might have no or inconsistent behavioural signs of
consciousness. To help address the diagnostic and prog-
nostic challenge in disorders of consciousness, a range of
neuroimaging technologies have been proposed for assess-
ing ongoing brain activity with sophisticated analytical
techniques. These include MRI (Demertzi et al., 2015),
PET (Thibaut et al., 2012; Stender et al., 2014) and
high density EEG (Lehembre et al., 2012; King et al.,
2013; Lechinger et al., 2013; Chennu et al., 2014; Sitt
et al., 2014).

EEG in particular is an attractive option in this context
as it is portable, cost-effective, and relatively feasible to
deploy at the patient’s bedside. Recent research has
shown that both qualitative assessment by experts
(Forgacs et al., 2014; Bagnato et al., 2016; Estraneo
et al., 20165 Piarulli et al., 2016) and quantitative assess-
ment using quasi-automated machine learning (Sitt et al.,
2014) can be effective for identifying the state of conscious-
ness based on ongoing electrical brain activity measured
non-invasively from the scalp. Further work has also
shown that the methodology for quantitative analysis of
EEG data could be eventually entirely automated, enabling
the estimation of the state of consciousness at the patient’s
bedside using a validated analytical pipeline (Engemann
et al., 2015). In this context, we have previously shown
that quantitative analysis of high density EEG using net-
work analysis tools developed for brain connectomics re-
search (Rubinov and Sporns, 2010) can identify specific
spectral signatures of reorganized brain networks in pa-
tients with disorders of consciousness (Chennu et al.,
2014).

To build on this work and advance the case for develop-
ing reliable clinically useful applications of such neurotech-
nology-based assessments in disorders of consciousness, key
challenges have yet to be addressed. One particular ques-
tion pertains to the extent to which assessments with dif-
ferent neuroimaging modalities are concordant with each
other. This is particularly important as both false positives
and false negatives can have serious clinical and ethical
implications in each individual case (Peterson et al.,
2015). However, in the absence of a gold standard to iden-
tify the true subjective state of consciousness of a patient
who does not exhibit reliable behavioural evidence of con-
sciousness, an approach based on consilience between mul-
tiple independent assessments might be a rational way
forward (Peterson, 2016).

Another question pertinent to understanding the real-
world utility of bedside assessments of EEG is the extent
to which it can complement clinical interpretation and
management, by providing clinicians with additional, fine-
grained information for more informed decision-making on
behalf of individual patients. While previous research has
demonstrated that EEG-based assessment of consciousness
has diagnostic value, systematic behavioural assessment
conducted by an expert using the Coma Recovery Scale-
Revised (CRS-R) (Kalmar and Giacino, 2005) has often
been used as the ground truth against which EEG-based
assessments are evaluated for their efficacy. However, it
has yet to be demonstrated that quantitative EEG assess-
ments, if eventually deployed at the bedside, could in fact
be used to complement the CRS-R at non-specialist centres
that commonly assess patients with standard clinical
examination.

A further issue worth considering is whether EEG assess-
ments have prognostic value for predicting longer term re-
covery in patients. This has been shown with PET (Stender
et al., 2014) and hinted in previous research with EEG (Sitt
et al., 2014). If verified, it would speak to the value of
repeatable EEG assessments in not only tracking the recov-
ery of behaviourally evidenced awareness, but also their
ability to detect progressive improvements in the underlying
neurological functions that support such recovery before
they can be observed at the bedside.

Here, we directly tackle these challenges aimed at elabor-
ating the clinical utility of high density EEG assessments in
disorders of consciousness. Combining a rich set of clinical,
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behavioural, PET, and EEG data from a large cohort of
patients, we test multiple hypotheses. These include the
evaluation of EEG-based assessments for diagnosis and
prognosis of consciousness in disorders of consciousness,
the presence of concordance across EEG and PET (used
here as a neuroimaging reference method), and the role
for EEG to complement systematic behavioural assessment
at the bedside. Further, we train and validate classification
algorithms that use EEG-derived metrics as inputs to
predict the behavioural diagnosis, brain metabolism
and clinical outcomes of individual patients with high
accuracy.

Materials and methods

Participants

We assessed the level of consciousness, prognosis and treat-
ment options of patients referred to the University Hospital
of Liége, Belgium. Patients were referred from clinical centres
across Europe. Data from patients referred between January
2008 and October 20135, either diagnosed with a disorder of
consciousness, or having emerged from one, were included.
The study was approved by the Ethics Committee of the
University Hospital of Liége. Patients’ legal guardians gave
written informed consent. Patients with locked-in syndrome
were included as a clinically relevant group for comparison
(Supplementary material). We also collected data from healthy
controls as a reference group, all of whom gave informed writ-
ten consent before participation. There were no significant dif-
ferences between patients and controls in gender or age.

Neurobehavioural and PET
assessments

Patients were assessed on the day of the PET and EEG assess-
ments using the CRS-R. A patient’s diagnosis was based on the
highest score obtained over five to seven CRS-R assessments
during the day. Twelve months after the EEG and PET assess-
ments, a Glasgow Outcome Scale-Extended (GOS-E) assess-
ment (Wilson et al., 1998) was obtained in collaboration
with the patient’s referring physician or legal guardian to
assess the patent’s outcome. Following Stender et al. (2014),
a GOS-E score threshold of 2 was used to categorize patients
as unconscious, i.e. ‘outcome-negative’ (GOS-E score < 2), or
conscious, i.e. ‘outcome-positive’ (GOS-E score > 2).

PET scans were acquired and interpreted using methodology
described in Stender et al. (2014) and the Supplementary ma-
terial. Briefly, complete bilateral hypometabolism of the asso-
ciative frontoparietal cortex with no voxels with preserved
metabolism led to a diagnosis of ‘PET-negative’, whereas in-
complete hypometabolism and partial preservation of activity
within these areas yielded a diagnosis of PET-positive’
(Laureys et al., 2004; Nakayama et al., 2006; Thibaut et al.,
2012). PET diagnoses of the first 51 patients listed in
Supplementary Table 1 have been included in a previous pub-
lication (Stender et al., 2014). EEG data analysis was blinded
to the behavioural and PET assessments.
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EEG data collection

We collected high density EEG recordings from 256 scalp sen-
sors using a saline electrode net designed by Electric Geodesics
(EGI), at a sampling rate of either 250 Hz or 500 Hz (which
were down-sampled offline to 250 Hz). Importantly, EEG data
were collected during fluorodeoxyglucose (FDG) uptake, for
20-30 min until just before the start of the PET data acquisi-
tion, to allow for an accurate comparison of the two modal-
ities. During data collection, we ensured that patients were
awake and had their eyes open.

EEG data from nine patients with disorders of consciousness
were unusable either due to technical problems, insufficient
data, or excessive movement artefacts. Data from 89 patients
with disorders of consciousness, 11 emerged from MCS pa-
tients, four patients with locked-in syndrome and 26 control
subjects were retained for further analysis. After behavioural
assessment of the 89 patients with disorders of consciousness
with the CRS-R, 23 were diagnosed to be in UWS (Laureys
et al., 2010), 17 in MCS—, and 49 in MCS + (Giacino et al.,
2002; Bruno et al., 2011). From each of these patients, we also
collected the following demographic details (listed in
Supplementary Table 1): age at the time of assessment, days
since onset of brain injury that resulted in a disorder of con-
sciousness, aetiology of the injury, specifically traumatic or
non-traumatic, and clinical consensus diagnosis (UWS/MCS)
as noted by the referring clinical centre.

EEG data analysis

For details of EEG preprocessing and artefact rejection, see
Supplementary material. We calculated spectral and cross-spec-
tral decompositions from cleaned high density EEG datasets
(Supplementary Fig. 1), using the FieldTrip toolbox
(Oostenveld et al., 2011). Power was estimated at bins of
0.1Hz between 0.5-45Hz, using a multitaper method with
five Slepian tapers. At each channel, magnitude power within
three canonical frequency bands, delta (0—4 Hz), theta (4-8 Hz)
and alpha (8-13Hz), were converted to relative percentage
contributions to the total power over all three bands.
Alongside, the cross-spectrum between the spectral decompos-
itions of every pair of channels was used to calculate the
debiased weighted phase lag index (dwPLI) measure (see
Supplementary material for further details) introduced by
Vinck ef al. (2011). We used this tried-and-tested measure
(Chennu et al., 2014, 2016; Kim et al., 2016) to estimate
brain connectivity between pairs of EEG channels in our data-
set. Further, we restricted analysis to the delta, alpha and theta
bands, as the impact of the considerable electromyographic
artefact observed in patients was relatively negligible in these
bands. Within each band, dwPLI values at the peak frequency
of the oscillatory signal across all channels were used to rep-
resent the connectivity between channel pairs. From each sub-
ject’s dataset, the dwPLI values across all channel pairs were
used to construct symmetric 173 x 173 dwPLI connectivity
matrices for the delta, alpha and theta bands.

Brain network analysis

Each dwPLI matrix estimated as above was proportionally
thresholded to vary the ‘connection density’ parameter D, re-
taining between 90-10% of the largest dwPLI values
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(Supplementary Fig. 1). Values below this threshold were set to
zero, and non-zero values were set to one, effectively binariz-
ing the thresholded connectivity matrix. This procedure was
repeated at each value of connection density D, which ranged
between 90% and 10% in steps of 2.5%. At each value of D,
the thresholded and binarized matrix was modelled as a net-
work with the electrodes as nodes and non-zero values as
edges or connections. These networks were submitted to
graph theory algorithms implemented in the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010). These al-
gorithms were used to calculate metrics that captured key
topological characteristics of the graphs at multiple scales:
the microscale clustering coefficient, macro-scale characteristic
path length (Watts and Strogatz, 1998), mesoscale modularity
(using the Louvain algorithm; Blondel et al., 2008) and par-
ticipation coefficient (Guimera and Nunes Amaral, 2005). We
also calculated the network-level modular span (Chennu et al.,
2014), a metric that captures how the topology of the network
is embedded in topographical space over the scalp, by combin-
ing the community structure estimated by the Louvain algo-
rithm with the normalized distance between channel pairs (see
Supplementary material for details of these metrics). While
clustering coefficient and participation coefficient were calcu-
lated for each node in a network, characteristic path length,
modularity and modular span were calculated for the network
as a whole. Together, seven metrics were calculated for each
frequency band: mean relative power over all channels, median
connectivity over all channel pairs, clustering coefficient, char-
acteristic path length, modularity, participation coefficient and
modular span. Each of these was calculated in three bands
(delta, theta and alpha), making a total of 21 metrics.

The EEG data analysis pipeline detailed above was imple-
mented with MATLAB scripts based on EEGLAB (Delorme
and Makeig, 2004). All steps except the identification of ex-
cessively noisy channels, epochs, and independent components
were completely automated and run in exactly the same way
for every EEG dataset, using a fixed set of algorithmic
hyperparameters.

Statistical and classification analysis

We used receiver operating characteristic (ROC) analysis to
generate area under the curve (AUC) measures to estimate
the ability of each of the 21 brain network metrics to discrim-
inate consciousness evidenced by behaviour or PET, and to
prognosticate recovery. We calculated the absolute value of
the AUC measure between 0.5 and 1, which indicated the
extent to which a particular EEG metric discriminated a par-
ticular pair of subject groups. A Mann-Whitney test was used
to generate a non-parametric P-value quantifying the level of
statistical significance associated with an AUC value. Multiple
comparisons were accounted for with a false discovery rate
correction. The Jonckheere-Terpstra test was used to test for
trends in network metrics as a function of the level of behav-
ioural awareness.

Across the 21 metrics estimated from the EEG datasets, the
metric that generated the highest AUC for discriminating a
pair of subject groups was selected for training a classifier to
make predictions about individual patients in the groups. For
example, the participation coefficient metric was the best dis-
criminator of UWS versus MCS— diagnosis, while delta band
power was the best discriminator of MCS— versus MCS +

S. Chennu et al.

diagnosis. These metrics were used to train two-class classifiers
to discriminate the respective pairs of patient groups. We used
support vector machines (SVMs) with Radial Basis Function
kernels to train and cross-validate classifiers (see
Supplementary material for details). The input features (col-
umns) for training the classifiers were values of the selected
metric at each network node (or the value for the whole net-
work in case of network-level metrics), calculated after thresh-
olding the network at the connection density D that generated
the best AUC. The samples (rows) were individual subject net-
works. The labels corresponding to each sample were either
the CRS-R based diagnosis (UWS/MCS—/MCS + ), PET-based
diagnosis (positive or negative) or GOS-E outcome (positive or
negative). For discriminating UWS, MCS— and MCS+ pa-
tients from each other, we used Error-Correcting Output
Codes (Dietterich and Bakiri, 1995; Allwein et al., 2000)
with an exponential loss function to combine two-class classi-
fiers into a three-class classifier. x” tests were used to assess the
statistical significance of the match between the labels pre-
dicted by the classifiers and the true class labels.

Results

EEG metrics and behavioural
awareness

We quantified key properties of each subject’s resting brain
activity in the delta, theta and alpha bands, organized into
increasing levels of analytical depth, namely: mean spectral
power over all channels, median spectral connectivity
(dwPLI) over all channel pairs, and graph-theoretic metrics
including local (clustering coefficient) and global (charac-
teristic path length) efficiency, modularity, intermodular
hub strength (participation coefficient) and topographical
modular span (see ‘Materials and methods’ section for
details).

Figure 1A plots the resting dwPLI-based alpha band con-
nectivity topographs for each group of patients with dis-
orders of consciousness ordered by increasing level of
behavioural responsiveness as quantified by the CRS-R,
alongside the emerged from MCS, locked-in syndrome
and healthy control groups for comparison. Progressive in-
crease in the strength of EEG connectivity matched the re-
emergence of behavioural awareness, with UWS patients
showing a prominent lack of structured connectivity.
Visually, MCS— and MCS+ patients showed similar
levels of connectivity, but the topographical pattern in
MCS + patients showed the presence of a discernible fron-
toparietal focus for the strongest connections. This pattern
was further enhanced in emerged from MCS patients, and
was strikingly evident in patients with locked-in syndrome
and controls. We have previously demonstrated that such
frontoparietal patterns of alpha connectivity are neural
markers of behaviourally evidenced consciousness, not
only in patients with disorders of consciousness (Chennu
et al., 2014), but also during propofol sedation (Chennu
et al., 2016). The connectivity patterns in Fig. 1A
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Figure | EEG brain networks and levels of consciousness. (A) 3D alpha network topographs for each subject group (see Supplementary
Fig. | and ‘Materials and methods’ section for details). Increasing level of consciousness from left to right was correlated with re-emergence of
stronger interhemispheric connectivity between frontal and parietal areas. In each topograph, the colour map over the scalp depicts degrees of
nodes in the network. Arcs connect pairs of nodes, and their normalised heights indicate the strength of connectivity between them. Topological
modules within the network were identified by the Louvain algorithm. For visual clarity, of the strongest 30% of connections, only intramodular
connections are plotted. The colour of an arc identifies the module to which it belongs, with groups of arcs in the same colour highlighting
connectivity within a module. The standard deviation of participation coefficients over network nodes in each subject’s alpha network (B) showed
a linear trend with increasing level of consciousness. This metric was averaged over all connection densities considered. In each box in B, the
group-wise mean of this metric is indicated by a red line, and standard error of this mean by the red window. Individual patient metrics are shown
in the overlaid scatter plot. Above each box, the group-wise mean topoplots of participation coefficient Z-scores highlighted the re-emergence of
hub nodes with high participation coefficients in frontal and parietal areas, along with increasing level of consciousness. Rank ordering of the best
discriminability achieved between UWS versus MCS— and MCS— versus MCS +, as measured by AUCs (C), highlighted participation coefficient,
median connectivity, and modular span metrics, all in the alpha band, as the most effective for discriminating UWS from MCS— patients. Only
metrics with significant AUCs are shown (see ‘Materials and methods’ section for a full list of the 21 metrics estimated from each subject’s EEG).
For the graph-theoretic metrics, AUC was calculated at each connection density, and the best one obtained is plotted. An SVM trained with cross-
validation on patient-wise alpha participation coefficient metrics of UWS, MCS— and MCS + patients showed significantly above chance

confirmed this finding in a different, much larger and more
diverse cohort of patients with disorders of consciousness.
However, this analysis of dwPLI-based networks was based
on sensor-level EEG data, and hence references to regions
allude to areas over the scalp rather than specific regions of
underlying brain anatomy.

Figure 1B plots the group-wise distribution of participa-
tion coefficients in alpha connectivity networks. For each

group, the figure plots the average topographic distribution
of participation coefficient Z-scores. These topoplots depict
the re-emergence of hub regions (consisting of nodes with
high participation coefficients) in frontal and parietal areas
along with increasing levels of awareness. We captured this
with the standard deviation of participation coefficients
over all nodes, a single scalar metric capturing the diversity
of participation coefficients. As shown in Fig. 1B, this
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metric demonstrated a statistically significant positive trend
with increasing CRS-R diagnosis (Jonckheere-Terpstra
trend statistic = 3.26, P = 0.0006), and quantified properties
that differentiated the networks visualized in Fig. 1A, i.e.
the presence of strong connectivity hubs in brain networks.
These hubs, supported by pathways of underlying struc-
tural connectivity, are thought to create a small-world func-
tional network in the brain (Watts and Strogatz, 1998;
Achard et al., 2006). In the context of clinical applications,
the topographs and trend in Fig. 1B suggested that assess-
ing the presence of such hubs might be a valuable bedside
diagnostic for measuring the potential for consciousness
using resting high density EEG data. Additionally, the
within-group correlations in the topographical distribution
of alpha participation coefficients also increased with CRS-
R diagnosis (Jonckheere-Terpstra trend statistic = 2.56,
P =0.0053; Supplementary Fig. 2), demonstrating that
these brain connectivity hubs were more consistently
observed as patients became more behaviourally aware.

Figure 1C plots the results of ROC analyses conducted to
estimate the discriminative power of each EEG metric, and
depicts only the metrics with statistically significant AUCs
in descending rank order (see ‘Materials and methods’ sec-
tion for the 21 metrics estimated). The top three metrics for
discriminating behaviourally evidenced consciousness from
the lack thereof, i.e. the UWS versus MCS— categories,
were participation coefficient (AUC =0.83, P =0.0006),
median  connectivity  (AUC=0.82  Mann-Whitney
P =0.0007), and modular span (AUC =0.78, P =0.0026),
all in the alpha band. At the optimal ROC threshold
(Youden, 1950) the alpha participation coefficient was
79% accurate in discriminating these two categories
(x*=11.52, P=6.9 x 10~%). This was comparable with
the 81% accuracy (x*=17.15, P=3.4 x 107°) achieved
by expert assessment of PET images acquired from the
same patients, and also close to the 85% accuracy reported
by Stender ef al. (2014). These connectivity-based measures
also outperformed relative alpha power in its ability to
discriminate awareness, highlighting that connectivity cap-
tured fundamentally distinct information about the neural
interactions underlying consciousness. This diagnostic util-
ity of alpha connectivity metrics was preserved within pa-
tients with traumatic and non-traumatic aetiologies.

While alpha network metrics were good at distinguishing
UWS versus MCS— patients, relative delta band power
averaged over all channels was very good at discriminating
MCS— from MCS+ patients (AUC=0.79, P =0.0005).
Relative delta power in patients decreased progressively
along with increase in their behavioural diagnosis
(Jonckheere-Terpstra trend statistic= 3.18, P =0.0007;
Supplementary Fig. 4A), potentially reflecting the relative
degree of cortical deafferentation (Timofeev e al., 2000;
Williams et al., 2013). The presence of this information
in the EEG signal enabled us to combine metrics extracted
from different frequency bands to accurately place an indi-
vidual patient along a stratified scale of awareness.

S. Chennu et al.

We investigated the generalizability of the above results
by training a three-class SVM classifier (see ‘Materials and
methods’ section) to predict the diagnosis of individual
UWS, MCS— and MCS + patients. The inputs to the clas-
sifier were the subject-wise values of the best performing
metrics for discriminating UWS versus MCS— and MCS—
versus MCS +, namely alpha participation coefficient and
delta band power at each channel. Figure 1D plots the
confusion matrix generated by the SVM after stratified
cross-validation. A chi-squared test used to statistically es-
timate the classifier’s performance was highly significant
(x*=94.63, P=1.4 x 107"% see Fig. 1D). In particular,
as shown in the confusion matrix, it diagnosed UWS,
MCS— and MCS+ patients with 74%, 100% and 71%
accuracy, all well above the chance level of 33%.
Further, the classifier was 100% sensitive to an MCS diag-
nosis. While a proportion of UWS patients were classified
as MCS— (6 of 23), it is possible that these patients had
some degree of awareness not evident in their behaviour
even with the systematic assessment conducted by the
CRS-R (Owen et al., 2006; Monti et al., 2010). A greater
proportion (three of six) of such potentially misdiagnosed
UWS patients had positive outcomes (mean GOS-E
score = 2.75; Fig. 1D) as compared to patients in whom
the CRS-R and EEG classifier agreed on a diagnosis of
UWS (3 of 17; mean GOS-E score = 2.0). However, the
number of patients in these groups was too small to gen-
erate sufficient power for statistical analysis of these pro-
portions. Finally, we also found that the classifier
generalized very well to previously unseen participation co-
efficient metrics of emerged from MCS, locked-in syndrome
and healthy control subjects, which were not used for train-
ing. Specifically, all emerged from MCS patients, locked-in
syndrome patients and healthy control subjects were clas-
sified as MCS (either MCS— or MCS +).

EEG network centrality correlates
with PET metabolism

We investigated whether resting EEG metrics measured at
the bedside could predict PET metabolism, to establish the
concordance between these very different imaging modal-
ities. We used data from a subset of 98 patients for whom
PET scans were available and interpretable. Each patient
was first labelled PET-negative or PET-positive using pre-
viously established criteria (see ‘Materials and methods’
section, and Stender et al., 2014). Seventeen patients were
labelled PET-negative, and the remaining 81 as PET-
positive.

Figure 2A plots the average alpha connectivity topo-
graphs for PET-negative/positive patients, depicting the
striking difference in the strength and pattern of connectiv-
ity. Positive metabolism in PET was correlated with strong
EEG connectivity between hubs in frontal, parietal and cen-
tral regions. Indeed, the participation coefficients of these
EEG hubs were distinctly higher in PET-positive patients
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Figure 2 EEG brain networks and PET. Patients were labelled as PET-positive (+ ve) based on partial preservation of activity within
associative frontoparietal cortex, and PET-negative (—ve) otherwise (Stender et al., 2014). The average EEG alpha network topograph displayed
robust connectivity along a frontoparietal axis in PET-positive patients who registered relatively high metabolism (A). Quantitatively, the par-
ticipation coefficient metric was higher in PET-positive than in PET-negative patients, over a wide range of connection densities (B). This metric
was also able to discriminate PET-negative and PET-positive patients better than any other EEG metric, when comparing their AUCs (C). A cross-
validated SVM trained on the alpha participation coefficients of patients produced very good performance in predicting their individual PET-based

diagnoses, as shown in the confusion matrix in C (inset).

across a wide range of connection density thresholds
(Fig. 2B), establishing that the observed difference was
not an artefact of the thresholding applied prior to estima-
tion of graph-theoretic metrics.

Using a similar ROC analysis as above, we found that
the standard deviation of participation coefficients over the
nodes in each patient’s alpha network was by far the most
discriminative metric, able to distinguish PET-negative/PET-
positive patients with an AUC of 0.82 (P=4.1 x 10~;
Fig. 2C). Further, an SVM classifier trained on this metric
performed well (x*=27.48, P=1.6 x 1077), and was able
to identify the PET-based diagnosis of individual patients
with high sensitivity (81%) and specificity (82%). Further,
as evidence of the classifier’s generalizability to previously
unseen data, all controls were classified as PET-positive.
This suggested that EEG was a reliable bedside predictor
of PET activation at an individual patient level. In compari-
son, the patient’s aetiology (x* = 3.84, P = 0.05), days since
injury (AUC=0.56, P> 0.05) and age at assessment
(AUC=0.44, P> 0.05) did not predict their PET
diagnosis.

These results represent strong evidence of the correlation
between the presence of highly active and interconnected

hub nodes in functional brain networks measured at the
bedside by EEG, and the energetic demands of these
hubs, as measured with PET. This is perhaps best exempli-
fied by the comparison of the alpha networks of two demo-
graphically similar MCS + patients in Fig. 3, both of whom
were MCS+ after traumatic brain injury. Despite these
similarities, however, Patient 79 was PET-negative while
Patient 110 was PET-positive, as is evident in their PET
scans (Fig. 3A and B). In keeping with this difference in
their PET scans, there was a large and obvious difference in
their EEG-derived brain networks (Fig. 3C and D). The
latter patient had strong, right-lateralized frontoparietal
connectivity in their alpha network, which was completely
absent in the former.

EEG delta network centrality
predicts outcomes

Information about GOS-E outcomes at ~1 year after EEG
assessments enabled us to assess the prognostic value of
resting EEG network activity in presaging recovery from
disorders of consciousness. GOS-E scores of 61 patients
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Control 19

Figure 3 Exemplars of PET-positive and -negative patients. (A and B) PET glucose uptake scans of two subjects (Patients 79 and | 10),
both of whom were diagnosed as MCS + after traumatic brain injury. PET-negative (—ve) Patient 79 showed hypometabolism while PET-positive
(+ve) Patient |10 had stronger metabolic activity. Their corresponding EEG alpha brain networks (D and E) showed striking differences in the
strength of frontoparietal connectivity. PET scan (C) and EEG alpha network (F) of a representative healthy control are shown for comparison.

was available for inclusion into this analysis. Following
Stender et al. (2014), we dichotomized these GOS-E
scores into outcome-positive and outcome-negative.
Thirty-nine of the 61 patients had positive outcomes by
this definition.

In contrast to the relationship between alpha band con-
nectivity and behavioural/PET diagnosis, we found a clear
relationship between delta band connectivity and outcomes.
Figure 4A shows delta band network connectivity topo-
graphs averaged over patients with positive and negative
outcomes. Strong connections across large parts of central
and parietal areas were prominent in patients who eventu-
ally had negative outcomes as per the GOS-E. In contrast,
patients who had positive outcomes had diminished delta
connectivity (Fig. 4A, right).

We separated patients with non-traumatic (7 = 53) and
traumatic aetiologies (7 =351) to explore this relationship
between delta connectivity and outcomes quantitatively.
Patients with positive outcomes after non-traumatic brain
injury had higher mesoscale modularity, highlighting the
maladaptive nature of delta connectivity and the loss of
strong synchronous oscillations in the delta band as a posi-
tive predictor of recovery (Supplementary Fig. 4B). Patients
with positive outcomes after traumatic injury had higher
microscale clustering coefficients in their delta networks,
suggesting local topological connectivity in the delta band
was a positive predictor in this group (Fig. 4B). These two
delta band metrics significantly predicted outcomes
(Fig. 4C), with an AUC of 0.77 (P=0.015) and 0.78

(P =0.019) in non-traumatic and traumatic aetiologies, re-
spectively. We also found that standard deviation of par-
ticipation coefficients in delta band networks was the best
discriminator of aetiology itself (AUC =0.67, P =0.003)
(Supplementary Fig. 5).

Demographic factors like the patient’s age also predicted
outcome (AUC =0.72, P =0.030), as did aetiology itself
(x*=4.35, P=0.040). The ability of the CRS-R total
score to predict outcomes was similar (AUC = 0.66,
P =0.038), as was the case with the CRS-R based UWS/
MCS diagnosis (accuracy = 69%, x*=4.94, P=0.026).
This finding highlights EEG network metrics as valuable
predictors of recovery that can complement demographic
and behavioural information.

We constructed SVM classifiers trained with cross-valid-
ation on the above two metrics, namely delta modularity
and clustering coefficients. They were able to significantly
predict future GOS-E dichotomized outcomes in individual
patients (accuracy = 82%, x*=21.89, P=2.9 x 107°)
better than the CRS-R diagnosis, and closely matched the
predictive  strength of PET-based diagnosis (accur-
acy = 81%, x*=19.05, P=1.3 x 107°). Figure 4C (inset)
depicts the confusion matrix generated, which produced
92% sensitivity and 64% specificity in discriminating posi-
tive and negative outcomes. Further, we verified that the
classifier was able to predict outcomes within the sub-
groups of UWS and MCS patients with 80% and 87%
accuracy, respectively, confirming its prognostic utility
within these CRS-R diagnoses.
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Figure 4 EEG networks and outcomes. Patients were labelled as outcome-positive (+ ve) if their |-year GOS-E score was >2, and
outcome-negative (—ve) otherwise (Stender et al, 2014). Delta networks were stronger in patients with negative outcomes (A), indicating
synchronized delta band oscillations across many EEG electrodes. The modularity (non-traumatic injury) and clustering coefficients (traumatic
injury) of delta networks were higher in patients with positive outcomes. (B). These metrics were best able to discriminate positive and negative
outcomes in both aetiologies, as measured by AUC (C). When used to train a cross-validated SVM, they contributed to significant performance in

predicting individual patient outcomes (C, inset).

EEG network centrality can improve
clinical diagnostics

Eighty-two patients had a diagnosis available at referral, as
ascertained by clinical consensus. This consensus diagnosis
was either UWS/vegetative or MCS. We compared these to
the CRS-R diagnoses during the week of hospitalization to
identify three groups of patients: 17 whose consensus diag-
nosis of UWS agreed with their CRS-R based UWS diagno-
sis, 45 whose consensus diagnosis of MCS agreed with their
CRS-R based MCS diagnosis, and 20 who had been mis-
diagnosed as UWS, relative to their MCS diagnosis when
reassessed with the CRS-R (Fig. 5A). Hence 20 of 37 pa-
tients who were UWS as per their consensus diagnosis were
reclassified as MCS after reassessment with the CRS-R.

We examined whether EEG assessments of brain net-
works, if available at the bedside, could help inform
more accurate diagnoses. Figure 5C plots the alpha net-
work connectivity topographs averaged over patients in
the three groups above. It was evident that patients who
had been misdiagnosed as UWS by clinical consensus
(Fig. 5C, right) had robust frontoparietal brain networks

similar to patients who had been correctly diagnosed as
MCS (Fig. 5C, middle), and dissimilar to patients correctly
diagnosed as UWS (Fig. 5C, left). To quantify this visual
pattern, Fig. 5B plots the standard deviation over partici-
pation coefficients of these networks. In keeping with the
intuition from the visualizations in Fig. 5C, the patients
misdiagnosed as UWS had significantly higher values of
this metric than patients who were indeed in UWS as per
the CRS-R (U =287, P=0.01). In fact, we did not find sig-
nificant differences between patients correctly diagnosed as
MCS and those misdiagnosed as UWS, in any of the 21
metrics we estimated.

Finally, we evaluated whether the classifier we previously
constructed to distinguish between the UWS, MCS— and
MCS + categories was able to detect the misdiagnosis of
consciousness. We found that all 20 patients misdiagnosed
as UWS were classified as MCS— or MCS + by the EEG-
based classifier. That is, the presence of hub nodes in the
alpha network, as measured by participation coefficients,
was able to diagnose the presence of consciousness in pa-
tients who had been misdiagnosed as UWS based on clin-
ical consensus.
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Figure 5 EEG networks and misdiagnosis. (A) Mismatch
between diagnosis of patients based on clinical consensus, and
diagnosis based on CRS-R assessment. Patients misdiagnosed as
UWS by clinical consensus but reclassified as MCS by the CRS-R
had robust frontoparietal connectivity in their alpha networks (C,
right), similar to patients in whom the clinical consensus and CRS-R
agreed on a diagnosis of MCS (C, middle). This characteristic pattern
of connectivity was missing in patients in whom the consensus and
CRS-R agreed on a diagnosis of UWS (C, left).

Discussion

Our findings have described how EEG-derived networks of
electrical activity in patients are associated with behav-
ioural consciousness, the metabolic demand of the brain,
and clinical outcomes. Further, we have demonstrated that
this association is robust enough to build reliable predictors
of behavioural diagnosis, PET diagnosis and outcomes in
individual patients. In doing so, we have set out the evi-
dence base to evaluate the key questions articulated in the
Introduction, which are important for demonstrating the
clinical utility of EEG-based assessments in disorders of
consciousness.

First, our results have reiterated the positive link between
sensor-level connectivity in the alpha band and conscious
states indexed by behaviour. We have shown that the pro-
gressive re-emergence of connectivity hubs in EEG brain
networks, as measured by participation coefficients, tracks
the consistency with which consciousness can be measured
with the CRS-R, with accuracy comparable to PET-based
assessment by an expert. Indeed, the notion that connect-
ivity hubs in specific frontal and parietal loci are important
for the recovery of consciousness after brain injury is con-
sistent with evidence from both PET (Stender et al., 2014,
2015, 2016) and functional MRI (Vanhaudenhuyse et al.,
2010b; Achard et al., 2012). Further, as patients recover
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beyond MCS, it appears that both positive and negative
correlations of activity within and between networks also
reappear (Thibaut et al., 2012; Di Perri et al., 2016). This
relationship between the complexity of activity in brain
networks and the state of consciousness has been demon-
strated across mechanistically diverse natural, pharmaco-
logical and pathological modulations of consciousness
using transcranial magnetic stimulation (TMS, Casali
et al., 2013; Casarotto et al., 2016) as well as resting
state EEG (Schartner et al., 2015). Further, recent literature
has highlighted high frequency (20-50Hz) activity in the
parietal cortex (a ‘posterior hot zone’) as a neural correlate
of conscious contents (Koch et al., 2016; Siclari et al.,
2017). We complement this finding by highlighting fronto-
parietal connectivity in the alpha band as a potential cor-
relate of the level of consciousness.

Our finding is also consistent with previous literature that
analysed EEG data with complementary methods based on
clinical expertise (Forgacs et al., 2014) and information
theory (King et al., 2013). This engenders confidence in
the reliability of EEG as a valuable tool, as it suggests
that different analytical methods could be used to deliver
similarly capable diagnostic capabilities. Further, the
strength of the relationship between the best brain network
metrics we use here and the CRS-R based diagnosis is com-
parable to that reported in previous literature that has em-
ployed EEG-based analysis (King e al., 2013; Sitt et al.,
2014). PET (Stender et al., 2016) and TMS-EEG (Casarotto
et al., 2016) have been shown to perform better, but both
require much more complex technology that is either im-
possible or difficult to deploy at the patient’s bedside.
Hence bedside EEG assessments of brain connectivity, po-
tentially estimated with fewer sensors than the high density
configuration employed here (Engemann et al., 2015),
could valuably complement other neuroimaging technolo-
gies. Indeed, we replicated the finding by Engemann et al.
(2015) that the positive trend in median dwPLI connectivity
alongside increasing behavioural diagnosis is relatively
robust against a progressive reduction in the number of
electrodes included (Supplementary Fig. 3). Going further,
we evaluated the usefulness of a subset of frontal and par-
ietal electrodes, delineated by the regions with high partici-
pation coefficients seen in conscious healthy controls (Fig.
1B, healthy controls topoplot). Connectivity within this
spatially circumscribed subset of electrodes demonstrated
a stronger trend with the level of consciousness as com-
pared to an evenly distributed configuration with a similar
number of electrodes. This suggested that customized place-
ment over connectivity hubs could reduce the number of
electrodes needed, while also preserving discriminative
power and clinical utility of the signals measured.

Second, we have shown that there is also a strong asso-
ciation between the presence of EEG-based brain connect-
ivity hubs and glucose metabolism itself. PET is an
established tool in clinical imaging, and recent advances
in clinical neuroimaging in disorders of consciousness
have highlighted the potential for brain metabolism
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measured by PET imaging to diagnose the level of con-
sciousness (Stender et al., 2014, 2016). This previous re-
search has shown that normal metabolic activity in key
brain areas including lateral and medial frontoparietal net-
works are strong predictors of the level of behavioural con-
sciousness indexed by the CRS-R, and even the recovery
thereof. Further, this evidence has been linked with the
notion that these brain areas are considered to be key con-
nectivity hubs supporting internal (self) and external
(stimulus) awareness (Vanhaudenhuyse et al., 2010a).
Building on this work, we studied the relationship between
EEG and PET in disorders of consciousness, ensuring that
the two modalities could be reliably correlated by perform-
ing EEG assessments during the period of FDG uptake. The
concordance we have demonstrated between EEG and PET
builds confidence in the basis of the EEG assessments,
which could eventually be deployed at the patient’s bedside.
Though EEG cannot provide the same kind of information
as that can be inferred from PET, our findings provide
evidence for a consilience-based approach to diagnosis in
the absence of a gold-standard test for consciousness
(Peterson, 2016). Convergent with this approach, Bodart
et al. (2017) recently demonstrated a strong correspond-
ence between PET and the complexity of TMS responses
measured with EEG. Their findings strengthen the concep-
tual basis of the link between EEG-derived network metrics
and PET metabolism demonstrated here. Here, we have
exploited this evidence to train classifiers that predict the
PET diagnosis of individual patients based on the presence
of connectivity hubs measured with resting EEG.

Third, in contrast to the positive association between
increasing alpha network connectivity and behavioural
diagnosis, we have shown that there is a significant link
between maladaptive delta band connectivity in EEG
brain networks and outcomes. This link was modulated
by the aetiology of brain injury and the potential extent
of partial deafferentation of cortical and subcortical neu-
rons (Williams ez al., 2013) known to produce oscillations
within the delta band (Timofeev et al., 2000). This know-
ledge could be valuable for ensuring the timeliness of
pharmacological interventions that can accelerate positive
outcomes (Giacino et al., 2012). We propose that repeated
and regular bedside EEG assessments would cover a greater
range of arousal fluctuations, would improve our ability to
accurately track and predict the recovery of consciousness
in individual patients. Indeed, Casarotto et al. (2016) have
shown that taking the maximum value of the complexity of
brain activity measured over multiple TMS-EEG assess-
ments can considerably improve the reliability of the esti-
mation. Hence, developing a framework and analytical
pipeline for repeatable bedside assessments could enable
robust estimation of EEG-based metrics for quantifying
brain networks in disorders of consciousness.

With regard to repeatable assessments, it is worth point-
ing out that despite the complexity of the network analysis
and classification algorithms we have presented here, these
steps are completely automated from an application
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perspective. We highlight relevant work by Sitt ez al.
(2014), who conducted a comprehensive analysis of a
large number of measures from high density EEG to test
their ability to discriminate UWS from MCS. These meas-
ures included event-related potentials, spectral power, con-
nectivity, entropy, complexity and mutual information,
amongst others. They showed that different measures ex-
tracted from EEG signals could be beneficially combined to
build automated tools for discriminating consciousness in
patients. Our results concur with and complement their
work, demonstrating that brain networks estimated at
rest can also predict the stratified level of consciousness
in patients, their brain metabolism, and their clinical out-
comes. However, a current limitation of the EEG-based
assessments proposed here stems from expert intervention
required for artefact removal, specifically for inspecting and
identifying noisy data and independent components. There
have been many recent methodological advances in auto-
mating this step (Nolan et al., 2010; Mognon et al., 2011;
Jas et al., 2016), and future work towards validating these
methods with patient datasets could help develop the ana-
lytical pipeline for clinical applications.

Finally, juxtaposing patients misdiagnosed as UWS by
clinical consensus against those correctly diagnosed as
MCS, we have highlighted the value of EEG in comple-
menting behavioural assessment with the CRS-R. The
CRS-R has been shown to considerably improve on stand-
ard clinical examination by performing an assessment of
behaviour, and thereby reduce the risk of misdiagnosis
(Schnakers et al., 2009). However, a well-trained expert
is required to apply the CRS-R consistently and reliably
(Lovstad et al., 2010), and EEG-based assessments could
complement such expert knowledge. In doing so, they
could provide treating clinicians with multiple sources of
convergent evidence for better diagnosis and prognosis, and
for evaluating the effectiveness of specific interventions.
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