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1. Introduction. A limit order book (LOB) is a trading mechanism for a single-commodity

market. The mechanism is of significant interest to economists as a model of price formation. It

is also used in many financial markets, and has generated extensive research, both empirical and

theoretical: for a recent survey, see Gould et al. [11].

The detailed historic data from LOBs in financial markets has encouraged models able to repli-

cate the observed statistical properties of these markets. Unfortunately, the added complexity

usually makes the models less analytically tractable and, with relatively few exceptions, such mod-

els are explored by simulation or numerical methods. Our aim in this paper is to analyze a simple

and tractable model of a LOB, first introduced by Stigler [22] and independently by Luckock [16]

and by Plačková [19]. The basic form of the model explicitly excludes a number of significant

features of real-world markets. Nevertheless we shall see that, from the model, several non-trivial

and insightful results can be obtained on the structure of high-frequency trading strategies. Fur-

ther, the model has a natural interpretation for a competitive and highly traded market on short

time-scales, where the excluded features may be less significant. We believe the model may be

helpful in discussions of market design, and as an illustration we use the model to comment on the

Nash equilibria that emerge between high-frequency traders when a market in continuous time is

replaced by frequent batch auctions.
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To motivate the model consider a market with only two classes of participant. Firstly, long-term
investors who place orders for reasons exogenous to the model,1 who view the market as effectively
efficient for their purposes, and who do not shade their orders strategically. Temporary imbalances
between supply and demand from such long-term investors will cause prices to fluctuate even in the
absence of any new information becoming available concerning the fundamentals of the underlying
asset. Our second class of participant, high-frequency traders, attempt to benefit from these price
fluctuations by providing liquidity between the long-term investors. In practice we should expect a
spectrum of behavior between these two extremes. The extreme case, with just long-term investors
and high-frequency traders, is clearly a caricature, but we shall see that it does allow us to analyze
various high-frequency trading strategies (for example market-making, sniping and mixtures of
these) and the Nash equilibria between them.

We next describe the model of a LOB for an example involving long-term investors only, and
outline our results for this example. A bid is an order to buy one unit, and an ask is an order
to sell one unit. Each order has associated with it a price, a real number. Suppose that bids and
asks arrive as independent Poisson processes of unit rate and that the prices associated with bids,
respectively asks, are independent identically distributed random variables with density fb(x),
respectively fa(x). An arriving bid is either added to the LOB, if it is lower than all asks present
in the LOB, or it is matched to the lowest ask and both depart. Similarly an arriving ask is either
added to the LOB, if it is higher than all bids present in the LOB, or it is matched to the highest
bid and both depart. The LOB at time t is thus the set of bids and asks (with their prices), and
our assumptions imply the LOB is a Markov process.

For this model we show that there exists a threshold κb with the following properties: for any
x< κb there is a finite time after which no arriving bids less than x are ever matched; and for any
x > κb the event that there are no bids greater than x in the LOB is recurrent. Similarly, with
directions of inequality reversed, there exists a corresponding threshold κa for asks. Further there
is a density πa(x), respectively πb(x), supported on (κb, κa) giving the limiting distribution of the
lowest ask, respectively highest bid, in the LOB. The densities πa, πb solve the equations

fb(x)

∫ κa

x

πa(y)dy= πb(x)

∫ x

−∞
fa(y)dy (1a)

fa(x)

∫ x

κb

πb(y)dy= πa(x)

∫ ∞
x

fb(y)dy. (1b)

As a specific example, if fa(x) = fb(x) = 1, x∈ (0,1), then κa = κ,κb = 1−κ, πa(x) = πb(1−x), and

πb(x) = (1−κ)

(
1

x
+ log

(
1−x
x

))
, x∈ (κ,1−κ) (2)

where the value of κ is given as follows. Let w be the unique solution of wew = e−1: then w≈ 0.278
and κ=w/(w+ 1)≈ 0.218. Observe that any example with fa = fb can be reduced to this example
by a monotone transformation of the price axis.

The existence of thresholds with the claimed properties is a relatively straightforward result,
using Kolmogorov’s 0–1 law. In order to make the claimed distributional result precise the major
challenge is to establish positive recurrence of certain binned models: such models arise naturally
where, for example, prices are recorded to only a finite number of decimal places. Given a sufficiently
strong notion of recurrence the intuition behind equations (1) is straightforward: in equilibrium
the right-hand side of equation (1a) is the probability flux that the highest bid in the LOB is

1 For example, to manage their portfolios. Investors may differ in their preferences and in their valuations, even given
the same information, which creates potential gains from trade.
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at x and that it is matched by an arriving ask with a price less than x, and the left-hand side
is the probability flux that the lowest ask in the LOB is more than x and that an arriving bid
enters the LOB at price x; these must balance, and a similar argument for the lowest ask leads to
equation (1b). To establish positive recurrence of the binned models we make extensive use of fluid
limits (see Bramson [2]), an important technique in the study of queueing networks.

The orders we have described so far are called limit orders to distinguish them from market
orders which request to be fulfilled immediately at the best available price. Market orders are
straightforward to include in the model: in the specific example just described we simply associate
a price 1 or 0 with a market bid or market ask respectively. As the proportion of market bids
increases towards a critical threshold, w≈ 0.278 in the above example, the support of the limiting
distributions πa, πb increases to approach the entire interval (0,1): above the threshold the model
predicts recurring periods of time when there will exist either no highest bid or no lowest ask in
the LOB. This conclusion necessarily holds, with the same critical threshold w, for any example
with fa = fb.

A LOB is a form of two-sided queue, the study of which dates at least to the early paper of
Kendall [12], who modeled a taxi-stand with arrivals of both taxis and travellers as a symmetric
random walk. Recent theoretical advances involve servers and customers with varying types and
constraints on feasible matchings between servers and customers, with applications ranging from
large-scale call centres to national waiting lists for organ transplants (cf. Adan and Weiss [1], Stolyar
and Yudovina [23], Zenios et al. [27]). Our interest in models of LOBs is in part due to the simplicity
of the matchings in this particular application: types, as real variables, are totally ordered and so
when an arriving order can be matched the match is uniquely defined.

Next we comment on several important features of real-world markets that are missing from
the above basic model of a LOB. We assume that orders (from investors) are never cancelled
and that the arrival streams of orders, with their prices, are not dependent on the state of the
LOB. These assumptions might be natural for orders from our long-term investors who view the
market as effectively efficient for their purposes. These assumptions, and the related assumption
of stationarity of the arrival streams, may also be natural for a high-volume market where there
may be a substantial amount of trading activity even over time periods where no new information
becomes available concerning the fundamentals of the underlying asset. Mathematically the model
may then be viewed as assuming a separation between the time-scale of trading, represented in the
model, and a longer time-scale on which fundamentals change.

The assumption that all orders are for a single unit is important mathematically for the derivation
of equations (1); economically, it corresponds to an assumption of a competitive market where an
investor does not need to think about the impact of her order size on the market. We note that a
long-term investor placing a large order may attempt to be passive in her execution, so as not to
move the price against her, by spreading the order in line with volume in the market; see Easley
et al. [8]. The natural question then becomes over how long the order is spread, and the model
can give insight here. We note, however, that our assumption of a separation between the time-
scale of trading and the timescale on which fundamentals change, modeled by our assumption of
stationarity of arrival streams, may no longer be tenable when the time taken by a large investor to
complete an order increases. In markets with a relatively small set of participants with large orders
other approaches may be necessary; see Duffie and Zhu [7] for a discussion of trading protocols
that complement limit order books for large strategic investors.

Markets may contain traders other than long-term investors, and there is currently considerable
interest in the effect of high-frequency trading on LOBs. Importantly, many high-frequency trading
strategies are straightforward to represent within the model, since traders who can react imme-
diately to an order entering the LOB may leave the Markov structure intact. Consider first the
following sniping strategy for a single high-frequency trader: she immediately buys every bid that
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joins the LOB at price above q and every ask that joins the LOB at price below p, where p and
q are chosen to balance the rates of these purchases. This model fits straightforwardly within our
framework, and we show how to calculate the optimal values, for the high-frequency trader, of the
constants p and q. A single trader might instead behave as a market maker and place an infinite
number of bid, respectively ask, orders at p, respectively q, where κb < p< q < κa. We are again able
to analyze this case. The optimal profit rate under the sniping strategy may beat that under the
market making strategy: it does so for the specific example above where fa(x) = fb(x) = 1, x∈ (0,1),
describes the order flow from long-term investors. But a third strategy, which combines market
making and sniping, will generally beat both the individual strategies.

The model also allows us to readily explore the equilibria that emerge when there are multiple
high-frequency traders competing using market making or sniping strategies. There has been con-
siderable discussion recently of the effects of competition between multiple high-frequency traders,
and of proposals aimed to slow down markets. A key issue is that high-frequency traders may
wastefully compete on the speed with which they can snipe an order, and as a regulatory response
Budish et al. [3, 4] propose replacing a market continuous in time with frequent batch auctions,
held perhaps several times a second. We consider Nash equilibria in continuous and batch markets
when there are multiple high-frequency traders competing using mixtures of market making and
sniping. Competition between market making traders reduces the bid-ask spread and the traders’
profit rate, and does so whether the market is continuous or batch. Competition between sniping
traders in a batch market results in a Nash equilibrium with traders sniping bids above, respec-
tively asks below, a central price; the traders’ profit rate is slightly less in a batch market than a
continuous market.

Competition between sniping strategies produces a large number of cancelled orders since if a
strategy’s attempt to snipe an arriving order is not successful then the strategy immediately cancels
its own order. A notable feature of data from real LOBs, that a substantial proportion of orders
are immediately cancelled [11], thus emerges as a deduction from, rather than an assumption of,
the model.

A discrete version of the model was first proposed by Stigler [22] in his pioneering work on
regulation of securities markets, and the model was independently introduced by Luckock [16] and
by Plačková [19]. Taking stationarity as an assumption, Luckock [16] provided an extensive analysis
of the model; our equations (1) can be deduced from [16, Proposition 1], assuming steady-state
behavior, by setting time derivatives to zero. Our contribution is to establish the existence of the
thresholds κa, κb and to prove a sufficiently strong notion of recurrence to justify the intuition
behind equations (1).

Previous research similar in mathematical framework to that reported here is by Cont and
coauthors [6, 5], by Simatos and coauthors [21, 14] building on Lakner et al. [15], and by Toke [25]:
as we do, these authors describe LOBs as Markovian systems of interacting queues and are able to
obtain analytical expressions for various quantities of interest. In the models of [6, 5, 15, 21, 14] the
arrival rates of orders at any given price depends on how far the price is above or below the current
best ask or bid price; the models of [15, 21, 14, 25] are one-sided in that all bids are limit orders and
all asks are market orders. Gao et al. [10] study the temporal evolution of the the shape of a LOB
in the model of [6], under a scaling limit. Maglaras et al. [17] study a fragmented one-sided market
in which traders may route their orders to one of several exchanges. The work of Lachappelle et
al. [13], building on Roşu [20], uses a different mathematical framework, that of a mean field game,
but shares with our approach some important features. In particular, these authors distinguish
between institutional investors whose decisions are independent of the immediate state of the LOB
and high-frequency traders who trade as a consequence of the immediate state of the LOB. The
models of both Cont and de Larrard [5] and Lachapelle et al. [13] keep detailed information on
queue sizes only at the best bid and best ask prices; Cont et al. [6] shares with our approach a
Markov description of the entire LOB.
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In much of the market microstructure literature features of LOBs, such as large bid-ask spreads,
are explained as a consequence of participants protecting themselves from others with superior
information. While this is clearly an important aspect of real-world markets we note that such
features may also arise from simpler models. The driving force for the dynamics of the LOB in our
approach, as in [13, 20], is not asymmetric information but stochastic fluctuations between supply
and demand.

The organisation of the paper is as follows. In Section 2 we describe precisely the model and
our main results. Section 3 develops the scaffolding necessary for the proofs, which are given in
Section 4. In Section 5 we describe some applications of our results: this section contains our
discussion of market orders, and of high-frequency trading strategies and Nash equilibria.

2. Model and results. The state of the LOB at time t is a pair (Bt,At) of (possibly infinite)
counting measures on R; Bt represents the prices of queued (not yet executed) bid orders, and
At represents the prices of queued asks. New orders arrive as a labeled point process; the label
records the type of order (bid or ask) and the price. Without loss of generality, we assume that
the price axis has been continuously reparametrized so that all prices fall in the interval (0,1) (or,
occasionally, [0,1]).

Orders depart from the queue when an arriving order “matches” one of the orders already in the
book. We shall need several notions of what it means for two prices to match, and to capture this we
introduce a price equivalence function, that is a nondecreasing, not necessarily continuous, function
P : [0,1]→ [0,1]. A bid-ask pair is compatible if P(bid)≥ P(ask).We shall primarily consider two
types of price equivalence function: P(x) = x, and the function that partitions all prices into n
pricing bins. We will refer to the latter case, where the image of P is a finite set, as the binned
model. Note that the same price equivalence function is applied to the prices of all the orders,
and compatibility of bid-ask pairs is unchanged under any strictly increasing transformation of the
equivalence function.

We are now ready to formally define the evolution limit order book Lt.
Initial state: Initially, there should be no compatible bid–ask pairs in the book. Equivalently, the
initial state (B0,A0) satisfies

B0[x,1) ·A0(0, y] = 0 if P(y)≤P(x).

Most of the time we assume that the total number of orders in the book is finite; we relax this
assumption in Section 5, where we allow an infinite number of orders to be placed at a single price,
and otherwise the book is finite.
Order arrival process: New orders arrive as a Poisson process with iid labels designating the
type and price of the order. Unless specified otherwise, we assume that P(bid) = P(ask) = 1/2.2

We assume the labels of orders are independent and identically distributed, and in particular
independent of the state of the book, but the distributions of prices may depend on type. We let Fa
be the CDF of prices of arriving asks, and Fb be the CDF of prices of arriving bids. We will often
assume that the distributions of the prices of arriving orders have densities fa and fb respectively;
this entails no loss of generality, because the LOB evolution is defined by the combination of the
arriving price distributions and a price equivalence function, and thus we can always assume that
the arriving orders have densities and only become discontinuous after being put through the price
equivalence function.
Change at order arrival: We do not allow cancellations in the model (until Section 5), so all
changes to the state occur at the time of an order arrival. Suppose at time t a bid at price p arrives.

2 The Poisson structure is not important to the book, because all that matters is the sequence of order arrivals.
Unequal rates of arrival for bids and asks are considered in Section 5.1.1.
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If there is a matching ask in the book, i.e. if At−(0, y]> 0 for some y such that P(y)≤P(x), then
nothing happens to the bids in the book (Bt = Bt−), and the lowest ask departs: At = At− − δq,
where q = min{x : At−{x} > 0}3 . If there are no matching asks in the book, the bid joins the
book: Bt = Bt− + δp and At = At−. The situation is symmetric if the arriving order is an ask at
price q: if there is a matching bid, the two orders depart (so At = At− and Bt = Bt− − δp where
p= max{x :Bt−{x}> 0}), and if there are no matching bids, then the ask joins the book (Bt =Bt−
and At =At−+ δq).

We will be keeping track of the highest (price of a) bid βt and lowest (price of an) ask αt in
the book at time t. If an order departs the book at time t, it must be at price βt− (if a bid) or
αt− (if an ask). We allow B0{x}=∞ or A0{y}=∞; if this is the case, then no bids left of x, and
no asks right of y, will ever depart the limit order book, since they will never be the highest bid
(respectively lowest ask).

Below, we will refer to continuous and discretized models of LOBs. A continuous LOB is one
where the order price densities fa and fb (exist and) are bounded above and below, and the
price equivalence function is P(x) = x. Discretized models will use some binned price equivalence
function, and will sometimes (but not always) assume that all bins receive a positive proportion of
the orders of each type.

For a discretized, binned LOB, we will use notation JxK to denote the index of the bin containing
x; JxK is a positive integer ranging from 1 to N for some N > 0.

We now present the main results concerning the model. The first result, Theorem 1, establishes
a transition at threshold values κb and κa. Eventually bids arriving below κb, and asks arriving
above κa, will never be executed; whereas all bids arriving above κb, and all asks arriving below
κa, will be executed. The second result, Theorem 2, presents the distribution of the rightmost bid
and leftmost ask.

Theorem 1 (Thresholds). There exist prices κb and κa with the following properties:
1. For any ε > 0 there exists, almost surely, a (random) time T0 <∞ such that βt > κb− ε and

αt <κa + ε for all t≥ T0.
2. For any ε > 0, infinitely often there will be no orders with prices in (κb + ε, κa− ε).
3. Let x > κb + ε and y < κa− ε for some ε > 0. Consider the LOB started with infinitely many

bids at x, infinitely many asks at y, and finitely many orders in between. The evolution of the
orders at prices in the interval (x, y) is a positive (Harris) recurrent Markov process, with finite
expected time until there are no orders in the interval.

The fact that there will infinitely often be no bids above x, and no asks below y, is a consequence
of Kolmogorov’s 0–1 law; the challenge is to show that there will simultaneously be neither bids
nor asks in the interval (x, y). In fact, we shall need to prove this part of Theorem 1 and Theorem 2
below in tandem.

Theorem 2 (Distribution of the highest bid). Consider a continuous LOB; that is,
P(x) = x, and the densities fb and fa are bounded above and below. Then

1. The limiting distributions of the highest bid and lowest ask have densities, denoted πb and πa;
let $b = πb/fb and $a = πa/fa.

2. The thresholds satisfy 0<κb <κa < 1, and also Fb(κb) = 1−Fa(κa).
3. The distribution of the highest bid is such that $b is the unique solution to the ordinary

differential equation (
− fa(x)

1−Fb(x)
(Fa(x)$b(x))′

)′
=$b(x)fb(x)

3 The minimum exists when the initial state of the book is finite, since only finitely many orders are present in the
book.
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with initial conditions

(Fa(x)$b(x))|x=κb = 1, (Fa(x)$b(x))′|x=κb = 0

and the additional constraint $b(x)→ 0 as x ↑ κa. The distribution of the lowest ask is determined
by a similar ODE.

Corollary 1 (Uniform arrivals). Suppose that P(x) = x and the arrival price distribution
is uniform on (0,1) for both bids and asks. Then κb = κ≈ 0.218 is given by κ= w/(w+ 1) where
wew = e−1. The limiting density of the highest bid is supported on (κ,1−κ), and is given by

$b(x) = 1(κ,1−κ)(1−κ)

(
1

x
+ log

(
1−x
x

))
and the limiting density of the lowest ask is $a(x) =$b(1−x).

Remark 1 (Absolute continuity). We can replace conditions on the densities fa and fb
by the requirement that dFa/dFb be bounded above and below; however, it is more natural to
state the result of Theorem 2 in terms of densities. The boundedness requirement avoids the
trivial counterexamples fb = 21[0,1/2), fa = 21(1/2,1] (nonoverlapping supports, no orders leave) or
fa = 21[0,1/2), fb = 21(1/2,1] (nonoverlapping supports, no threshold).

Through a reparametrization of the price axis, Corollary 1 covers all cases where arriving bid
and ask prices have identical densities. We describe some other analytically tractable applications
of Theorem 2 in Section 5. We shall also, in Section 5, extend the analysis to deal with some
examples where the supports of the bid and ask price distributions do not coincide.
Remark 2. The form of the limiting density appearing in Corollary 1 can be deduced from

equations (63)–(64) of Luckock [16, Section 3] after applying a coordinate transformation to convert
between [0,∞) and [0,1).

In Figure 1, we show the exact limiting distribution of the highest bid for the binned LOB with
uniform arrivals over 50 bins, along with the limiting distribution for the continuous LOB. Note the
“shoulder” bin: in the binned LOB, the threshold happens to fall into the middle of a bin, so the
long-term probability of having the rightmost bid in the bin is positive but below the continuous
limit.

While we have been able to compute analytically the distribution of the location of the rightmost
bid, there are many related quantities for which we do not have exact expressions in steady-state
(although the positive recurrence established in Theorem 1 implies that they are well-defined and
can be estimated consistently from simulation). Notably, except in the special case to be considered
in Section 5.1.3, we have not been able to derive analytic expressions for the equilibrium height
of the book (i.e. expected number of bids or asks at a given price in the binned model), or for
the joint distribution of the highest bid and lowest ask. For an illustration of the simulated joint
density of the highest bid and lowest ask, see Yudovina [26].

2.1. Brief summary of notation We summarize here our notation, as well as some of the
main assumptions used in the text.
L: limit order book.
P: price equivalence function, a monotone increasing function. Most of the time we use either
P(x) = x or the function that places all prices into one of several bins.
At, Bt: the counting measure of asks, respectively bids, at time t.
Fa, Fb: CDFs of the prices of arriving ask and bid orders. Until Section 5.1.1, newly arriving orders
are assumed to have equal probability of being a bid or an ask. In a binned model, we may write
Fa,b(n) (with n an integer) to refer to the fraction of orders arriving into bins with index ≤ n, i.e.



Kelly and Yudovina: Markovian Limit Order Book
8 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Asymptotic bid densities

price

de
ns

ity

Figure 1. Limiting density of the highest bid

Note. Limiting density of the highest bid for the binned LOB with 50 bins, and limiting density for a continuous
LOB (dotted line). Note the “shoulder” bin in the binned model: the threshold in the continuous LOB lies in the
interior of this bin.

the CDF evaluated at the rightmost endpoint of the interval.
fa, fb: the corresponding densities, which are assumed to exist. For most results, fa and fb are
assumed to be bounded above and below.
αt, βt: the price of the lowest ask, respectively highest bid, at time t. Note that this is the actual
price, not the bin containing it.
JxK: in a binned LOB, the index of the bin containing price x.
κa, κb: limiting prices above (respectively below) which only finitely many asks (bids) are ever
executed. It is not obvious a priori that κa < 1 or κb > 0; we prove this fact in Step 3 of the proof
of Proposition 2.
For functions of two or more arguments, we may interchange arguments and subscripts: thus,
fk,n(t)≡ fn(k, t)≡ f(k,n, t). We will use notation fn(k, ·) when we wish to consider f as a function
of the third argument alone.

3. Preliminary results: monotonicity. Before proving the main results, we erect some
scaffolding. Part of its purpose is to allow us to transition between continuous LOBs (for which we
expect to get differential equations in the answer) and binned models (which can be modeled as
countable-state Markov chains). It will also allow us to compare LOBs with different arrival price
distributions.

Lemma 1 asserts that the state of the limit order book is Lipschitz in the initial state with
Lipschitz constant 1: in particular, small perturbations in the arrival and matching patterns will
lead to small perturbations in the state of the book. Lemma 2 asserts that actions that decrease
cumulative bid and ask queues by either shifting orders or removing them in bid–ask pairs will
only decrease future queue sizes.

Lemma 1 (Adding one order). Consider a limit order book L, and let L̃ differ from L by
the addition of one bid at time 0; let their arrival processes and price equivalence functions be the
same. Then at all times L̃ differs from L either by the addition of one bid or by the removal of one
ask.
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Proof. The roles of “bid” and “ask” are symmetric here. The claim clearly holds until the
additional bid is the highest bid that departs from the system; once it does, L differs from L̃ by
the addition of a single ask, and the result follows by induction. �

Define cumulative queue sizes Qb(p, t) = Bt(0, p], Qa(p, t) = At[p,1). (Note that we count bids
from the left and asks from the right.) When we want to highlight the dependence on only one of
the variables, we will drop the other variable into a subscript.

Lemma 2 (Decreasing queues). Consider a limit order book L, and let L̃ differ from L by
modifying the initial state in such a way that Q̃b(·,0)≤Qb(·,0), Q̃a(·,0)≤Qa(·,0) (as functions of
price), and also Q̃b(1,0)− Q̃a(0,0) =Qb(1,0)−Qa(0,0). In words, to get from L to L̃, at time 0
we remove some bid–ask pairs, and/or shift some bids to the right, and/or shift some asks to the
left. Then at all future times t≥ 0, Q̃b(·, t)≤Qb(·, t) and Q̃a(·, t)≤Qa(·, t) as functions of price.

Proof. We show Q̃b ≤ Qb, the argument for asks being identical. The argument proceeds by
induction on time, i.e. the number of arrived orders. Throughout the proof, we use notation ft− =
lims↘t f(s) for the left limit of a càdlàg function f .

Consider first the arrival of a bid at time t and price p. For it to upset the inequality, it must
stay in L̃ but depart immediately in L; additionally, we need Qb(q, t−) = Q̃b(q, t−) for some q ≥
p. Note that if the bid departs immediately in L, the leftmost ask at αt− must be compatible
with p, and in particular there are no bids right of p: Qb(p, t−) = Qb(1, t−). This, together with
Qb(q, t−) = Q̃b(q, t−) and Q̃b(·, t−) ≤ Qb(·, t−), implies that Qb(1, t−) = Q̃b(1, t−). Since bid–ask
departures occur in pairs, this in turn implies Qa(0, t−) = Q̃a(0, t−). But it is easy to see that if
Q̃a(·, t−)≤Qa(·, t−) and they are equal at 0, then α̃t− (the leftmost jump of Q̃a(·, t−)) and αt−
(the leftmost jump of Qa(·, t−)) satisfy α̃t− ≤ αt−, and hence the arriving bid actually departs
immediately in L̃ as well.

Next consider the arrival of an ask at time t and price p. For it to upset the inequality, it
must cause the departure of the highest bid in L, but not in L̃, and we must have Qb(q, t−) =
Q̃b(q, t−) for some q≥ βt− with P(βt−)≥P(p). Now, in L̃ there are no bids at prices ≥P(p), hence
Q̃b(1, t−) = limε→0 Q̃b(p−ε, t−). However, this contradicts the inequality Q̃b(·, t−)≤Qb(·, t−), since
limε→0Qb(p− ε, t−) ≤ limε→0Qb(βt− − ε, t−) ≤ Qb(1, t−)− 1. (Note that inequalities may not be
equalities if there are multiple bids at the same price.) �

We can use this lemma to compare two limit order books L and L̃ with identical initial states
and order arrival processes, but different price equivalence functions. Suppose the price equivalence
function P̃ merges some of the values that were distinguished by P. Then any bid–ask pair that is
compatible in L is also compatible in L̃; and possibly additional bid–ask pairs are compatible in L̃
as well. This lets us apply Lemma 2 to conclude that fewer orders will be present in L̃.

We can give an upper bound on the queue sizes in L by using a binned LOB with one more
bin and a shifted arrival process. If L has a bid arrival at price x in bin k = JxK, we let L̂ have a
bid arrival at some price in bin k− 1. The ask arrivals are identical in L and L̂. (If bins of L are
numbered 1 through N , then bins of L̂ are numbered 0 through N ; bids arrive into bins 0 through
N − 1 in L̂, while asks arrive into bins 1 through N .) Under this arrangement, any bid–ask pair
that is compatible in L̂ was compatible in L as well, so L̃ offers an upper bound on the queue sizes
of L. Consequently we can bound a continuous LOB L both from above and from below by two
binned LOBs with slightly different arrival price distributions. (Assuming the continuous LOB has
arrival distributions supported on [0,1], the binned LOB providing the upper bound will have bid
arrival distribution supported on [−ε,1− ε] and ask arrival distribution supported on [0,1].)

Finally, when bin sizes are small, the difference in the arrival price distributions will be small,
and we’ll use Lemma 1 to bound the rate at which the states of L̃ and L̂ diverge. This will let us
show that the behavior of the continuous LOB converges in a suitable sense.
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4. Proof of main results. We begin by stating a weaker form of Theorem 1.

Proposition 1 (Weak thresholds). There exist prices κb and κa with the following proper-
ties:

1. For any ε > 0 there exists, almost surely, a (random) time T0 <∞ such that βt > κb− ε and
αt <κa + ε for all t≥ T0.

2. For any ε > 0, infinitely often there will be no bids with price exceeding κb + ε. Similarly,
infinitely often there will be no asks with price below κa− ε.

3. The threshold values κb and κa satisfy Fb(κb) = 1−Fa(κa).
In addition, suppose that the bid and ask price densities (exist and) are bounded above by M . Then
the following holds:

4. For any ε > 0, with probability 1, there exists a sequence of times Tn→∞ such that at time
Tn there are no bids with prices above P(κb)+ε, and the number of asks with prices below P(κa)−ε
is bounded above by 2(M + 1)εTn.

Remark 3. Although the compatibility of bid–ask pairs is driven by the price equivalence
function P(x), the statements about κ are in terms of x itself. This is because whenever there are
compatible bid–ask pairs, the bid with the highest value of x and the ask with the lowest value
of x always depart the book. In particular, in a binned model, κb and κa will usually fall in the
middle of some bin; in this “shoulder” bin, a nontrivial fraction of the arriving orders remain in
the book forever. In Figure 1, κb is approximately half-way through the “shoulder” bin. (It is also
possible for κb to form the edge of a bin.)
Remark 4. Note that we make no assertions here about the behavior of n−1Tn as n→∞: for

the purposes of this proposition, this sequence may well tend to zero. The proof of Theorem 1 will
show that for any ε > 0 the sequence n−1Tn = n−1Tn(ε) is in fact eventually bounded away from
zero, with the bound depending on ε.

Proof. The first two claims follow from Kolmogorov’s 0–1 law. Consider the events

Eb(x) = {finitely many bids will depart from prices ≤ x}
Ea(x) = {finitely many asks will depart from prices ≥ x}.

Lemma 1 shows that these events are in the tail σ-algebra of the arrival process. Since the arrival
process consists of a sequence of independent and identically distributed events, Kolmogorov’s 0–1
law ensures that for each x, Eb(x) has probability 0 or 1 (and similarly for Ea(x)). Now let

κb = sup{x : P(Eb(x)) = 1}, κa = inf{x : P(Ea(x)) = 1}. (3a)

(If the set whose extremum is to be taken is empty, we let κb = 0 or κa = 1.) The first two asserted
properties now follow upon noticing that Eb(x)⊆Eb(y) for x≥ y, and that whenever there is a bid
departure at price x, there must be no bids at prices higher than x. (The situation is similar for
asks.)

We next show that Fb(κb) + Fa(κa) = 1. From the strong law of large numbers for the arrival
process and the 0–1 law above, we know that Fb(κb) is the smallest limiting proportion of arriving
bids that stay in the system:

Fb(κb) = lim inf
t→∞

1

t
#(bids in the LOB at time t). (3b)

A similar equality clearly holds for asks with 1−Fa(κa). Since bids and asks always depart in pairs,
a further appeal to the strong law of large numbers for the arrival process shows that we must
have Fb(κb) = 1−Fa(κa).

The existence of times Tn as in part (4) of the theorem follows by a similar argument from
the functional law of large numbers for the arrival processes. With probability 1, picking a large
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enough time Tn when there are no bids at prices above P(κb) + ε ensures that there are at most
(Fb(κa)+(M +1)ε)Tn asks in the system. Since asks to the right of κa arrive at rate (1−Fa(κa)) =
Fb(κb) and eventually never leave, for large enough Tn there will be at most 2(M + 1)εTn asks at
prices below κa− ε. �

This result is weaker than the positive recurrence we wish to prove eventually: in particular, it
does not show that the total number of both types of orders between κb and κa is ever zero. To
obtain statements about positive recurrence, we shall need to use fluid limit techniques, and our
overall approach will be similar to that in Bramson [2, Chapter 4]. The final proof of stability will
use multiplicative Foster’s criterion (state-dependent drift), see Meyn and Tweedie [18, Theorem
13.0.1]. In order to get there, we need to show that whenever there are many bids or asks in (κb, κa),
their number tends to decrease at some positive, bounded below, rate over long periods of time.
This is a standard line of argument in queueing theory; but the challenge of the model is that the
evolution of the queues depends on which queues are positive, rather than which queues are large.
In general Markov chains of this form are very difficult to analyze (Gamarnik and Katz [9] show
that in general the stability of such chains is undecidable), but the special structure of our chain
makes it amenable to analysis. The outline of the proof is as follows.

1. We work with binned LOBs. We begin by showing that, after appropriate rescaling, both
the queue sizes and the local time of the highest bid (lowest ask) in each bin converge to a set of
Lipschitz trajectories, which we call fluid limits. We then proceed to develop properties of the fluid
limits.

2. We next show that all fluid limits tend to zero for bins (strictly) between JκbK+1 and JκaK−1.
We exploit the equations and inequalities satisfied by fluid limits to show the following:

(a) There is an interval [x0, y0] on which, whenever the fluid limit of the number of orders
is positive, it decreases (at a rate bounded below). Therefore, after some time T0 (which depends
on the initial state), the fluid limit will be zero on [x0, y0]. The values x0 and y0 may not be bin
boundaries.

(b) Following T0, we will be able to bound from below the rate of increase of the local time of
the rightmost bid on [x1, x0) for some x1 <x0, and of the leftmost ask on (y0, y1] for some y1 > y0.
Since whenever the highest bid is in [x1, x0) it has a positive chance of departing (and similarly for
asks in (y0, y1]), we conclude that whenever the number of orders in [x1, y1] is large, it will decrease
(at a rate bounded below). We repeat the argument until [xn, yn]≈ [κb, κa]. The xi and yi may not
be bin boundaries in this step.

3. We show that if on some interval, all fluid limits converge to 0 in finite time, then the binned
LOB is recurrent on that interval. (This step is standard for fluid limit arguments.) Since the
number of bids in a continuous limit order book can be bounded from above by binned ones, this
will also show recurrence of the continuous LOB.

4.1. ODE of the limiting distribution. Our first result shows that the ODE which should
describe the unique limit, as t→∞, of the empirical distribution of the highest bid does in fact
describe some such limit. In the process, we also establish 0<κb <κa < 1.

Proposition 2 (Weak distribution of the highest bid). Suppose the arrival price distri-
butions have densities bounded above and below, and consider a sequence of binned LOBs with the
number of bins, N , tending to infinity.

For each N and ε > 0, let Tn = Tn(N,ε)→∞ be the sequence of times identified in part (4) of
Proposition 1. Let πb(n,N, ε) be the discrete normalized empirical density of the highest bid over
the time interval [0, Tn]; that is,

πb(n,N, ε,x) =
time up to Tn that the highest bid is in JxK

Tn · (length of JxK)
.
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1. There exists a unique limit limn→∞, N→∞, ε→0 πb(n,N, ε) := πb, and similarly for asks.
2. Denoting $b = πb/fb and $a = πa/fa, these satisfy the pair of integral equations

Fa(x)$b(x) =

∫ 1

x

$a(y)fa(y)dy, x∈ (κb, κa);

∫ κa

κb

$b(x)fb(x)dx= 1, (4a)

(1−Fb(x))$a(x) =

∫ x

0

$b(y)fb(y)dy, x∈ (κb, κa);

∫ κa

κb

$a(x)fa(x)dx= 1. (4b)

3. Moreover, wherever $b is differentiable, it satisfies the ODE(
−1−Fb(x)

fa(x)
(Fa(x)$b(x))′

)′
=$b(x)fb(x) (5a)

with initial conditions

(Fa(x)$b(x))|x=κb = 1, (Fa(x)$b(x))′|x=κb = 0 (5b)

and the additional constraint $b(x)→ 0 as x ↑ κa. The distribution of the leftmost ask satisfies a
similar ODE.

4. The equation (5) has a unique solution; in particular, κb and κa are uniquely determined by
it.

Remark 5 (Normalization and initial conditions). From the integral equation (4) it
follows that $b will be a continuous function of price, whereas πb may not be. In particular, if
we are interested in piecewise continuous functions fb and fa, then $b will satisfy the ODE (5a)
on each of the segments where fb and fa are continuous, and can be patched together from the
requirement that $b(x) and (Fa(x)$b(x))′ are both continuous.

The initial conditions (5b) apply for LOBs with finite initial states. Consider instead a LOB
L̃ with an infinite bid order at some price p > κb. As long as the threshold κ̃b of L̃ is positive,
we can do away with the infinite order at p by changing the price equivalence function so that
P(0) = P(κ̃b) = P(p): the evolution of L̃ and this new LOB L̂ will be the same at prices above p
after the threshold time. In L̂, there is yet another threshold κ̂b, and the initial conditions (5b) hold
for all x∈ (κ̂b, p], meaning $̂b(x) = 1/Fa(x) on that interval. Correspondingly, in L̃, the distribution
of the highest bid price has an atom at p of mass

∫ p
κ̂b

1/Fa(x)dx. For the lowest ask price, we will of

course have P(αt ≤ p) = 0, but it may be the case that $a(x) 6→ 0 as x ↓ p: it may be discontinous
at the location of the infinite bid.
Remark 6. The computations in our Steps 2 and 3 below are similar to computations appear-

ing in Luckock [16, Section 1]; we present the full argument for completeness.
Proof. The proof proceeds as follows:
1. Fix the number of bins N , and consider the collection of empirical densities πb(n,N, ε),

πa(n,N, ε). Along any sequence n→∞, N →∞, and ε→ 0 there is a convergent subsequence.
2. Any subsequential limit satisfies a certain pair of integral equations, hence some ODEs.
3. The ODEs will directly imply κb <κa; in addition, 0<κb and κa < 1.
4. The solution to these ODEs is unique, and in particular the limit does not depend on the

order of n→∞, N →∞, and ε→ 0.
Step 1: The space of probability distributions with compact support is compact, so along any

sequence of empirical distributions there will be convergent subsequences. Moreover, whenever the
highest bid is in bin JxK, bid departures occur from the bin at rate ≥ Fa(x)πb(JxK), whereas bid
arrivals occur into that bin at rate at most fb(x). Consequently, under the assumption of bounded
densities fb, fa, the highest bid density πb(JxK)≤ fb(x)/Fa(x) is bounded uniformly in n, N , ε; this
guarantees the existence of limiting densities along subsequences. Finally, the lower bound on fa
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and fb guarantees that $a and $b are bounded, and hence also converge along subsequences. For
steps 2 and 3, πa,b and $a,b refer to any such subsequential limit, taken along a single subsequence
for all four quantities.

Step 2: The integral equations are expressing the idea that the rate of bid arrival should be
equal to the rate of bid departure. Along a sequence of times where the queues are small (i.e.
ε≈ 0), this is very nearly true; it will be exactly true in the limit ε→ 0. The bid arrival rate at x
is fb(x)P(αt > x) = fb(x)

∫ 1

x
πa(y)dy, and the bid departure rate at x is πb(x)Fa(x), so setting the

two equal gives the result; the ODE is obtained by differentiating twice.
Of course, if we fix the number of bins N , the limit distribution will be described by a difference

equation rather than an integral (or differential) equation. It is standard to see that the limit of
solutions to the difference equations solves the differential (or integral) equation.

Step 3: To see κb <κa, note that πb is bounded above by fb/Fa always, so if it integrates to 1 we
must have κb <κa. To see κb > 0 (and κa < 1), we consider a binned LOB L̃ with three bins, with
bin partitions at x and x+ δ for some x ∈ (κb, κa). By monotonicity, Jκ̃bK = 1 and Jκ̃aK = 3. For δ
small enough, the number of orders in the middle bin will eventually be stochastically dominated
by a geometric random variable. Indeed, whenever there are bids in bin 2, more bids arrive at rate
Fb(x+δ)−Fb(x) and depart at the larger rate Fa(x+δ) (this is after asks from bin 3 stop departing).
The situation is similar for asks. Consequently, in L̃ we must have π̃b(2)> 0 and π̃a(2)> 0.

If π̃b(1) and π̃a(3) were such that (almost) all orders depart, then from π̃b(1)Fa(x) = Fb(x) we
find

π̃b(1)Fa(x) = Fb(x) =⇒ π̃b(2) =
Fa(x)−Fb(x)

Fa(x)
=⇒ Fa(x)>Fb(x).

Now let δ be small enough that Fa(x)>Fb(x+δ), and solve for π̃b(2) from the alternative expression
π̃b(2)Fa(x+ δ) = (Fb(x+ δ)−Fb(x))π̃a(3). This gives

π̃b(1) + π̃b(2) =
Fb(x)

Fa(x)
+
Fb(x+ δ)−Fb(x)

Fa(x+ δ)

1−Fa(x+ δ)

1−Fb(x+ δ)
< 1.

The contradiction shows that in fact in this LOB we must have π̃b(1)Fa(x)< Fb(x)− η for some
η > 0, which implies Fb(κ̃b) ≥ η. By monotonicity, we obtain κb > 0 as well (for N large enough
that the above bin of width δ is one of the original bins of the LOB).

Step 4: The uniqueness of solution follows from the fact that we have a second-order ODE with
two initial conditions (which, as we just showed, are finite). Note that an alternative argument
for κb > 0 would be to show that πb(x) > 0 for some x > 0, since then the ODE forces πbFa/fb
decreasing, and πb(x)∼ 1/x near 0, which is not integrable. However, it is not immediately obvious
why in a binned LOB the highest bid couldn’t spend (almost) all of its time in the leftmost bin,
hence we give the more involved argument above.

It is at this moment possible that there are multiple solutions to the ODE with different values for
κb. Intuitively, this should not be the case, since any limiting κb should give the (unique) threshold
value of the continuous LOB. We will derive the uniqueness of the quadruple (κb, κa, πb, πa) from
Lemma 3 below, which shows that the solution of (5a) is monotonic in the initial conditions. This
implies that the requirements

∫ κa
κb
πb(x)dx= 1 and Fb(κb) = 1−Fa(κa) pin down κb and κa uniquely,

since decreasing κb increases the initial value of $b and d
dx
$b. �

The second result we require about the ODE is monotonicity in the initial conditions:

Lemma 3 (ODE monotonicity). Let $b and $̃b be two solutions of the ODE (5a) with initial
conditions

$b(x0)≥ $̃b(x0), ($b)
′(x0)≥ ($̃b)

′(x0).

Then for all x≥ x0, $b(x)≥ $̃b(x).
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Proof. We may reparametrize space monotonically so that Fa(x) = x. Then the ODE (5a)
becomes

(Fb(x)− 1)

(
x
d

dx
$b(x) +$b(x)

)′
+xfb(x)

d

dx
$b(x) = 0,

which is a first-order ODE in d
dx
$b(x). Since solutions of first-order ODEs are increasing in their

initial conditions, we obtain d
dx
$b(x)≥ d

dx
$̃b(x), and the desired inequality follows trivially. �

Corollary 2. Suppose the initial conditions for $b come (5b), and the initial conditions for
$̃b are Fa(x0)$̃b(x0) = 1, (Fa(x)$̃b(x))′|x=x0 = 0 for some x0 > κb. Then $b(x0) ≤ $̃b(x0) and
d
dx
$b(x)|x=x0 ≤ d

dx
$̃b(x)|x=x0. Consequently, $b(x)≤ $̃b(x) for x≥ x0.

Proof. Reparametrize space as before, so that Fa(x) = x. Then

(x$b(x))′ =−πa(x), $b(x) =
1

x

(
1−

∫ x

0

$a(y)dy

)
.

From this it is clear that $b(x0)≤ $̃b(x0). Further,

x
d

dx
$b(x) =−πa(x)−$b(x) =−1

x
+

1

x

∫ x

0

($a(y)−$a(x))dy.

Now, in a LOB, (1− Fb(x))$a(x) is increasing (cf. x$b(x) which is decreasing), meaning $a is
increasing. Consequently, the integral above is nonpositive, and we see

x0

d

dx
$b(x)|x=x0 ≤−

1

x0

= x0

d

dx
$̃b(x)|x=x0

as required. �

4.2. Fluid limits. In this section we introduce the fluid-scaled processes associated with the
limit order book, discuss their convergence to fluid limits, and determine properties of the limits.
Throughout the section, we work with a binned limit order book.

Let Bk(·) and Ak(·) be the arrival processes of bids and asks into bin k (indexed by time). The
time structure of these processes is not important for our results, so we may assume that these
are Poisson processes; by definition, they are independent. We will assume that the total arrival
rate of bids is 1, and also of asks, so that if pb(k) (respectively pa(k)) is the probability that an
arriving bid (ask) falls into bin k, this is also the arrival rate of bids (asks) into that bin. Let
Qb(k, t) (respectively Qa(k, t)) be the number of bids (asks) in bin k at time t. Let Tβ(k, t) and
Tα(k, t) be the amount of time up to time t when the rightmost bid, respectively leftmost ask, is
in bin k: that is,

Tβ(k, t) =

∫ t

0

1{JβsK = k}ds, Tα(k, t) =

∫ t

0

1{JαsK = k}ds.

It is clear that the initial data Qb(k,0), Qa(k,0) together with the arrival processes Bk(·), Ak(·)
give sufficient information to determine the values of all of these processes at later times. We have
the following expressions:

JβtK = k ⇐⇒ Qb(k, t)> 0,
∑
k′>k

Qb(k
′, t) = 0 (6a)

JαtK = k ⇐⇒ Qa(k, t)> 0,
∑
k′<k

Qa(k
′, t) = 0 (6b)
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Qb(k, t) =Qb(k,0) +

∫ t

0

1{Jα(s)K>k}dBk(s)−
∑
k′≤k

∫ t

0

1{Jβ(s)K = k}dAk′(s) (6c)

Qa(k, t) =Qa(k,0) +

∫ t

0

1{Jβ(s)K<k}dAk(s)−
∑
k′≥k

∫ t

0

1{Jα(s)K = k}dBk′(s) (6d)

Tβ(k, t) = Tβ(k,0) +

∫ t

0

1{Jβ(s)K = k}ds (6e)

Tα(k, t) = Tα(k,0) +

∫ t

0

1{Jα(s)K = k}ds (6f)

We define the fluid-scaled processes by Xn(t) = n−1X(nt) for any process X. We now have the
following result on convergence to fluid limits:

Theorem 3 (Convergence to fluid limits). Consider a sequence of processes

(Bn(k, ·),An(k, ·),Qb,n(k, ·),Qa,n(k, ·), T β,n(k, ·), Tα,n(k, ·))

whose initial state (at time 0) is bounded: ||Qa,n(k,0),Qb,n(k,0)|| ≤ 1. As n→∞, any such sequence
has a subsequence which converges, uniformly on compact sets of t, to a collection of Lipschitz
functions

(bk(·), ak(·), qb(k, ·), qa(k, ·), τβ(k, ·), τα(k, ·)).

(Different subsequences may converge to different 6-tuples of Lipschitz functions.) We call the
limiting 6-tuple a fluid limit.

Any fluid limit satisfies the following equations almost everywhere (i.e. everywhere where the
derivatives are defined):

b′k(t) = pb(k), a′k(t) = pa(k) (7a)
∂

∂t
(τβ(k, t)) = 0 if

∑
k′>k

qb(k
′, t)> 0,

∂

∂t
(τα(k, t)) = 0 if

∑
k′<k

qa(k
′, t)> 0 (7b)

JκaK∑
k=JκbK−1

τβ(k, t) = t,

JκaK+1∑
k=JκbK

τα(k, t) = t (7c)

qb(k, t)≥ 0, qa(k, t)≥ 0 (7d)
∂

∂t
qb(k, t) = 0 if qb(k, t) = 0,

∂

∂t
qa(k, t) = 0 if qa(k, t) = 0 (7e)

∂

∂t
qb(k, t) = pb(k)

∑
k′>k

∂

∂t
τα(k′, t)− ∂

∂t
τβ(k, t)

∑
k′≤k

pa(k
′) (7f)

∂

∂t
qa(k, t) = pa(k)

∑
k′<k

∂

∂t
τβ(k′, t)− ∂

∂t
τα(k, t)

∑
k′≥k

pb(k
′). (7g)

Proof. The expressions in (6) together with the functional law of large numbers for the arrival
processes lead to the u.o.c. convergence along subsequences to a fluid limit. The integral represen-
tation implies that limits must be Lipschitz functions.

To see that any fluid limit must satisfy (7), we note that (7a) follows directly for the functional law
of large numbers for the arrival processes. Identities (7b) follows from the corresponding statement
for prelimit processes: if

∑
k′>k qb(k

′, s) > ε > 0 on a time interval s ∈ (t − ε, t + ε), then for all
sufficiently large n,

∑
k′>kQb,n(k′, ns)>nε/2> 0, so Jβ(ns)K> k and Tβ,n(k,ns) is not increasing.

Identity (7c) holds because the rightmost bid (leftmost ask) is eventually always in one of the bins
in the prelimit processes, so this must be true in the limit. Identities (7d) follows for a similar
reason: prelimit queues are nonnegative, hence the limit is nonnegative as well.
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Identity (7e) is a corollary of (7d): a process that is always nonnegative, differentiable at t, and
equal to 0 at t must have derivative 0 there.

Finally, identities (7f) and (7g) follow from (6a)–(6d) for the prelimit queues. More precisely, the
rate at which the bid queue size changes is as follows: if the lowest ask is higher than bin k, then
bids arrive into the queue at rate pb(k); and if the highest bid is in bin k, then all asks arriving at
prices below k deplete the queue at k. Because the location of the highest bid or lowest ask does
not show up in the fluid limit, we instead use the local times tβ and tα. �

We introduce notation πβ(k, t) = ∂
∂t
τβ(k, t), πα(k, t) = ∂

∂t
τα(k, t).

4.3. Fluid limits drain. We will now show that in a LOB that starts with infinitely many
bids in JκbK+ 1 and asks in JκaK−1, the fluid limit queue sizes drain, i.e. converge to 0 on the bins
ranging from JκbK + 1 to JκaK− 1. We will assume that bin widths (and hence pb(k), pa(k)) are all
small. This is the meat of the argument in the paper.

Theorem 4 (Fluid limits drain). Consider a fluid limit corresponding to a binned LOB with
N bins. Suppose the arrival process is symmetric (pb(k) = pa(N − k)), the probabilities pa,b(k) are
bounded below, and pb(k) is decreasing in k (pa(k) increasing in k). Suppose that initially there
are infinitely many bids in bin JκbK + 1 and infinitely many asks in JκaK− 1; then the fluid limit of
queues can be described by qa,b(k, t) for JκbK+2≤ k≤ JκaK−2, and the fluid limit of the local times
can be described by πa,b(k, t) for JκbK + 1≤ k≤ JκaK− 1.

Let the initial state of the fluid limit satisfy ‖(qb(0), qa(0)‖ ≤ 1. There exists ε = ε(N)→ 0 as
N →∞, and a time T depending on {pa(k), pb(k), bin widths}, such that for all bins k satisfying
Jκb + εK<k < Jκa− εK, and all times t≥ T ,

qb(k, t) = 0, qa(k, t) = 0, ∀t≥ T.

Further, in the interval Jκb + εK< k < Jκa− εK and for t≥ T , the derivatives πβ(k, t) satisfy the
second-order difference equation

∆k

(
1−Fb(k)

pa(k+ 1)
·∆k

(
Fa(k)

pb(k)
πβ(k)

))
= πβ(k+ 1),

where the operator ∆k is given by ∆k(f) = f(k+ 1)− f(k). The initial conditions satisfy

Fa(Jκb + εK)
pb(Jκb + εK)

πβ(Jκb + εK)≤ 1, ∆Jκb+εK

(
Fa(k)

pb(k)
πβ(k)

)
≤ 0.

A similar equation holds for asks. As N →∞, the solution of the difference equation converges to
the solution of the ODE (5a) with initial conditions given by (5b).

Note that κa and κb are the thresholds of an LOB with a finite starting state; the LOB with infinite
bid and ask orders can be thought of as having different thresholds κ̃b <κb and κ̃a >κa. For large
N , Lemma 1 implies κ̃b ≈ κb and κ̃a ≈ κa.

Proof. The proof proceeds in stages.
Stage 0. Let x0 be given by Fa(x0) = Fb(κa) − Fb(x0), and let y0 be given by 1 − Fb(x0) =

(1 − Fa(κb)) − (1 − Fa(y0)). Equivalently, Fa(x0) + Fb(x0) = 2x0 = Fb(κa), so x0 = 1
2
Fb(κa), and

y0 = 1
2
(1 +Fa(κb)).

Claim 0.1: κb ≤ x0 < y0 ≤ κa.
Proof: Note that Fa(κb) is a lower bound on the rate of bid departure from the Markov chain when
there are any bids present, while Fb(κb)− Fb(κa) is an upper bound on the rate of bid arrival.
Consequently, if Fa(κb)> Fb(κb)− Fb(κa), then the number of bids on the entire interval (κb, κa)
would be stochastically bounded, whereas it should scale as a random walk. A similar argument
gives y0 ≤ κa. Finally, 1

2
Fb(κa) = 1

2
(1−Fa(κb))< 1

2
(1 +Fa(κb)), since κb > 0 by Proposition 2. �
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Claim 0.2: There exists T0 = T0(M) such that for all times t ≥ T0 and all fluid models,∑Jy0K−1
k=Jx0K+1(qb(k, t) + qa(k, t)) = 0.

Proof: Since these processes are absolutely continuous and nonnegative, it suffices to show that
whenever there are any fluid orders in the interval (and all the derivatives are defined), the fluid
number of orders in the interval decreases at a rate bounded below. By (7f) and (7g), we see that
for Q(t) =

∑
Jx0K+1≤k≤JκaK−1 qb(k, t),

Q′(t)≤

{
0, Q(t) = 0∑JκbK−1

k=Jx0K+1 pb(k)−
∑

k′≤Jx0K+1 pa(k)<Fb(κb)−Fb(x0)−Fa(x0)− ε, Q(t)> 0.

Consequently, after a finite amount of time Tb,0, there will be no fluid bids in bins ≥ Jx0K + 1.
Similarly, after a finite amount of time Ta,0, there will be no fluid asks in bins ≤ Jy0K− 1; we may
take T0 = max(Tb,0, Ta,0). �

Claim 0.3: There exists ε0 > 0 such that for all times t ≥ T0 and all fluid models,∑
k≤Jx0K πβ(k, t)≥ ε0 and

∑
k≥Jy0K πα(k, t)≥ ε0. (This result requires bins to be sufficiently small.)

Proof: Note that equations (7f) and (7g) hold at all times, even when there are no fluid orders in
the bin; thus, for t≥ T0 and all k ∈ [Jx0K + 1, Jy0K− 1] we have

pb(k)
∑
k′>k

πα(k′, t) = πβ(k, t)
∑
k′≤k

pa(k
′), pa(k)

∑
k′<k

πβ(k′, t) = πα(k, t)
∑
k′≥k

pb(k
′).

Omitting the dependence on t for clarity, these equations, together with the observation that∑
k πα(k) =

∑
k πβ(k) = 1, can be rearranged to give two decoupled second-order difference equa-

tions for πα(k) and πβ(k). We abuse notation to write Fa(k) =
∑

k′≤k pa(k
′) and similarly for Fb(k).

∆k

(
1−Fb(k)

pa(k+ 1)
·∆k

(
Fa(k)

pb(k)
πβ(k)

))
= πβ(k+ 1), Jx0K + 1≤ k≤ Jy0K− 1. (8a)

(There is a corresponding equation for πa, of course.)
If we had two initial conditions for this second-order difference equation, we would be able to

solve it. Unfortunately, in general we do not have such initial conditions, but we have bounds on
them, namely

Fa(Jx0K)
pb(Jx0K)

πβ(Jx0K)≤ 1, ∆Jx0K

(
Fa(k)

pb(k)
πβ(k)

)
≤ 0. (8b)

These inequalities would hold with equality in a different limit order book L̃0, in which we assign
the same low price to all the bins up through Jx0K + 1, and the same high price to all the bins
from Jy0K− 1 up. (We nonetheless keep track the bins containing the highest bid and lowest ask of
L̃.) Corollary 2 shows that the solutions to (8) on Jx0K + 1≤ k≤ Jy0K− 1 are bounded from above
by the solution for L̃. (The result is in continuous space, but the arguments work just as well for
difference equations.) We refer to the solution for L̃ as π̃β and π̃α.

Using the trivial upper bound on π̃β(k) for k≥ Jy0K, we find

∑
k≤Jy0K−1

πβ(k)≤
Jy0K−1∑

k=Jx0K+1

π̃β(k) +

JκaK−1∑
k=Jy0K

pb(k)

Fa(k)
. (9)

Notice that π̃β must equal (Fa(k))−1pb(k) for Jκ̃bK + 1≤ k ≤ Jx0K, as bids will not be queueing in
those bins. Consequently, for the first term in the right-hand side of (9) we have the bound

Jy0K−1∑
k=Jx0K+1

π̃β(k)≤ 1−
Jx0K∑

k=Jκ̃bK+1

pb(k)

Fa(k)
≤ 1−

JκaK−1∑
k=Jy0K

pb(k)

Fa(k)
− ε0,
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as long as the bins are narrow enough. Indeed, notice that x0 − κ̃b > x0 − κb = κa − y0 (from
monotonicity of L vs. L̃ and symmetry), the denominator is increasing in k, and the bid arrival
density decreases with translation to the right. We require the bins to be narrow enough that the
sums are all nonempty. �

Stage 1. We now let x1, y1 be defined by Fb(x0) − Fb(x1) = ε0Fa(x1) and Fa(y1) − Fa(y0) =
ε0(1−Fb(y1)). Similarly to the argument for Stage 0, there exists a time T1 such that for all t≥ T1

there will be no fluid queues on [Jx1K + 1, Jy1K− 1]. Indeed, if there are fluid bids in the interval
[Jx1K+1, Jx0K], then whenever the highest bid is below Jx0K it is in fact in this interval; the defining
inequality then means that the fluid amount of bids in this interval decreases, and similarly for
asks.

Next, we use the difference equation description on [Jx1K + 1, Jy0K− 1] to show that after T1,
the highest bid spends at least ε1 > 0 of its time below x1. This will require comparison against a
different restricted LOB L̃1, where we merge all prices up to Jx1K + 1 and from Jy1K− 1.

Subsequent stages. We can now construct a nested sequence of intervals . . . < x2 <x1 <x0 <
y0 < y1 < y2 < . . . , where the inequalities are strict provided bins are narrow enough. It remains to
show that limk→∞,N→∞ xk = κb and limk→∞,N→∞ yk = κa. (Note that N →∞, i.e. thinner bins, is
certainly necessary for this to hold!)

This result follows from the fact that εi can be taken to be bounded below:

εi ≥
JxiK∑

k=Jκ̃bK+1

pb(k)

Fa(k)
−

JκaK−1∑
k=JyiK

pb(k)

Fa(k)
≥
(

1

Fa(JxiK)
− 1

Fa(JyiK)

)
(Fb(JxiK)−Fb(Jκ̃bK + 1)) . (10)

As long as xi is bounded away from κb (and bin widths are small enough), this will be bounded
below, and therefore xi−xi+1 and yi+1− yi will be bounded below.

Convergence to ODE. The convergence of bounded solutions to difference equations to solu-
tions of an ODE is standard. The argument above gives an inequality for the initial conditions,
but note that as we approach κb the initial conditions become exact. Indeed,

Fa(κb + ε)$b(κb + ε) =

∫ 1

κb+ε

$a(x)fa(x)dx→ 1,

since the lowest ask will never be below κb. Also,

(Fa(x)$b(x))′|x=κb+ε =−$a(κb + ε) =−(1−Fb(κb + ε))−1
∫ κb+ε

0

$b(x)fb(x)dx→ 0,

since the highest bid density is bounded. �
Putting this result together with Proposition 2 shows that, for symmetric distributions pb, pa with

pb decreasing, the fluid limits πβ(k, t)/pb(k), πα(k, t)/pa(k) will approach, as t→∞ and N →∞,
the solution of the ODE (5), uniformly on compact subsets of (κb, κa).
Remark 7. The argument leading to the inequality (10) implies that the joint density of the

highest bid and lowest ask must be bounded away from zero on at least a fraction of the boundary
of the support, i.e. the probability of the event “there are no asks below κa and the highest bid
is at κb + x” should be O(x) but not o(x). In fact, the simulated joint density in Yudovina [26] is
bounded away from 0 everywhere except the very corner (highest bid at κb and lowest ask at κa).

It remains to show that stability of fluid limits implies positive recurrence of the Markov chain.

Lemma 4 (Fluid stability and positive recurrence). Consider a LOB satisfying the
assumptions of Theorem 4. Suppose that on some interval of bins k0 ≤ k ≤ k1, all fluid limits
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with initial state bounded above by 1 satisfy the following: there exists a time T (depending on
{pa(k), pb(k), bin widths}), such that for all times t≥ T ,

qb(k, t) = 0, qa(k, t) = 0, k0 ≤ k≤ k1, t≥ T.

Consider a limit order book L̃ started with infinitely many bids in bin k0−1 and infinitely many
asks in bin k1 +1; its state is described by the Markov chain of queue sizes in bins k0 ≤ k≤ k1. The
Markov chain associated with L̃ is positive recurrent.

Proof. To go between fluid stability and positive recurrence, we use multiplicative Foster’s cri-
terion [18, Theorem 13.0.1]. Let

Q(t) = ‖(Qb(k, t),Qa(k, t))k0≤k≤k1‖ ,

and let C be sufficiently large. Let Q(0) = q > C, and consider the fluid scaling
Qa,b(k, t) = q−1Qa,b(k, qt). By Theorem 3, if C and hence q is large enough, there
exists a fluid limit (qa(k, t), qb(k, t), τα(k, t), τβ(k, t))k0≤k≤k1 satisfying ‖qa(k, t), qb(k, t)‖ = 1,
such that P(

∥∥Qa(k, t)− qa(k, t),Qb(k, t)− qb(k, t)
∥∥ > ε) ≤ ε for all t ∈ [0, T ]. In particular,

P(‖Qa(k, qT ),Qa(k, qT )‖ > εq) < ε. Note further that ‖Qa(k, qT ),Qb(k, qT )‖ ≤ A(qT ) +B(qT ) is
bounded by the arrival process, and hence has all moments. Thus, we conclude

Eq[‖Qa(k, qT ),Qb(k, qT )‖]≤ ε(1 + 2T )q.

Choosing ε < (1 + 2T )−1 completes the proof. �

4.4. General order price distributions. It remains to remove the extra conditions (sym-
metric and decreasing) on the order price distributions, and finish the argument for continuous
limit order books. This requires two observations:

1. Recall that a continuous LOB could be bounded by two discrete LOBs with different arrival
price distributions (in one of them, we shift all arriving bids one bin to the left). This shifted
arrival distribution no longer satisfies the absolute continuity conditions, but nevertheless, Lemma 1
shows that all of the above fluid-scaled arguments work for it as bin size shrinks to 0. Specifically,
we model the bid arrivals as shifting the rightmost bin of bids all the way to the left, and then
the difference between the two books is at most two bins’ worth of arrivals over the fluid time
interval [0, T ], which will be small provided bins are narrow. This allows us to conclude the positive
recurrence of a continuous LOB with infinitely many bids at price P(κb) + ε and infinitely many
asks at price P(κa)− ε, provided the densities fa, fb are bounded above and below, symmetric,
and fb is decreasing.

2. By Lemma 2, replacing the bid arrival price distribution by another distribution with stochas-
tically higher prices, and/or replacing the ask arrival price distribution by another distribution
with stochastically lower prices, results in fewer orders in a book. In particular, if we have shown
the positive recurrence of an LOB with an infinite supply of bids at price p and asks at price q
with a particular arrival distribution, the LOB will remain positive recurrent when we switch to
an arrival price distribution with bids further right, and asks further left. Notice that as long as
there are bids in the interval (p, q), they evolve on that interval identically whether or not there is
an infinite supply of bids at p; and similarly for asks. This can be used to show that fluid limits
drain in the new LOB on the interval (p, q).

In the new LOB with the shifted price distribution, (p, q) may not be close to (κ̃b, κ̃a), so we
will be wanting to extend the interval, as in Claim 0.3 of Theorem 4. The argument there does not
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use the full extent of the symmetry and monotonicity conditions; they are only used to prove the
inequality

JpK∑
k=JκbK+1

pb(k)

Fa(k)
≥

JκaK−1∑
k=JqK

pb(k)

Fa(k)
+ ε

for some ε > 0. For this inequality to hold, it is entirely sufficient to have∫ p

κ̂b

fb(x)

Fa(x)
dx≥

∫ κ̃a

q

fb(x)

Fa(x)
dx+ ε, (11)

with no constraints on what happens between p and q.
Consequently, for a general pair of densities (fb, fa) bounded below and above, we begin by

finding fb,0, fa,0 with Fb,0 ≥ Fb, Fa,0 ≤ Fa which are symmetric and for which fb,0 is decreasing. (For
example, we may take fb,0 = fa,0 = min(fa, fb) on most of the interval, with fb,0 taking a large value
near 0, and fa,0 taking a large value near 1.) We use Theorem 4 to show that fluid limits drain
for fb,0, fa,0 (and hence, by Lemma 2, also for (fb, fa)) on an interval (κb,0, κa,0). We then modify
fb,1 on (0, κa,0) and fa,1 on (κb,0,1) to find the next pair of bounded densities (fb,1, fa,1) for which
Fb,0 ≥ Fb,1 ≥ Fb, Fa ≤ Fa,1 ≤ Fa,0, and (11) holds. We already know from monotonicity that fluid
limits will drain for these distributions on (κb,0, κa,0), and we use the inequality for p ≤ κb,0 and
q ≥ κa,0 to extend fluid stability to the bigger interval (κb,1, κa,1). We repeat the process until the
interval (κb,n, κa,n) approaches the entire interval (κ̃b, κ̃a) for (fb, fa).

To see that it will indeed approach the entire interval, notice that all that really matters for the
thresholds of a LOB is Fa,b(x), κb ≤ x ≤ κa; it is immaterial what fb and fa do outside of those
intervals, so long as they integrate to the correct amounts. Consequently, if κb,n > κ̃b + ε, it must
be that Fb,n < Fb or Fa,n > Fa somewhere on [κb,n, κa,n], which means that the process won’t get
“stuck” until κb,n↘ κ̃b and κa,n↗ κ̃a.

5. Discussion. In this section we discuss several applications of our methods and results. We
begin with a discussion of market orders and then consider various simple trading strategies.

5.1. Market orders. The orders we have considered so far, each with a price attached, are
called limit orders. Suppose that, in addition to limit orders, there are also market orders which
request to be fulfilled immediately at the best available price. Suppose that limit order bids and asks
arrive as independent Poisson processes of rates νb, νa respectively; and that the prices associated
with limit order bids, respectively asks, are independent identically distributed random variables
with density fb(x), respectively fa(x). Without loss of generality we may assume that x∈ (0,1). In
addition suppose that there are independent Poisson arrival streams of market order bids and asks
of rates µb, µa respectively. Then these correspond to extreme limit orders: we simply associate a
price 1 or 0 with a market bid or market ask respectively.

Note that, in addition to market orders, we have also allowed an asymmetry in arrival rates
between bid and ask orders. The intuition behind equations (1) leads to the generalization

νbfb(x)

∫ κa

x

πa(y)dy= πb(x)

(
µa + νa

∫ x

0

fa(y)dy

)
(12a)

νafa(x)

∫ x

κb

πb(y)dy= πa(x)

(
νb

∫ 1

x

fb(y)dy+µb

)
(12b)

although now the existence of a solution to these equations satisfying the required boundary condi-
tions is not assured, and the deduction of the recurrence properties necessary for an interpretation
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of πb(x), πa(x) as limiting densities may fail. To illustrate some of the possibilities we shall look in
detail at a simple example.

Suppose fa(x) = fb(x) = 1, x ∈ (0,1), νa = νb = 1− λ and µa = µb = λ. Thus a proportion λ of
all orders are market orders. Use the notation πb(λ;x), πa(λ;x) for the solution to equations (12)
satisfying the required boundary conditions in this example. Then provided λ < w ≈ 0.278, the
unique solution of wew = e−1, this solution has πa(λ;x) = πb(λ; 1−x) and

πb(λ;x) =
1−λ
1 +λ

·πb
(

1 +λ

1−λ
x− λ

1−λ

)
, x∈ (κ(λ),1−κ(λ)) (13)

where πb(·) is the earlier solution (2) and

κ(λ) =
1 +λ

1−λ
· w

1 +w
− λ

1−λ
.

Indeed, provided λ < w the model is simply a rescaled version of the earlier model with distri-
bution (13) having a support increased from (κ,1− κ) to the wider interval (κ(λ),1− κ(λ)). The
inclusion of market orders in the model causes the price distributions to have atoms and not to be
absolutely continuous with respect to each other; but nevertheless the analysis of earlier sections
continues to apply since the market orders arrive outside of the range (κ(λ),1−κ(λ)).

Next we explore this example as λ ↑w and the support becomes the entire interval (0,1). In our
model a market order bid, respectively ask, which arrives when there are no ask, respectively bid,
limit orders in the order book waits until it can be matched. When λ<w there is a finite (random)
time after which the order book always contains limit orders of both types and no market orders
of either type and hence the analysis of previous sections applies. But if λ>w then infinitely often
there will be no asks in the order book and infinitely often there will be no bids in the order book,
with probability 1. Now the difference between the number of bid and ask orders in the limit book
is a simple symmetric random walk and hence null recurrent. There will infinitely often be periods
when the state of the order book contains limit orders of both types and no market orders of either
type, but such states cannot be positive recurrent.

In the model described above an arriving market order which cannot be matched immediately
must wait until it can be matched. If instead such orders are lost then we obtain a model which
can be analyzed by the methods in Section 5.2.1: namely, we start the LOB with an infinite bid
order at 0 and an infinite ask order at 1.

5.1.1. Differing arrival rates. Our analysis in earlier sections assumed bids and asks arrived
at the same rate. This was without loss of essential generality, as it is convenient to illustrate now
with a discussion of equations (12) when fa(x) = fb(x) = 1, x ∈ (0,1), νa, νb > 0 and µa = µb = 0.
The solution to equations (12) satisfying the required boundary conditions is then

πb(x) = κa

(
1

x
+ log

(
1−x
x

)
− 1

κa
− log

(
1−κa
κa

))
, x∈ (κb, κa) (14)

where
νaκa = νb(1−κb) (15)

and κb is the unique solution to

log

(
(1−κb)2

κb(νa/νb− 1 +κb)

)
=

(
1 +

νa
νb

)
1

1−κb
.

Although νa and νb may differ, provided they are both positive the thresholds κa and κb are both
inside the interval (0,1) and ensure the necessary balance (15) between bids and asks that are
matched.

If there are market orders, that is if µa, µb ≥ 0, then this results in a rescaling of the distribu-
tion (14) provided the support of the rescaled distribution remains contained within the interval
(0,1).
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5.1.2. Market impact. As a further illustration, consider the case where fa(x) = fb(x) =
1, x ∈ (0,1), νa = νb = 1 and µa, µb ≥ 0. Use the notation πb(µa, µb;x), πa(µa, µb;x) for the solution
to equations (12) satisfying the required boundary conditions in this case. Then provided µa/(1 +
µb), µb/(1 +µa)<w(≈ 0.278) this solution has πa(µa, µb;x) = πb(µb, µa; 1−x) and

πb(µa, µb;x) =
πb ((1 +µb)x+µa(1−x))

1 +µa +µb
, x∈

(
w(1 +µb)−µa

w+ 1
,1− w(1 +µa)−µb

w+ 1

)
(16)

where πb(.) is the earlier solution (2).
An important assumption for our mathematical development has been that all orders are for

a single unit, and an outstanding question concerns the extent to which the model can be gen-
eralized. In practice, a long-term investor who wishes to buy or sell a large number of units may
choose to spread the order in line with volume in the market, so as not to unduly move the price
against her [8]. We are able to analyze the market impact of a particularly simple approach, when
the investor leaks the order into the market according to an independent Poisson process over a
relatively long period, where the market relaxes to the new equilibrium dynamics over that period.
Thus the impact of a large market order to buy will be to increase the parameter µb to say µb+ε. As
ε increases the time taken to complete the order decreases, but the impact on the distribution (16)
increases, leading to an overall less advantageous trading price. Similarly if a large limit order is
leaked into the market as an independent Poisson process, this can also modeled by a perturbation
of equations (12).

In markets with a relatively small set of participants with large orders there may be advantages
in market designs where large transactions may be quickly arranged at fixed prices; Duffie and Zhu
[7] discuss trading protocols that complement limit order books for large strategic investors.

5.1.3. One-sided markets. Toke [25] has considered a special case where analytic expres-
sions for various quantities such as the expected number of bids in a given interval are readily
available, as we now describe.

Suppose that fb(x) = 1, x∈ (0,1), νa = µb = 0 and µa > νb > 0. Thus all bids are limit orders and
all asks are market orders, a one-sided market. Then πb(x) = νb/µa, x∈ (κb,1) where κb = 1−µa/νb.
And, further, for x> κb the number of bids present in the interval (x,1), that is B(x,1), is a birth
and death process whose stationary distribution is geometric with mean νb(1−x)/(µa−νb(1−x)).
Thus, for example, E[B(x, y)] can be readily calculated.

Various generalizations are also tractable, provided the market remains one-sided Toke [25].
For example, suppose each bid entering the LOB is cancelled after an independent exponentially
distributed time with parameter θ unless it has been previously matched. Then the number of
bids present in the interval (x,1) is again a birth and death process. Now the entire LOB is a
positive recurrent Markov process, and it is straightforward to verify that, as θ ↓ 0, bids to the
left of κb are seldom matched and the stationary distribution of the rightmost bid approaches
πb(x) = νb/µa, x∈ (κb,1), as we would expect.

5.2. Trading strategies. Next we consider a few simple strategies that can be analyzed using
our model. For simplicity, we present the results for the case when the bid and ask price distributions
are equal and uniform on (0,1), but the analysis easily extends to other arrival distributions.
The limiting densities of the rightmost bid and leftmost ask for this model were determined in
Corollary 1.

5.2.1. Market making. We begin by considering a single market maker who places an infinite
number of bid, respectively ask, orders at p, respectively q = 1− p, where κb < p < q < κa. Thus
whenever q is the lowest ask price, the trader obtains all bids that arrive at prices above q, and
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whenever p is the highest bid price, she obtains all asks that arrive at prices below p, making
a profit of q − p per bid–ask pair so acquired. Call the orders placed by the trader artificial, to
distinguish them from the natural orders. The rate at which the trader is able to match her orders
is proportional to p times the probability that the rightmost bid is exactly p.

Placing an infinite supply of bids at a level below κ has no asymptotic effect on the evolution of
the LOB. For p > κ≈ 0.218 no ask is accepted at a price less than p, and there will be a positive
probability that the rightmost bid is exactly p (i.e., there are no bids at prices above p). To find
this probability, we consider the following alternative model L̃: there is an infinite supply of bids
placed at 0, but the price equivalence function P̃ is constant on [0, p]. (Otherwise, the initial state,
arrival processes, and price equivalence functions coincide in L and L̃.) In L̃, the bids and asks
above p will interact just as in L, so the probability that the rightmost bid is the infinite order in L
is equal to the probability that the rightmost bid is at or below p in L̃. Note that only finitely many
of the bids placed at 0 will ever be fulfilled in L̃. By Lemma 1, pathwise, at all times the difference
between the bid/ask queue sizes in L̃ and a limit order book without the infinite supply of bids
at 0 will be bounded by the overall number of bids departing from that infinite supply. Hence the
infinite bid at 0 is irrelevant for the analysis of the steady-state distribution of the highest bid,
since in the limit t→∞ the difference will disappear.

In L̃, asks at prices below p cannot stay in the book, i.e. $a(x) = 0 for x ≤ p. By Remark 5,
the density of the highest bid $b(x) is equal to 1/x on [κb, p), and to C

(
1
x

+ log 1−x
x

)
on [p, q] (the

latter is obtained as in Corollary 1). Recall that $b is continuous, which allows us to determine C
and κb (since $b integrates to 1). This allows us to find κb as

κb =
p

e

(
1− p
p

)C
and to deduce that the rightmost natural bid has density

$b(x) =


1

x
,

p

e

(
1− p
p

)C
≤ x≤ p;

C

(
1

x
+ log

1−x
x

)
, p≤ x≤ q;

where C = (1 + p log((1− p)/p))−1. The probability the rightmost natural bid is p or less is thus
1−C log((1− p)/p), and this is therefore the probability that the rightmost bid is exactly p in the
model with infinitely many artificial bids at p and infinitely many artificial asks at q= 1−p, where
κ< p< 1/2< q.

To maximize the profit rate we need to solve the optimization problem

maximize (1− 2p)p

(
1−C log

1− p
p

)
where C =

(
1 + p log

1− p
p

)−1
subject to p∈ [κ,1/2].

The maximum is attained at p≈ 0.377, and gives a profit rate of ≈ 0.054.

5.2.2. Sniping. We next consider a trader with a sniping strategy: the trader immediately
buys every bid that joins the LOB at price above q, and every ask that joins the LOB at price
below p (with q = 1− p still). Now the trader has lower priority than the orders already in the
queue, but she obtains a better price for the orders that she does manage to buy.

The effect on the LOB of the sniping strategy is to ensure there are no queued bids above q and
no queued asks below p; for p < q, the set of bids and asks on (p, q) has the same distribution in
the sniping and the market making model, and therefore the probability that p is the highest bid
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Figure 2. Profit from sniping and market making strategies

Note. Solid line is the sniping strategy, dashed line is the market making strategy. (Sniping with p < 1/2 is shown
for completeness; as argued in the text, it does not maximize the profit.)

is the same as in the market making model as well. (The profit rates for the trader are different.)
But it also makes sense to consider the sniping strategy with p > q, when it ensures that there are
no queued orders of any kind in the interval (q, p): they are all sniped up by the trader. (An ask
arriving at price a∈ (q, p) cannot be matched with a queued bid, because there are no queued bids
above q.) The trader makes a net profit of zero on the orders in (q, p); the point of sniping them is
to increase the probability of being able to buy a bid at a high price.

Summarizing, if p > q then the LOB has no queued orders between p and q. Since all the bids are
at prices below q, and the ask density there is zero, we seefrom Proposition 2 that the density of
the rightmost bid is $b(x) = 1/x on [κb, q); since $b integrates to 1, we find κb = q/e. Notice that
the distribution of the rightmost bid stochastically decreases as q decreases, hence the probability
of acquiring an ask at low price a < 1/2 increases as q decreases. This shows that the profit rate
from sniping bids above q and asks below p for p > 1/2 is strictly higher than the profit rate from
sniping bids above p and asks below q. Thus, it suffices to consider the case of p > 1/2 > q. We
thus solve

maximize

∫ 1−p

κb

(1− 2x) log
x

κb
dx where κb =

1− p
e

subject to p∈ [1/2,1].

The maximum is attained at 1− p= q= e/(e2 + 1)≈ 0.324 and gives a profit rate of ≈ 0.060.
Figure 2 presents a comparison between the profit rates from the market making and sniping

strategies, as a function of p (which, recall, is the price below which the trader would like all asks)
– for completeness, p < 1/2 is included for the sniping strategy as well.

5.2.3. A mixed strategy. It is possible to consider a mixture of the above strategies: the
trader places an infinite supply of bids at P (thus acquiring all asks that arrive below P whenever
P is the highest bid price), but in addition attempts to snipe up all the additional asks that land
at prices x< p. We assume the trader gets the best of the two possible prices when both p and P
are larger than the price of the arriving ask. There are several possible cases corresponding to the
relative arrangement of p, P , and 1/2:
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Figure 3. Profit rate from the mixed strategy

Note. Profit rate from the mixed strategy as a function of sniping threshold p and infinite bid order location P .

1. If p < P (this means that there are no additional asks to snipe up), this degenerates to the
market maker strategy, with a profit of (1−2P ) per bid–ask pair bought, with pairs bought at rate
P log(P/κb). (The probability of the highest natural bid being below P is log(P/κb); when it is
there, asks arrive at prices below P at rate P .) Clearly, one wants P < 1/2 in this case, otherwise
the profit is negative, so we can write this case as p < P < 1/2.

2. If P < p < 1/2, then one gets additional asks at price x at rate log(x/κb), for a profit of
(1− 2x), for all x from P to p.

3. If P < 1/2< p, there are two further cases: we may have P < 1− p or P > 1− p.
(a) If P < 1−p < 1/2< p< 1−P , then the trader snipes all orders between 1−p and p for a

net profit of 0. Profit (1−2P ) from a bid–ask pair matching the infinite orders is generated at rate
P log((1− p)/κb), and profit 1− 2x, P ≤ x≤ 1− p, from sniping is generated at rate 1 + log(x/κb).
By Remark 5, the highest bid density is 1/x on (κb,1− p], so κb = (1− p)/e.

(b) If 1−p < P < 1/2< 1−P < p, then P is always the best bid, which means that the trader
gets all the asks that arrive below P , generating profit at rate (1−2P )P . Orders arriving between
P and 1−P cancel each other, and all the asks arriving between 1−P and p are bought up for a
loss (negative profit) of (1− 2x).

4. Finally, the case P > 1/2 is silly, because every bid–ask pair bought will be bought at a loss.
Figure 3 shows the profit for the two-parameter space. The largest profit is obtained when

P = 1−p= 1/4, and the profit is then acquired at rate 1/8 = 0.125. This corresponds to the trader
placing an infinite bid order at 1/4 (thus buying all asks that arrive with price below 1/4 for 1/4),
an infinite ask order at 3/4, and sniping up all orders that join the LOB at prices between 1/4 and
3/4.

5.3. Competition between traders. Finally we comment on the situation that arises when
multiple traders compete using the simple strategies described in Section 5.2.

Consider first the case of two competing traders, the first of whom has the ability to employ
a sniping strategy of the form described in Section 5.2.2, and the second of whom cannot act
quickly enough to snipe but does have the capacity to employ a market making strategy of the
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form described in Section 5.2.1. Suppose then the market maker places an infinite number of
bid, respectively ask, orders at P , respectively 1 − P , where P ≤ 1/2. And suppose the sniper
immediately buys every bid that joins the LOB at price above q, and every ask that joins the LOB
at price below 1− q, where P ≤ q≤ 1/2.

For given P and q the behavior of the LOB is as analyzed in Section 5.2.3: but incentives for
the two traders are different. Given P and q the profit rate for the sniper is

∫ q
P

(1− 2x) ln(ex/q)dx

and for the market maker (1− 2P )P
∫ P
q/e

1/x dx= (1− 2P )P log(eP/q) provided P > κb = q/e. If

P < q/e the market maker’s orders are outside of the recurrent range (κb,1− κb) of the LOB and
so are not matched. It is natural to suppose the sniper follows the market maker: that is the sniper
observes the choice P of the market maker and chooses q accordingly. The maximizing choice for
the sniper is then q =

√
P (1−P ). Given this, the optimum choice for the market maker, that

maximizes his profit rate, is P ≈ 0.340. At this equilibrium, the profit rate of the market maker is
0.073 and of the sniper 0.020.

Consider next the case of two or more traders using either the market making strategies of
Section 5.2.1 or the mixed strategies of Section 5.2.3. Each trader will have an incentive to improve
slightly the prices at which she places infinite orders of bids and asks, thus gaining all the profit
from those orders for herself alone. The Nash equilibrium has the traders compete away the bid-
ask spread and with it all their profits. The model becomes an example of the Bertrand model of
price competition and, as there, the conclusion is softened with more realistic assumptions on, for
example, capacity constraints or cost asymmetries.

Next consider competition between two or more traders using the sniping strategies of Sec-
tion 5.2.2; for example between traders who attempt to snipe a limit order as it arrives with
an exactly matching limit order. If multiple traders attempt to simultaneously snipe the arriving
order, than one of them will succeed and the others will cancel their own orders immediately as
they detect that their orders have not been successful. There is clearly an advantage for a trader
who can snipe an arriving order more quickly than the other traders, and indeed such a trader
can enforce the optimum sniping strategy of Section 5.2.2 and exclude slower traders from the
market. It has been argued that competition on speed is wasteful (see Budish et al. [3]), and there
are proposals to encourage traders to compete on price, rather than speed, as for example in the
proposal of Budish et al. [4] where a market continuous in time is replaced with frequent batch
auctions, held perhaps several times a second. We shall explore the consequences of competition
on price between sniping traders who can all react at the same speed to a new order entering the
LOB.

In such a competitive environment traders will have an incentive to increase the price q above
which they snipe bids, and decrease the price p below which they snipe asks, towards 1/2: they will
refrain from sniping orders on which they would expect to make a loss. At the Nash equilibrium,
each trader will snipe at all asks with prices below 1/2 and at all bids with prices above 1/2
(getting the order with the same probability as each of the other traders). The rightmost bid
will then have density 1/x on (1/(2e),1/2) by Remark 5. This results in a combined profit rate
1/(2e)− (1+e2)/(8e2)≈ 0.042. Thus price competition between sniping traders has decreased their
combined profit rate only slightly, from 0.060 to 0.042. Alternatively, one can view this reduction
as the effect of a batch rather than a continuous market.

Next we comment on the impact of traders on the bid-ask spread. The mean of the distribution (2)
can be calculated and is simply (1 − κ)/2. Thus without traders the mean spread between the
highest bid and the lowest ask in the LOB is κ≈ 0.218, while the maximum spread is 1−2κ≈ 0.564.
At the Nash equilibrium between sniping traders both are increased, the mean spread to 1/e≈ 0.368
and the maximum spread to 1−1/e≈ 0.632. For comparison, with a single sniping trader both are
further increased, the mean spread to 1− 2(e− 1)/(e2 + 1) ≈ 0.590 and the maximum spread to
1−2/(e2 +1)≈ 0.762; and at the equilibrium between a market making trader and a sniping trader
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the mean and maximum spread are as low as 0.228 and 0.320 respectively. These calculations are
of course for a specific example, but they do illustrate the tractability of the model and its insights.

As a final remark we comment on the inventory of traders under the Nash equilibrium between
sniping traders described above. Observe that the LOB below 1/2 evolves independently of the
LOB above 1/2, and both processes are positive recurrent inside their corresponding thresholds.
Consider the net position of the traders collectively, that is all the bids they have matched minus
all the asks they have matched, observed at those times when the LOB is empty. This evolves as
a symmetric random walk, and is null recurrent. Slight variations of the traders’ strategies would
moderate this conclusion: for example, a trader might refrain from sniping bids close enough to 1/2
when his net position is large. And of course such variations will be essential over longer time-scales
than those considered in this paper where the arrival price distributions may vary.
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