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Abstract In this paper, viable transmission media technology 

has been demonstrated for the first time on GaN-on-low 
resistivity silicon (LR- -band 
frequencies (220-325 GHz). The shielded-elevated (SE) CPW 
lines employ a standard MMIC compatible air bridge process to 
elevate the CPW traces above a 5 µm layer of benzocyclobutene 
(BCB) on shielded metalized ground plates. An insertion loss of 
less than 2.3 dB/mm was achieved up to 325 GHz, compared with 
27 dB/mm for CPW fabricated directly on the substrate. To 
prove the efficiency of the technology, a short-circuited stub filter 
with a resonant frequency of 244 GHz was realised. The filter 
achieved an unloaded Q-factor of 28, along with an insertion loss 
of 0.35 dB and a return loss of -34 dB. To our knowledge, these 
results are the best reported to date for GaN-based technology.  
 

Index Terms GaN-HEMTs, low resistivity silicon substrates, 
coplanar waveguides (CPWs), H-band, High-Q THz filters, 
TMICs. 
 

I. INTRODUCTION 

 Hz technology has many applications in imaging and 
sensing, spectroscopy, astronomy and communications [1] 

[2]. The short wavelength of THz frequencies makes it a 
promising technology due to the unique interaction of its 
spectral regime with matter and the achievable high resolution 
imaging [3]. This interest in new emerging applications is 
motivated by the recent advances in high-speed semiconductor 
devices and nanotechnology; which have enabled the 
realization of TMIC (THz Monolithic Integrated Circuits) [4]. 
The advantage of using III-Nitride based material devices in 
TMIC such as higher power density and power added 
efficiency makes it more suitable than other material systems 
such as GaAs, InP or Si [5]. The utilization of TMIC 
technology in THz frequencies application is a critical 
component to suppress unwanted moding effects and hence 
reducing signal loss. In addition, TMIC offers the advantage 
of higher functionality, low system costs and smaller chip size. 
Currently, GaN high-electron-mobility-transistors (HEMTs) 
on semi-insulating (SI) SiC have achieved a cutoff frequency  
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(fT) of 450 GHz through the intensive progress in GaN 
HEMTs scaling technologies toward THz operation; applying 
such devices in TMIC technology will yield systems operating 
in frequencies higher than their fT [6]. However, SiC substrates 
are expensive and have limited availability in large substrate 
diameters.  
   The potential use of GaN HEMTs grown on LR Si for 
MMIC circuits offers the advantage of cost-effective and large 
diameter wafers, which make manufacturing costs of GaN-on- 
LR Si potentially competitive with existing high-resistivity 
(HR) Si and SiC technologies. However, RF substrate 
coupling effects are the main cause of performance 
degradation when considering LR Si as a substrate [7]. 
Therefore, substrate loss suppression is a crucial step towards 
the industrialization of high-quality interconnects and passive 
elements using GaN-on-LR Si technology.  
However, At frequencies above 220 GHz, designing high-Q 
passive components is very challenging as the wavelength 
becomes comparable with the substrate thicknesses [8]. To 
capitalize on the advantages in utilizing GaN on LR Si for 
millimeter-wave and THz applications, a technology with 
minimal substrate coupling is required. Insertion of a low-loss, 
low dielectric constant, k, layer of BCB as an insulator has 
proven to be a successful technique for substrate coupling 
reduction [9]. This approach, compared to other complicated 
techniques  [10] [11], has the advantage of accommodating 
active circuits underneath the passive components and 
interconnections with no degradation of active device 
performance [12].  
   In this work, substrate coupling effects were eliminated by 
the complete isolation of the substrate, where the CPW 
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Fig. 1: Oblique projection of the fabricated 1 mm- -CPW 
on BCB with G = 21 µm, S = 18 µm and Wg = 100 µm. 
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interconnect have no direct contact to the lossy Si in addition 
to EM shielding. The developed SE-CPW transmission media 
use a reliable fabrication process to elevate all the CPW traces 
above a 5 µm layer of BCB on shielded metalized ground 
plates. Hence, the insertion loss was dramatically reduced to 
less than 2.3 dB/mm, compared to 27 dB/mm for that of CPW 
fabricated directly on the substrate over the whole H-band 
frequency range. For further investigation of the viability of 
the proposed technology, a band bass filter was simulated, 
fabricated and characterized. A sharp resonance with Q-factor 
of 28 was obtained at a center frequency of 244 GHz. This 
indicates the suitability of III-V-on-LR Si technology for 
millimeter-wave and THz applications.   
 

I. MATERIAL AND DEVICE TECHNOLOGY 

    The study was performed on a GaN-based material structure 
that could be used to realize AlGaN/GaN HEMTs. The 
epitaxial layers were grown by Metal-Organic Chemical 
Vapor Deposition (MOCVD) on 675 µm thick 

-type Si (111) substrates. The layer stack, from the 
substrate up, consists of a 250 nm AlN nucleation layer 
followed by a 850 nm Fe-doped AlGaN graded buffer to 

accommodate the lattice and thermal expansion mismatch, a 
1.4 µm insulating GaN buffer and channel layer, a 25 nm 
Al0.25Ga0.75N barrier and a 2 nm GaN cap, as shown in Fig. 1. 
Epitaxial layers and growth procedure are detailed in [13].   
   All levels of device definition were realized using optical 
lithography and all steps required to realize the transmission 
media are compatible with standard MMICs technology. As in 
a standard MMIC process, passive devices were fabricated on 
the mesa floor, where the transistor active region (the upper 
two layers) were etched away.  
   Fabrication process of the SE-CPW technology started with 
spinning a 5 µm-thick BCB film, and then fully cured at 250 
0C in N2 atmosphere. Following this, Ti/Au (50/600 nm) was 
deposited to form the fabrication alignment markers and 
shielding plates. Next, air-bridge technology was utilized to 
elevate the CPW traces. Finally, the sample was metalized 
using 2 µm Au electroplating. Fig. 2 shows a micrograph of 
the fabricated devices. 
 

II. MODELLING AND MEASUREMENTS  
   A 3-D full-wave electromagnetic simulation tool, Ansoft 
HFSS was employed to design the SE-CPW technology. 
Optimization of structure geometrics and highs was carried 
during the simulation for better performance and to ensure the 
suppression of RF energy dispersion introduced by the 
conductive Si substrate.   
   On-wafer measurements of small-signal S-parameter were 
performed using an Agilent PNA network analyzer over the 
range 220-325 GHz (H-band). The system was calibrated 
using short-open-load-thru (SOLT) calibration based on an 
off-chip ISS impedance standard. 50 µm-pitch WR-03 
waveguide Picoprobes were used for probing; where a durable 
device input/output pads were realised by placing adjacent two 
air-bridges, as shown in Fig 2. The samples were placed on a 
thick quartz spacer to eliminate any possible parasitic 
substrate modes caused by the metal chuck. 
 

III. RESULTS AND DISCUSSION 

A. Transmission media 
   RF signal coupling to the lossy substrate was investigated by 
the comparison of CPW layout fabricated directly on GaN-on-
LR Si substrate with that using the SE-CPW with BCB 
technology (by shielding using metal layer, inserting low 
dielectric constant BCB and additional elevation using air-
bridge support), as shown in Fig. 3. In addition, measured 
results of the elevated CPW using air-bridge technology and 
shielding metal (excluding the BCB insert) was included, as 
shown in Fig. 3.  
   From Fig. 3a, substrate losses were clearly dominant for the 
CPW structures realized directly on the substrate for the whole 
H-band frequency range, where an insertion loss of more than 
23 dB/mm was observed. This means that most of the E-field 
was penetrating through to the lossy Si substrate. The insertion 
loss was reduced across the frequency band to less than 5.4 
dB/mm by using an elevated CPW and shielding plates on the 
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Fig. 2: Scanned electron microscopy (SEM) image of the 
fabricated devices on BCB. (a) SE-CPW, and (b) Band-pass 

filter. 
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substrate (excluding the BCB insert). This reduction in 
substrate effects is mainly due to the electric field being 
mostly concentrated within the air-gap between the shielding 
plate and elevated CPW traces. However, as the SE-CPW 
structure requires the use of ground holes in the shielding 
plate, there are small areas in the shielding plate in which the 
CPW signal trace is in direct contact with the lossy substrate. 
Losses are very sensitive to these exposed areas (ground 
holes) especially at H-band frequency range, where the 
wavelength dimensions become comparable to the substrate 
exposed area at the base of the air-bridge support. To 
overcome this issue, the SE-CPW was fabricated on top of a 5 
µm thick layer of BCB. This eliminated substrate coupling 
effects where the CPW traces are totally isolated from the 
lossy substrate. Hence, the return loss was improved to less 
than 2.3 dB/mm up to 325 GHz, the lowest reported to date for 
GaN based technology.  
    To further characterize the transmission media performance 
developed in this work, attenuation constant 
calculated [14]. As shown in Fig. 3b, using the proposed SE-
CPW  was noticeably 
minimized especially at the higher frequency range of the H-

d technology 
as low as of 0.3 Np/mm was obtained up to 325 GHz, and is 
the best reported to date at THz frequencies. This proves the 

complete isolation of the conductive substrate and THz signal 
confinement in the transmission media of this work. The 
measured results obtained are verified by the very close 
agreement between measured and simulated S-parameters, as 
shown in Fig. 3.  
    

B. Short-circuited stub filters 
   The short-circuited shunt matching network is a key 
topology for a variety of circuits including band-pass filters, 
diode detectors and matching / DC return networks [4] [15]. 
However, in the H-band frequency range,  short-circuited 
matching stubs exhibit low quality factor even for SI GaAs 
substrates which makes them a non-viable component for 
TMIC technology [16].  
   Fig. 4 shows a 3-D plot of the fabricated SE-CPW on BCB 
dielectric short-circuited stub filter structure. The short stub 
characteristic impedance, Z0 
dimensions are; W= 39 µm and S = 19 µm. While the feed line 
was designed to be Z0 W = 24 µm and S = 30 µm.  
   Fig. 5a shows the simulated and measured S-parameters of 
the SE-CPW short stubs on BCB dielectric insert. It is clear 
that insertion of an insulating layer of BCB between the GaN-
on-LR Si substrate and shielding plate resulted in superior 
performance and a relatively sharp resonance, with a Q-factor 
of 28 and return loss of -34 dB and at 244 GHz. In addition, an 
insertion loss and 3dB-bandwidth of as low as 0.35 dB and 
101 GHz were obtained respectively at a resonance frequency 
of 244 GHz. This improvement in performance is an 
indication of the complete isolation of the lossy substrate.  
   Previous work done by other researchers obtained a Q-factor 
of 21 and insertion loss of -4.1 dB/mm on RF CMOS 
technology operating at 60 GHz [10] . These results obtained 
by the newly developed technology are superior to those of the 
same structure using shielded elevated CPW on air-bridge 
supports without the BCB dielectric insert layer as shown in 
Fig. 5b. Higher insertion loss was observed in additional to the 
low quality factor.  
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Fig. 3.  S-parameters results for the fabricated 1 mm-  

transmission media. (a) Insertion loss, and (b) attenuation constant. 
 

 
 

Fig. 4: Oblique projection of the fabricated SE-CPW short-circuited 
stub filter with the fabricated dimensions. 
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IV. CONCLUSIONS 
In this paper, for the first time, high-Q transmission media 

on GaN-on-LR Si substrates ( 40 .cm) technology are 
simulated, fabricated and measured at H-band. The SE-CPW 
lines employ a standard MMIC compatible air bridge process 
to elevate the CPW traces above a 5 µm layer of BCB on 
shielded metalized ground plates. An insertion loss and 
attenuation constant of less than 2.3 dB/mm and 0.4 Np/mm 
were achieved, respectively up to 325 GHz. The viability of 
the proposed SE-CPW technology was investigated by the 
realization of a short-circuited stub filter. The filter achieved 
an unloaded Q-factor and insertion loss of 28 and 0.35 dB, 
respectively at 244 GHz. To our knowledge, these results are 
the best transmission media performance reported to date for 
mm-wave and THz GaN based technology. The proposed SE-
CPW on BCB offers a promising technology for the 
integration of high RF performance active devices and low-
losses passive elements for the realization of TMIC 
technology. 
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Fig. 5.  S-parameters results of the fabricated SE-CPW short-circuited 
stub filter (a) with BCB insert, and (b) without BCB insert. 
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