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Abstract 
 
Single-cell RNA-seq (scRNA-seq) enables a quantitative cell-type characterisation        
based on global transcriptome profiles. We present Single-Cell Consensus Clustering          
(SC3), a user-friendly tool for unsupervised clustering which achieves high accuracy           
and robustness by combining multiple clustering solutions through a consensus          
approach. We demonstrate that SC3 is capable of identifying subclones based on the             
transcriptomes from neoplastic cells collected from patients. 
 
  

 



 

Main text 
 
One of the key applications of scRNA-seq is determining cell types based on             
transcriptome profiles alone through unsupervised clustering1–3. A full characterisation of          
the transcriptional landscape of individual cells holds an enormous potential, both for            
basic biology and clinical applications. SC3 is an interactive and user-friendly           
R-package for clustering and its integration with Bioconductor4 and scater5 makes it            
easy to incorporate into existing bioinformatic workflows. 
 
The SC3 pipeline is presented in Fig. 1a, Methods. Each of the steps requires the               
specification of a number of parameters. Choosing optimal parameter values is difficult            
and time-consuming. To avoid this problem, SC3 utilizes a parallelisation approach,           
whereby a significant subset of the parameter space is evaluated simultaneously to            
obtain a set of clusterings. SC3 then combines all the different clustering outcomes into              
a consensus matrix that summarises how often each pair of cells is located in the same                
cluster. The final result provided by SC3 is determined by complete-linkage hierarchical            
clustering of the consensus matrix into k groups. 
 
To constrain the parameter values of the SC3 pipeline, we first considered six publicly              
available scRNA-Seq datasets (Fig. 1b). The datasets were selected on the basis that             1

one can be highly confident in the cell-labels as they represent cells from different              
stages, conditions or lines, and thus we consider them as ‘gold standard’. To quantify              
the similarity between the reference labels and the clusters obtained by SC3, we used              
the Adjusted Rand Index (ARI, see Methods) which ranges from 1, when the clusterings              
are identical, to 0 when the similarity is what one would expect by chance. For the gold                 
standard datasets, we found that the quality of the outcome as measured by the ARI               
was sensitive to the number of eigenvectors, d, retained after the spectral            
transformation (Fig. S1, S2). For all six datasets we find that the best clusterings were               
achieved when d is between 4-7% of the number of cells, N (Fig. 1c, S3a, Methods).                
The robustness of the 4-7% region was supported by a simulation experiment where the              
reads from the six gold standard datasets were downsampled by a factor of ten              
(Methods and Fig. S3a). We further tested the SC3 pipeline on six other published              
datasets, where the cell labels can only be considered ‘silver standard’ since they were              
assigned using computational methods and the authors’ knowledge of the underlying           
biology. Again, we find that SC3 performs well when using d in the 4-7% of N interval                 
(Fig. S3b). The final step, consensus clustering, improves both the accuracy and the             
stability of the solution. k-means based methods will typically provide different outcomes            

1 Full references to the datasets can be found in the Supplementary Results 
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depending on the initial conditions. We find that this variability is significantly reduced             
with the consensus approach (Fig. 1d). 
 
To benchmark SC3, we considered five other methods: tSNE6 followed by k-means            
clustering (a method similar to the one used by Grün et al1), pcaReduce7, SNN-Cliq8,              
SINCERA9 and SEURAT10. As Fig. 2a shows, SC3 performs better than the five tested              
methods across all datasets (Wilcoxon signed-rank test p-value < 0.01), with only a few              
exceptions. In addition to considering accuracy, we also compared the stability of SC3             
with other stochastic methods (pcaReduce and tSNE+kmeans, but not SEURAT) by           
running them 100 times (Fig. 2b, Methods, black dots in Fig. 2a). In contrast to the other                 
methods that rely on different initializations, SC3 is highly stable. 
 
Although SC3’s consensus strategy provides a high accuracy, it comes at a moderate             
computational cost: the run time for N = 2,000 is ~20 mins (Fig. S4a). The main                
bottleneck is the k-means clustering and by reducing how many different runs are             
considered it is possible to cluster 5,000 cells in ~20 mins with only a slight reduction in                 
accuracy (Fig. S4b). To apply SC3 to even larger datasets, we have implemented a              
hybrid approach that combines unsupervised and supervised methodologies. SC3         
selects a subset of 5,000 cells uniformly at random, and obtains clusters from this              
subset as described above. Subsequently, the inferred labels are used to train a support              
vector machine (SVM, Methods), which is employed to assign labels to the remaining             
cells. Our result shows that the use of an SVM to predict cell labels works well (Fig. 2c,                  
S4c and Methods). Using the hybrid approach, we were able to analyse a large              
Drop-Seq dataset with N = 44,808 cells and k = 39 clusters10 and our results were                
again in good agreement with the original authors’ (Supplementary Results, Methods,           
Fig. S5, Table S1). The main drawback of the sampling strategy is that one may fail to                 
identify rare cell-types, and when N>>5,000 there is a substantial risk that the sampled              
distribution will differ significantly from the full distribution (Methods). If the user is trying              
to identify a rare subpopulation (e.g. cancer stem cells), then methods specifically            
designed to identify rare cell-types such as RaceID1 or GiniClust11 may be more             
appropriate.  
 
To help the user identify a good choice of k, we have implemented a method based on                 
Random Matrix Theory (RMT)12,13 for determining the number of clusters (Methods).           
Overall, we find good agreement between these estimates, , and the numbers        k̂     
suggested by the original authors (Fig. 2b). Additionally, in the interactive SC3 session             
the user can explore different choices of k in real time, by either assessing the               
consensus matrix (Fig. 2d), the silhouette index14 (a measure of how tightly grouped the              
cells in the clusters are), or the expression matrix. 
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To help the user interpret the clustering result SC3 can identify differentially expressed             
genes, marker genes, and outlier cells (Fig. S6, Methods, Table S2). Marker genes are              
particularly useful since they can be used to uniquely identify a cluster. To illustrate              
these features, we analysed the Deng15 dataset tracing embryonic developmental          
stages. The most stable result for k = 10 is shown in Fig. 2d, and our clusters largely                  
agree with the known sampling timepoints. In total, we identified ~3000 marker genes             
(Table S3), many of which had been previously reported as specific to the different              
developmental stages16,17. Furthermore, the analysis reveals several genes specific to          
each developmental stage which had previously not been reported (Table S3).           
Importantly, when using the reference labels reported by the authors15, nine cells have             
high outlier scores (purple cells in Fig. S6c). As it turns out, these were prepared using                
the Smart-Seq2 protocol instead of the Smart-Seq protocol8,15.  
 
Finally, we investigated the ability of SC3 to identify subclones based on            
transcriptomes. Myeloproliferative neoplasms, a group of diseases characterised by the          
overproduction of terminally differentiated cells of the myeloid lineage, reflect an early            
stage of tumorigenesis where multiple subclones are known to coexist in the same             
patient18. From exome sequencing data, we previously identified TET2 and JAK2V61F           
as the only driver mutations in a large patient cohort19. Haematopoietic stem cells             
(HSCs) are thought to be the cell of origin in myeloproliferative neoplasms. To gain              
further insight into the transcriptional landscape of patient derived HSCs, we obtained            
scRNA-seq data from the two patients (Figs. S7a-b, S8, Methods, Table S4). For             
patient 1 (N = 51), both the silhouette index of SC3 and our RMT method suggested that                 
k = 3, provides the best clustering, revealing three clusters of similar size (Fig. S9). For                
patient 2 (N = 89) SC3 indicated k=1 (Fig. S10), in agreement with the RMT algorithm,                
suggesting that one single cluster might best reflect the underlying transcriptional           
changes. 

    
Since known driver mutations in these patients are the TET2 and JAK2V617F loci20 we              
hypothesized that the different clusters correspond to different combinations of          
mutations within different clones. The genotype composition for each HSC clone was            
determined by growing individual haematopoietic stem cells into        
granulocyte/macrophage colonies, followed by Sanger sequencing of the TET2 and          
JAK2V617F loci (Fig. S7b-c). In agreement with the clustering defined by SC3, patient 1              
(k=3) was found to harbor three different subclones: (i) cells with both TET2 and              
JAK2V617F mutations, (ii) cells with a TET2 mutation and (iii) wild-type cells (Fig. S7c).              
Strikingly, the SC3-clusters contain 22%, 29% and 49% of the cells, in excellent             
agreement with the proportions of each genotype found in the patient, namely 20%,             
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30% and 50% (Fig. S7c). Thus, we hypothesize that cluster 1 corresponds to the double               
mutant, cluster 2 corresponds to cells with only a TET2 mutation, and cluster 3              
corresponds to wild-type cells. The HSC compartment of patient 2 was 100% mutant for              
TET2 and JAK2V617F (Fig. S7c), which again was consistent with clustering of k=1             
suggested by SC3 (Fig. S10). We then analysed the pooled cells from patient 1 and 2.                
SC3 clustering again suggested k=3 (Figs. 3, S11), in agreement with the RMT             
algorithm. Most importantly, all of the putative double mutant cells from patient 1 were              
grouped with the double mutant cells from patient 2. SC3 reported 33 marker genes for               
the putative TET2 mutant and 202 marker genes for the putative double mutant clone              
(Fig. 3, Table S5). Together with additional evidence (Supplementary Results), we           
conclude that SC3 is able to identify subclones across patients.  
 

 
  

 



 

Data Availability 
 
All datasets (in Fig. 1b and Macosko dataset) were acquired from the accessions             
provided in the original publications. According to the authors, the Pollen dataset            
contains two distinct hierarchies and the cells can be grouped either into 4 or 11               
clusters, and the Usoskin dataset contains three hierarchies and the cells can be             
grouped either into 4, 8 or 11 clusters. scRNA-seq data for patient 1 and 2 is available                 
from GEO accession GSE79102. 

 
Software availability 
 
SC3 is available as a R package at http://bioconductor.org/packages/SC3/.  
 
Scripts for figures generation are available at 
http://github.com/hemberg-lab/SC3-paper-figures  
 
At the time of writing the manuscript the following old versions of some of the tools were                 
used (these tools have been updated/upgraded since then): 
 

1. SC3 (1.1.2 <= Version < 1.1.5). These versions of SC3 can be installed from              
source/binary files from Bioconductor    
(http://bioconductor.org/packages/3.3/bioc/html/SC3.html) or directly from Github     
using commands: 
 
install.packages("devtools") 
devtools::install_github("hemberg-lab/SC3", ref = "8a86b60463") 
 
In the newer versions the main SC3 pipeline has not been changed. 

 
2. SEURAT (version 1.3) - can be installed from GitHub:  

 
install.packages("devtools") 
devtools::install_github('satijalab/seurat', ref = 'da6cd08') 
 
In the newer versions of SEURAT a different algorithm is used for clustering. 
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Figure Legends 
 
Figure 1. The SC3 framework for consensus clustering. (a) Overview of clustering with SC3               
framework (see Methods). The consensus step is exemplified using the Treutlein data. (b)             
Published datasets used to set SC3 parameters. N is the number of cells in a dataset; k is the                   
number of clusters originally identified by the authors; Units: RPKM is Reads Per Kilobase of               
transcript per Million mapped reads, RPM is Reads Per Million mapped reads, FPKM is              
Fragments Per Kilobase of transcript per Million mapped reads, TPM is Transcripts Per Million              
mapped reads. (c) Histogram of the d values where ARI>.95 is achieved for the gold standard                
datasets. The black vertical lines indicate the interval d = 4-7% of the total number of cells N,                  
showing high accuracy in the classification. (d) 100 realizations of the SC3 clustering of the               
datasets shown in (b). Dots represent individual clustering runs. Bars correspond to the median              
of the dots. Red and grey colours correspond to clustering with and without consensus step.               
The black line corresponds to ARI=0.8. The dashed black line separates gold and silver              
standard datasets. 
 
Figure 2. Benchmarking of SC3 against existing methods. (a) SC3, tSNE+kmeans and            
pcaReduce were applied 100 times to each dataset. SNN-Cliq and SINCERA are deterministic             
and were run only once. SEURAT was also run once, however was optimised over different               
values of the density parameter G (Methods). Each panel shows the ARI (black dots, Methods)               
between the inferred clusterings and the reference labels. Bars correspond to the median of the               
dots. For the Pollen and Usoskin datasets all different hierarchies were considered (Data             
Avaialbility). The black line indicates ARI = 0.8. The dashed black line separates gold and silver                
standard datasets. (b) Number of clusters predicted by SC3, SINCERA and SNN-Cliq for all       k̂          
datasets. Ref is the reference clustering reported by the authors. (c) The performance of the               
hybrid SC3 (Methods). Dots represent outliers higher (lower) than the highest (lowest) value             
within 1.5 x IQR, where IQR is the interquartile range. The black line indicates ARI = 0.8. The                  
dashed black line in the legend separates gold and silver standard datasets. (d) The consensus               
matrix as generated by SC3 for the Deng dataset (Methods). The matrix indicates how often               
each pair of cells was assigned to the same cluster by the different parameter combinations as                
indicated by the colorbar (1 - always, 0 - never). SC3 finds a clustering with k = 10 clusters,                   
separated by the white lines as visual guides. The colors at the top represent the reference                
labels, corresponding to different stages of development (see colour guide).  
 
Figure 3. Using SC3 to define subclones from two patients with myeloproliferative            
neoplasm. Marker gene expression matrix (after Gene Filter and Log-transformation, Methods)           
of the combined dataset (patient 1 + patient 2). Clusters (separated by white vertical lines)               
correspond to k = 3 (Methods). Only the top 10 marker genes are shown for each cluster. 
 
 
 

 


