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The high concentration and flow rate of people in train stations during rush hours can pose a prominent risk to
passenger safety and comfort. In situ counting systems are a critical element for predicting pedestrian flows in real time,
and their capabilities must be rigorously tested in live environments. The focus of this paper is on evaluating the
reliability of two alternative counting systems, the first using an array of infrared depth sensors and the second a visible
light (RGB) camera. Both proposed systems were installed at a busy walkway in London Bridge station. The data were
collected over a period of 2 months, after which, portions of the data set were labelled for quantitative evaluation
against ground truth. In this paper, the implementation of the two different counting technologies is described, and the
accuracy and limitations of both approaches under different conditions are discussed. The results show that the
developed RGB-based system performs reliably across a wide range of conditions, while the depth-based approach
proves to be a useful complement in conditions without significant ambient sunlight, such as underground passageways.
1. Introduction
The high concentration and flow rate of people in stations during
rush hour pose a prominent risk to passenger comfort and safety.
Passenger counters and flow prediction tools have the potential to
reduce these risks by anticipating upcoming overcrowded
situations and allowing preventive mitigation actions. To date,
their use in station design and crowd monitoring has resulted in
improved passenger safety and comfort (Hashimoto et al., 1998;
Li, 2000). However, changes in train platforms and schedules and
related operational problems in the rail network continue to cause
unexpected crowds. Therefore, there is a need for passenger
flow-prediction tools that can quickly respond to changes in the
dynamic station environment. Such tools can help asset managers
to decide when to close the ticket barriers and guide the
passengers to alternative routes.

Existing pedestrian passenger prediction tools use conservative
estimates of average count statistics to simulate flows. However,
these statistics are typically calculated over a short time span and
are not updated. Therefore, they do not capture dynamic changes
in the station, which might result in crowding (Batty and Torrens,
2001; Li and Zhu, 2016; Timmermans, 2009; Zachariadis, 2005).
To capture these changes, it is necessary to utilise real-time
passenger-counting tools.

One popular passenger-counting tool is the infrared beam counter
(Bu et al., 2007; Stogdale et al., 2003). However, this solution is
not optimal as singular-beam counters do not provide directional
counts; these sensors can detect only the total number of passengers
crossing a predefined line, irrespective of their direction (Amin et
al., 2008). In order to count passengers and determine their
direction of movement, image processing techniques that utilise
video data can be used (Chow and Cho, 2002; Hu et al., 2013,
2015; Sacchi et al., 2001; Schofield et al., 1997). In this approach,
the movement of passengers within the field of view of the camera
is tracked by comparing the positions of identified features from
sequential instances.

Many different types of cameras can be used for counting
passengers. Infrared depth sensors may be used to sense pedestrians
by volume recognition, independent of their visual appearance.
When the sensor faces downwards, only the tops of passengers’
heads are visible and related features can be identified and tracked.
The ability of these sensors to count pedestrians was only recently
demonstrated (Zhang et al., 2012) and tested (Del Pizzo et al.,
2016; Vera et al., 2016). In contrast, pedestrian sensing by using
visible light is better established. During data retrieval, image
features such as histograms of oriented gradients (Dalal and Triggs,
2005) can be used to detect and track pedestrians in real time (e.g.
Xu et al. (2015)). Similar to depth sensors, when these cameras are
mounted downward facing, there are minor occlusions and feature
identification and tracking can be achieved more reliably. However,
there is limited information in the literature on the performance of
these sensors under different lighting and crowding conditions that
might be experienced in a station.

To predict and localise congested ‘hotspots’ in crowded stations in
real time, a new method has been recently proposed (Martani et al.,
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2015) (see Figure 1). This method consists of three components: (a) a
system for real-time people counting at all origin and destination
points, (b) a system for estimating passenger movements between
origin and destination points and (c) a microsimulation model.

For the method to be implemented, it is essential that the
components handle the difficult working conditions of a busy train
station. Within this context, the primary aim of this paper is to
evaluate the suitability of two counting technologies in a rail station
environment (grey box in Figure 1). These two technologies utilise
cheap and highly portable sensors, and the associated crowd
counting techniques require minimum computational power. These
sensors are (a) an array of infrared structured light, depth-only
sensors and (b) a wide field of view visible light camera, and their
pertinent counting processes are discussed in detail in Section 2.
The test deployment was conducted in one of the busiest railway
stations in the UK, London Bridge station. The test, which is
reported in Section 3, spanned a 2-month period and provided a
rich data set, which allowed a methodical evaluation of the
accuracy of the two approaches, described in Section 4. To the best
of the authors’ knowledge, the present work is the first effort to test
the reliability of these novel counting techniques in the working
conditions of a busy train station.

2. Two approaches to real-time crowd
counting

In this paper, automatic and real-time crowd counting is
performed using two alternative approaches: using depth-only
infrared sensors and using a visible light (RGB) camera.
18
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2.1 Depth sensor-based counting approach
The depth sensor-based counting approach consists of two
steps: firstly, human-sized volumes are extracted from an array
of calibrated raw Xtion Pro depth data, and then the volumes
are recognised and tracked using software provided by
Counterest Ltd, which uses decision trees for recognition training
using an active learning approach described by Bonnin et al.,
(2011). The output of the counting process is the bidirectional
counting data – that is, the number of passengers crossing a
predefined line in both directions within a certain time (see the
bar chart in Figure 2). Other types of information can also
be collected as a byproduct of this, such as pedestrian orientation
and speed.

The Xtion Pros are low-cost active light depth sensors that are
able to provide real-time range videos in a range of 0·8–3·5 m.
This is possible by the projection of a known infrared dot pattern
into the scene and stereo matching the pattern with a camera
offset from the projector to resolve depth. This active-light depth
sensing is known to be very good at detecting depth in untextured
scenes (Chen et al., 2016). When mounted downward facing, the
VGA resolution depth images can allow easier segmentation of
crowded scenes since depth discontinuities clearly mark the
boundaries between pedestrians (Figure 2(a)). The technology is
particularly well suited to low-lit scenes, where visible light may
struggle to discriminate pedestrians. In contrast, the volume
recognition ability of Xtion sensors is known to suffer in daylight
conditions, as ambient sunlight interferes with the projected light
pattern and can cause noisy, incomplete depth maps.
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Figure 1. General concept of combined sensing and microsimulation for predicting crowd flows in stations. GSM, Global System for
Mobile Communications (diagram developed by Vassilis Zacharidis as part of Martani et al. (2015))
lishing, all rights reserved.



Smart Infrastructure and Construction
Volume 170 Issue SC2

Pedestrian monitoring techniques for
crowd-flow prediction
Martani, Stent, Acikgoz et al.

Downloaded by
The system automatically performs pedestrian identification,
tracking and counting. Firstly, the infrared data from the depth
sensors is thresholded by height to a calibrated ground plane
to identify pedestrian heads. The software then tracks the heads
and evaluates if they cross a preset line. Tracking within the
frame allows determination of the direction of the passenger (in
against out) as well as preventing repeat counts when pedestrians
cross the line several times while walking or waiting in close
proximity (Bonnin et al., 2011). Thus, the depth data of each
frame are only temporarily stored and every time a pedestrian
crosses the line, data are logged on the machine with a unique
time stamp and a binary indicating direction. Sample passenger
counts for passengers leaving and entering a train platform,
gathered using this technique, are shown in Figure 2 (first row).
This enables the depth sensor to function as a highly efficient
real-time counter.
 [ UNIVERSITY OF CAMBRIDGE] on [15/03/19]. Copyright © ICE Publishin
2.2 Visible light (RGB) camera-based counting approach
The visible light camera-based counting approach consists of six
steps: image capture, background subtraction, pedestrian
detection, pedestrian tracking, data association and count
updating. In this section, the main features of this process are
outlined. Similarly to depth sensors, the RGB video sequence
allows the direction and speed of passengers to be estimated (see
graphs in Figure 2(c)).

2.2.1 Image capture
Greyscale images are captured using a Widecam F100TL 1080
pixel high-definition web camera, which has a 120° horizontal
field of view, and the Linux motion package. The image
resolution and frame rate were chosen to trade off data storage/
processing costs with the difficulty of detecting individual
pedestrians and performing frame-to-frame data association. It
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Figure 2. (a) A depth sensor and (b) an RGB camera, both with two sequential snapshots showing a sample of the two counting
processes. Shown at the bottom are sample outcomes (c) in terms of counting data, average pedestrian walking direction and speed
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was found empirically that a frame rate of 2 Hz and an image
resolution of 320 × 240 pixels were suitable for the task.

2.2.2 Background subtraction
At each time instant, the input image is read and its background
image is subtracted to yield a foreground difference mask, which
highlights moving objects in the scene with a different intensity to
the background. The background image is calculated using the
mean image from the previous N frames, where N = 50 for the
experiments, corresponding to 25 s. This allows both a regular
update of the background condition as lighting conditions change
throughout the day and the exclusion of stationary objects left in
the field of view of the camera. The resulting absolute difference
mask is thresholded to yield a noisy binary foreground map. The
threshold is set at 0·15 in all experiments (where the image ranges
from 0 to 1) by calibration on a training data set.

2.2.3 Pedestrian detection
The binary foreground map is then filtered using a sequence of
open, close and fill morphological operations in order to remove
salt-and-pepper noise and fill in holes. Rectangular filters
measuring 3 × 3 and 5 × 5 were used for the open and close
operations, with a four-connected neighbourhood to fill holes. The
resulting binary map is segmented by connected components to
yield a set of bounding boxes and centroids corresponding to
individual shapes (pedestrians) in the map. While it is pointed out
that more complex pedestrian detectors exist (e.g. Dollar et al.
(2012), Tian et al. (2014)), those detectors are designed for the
more challenging case of frontal pedestrian detection, where
pedestrians often occlude one another or are occluded by other
objects, and there is more significant visual variability in the
scene. In this work, downward-facing cameras are used to remove
much of this visual complexity.

2.2.4 Pedestrian tracking and data association
A Kalman filter (Kalman, 1960) was used to model each
pedestrian, as described in similar approaches (Li et al., 2010)
and as shown in Figure 2(b). It was observed that in the case of
top-down data of pedestrians moving in a walkway, the linear
Kalman model was sufficient for tracking; therefore, the use of
non-linear methods such as extended Kalman filters or particle
filters was not investigated. When dealing with multiple
pedestrians, some of whom may be missing data at particular
frames and whose trajectories can occasionally collide, the
problem of assigning pedestrian proposals (observations) to
existing pedestrian tracks (models) must be addressed. In the
presented approach, the Euclidean distances between predicted
and measured pedestrian positions are taken into account, as well
as the confidence of the predictions (the covariance of each
Kalman model) and the cost of non-assignment, which is set
experimentally to reduce the number of false-positive proposals
that generate new tracks. The cost of data assignment is
minimised using the Kuhn–Munkres, or Hungarian, algorithm
(Munkres, 1957), which is the standard method for finding the
optimal set of detection-to-track assignments in polynomial time.
20
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Since pedestrian motion in the image is relatively small over 0·5 s
intervals (at 2 Hz) and the downward-facing camera means
occlusions are very rare, the process is observed to work well.
Pedestrians are counted when they cross over a partition in the
image and disappear from view and contain more than five
assigned observations, to reduce spurious readings. The initial and
final observations of those tracks are used to generate velocity
statistics for each pedestrian.

3. Application
The proposed methods were applied in London Bridge station to
assess the accuracy of the counting technologies discussed in
Section 2, as well as their stability over time under continuous
operation. The details of the application are presented in this
section. The application has been implemented in two steps:
sensor deployment and data gathering and validation of the
automatic counting.

3.1 Sensor deployment and data gathering
Three depth sensors and one RGB camera were mounted to the
steel-and-glass roof structure at the eastern end of platforms 12 and
13 of London Bridge station. The sensors were strategically placed
to capture a large number of incoming and outgoing passengers.
The sensed area was utilised by the vast majority of passengers
proceeding from platforms 12, 13, 14 and 15 to the ticket barriers
and vice versa (see Figure 3). After the ticket barriers, there is
access to the station, the underground lines, the bus station and the
connection to the other platforms. Depending on their direction, the
passengers enter the field of view of the camera through the
different sides of the image. For instance, passengers using platform
12 appear on the top left side, while passengers from platform 13
may be seen entering the frame on its top centre and top right. On
the other hand, passengers going towards the platforms 13–15
typically enter the image frame around its bottom-left corner. Since
the location experiences a variety of crowding and lighting
conditions throughout the day, it provided an extensive data set for
assessing the reliability of the technology.

All sensors were mounted, downward-facing, 3·7 m above the
region of interest. The three depth sensors were placed 1·5 m
apart to capture the 8 m2 region of interest, while the RGB camera
was placed centrally to capture the same area. Note that a single
RGB camera provided the same effective field of view as three
depth sensors in series. This is due to the limited field of view of
the depth sensor due to its stereo camera arrangement. The
lightweight sensors were attached to temporary steel beams
affixed to the permanent roof structure. The steel beams of the
roof also supported a temporary unit to house a mini-personal
computer (mini-PC) which controlled automatic data acquisition,
processing and networking. The mini-PC was powered from a
110 V supply, and the sensors were powered over universal serial
bus. The sensors were deployed, and data acquisition was initiated
during a single night shift. This required the attendance of
specialist engineers, however, no additional maintenance was
required after the installation.
lishing, all rights reserved.
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The total equipment cost was less than £1000, with the PC
accounting for £200, the three depth sensors £350 and the RGB
camera £30. The pedestrian counting was trialled over
February–March 2015. During this time, the hardware and
counting algorithms operated continuously, demonstrating their
robustness over time with variable temperatures. Remote access to
the PC through 3G allowed periodic transfer of counting data and
images for backup and off-site analysis.

3.2 Validation of the automatic counting approaches
Results from sensors are validated by comparing pedestrian count
estimates against ground truth, where ‘ground truth’ refers to the
manually counted estimates of people passing under the sensors
over the time intervals of interest. The manual counting is
performed using the image frames recorded from the RGB camera.
This was achieved by (a) selecting the image sequences from the
time intervals that represent the most relevant stress conditions (i.e.
time windows with different exposure to ambient sunlight and
crowd concentration) and (b) performing the manual count of people
passing the counting line of the sensors by advancing one frame at
the time. The whole operation was conducted by one person in
approximately 6 h by using a script written for this specific purpose,
while some counts were repeated several times for validation.

Results from both types of sensors were compared with the
manual count results for 14 time intervals over 7 d with varying
 [ UNIVERSITY OF CAMBRIDGE] on [15/03/19]. Copyright © ICE Publishin
ambient sunlight and crowd conditions (see Figure 4). For each
day, two 10 min intervals were chosen. During these intervals,
passengers may be travelling in either direction between the
station entrance and platforms 12, 13, 14 and 15. The first slot is
in the morning from 9 to 10 a.m., when ambient sunlight is strong
and arriving passenger numbers are typically high. In some of
these slots, direct sunlight may also be observed. The next slot
was chosen in the afternoon rush hour from 6 to 7 p.m., where the
ambient and direct sunlight influence on the scene is negligible.
However, during this time, the station is well lit by artificial
lighting and is used by a considerable number of passengers who
travel to and from London Bridge station. Results of this
validation exercise are reported in the next section.

4. Results and discussion
This section compares and contrasts the passenger counting data
from the two approaches described in Section 2. Both techniques
have demonstrated good accuracy in counting individual pedestrians
with different physical characteristics. In particular, the accuracy of
the RGB camera-based system can be visually demonstrated with an
output tracking video, which is attached as Supplementary Material
(see also Stent (2015a)). In the video, the counting line is shown as a
thick horizontal line, the marker × represents identified passengers
and the green lines show their direction. The passenger direction line
becomes red as passengers pass through the crossing line to indicate
that they are exiting the platform. Correspondingly, the line becomes
Sensors

(a)

(b) (c)

Ticket barriers

Ticket barriers
Active construction site

Platform 10

Platform 11

Platform 12

Platform 13

Platform 14

Platform 15

Figure 3. (a) Pedestrian counter sensor installation area in London Bridge station, (c) the utilised sensors and (b) their arrangement
21
g, all rights reserved.



Smart Infrastructure and Construction
Volume 170 Issue SC2

Pedestrian monitoring techniques for
crowd-flow prediction
Martani, Stent, Acikgoz et al.

Download
blue when they are entering. At 0:01, a group of three people
walking closely pass under the counting line. At 00:10 in the video,
a passenger with a pushchair passes under the camera. At 00:39, a
child and an adult walk underneath. At 00:45, a passenger with a
rolling suitcase exits the platform, but does not pass under the
counting line. In most cases, passengers walking with different
speeds and paths were counted successfully. Rarely, passengers can
be in the camera field of view for only a handful of pictures, due to
either their high speed or a particular path. In these cases, passengers
could not be identified quickly enough and this resulted in false
negatives. The errors introduced by these occurrences were not
significant and can be remedied with a higher frame rate and an
RGB camera with a wider field of view. False positives caused by
rolling suitcases, pushchairs or bicycles were also observed.
However, these incidents were relatively rare. In the case of the depth
sensing approach, this was because such objects are close to the
ground and below the threshold to be considered a pedestrian. In the
case of the RGB-based method, this was because such objects
typically move very closely and in tandem with a human and hence
tend to be counted along with their owners as a single pedestrian.
However, the registration of close objects as a single feature caused
the RGB-based method to undercount people who are walking
together, such as arm-in-arm couples. The influence of such errors on
counting accuracy will be discussed later.

In Figure 5(b), passenger counts over a two week period are
reported for both sensors. A clear cyclical pattern over the course
of each week is evident, where a drop in passenger counts
characterises weekends. Averaging these charts over the course of
a day (Figure 5(a)), it can be seen that the rise in pedestrian
numbers is largely due to pedestrian influx during morning hours,
whereas afternoon hours indicate fewer people arriving and more
people leaving the station at this time.
22
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Figure 5 also demonstrates significant differences between the
counts registered by the sensors. A clear pattern emerges from the
data – that is, the counting difference between the two sensors is
most significant during daylight hours, particularly during the
morning, when direct sunlight effects may be prominent. In
addition, notable discrepancies are also observed for the afternoon
hours, where passenger crowding is significant. Table 1 explores
this issue further by examining counting data from these two
periods. In particular, valuable information is obtained from
comparisons with manual counts, which provide the ‘ground
truth’. The counting data from 14 videos, each of 10 min duration,
which were used to evaluate counting accuracy are reported in
Table 1, where M1–M7 stand for the seven morning intervals and
A1–A7 stand for the seven afternoon intervals.

Results of the comparison in Table 1 demonstrate that the RGB-
based system performs better than the depth-based system on
average. This can be quantified by taking the ratio of the estimated
and observed passenger counts and expressing it as a percentage for
each investigated case (Table 1). The absolute percentage error
across all investigated cases may then be summed and averaged to
yield a measure of the system’s counting accuracy. When using this
approach, average errors of 64·9 and 10·0% are obtained for the
depth-based system, for morning and afternoon hours. The
corresponding errors for the RGB-based system are 21·6 and 9·0%.
These values demonstrate that the accuracy of the depth-based
system suffers strongly with increasing levels of ambient sunlight.
However, the system demonstrates accuracy similar to that of the
RGB-based approach in the case of artificial and uniformly lit
scenes in the afternoon hours.

It is informative to identify the reasons for counting errors
observed in both approaches in further detail. Table 1 indicates
Direct sunlight, in (from M1)  Stationary passengers, no direct sunlight, out (from A1)Stationary passengers, no direct sunlight, out (from A1)

Figure 4. Snapshot samples from the RGB camera showing various capturing conditions. The horizontal line shows the extent of the
crossing line: when pedestrians cross over this line, both systems considered them counted. The codes M1 and A1 refer to 2 of the 14
time intervals analysed in Table 1
lishing, all rights reserved.
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that direct sunlight influence is evident for the data sets M1, M2,
M4 and M5. In particular, case M1 features the brightest scene
(see Figure 4), where half of the image is flooded by direct
sunlight. Therefore, it is not surprising that the lowest counting
accuracy (7·7%) for the depth-based system is obtained in this
sequence. In contrast, cases M3, M6 and M7 represent data taken
from cloudy days. The error with depth sensors for these cases are
55·4, 33·7 and 22·4%, which represent a significant improvement
over the cases with direct sunlight. However, it is noteworthy that
the counting accuracy for depth sensors in the afternoon hours is
consistently superior to the counting accuracy for cases during
morning hours without sunlight. During the afternoon, the effects
of ambient sunlight, which interferes with the infrared speckle
pattern, disappear, and the count estimates with depth sensors
become more reliable.

The presence of ambient sunlight is handled better by the RGB
camera, where the average error is 21·6% in the morning.
 [ UNIVERSITY OF CAMBRIDGE] on [15/03/19]. Copyright © ICE Publishin
However, the presence of direct sunlight also affects the
performance of the RGB-based approach. In particular, the
quickly changing lighting conditions and shadows result in the
misidentification of pixels representing passengers, which
results in erroneous tracking in the following frames. In these
cases, most of the passengers travelling from platforms 14 and 15
on the right (sunny) side of the image (see Figure 4) could not be
tracked reliably. This explains the undercounting of the RGB
based method for data sets M1 and M2. The counting accuracy is
better for sequences M4 and M5, where direct sunlight effects are
also observed. However, in these cases, passengers were
travelling less on the sunny side and tracking performance
improves. The aforementioned factors, such as false positives due
to objects such as rolling suitcases and false negatives due to
groups of people travelling together, also affect counting
accuracy. These explain the undercounting and overcounting of
the RGB-based method for the data sets M3, M6 and M7. Here,
counting errors up to 15% are observed due to these factors.
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A similar investigation can also be made for the afternoon data
sets A1–A7. Here, the average accuracy of the two systems are
similar and above 90%. From these results, it appears that
crowding does not significantly affect the counting performance.
However, counting errors up to 30% are observed for the depth-
based system, whereas counting errors up to 20% are observed for
the RGB-based system. For the latter, these errors are higher than
the 15% error previously identified for the cloudy morning hours.
These slightly increased errors are attributed to the influence of
stationary passengers, who wait for their train in the area leading
to the platforms (see Figure 4). These passengers often cross back
and forth across the crossing line over the course of several
minutes while waiting, leading to overestimation of the count. In
other cases, when passengers walk in close vicinity to the
stationary passengers, passengers’ paths cross. This can be
illustrated with a count video which is included as Supplementary
Material (see also Stent (2015b)). The video demonstrates an
application of the RGB-based counting method for data set A1.
The meaning of markers and lines superposed on the video is
explained in the first paragraph of this section. In the video, note
the stationary passengers who wait for their train near the
counting line. They cannot be reliably tracked and are counted
several times. In crowded scenes, their presence may affect the
tracking of the path of other passengers. However, the data in
Table 1 demonstrate that the influence of stationary passengers
does not cause a systematic increase or decrease in the count
estimations, and a reasonable accuracy is achieved despite errors.

In order to generalise the individual comparisons between
automatic pedestrian counts, in Figure 6 the depth-based system
counts are compared with RGB-based system counts within a
24
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20 min period during peak (Figure 6(a)) and off-peak hours
(Figure 6(b)). The peak hours are specified as 7–10 a.m. and 4–7
p.m. The results show that, in comparison with RGB, the depth-
based system undercounts pedestrians by about 15% in peak and
off-peak hours in the afternoons. It is noteworthy that the
undercounting trend is similar for off-peak and peak conditions.
Therefore, it can be argued that crowding does not affect count
accuracy systematically. In addition, Figure 6 reiterates how
increased ambient light renders the depth-based system counts
unreliable in the peak and off-peak morning hours. While the
trend lines indicate a ratio of 1·5–2·0 between RGB-based and
depth-based counts, the significant variability of results should be
noted. This significant variability is likely due to differing light
conditions in the morning hours. The worst comparison was noted
for a case where direct sun exposure resulted in RGB/depth
counting ratios of approximately 25, while ratios close to 1 were
achieved on cloudy days.

5. Conclusions
This paper has evaluated two efficient and inexpensive counting
techniques and investigated their possible usage for real-time
pedestrian simulations on crowded stations. The first technique
utilises downward-facing infrared depth sensor hardware and a
counting system based on volumetric recognition and feature-
tracking abilities. The second technique utilises a similarly
mounted wide field of view RGB camera with a counting system
based on change detection, feature extraction and Kalman
filtering. A suitable hardware and software system was
configured, and the sensing system was deployed in the London
Bridge station, which allowed an effective demonstration of the
suitability of these techniques for crowded transportation hubs.
Table 1. The two counting systems compared against manual counting over various 10min intervals to examine their absolute and
relative accuracy under different conditions
Data set
name
Scene conditions
lishing, all rights res
Counts
erved.
Error against the
ground truth
Dominant direction and
entry location
Direct
sunlight
Stationary
passengers
Ground
truth
Depth
 RGB
 Depth: %
 RGB: %
M1
 Out, right
 Yes
 No
 635
 49
 382
 92·3
 39·8

M2
 Out, centre-right
 Yes
 No
 241
 51
 75
 78·8
 68·9

M3
 Out, centre-right
 No
 No
 74
 33
 78
 55·4
 −5·4

M4
 Out, centre-right
 Yes
 No
 542
 75
 465
 86·2
 14·2

M5
 Out, centre-right
 Yes
 No
 394
 56
 406
 85·8
 −3·1

M6
 Out, right
 No
 No
 392
 260
 375
 33·7
 4·3

M7
 Out, centre-right
 No
 No
 732
 568
 617
 22·4
 15·7

Morning average
 64·9
 21·6

A1
 In, centre-left
 No
 Yes
 313
 281
 347
 10·2
 −10·9

A2
 In, centre-left
 No
 No
 94
 68
 101
 27·7
 −7·5

A3
 Out, centre-right
 No
 No
 334
 315
 276
 5·7
 17·4

A4
 In, centre-left
 No
 Yes
 365
 429
 365
 −17·5
 0·0

A5
 In, centre-left
 No
 Yes
 332
 304
 302
 8·4
 9·0

A6
 In, centre-left
 No
 Yes
 294
 293
 318
 0·3
 −8·2

A7
 In, centre-left
 No
 Yes
 459
 459
 413
 0·0
 10·0

Afternoon average
 10·0
 9·0
The last two columns report the system counts as a percentage of ground truth counts: positive values indicate a net undercounting (i.e. system false negatives),
while negative values indicate net overcounting (i.e. system false positives)
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The counting algorithm and the hardware were stable and
operated continuously for the duration of 2 months.

The focus of the paper is on understanding the sources of
counting errors and evaluating the accuracy of the proposed real-
time counting approaches by comparing their count estimations
with manual counts. As expected, the use of depth sensors to
investigate scenes affected by ambient sunlight during morning
hours resulted in poor performance, with counting errors up to
90%. Comparisons to manual counts demonstrate this clearly.
However, the performance of depth sensors improved drastically
when counting passengers in the afternoon hours, when ambient
light and direct sunlight effects were negligible, achieving typical
counting errors smaller than 10%. Similarly, RGB cameras
achieved errors less than 10% during afternoon hours. Crowding
conditions did not affect the counting performance adversely,
although it was found that improvements to the RGB-based
system were required to improve the tracking for stationary
passengers and direct-sunlight cases.
 [ UNIVERSITY OF CAMBRIDGE] on [15/03/19]. Copyright © ICE Publishin
On the basis of these results, the following were concluded.

■ Both counting technologies can provide reliable and accurate
input for the simulations in the absence of strong ambient
light, under any crowd condition.

■ Under conditions of strong ambient light, the RGB-based
system provides useful input for the simulations independently
by the crowd, even though potential errors of c. 20% should be
taken into account. The use of a depth–sensor-based system is
not recommended in these situations.

■ The two techniques complement each other. To investigate
pedestrian flows in environments experiencing different
ambient lights, the RGB sensors can be used. Alternatively,
the depth sensors could provide useful counting information
for dimly lit environments, where the RGB cameras may
struggle to differentiate pedestrians.

Future work will explore the complementary nature of these
counting technologies in further detail. In particular, the two systems
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Figure 6. Comparison of the two counting approaches evaluated under (a) peak and (b) off-peak conditions
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can be used together to improve count accuracy, by detecting false
positives and negatives through the fusion of sensor information in a
Kalman filter framework. For example, to improve RGB-based
system individual pedestrian detection, depth information
concerning the distance of the identified object from the ground or
the distance of the object to its close neighbours may be
investigated. This can help differentiate individuals among groups of
people moving together and prevent false negative counts due to
objects such as rolling suitcases. Moreover, the implementation of
the current techniques with pattern recognition and machine learning
approaches should also be explored to improve the stability of the
counting under direct sunlight.

Further work is under way to expand this experiment by
deploying counting technologies in critical points along the
passenger routes in the station. Different counting technologies
can be used to their strengths: for example, by using depth
sensors in dimly lit areas without sunlight (i.e. on underground
tunnels) and RGB cameras in locations subject to direct sunlight
(i.e. on train platforms). Such a deployment would allow
performing crowd simulations using real-time data and to
autocheck their results each time by comparing the predicted
outcome with the real count at destinations and refining the model
calibration for subsequent simulations.
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