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Abstract
The quality of the vocoder plays a crucial role in the perfor-
mance of parametric speech synthesis systems. In order to im-
prove the vocoder quality, it is necessary to reconstruct as much
of the perceived components of the speech signal as possible.
In this paper, we first show that the noise component is cur-
rently not accurately modelled in the widely used STRAIGHT
vocoder, thus, limiting the voice range that can be covered and
also limiting the overall quality. In order to motivate a new,
alternative, approach to this issue, we present a new synthe-
sizer, which uses a uniform representation for voiced and un-
voiced segments. This synthesizer has also the advantage of us-
ing a simple signal model compared to other approaches, thus
offering a convenient and controlled alternative for future de-
velopments. Experiments analysing the synthesis quality of the
noise component shows improved speech reconstruction using
the suggested synthesizer compared to STRAIGHT. Addition-
ally an experiment about analysis/resynthesis shows that the
suggested synthesizer solves some of the issues of another uni-
form vocoder, Harmonic Model plus Phase Distortion (HMPD).
In text-to-speech synthesis, it outperforms HMPD and exhibits
a similar, or only slightly worse, quality to STRAIGHT’s qual-
ity, which is encouraging for a new vocoding approach.
Index Terms: parametric speech synthesis, vocoder, pulse
model

1. Introduction
Statistical Parametric Speech Synthesis (SPSS) systems are use-
ful technologies for many applications and can also be a neces-
sary means for communication in case of speech impairment
[1]. Even though, current SPSS systems provide a sufficient
quality for some applications (e.g. GPS devices in noisy envi-
ronment), it is still not satisfying for many others (e.g. applica-
tions in quiet environments, entertainment industry). Regarding
this issue, the vocoder used for reconstructing the waveform
from the generated parameters, is critical since it is responsible,
together with the features it uses, for a substantial part of the
current degradation [2]. The capacity of the vocoder to resyn-
thesize all of the components of the speech signal is obviously
important for obtaining all of the perceived characteristics the
voice can produce. Otherwise, the vocoder, as well as the SPSS
system using it, would be locked on a particular voice quality
that might perfectly fit for a specific set of voices, but would
systematically fail at reproducing the rest of the voice space.
The flexibility of the vocoder’s model will play a critical role
in this matter. For example, representing the speech signal in
a uniform way across time and frequency, e.g. using the same
representation for both voiced and unvoiced segments, it allows
both smooth and abrupt transitions at different time for different
frequency bands. It also avoids discontinuities at both feature

and waveform levels, that do not necessarily appear in transients
and can impact the quality [5]. It also alleviates the dependency
of the SPSS system with respect to a voicing detector, thus, sim-
plifying the learning process [4, 5]. The simplicity of the model
is also an important property, which is often neglected. Indeed,
complex models also implies complex implementations that are
difficult to modify and improve for testing new ideas in a con-
trollable way. Also, over-parametrization of models often lead
to intractable tuning issues that depend on very specific exper-
tise and know-how.

STRAIGHT is currently the most used vocoder for SPSS
[6, 7], which uses a voicing decision in order to ensure the full
randomization of the unvoiced segments, like other vocoders
[8, 9]. The noise component in voiced segments is analyzed
and reconstructed using an aperiodicity measure. Basically, this
measure computes the difference between an upper envelope,
which is based on harmonic peaks, and a lower envelope, which
is based on spectral valleys [7]. In noisy time-frequency regions
of voiced segments, this measure underestimates the noise level
because this upper-to-lower difference is always positive and
substantial, whereas it should be close to zero in these regions
in order to obtain a proper resynthesis of the noise level. There-
fore, the noise that should be reproduced in the synthetic wave-
form tends to be lower than that of the original signal (as shown
and illustrated in Sec. 3.1). On the one hand, this underesti-
mation is a safe approach for vocoding, since it minimizes the
risk of over-randomizing the voiced part of the transients. In-
deed, it has been shown that a lack of noise (i.e. leading of-
ten to buziness) is preferred over noisiness in the transients [3].
Additionally, this safe approach also minimizes the noise gen-
erated in creaky voice segments that easily become hoarse if
the noise level is overestimated. This overestimation actually
occurs in creaky voice since most noise estimators mistake ad-
ditive noise with randomness of pulse positions. This leads to
very high estimated noise level in creaky voice whereas the glot-
tal pulses is actually closer to a Dirac in this mode of phonation
[10]. On the other end, by mitigating the noise component, this
safe approach tends to produce always the same voice quality,
a slightly tense and buzzy voice. As mentioned above, this is
sort of a deadlock for vocoding, since it eludes the problem of
an accurate noise resynthesis that is necessary for a good recon-
struction of breathiness and other voice qualities that involve
the presence of noise in voiced segments, and ultimately for the
overall quality. In other words, for improving the flexibility that
vocoders need for covering a bigger range of voice qualities,
one way or another, it will be necessary to manage the noise
component properly.

Conversely to STRAIGHT, the Harmonic Model + Phase
Distortion (HMPD) vocoder uses a uniform representation [5].
The noise that is present in both voiced and unvoiced segments
is driven by a Phase Distortion Deviation (PDD) that is used to
randomize the phase of the harmonics [5]. Even though HMPD
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constitutes an interesting attempt for a uniform model, the syn-
thetic content is limited to harmonic frequencies, which raises
the following two issues. Firstly, for mid and high pitch voices,
the harmonics are not dense enough with respect to the reso-
lution of the auditory system, so that buziness effects also oc-
cur in unvoiced segments, even though the harmonics’ phase
might be fully randomized. Secondly, no noise can be gener-
ated between harmonics, so that voices often lack breathiness,
especially falsetto voices, which occurs often in female voices.

In this paper, we want to address the issues above by sug-
gesting a new and simple synthesizer that should reproduce the
noisy time-frequency regions of the speech signal more accu-
rately than the two vocoders mentioned above. Since we will
be using known features and we suggest only a new synthe-
sis procedure, we use the term synthesizer and not vocoder in
the following. The used signal model, called Pulse Model in
Log-domain (PML), generates a sequence of wide-band pulses,
in spectral domain, similarly to the STRAIGHT vocoder [6, 7]
and conversely to HMPD that synthesises harmonics. In both
voiced and unvoiced segments, a pulse is a morphing between
a Dirac function and a short segment of Gaussian noise, fol-
lowed by the convolution of the Vocal Tract Filter (VTF). Thus,
conversely to HMPD, the pulse synthesis can generate spectral
content at any frequency, thus, solving HMPD issues, while
preserving the uniformity of representation. Obtaining a per-
ceptually meaningful morphing between a Dirac and a specific
time segment of noise is far from straightforward. For exam-
ple, using a traditional additive weighting of the two compo-
nents in linear domain, the Dirac function will disappear only
when the noise masks it. Knowing also that the noise level and
Dirac amplitude dependent on two different normalisation, the
energy and the sum of the window, respectively, controlling this
masking effect is far from obvious. For this reason, as well
as the underestimated aperiodicity mentioned above, the Dirac
component tends to arise from the noise when using an additive
weighting, which often leads to extra buziness effects in current
vocoders. From this perspective, even though the traditional
source-filter model is well supported by the voice production, it
might not be the most practicable way to control the mixture of
deterministic and random components of a synthesized speech
signal. HMPD alleviates this issue by randomizing the phase of
the harmonics proportionally to the PDD feature, which gradu-
ally blurs the periodicity. For the suggested PML synthesizer,
we aim at preserving this property. We suggest to weight the
noise component in the log spectral domain (i.e. multiplication
in linear spectral domain, convolution in time domain). The
convolution of the Dirac by the noise randomises the Dirac and
avoids any possible residual buziness. Additionally, this log-
domain formulation leads to a very simple definition of the syn-
thesizer, as shown in the next Section. In this first presentation
of PML, we simplified the weighting function to a binary mask.
I.e. For each time-frequency bin, the Dirac of each pulse is ei-
ther left untouched or fully replaced by the corresponding bin
of the noise’s spectrum. This mask can also be seen as a time-
frequency binary voicing decision, which can take any shape
and is not limited to time limits (as with voicing decisions)
and/or frequency limits (as with a maximum voiced frequency
[8]). To limit the differences with the state of the art, this mask
is built from the same PDD feature used in HMPD.

We also demonstrate the problem of noise reduction that
exists in STRAIGHT and HMPD. The contribution of this pa-
per is thus twofold: i) we show the deadlock that appears with
the safe approach of STRAIGHT, and ii) we suggest a potential
way, through this new synthesizer, that could unlock this situ-

ation in the near future. Note that, since we take a more risky,
but necessary, approach in this paper, we do not aim at outper-
forming the state of the art in this first presentation. As it can
be understood from above, the development of a full vocoder
(features+synthesizer) that will outperform the state-of-the-art
vocoders for the majority of voices goes beyond this single pa-
per. We aim at suggesting a synthesizer that offers a simplicity
and flexibility that current approaches do not have. In future
works, these properties should help to better control the compo-
nents of the speech signal and help to elaborate new features or
techniques that should overcome the current deadlock.

Sec. 2 describes the PML synthesizer in details. Sec.
3.3 first illustrates the current limitation in terms of noise syn-
thesis and then presents results of listening tests for analy-
sis/resynthesis and for parametric text-to-speech synthesis.

2. The PML Synthesizer

The PML synthesis process needs the following features that
are illustrated in Fig. 1: i) A fundamental frequency curve
f0(t), which exhibits no voicing decisions. If the provided fun-
damental frequency contains zeros, these segments can be in-
terpolated linearly between voiced segments, and extrapolated
at the beginning and end of the signal. ii) The VTF response
V (t, ω), which is assumed to be minimum phase. iii) A mask
M(t, ω) in the time-frequency space, which is equal to 0 for
deterministic regions and 1 for noisy regions. In this work, we
derived this mask from the Phase Distortion Deviation (PDD)
PDD(t, ω), which has been previously used for phase random-
ization in HMPD [5] and for other applications [11, 12].

2.1. Mask computation

For the first presentation of this model, we chose a very simple
approach for computing this mask. Future works might focus
on more elaborated strategies. The mask is simply a thresh-
olded version of the PDD measurement. In [5], it is shown that
the measurement of phase variance saturates when the variance
increases. Consequently, a threshold of 0.75 was used to force
the variance to higher values in order to ensure the proper ran-
domization of the noise segments. In this work, we used the
same threshold for building the mask:

M(t, ω) =

{
0 PDD(t, ω) ≤ 0.75

1 PDD(t, ω) > 0.75
(1)

Note that the PDD computation is based on differences between
harmonics’ phase. Because the harmonics’ phase is normalized
by the first one [13, 5], a phase difference occurs only from
the 2nd harmonic and above. Thus, the PDD computation is
zero below the 2nd harmonic and as a consequence, the mask
is also zero in this frequency band. This implies that the first
harmonic is never randomized. This is actually not a problem
since, in silences and fricatives, the corresponding amplitude is
rather weak so that this sinusoid is actually never perceived. In
voiced segments, this sinusoid is almost always present for all
voice qualities.
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Figure 1: From top to bottom: the waveform used to extract
the following elements; The continuous fundamental frequency
curve f0(t); the amplitude spectral envelope V (t, ω); the Phase
Distortion Deviation PDD(t, ω) (a measure of phase random-
ness. The warmer the colour, the bigger the PDD value and
the noisier the corresponding time-frequency region); the bi-
nary mask M(t, ω) derived from PDD, which allows to switch
the time-frequency content from deterministic (white) to ran-
dom (black). The features that are necessary for the synthesizer
are only: f0(t), V (t, ω) and M(t, ω).

2.2. Signal synthesis

The generation of the waveform follows a pulse-based proce-
dure, similarly to the STRAIGHT vocoder. Short segments of
speech signals (roughly the size of a glottal pulse) are gener-
ated one after the other and overlapped-add. In both voiced and
unvoiced segments, the voice source is made of a morphing be-
tween a deterministic impulse and Gaussian noise. This source
is then convolved by the Vocal Tract Filter (VTF) response.

We first generate a sequence of pulse positions ti according
to f0(t), all along the speech signal:

ti+1 = ti + 1/f0(ti) (2)

with t0 = 0. Then, we suggest to model the speech signal
around each instant ti according to the following simple for-

mula:

Si(ω) = e−j2πti · V (ti, ω) ·Ni(ω)M(ti,ω) (3)

where Ni(ω) is the Fourier transform of a segment of Gaussian
noise starting at ti−1+ti

2
and finishing at ti+ti+1

2
, which central

instant ti is re-centered around 0 (to avoid doubling the delay
e−j2πti for the noise in Si(ω)). In order to obtain a proper noise
normalisation, Ni(ω) is normalized by its energy.

To better understand the elements involved in this model,
we can have a look at its log-domain representation:

lSi(ω) =

Position︷ ︸︸ ︷
−j2πti+

Amplitude︷ ︸︸ ︷
log |V (ti, ω)|+

Minimum phase︷ ︸︸ ︷
j∠V (ti, ω)

+M(ti, ω)︸ ︷︷ ︸
Noise extent

·
(
log |Ni(ω)|︸ ︷︷ ︸

Noise amplitude

+ j∠Ni(ω)︸ ︷︷ ︸
Phase randomi.

)
(4)

The Position defines the overall position of the voice source.
This corresponds to the position of the Dirac delta of the deter-
ministic source component. The Amplitude defines the ampli-
tude spectral envelope of the resulting segment of speech. The
Minimum phase is built from the Amplitude through the Hilbert
transform in order to delay the energy of the pulse, as resonators
do. The Noise extent provides the means to switch between de-
terministic or random voice source at any time-frequency point.
For M(t, ω) = 1, the Noise amplitude will mainly correct the
Amplitude in order to account for the difference between de-
terministic and noise normalisation (sum and energy, respec-
tively). This ensures that the noise amplitude is always aligned
on the given Amplitude spectral envelope |V (t, ω)|. Note that
this would still holds for a continuous M(ti, ω) (instead of bi-
nary one). With M(t, ω) = 1, the Phase randomization will
also blur the phase of the Dirac delta and replace it by that of
noise. In terms of model control, PML drastically simplifies the
handling of the noise in the speech signal. Firstly, its amplitude
is controlled by |V (t, ω)|, like the deterministic content. Thus,
the extent of noise does not change the perceived amplitude, it
basically changes only the nature of the phase. Secondly, mask-
ing effects and their difficult mastery, as seen in the traditional
source-filter model and discussed above, are avoided. Thirdly,
the extent of noise is always a value in [0, 1]. This suggested
model is still basically a source-filter model, but the addition is
in the log-domain instead of the linear domain, thus, explaining
the chosen name PML.

The pulses around each ti are finally summed for recon-
structing the complete signal:

s(t) =

I−1∑

i=0

F−1
(
Si(ω)

)
(5)

where I is the number of pulses in the synthesized signal.
This description needs a few complementary technical re-

marks. Firstly, in the implementation, S(ω) is obviously re-
placed by its discrete counterpart. A DFT size of 4096 was
used for the following experiments. For reason of efficiency, in-
stead of using a DFT size that covers the whole synthetic signal,
the DFT used for each pulse can be reduced in order to cover
only an interval around each instant ti (e.g. 2 periods before ti
and 50ms after ti in order to leave space for the VTF impulse
response to decay without being cut). Secondly, the signal has
no energy before ti−1+ti

2
since V (ti, ω) is assumed to be min-

imum phase. Because of the delays introduced by V (ti, ω),
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there are, however, energy after ti+ti+1

2
. This does not create,

however, any energy issue since the energy is only delayed and
each pulse synthesises an independent spectral content from the
other pulses. In other words, because there is no redundancy
in the synthesis process, conversely to the inverse STFT pro-
cess, there is no need to compensate for any windowing effect.
One can also note that there is no ad hoc tunning parameter,
except for the threshold of 0.75, which actually depends on the
used noise feature, here PDD, but not on the signal model it-
self. In terms of computational efficiency, the process basically
needs only 2 FFT per pulse. One FFT for computing Ni(ω),
which needs a specific duration for each ti ((ti+1 − ti−1)/2),
and one FFT−1 for computing the time domain signal. If not
pre-computed, the computation of the minimum phase of the
VTF ∠V (ti, ω) from a given amplitude envelope requires also
2 extra FFT per pulse. This is clearly efficient enough for al-
lowing real-time synthesis.
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Figure 2: An example of PDD measurements computed
from: an original recording and the analysis/resynthesis of
STRAIGHT, HMPD and PML (top to bottom). The vertical
lines show the voiced/unvoiced transitions used by STRAIGHT.
Voiced and Unvoiced segments are annotated by ’v’ and ’u’, re-
spectively.

2.3. Some important properties for speech signals

It is also worth mentioning the following properties that the sug-
gested model satisfies:

If M(t, ω) = 0 ∀ω,∀t, (3) reduces to:

Si(ω) = e−j2πti · V (ti, ω) (6)

whose corresponding time signal is basically the impulse re-
sponse of the filter delayed at the pulse position ti. In this case
the signal is thus fully deterministic.

If M(t, ω) = 1 ∀ω,∀t, (3) reduces to:

Si(ω) = e−j2πti ·Ni(ω) · V (ti, ω) (7)

whose corresponding time signal is a filtered noise segment. Af-
ter summing the terms Si(ω), this corresponds to a concatena-
tion process of coloured Gaussian noise segments into a con-
tinuous noise signal (the last noise sample of the pulse i is the
sample before the first sample of the pulse i+1). Thus, no peri-
odicity appears in this noise, even though the synthesis is driven
by a continuous f0(t). In this case, f0(t) influences only the
time resolution of the dynamic noise filtering through the size
of the noise segments (ti+1−ti−1)/2. For f0 values of 70Hz, a
worst case scenario, this still allows to change the noise’s colour
each 14ms.

3. Experiments
3.1. Noise reconstruction

In this first sub-section, we numerically show the current prob-
lem that occurs with the reconstruction of the noise component
in two state-of-the-art vocoders (STRAIGHT and HMPD), as
discussed in the introduction, and the case of the suggested
vocoder based on the PML synthesizer.

Using each 3 vocoder, we first analysed and resynthesized
audio samples (i.e. without any statistical modelling) for 6 dif-
ferent English voices [14, 15, 16] (3 females and 3 males; 2 fe-
males and 2 males voices at 32kHz sampling rate and 1 female
and 1 male voice at 16kHz; 4 American and 2 British). Then,
we computed the PDD on the resulting resynthesized signals in
order to measure how well the signal randomness is reproduced
by each vocoder. Fig. 2 shows an example of this PDD com-
putation over analysis/resynthesis. In unvoiced segments, one
can see that the randomness is pretty well reconstructed by all
vocoders, except for HMPD. This is expected, since HMPD can
reproduce noise only at harmonic frequencies. In voiced seg-
ments, the PDD measure over STRAIGHT analysis/resynthesis
seems lower than that from the original signal. On the contrary,
the PDD measure over PML analysis/resynthesis shows a more
accurate reconstruction of the noise extent.

This observation is supported by the estimated distributions
of PDD values in the voiced segments shown in Fig. 3. These
distributions are computed using 100 samples for each of the 6
voices. The four distributions exhibit basically 2 modes, a small
one close to zero and a larger one between 0.5 and 1.5, which
roughly correspond to deterministic and noisy time-frequency
regions, respectively. Firstly, one can note that the lower mode
of the PML’s distribution is clearly higher than the others. This
is due to the mask that forces the PDD values below 0.75 to
zero. Secondly, and more importantly, the higher mode of
the distribution corresponding to STRAIGHT’s PDD is clearly
lower than that of the original signal (∼0.5 instead of ∼1.2).
Moreover, this mode is below 0.75 for STRAIGHT, whereas
it is above this threshold for the original signal, even though
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Figure 3: Estimated distributions of PDD measures over anal-
ysis/resynthesis using 3 vocoders and the PDD measure on the
original speech signals. The vertical line illustrates the thresh-
old of 0.75 used for building the mask in the PML synthesizer.

it was shown that values below this threshold could not lead
to the reconstruction of the perceived characteristics of a noise
[5]. This demonstrates the reduction of the noise component of
STRAIGHT synthesis, as discussed in the introduction. On the
contrary, PML better reproduces the higher mode of the origi-
nal distribution, which should lead to a better reconstruction of
noisy components in voiced segments.

3.2. Analysis/Resynthesis quality

In this experiment, we wanted to assess the quality of the anal-
ysis/resynthesis of the 3 vocoders, before any use in statistical
modelling. For each sound, the corresponding resyntheses from
the 3 vocoders used the same amplitude spectral envelope (that
of STRAIGHT) and the same f0(t) curve (that of REAPER
[17]). Only the noise features differed, i.e. aperiodicity for
STRAIGHT and PDD for HMPD and PML. STRAIGHT used
the voicing decision given by REAPER. To carry out this test,
we used a Mean Opinion Score (MOS) listening test through a
web interface. Each person taking the test had to grade 4 sounds
against a reference, where the four sounds where composed of
either an analysis/resynthesis using the 3 vocoders or the ref-
erence sound itself [18]. Each listener repeated this task for 6
random sentences taken among 100 resyntheses for each of the
6 voices used in the previous experiment. The listening test was
advertised on Amazon Mechanical Turk [19, 20] where work-
ers took the test for a small reward. 51 listeners took the test
properly and the aggregated results are shown in Fig. 4.

3.0 3.5 4.0 4.5 5.0
MOS

Original

STRAIGHT

HMPD

PML

Figure 4: Mean Opinion Scores (MOS) about the analy-
sis/resynthesis quality of 3 vocoders over 6 voices (with the
95% confidence intervals).

From these results, one can see that the quality provided by
PML is better than that of HMPD and the confidence interval of
STRAIGHT clearly overlaps with those of HMPD and PML. In
previous results [5], HMPD’s quality was reported to be better
than STRAIGHT, which contradicts the results of this test. Af-
ter inspection of the resynthesized signals, it seems that HMPD

struggles in reproducing the creaky voice segments present in
the 6 voices of this test. English and mainly American voices,
which exhibit a high degree of creaky segments, have been used
in this present test. Thus, the degradation in these segments
might have been underestimated in the previous tests of HMPD
that used a different a set of voices with less creakiness. Be-
cause PML synthesises wide-band pulses and not harmonics, it
seems to better manage creaky segments than HMPD. We can
also conclude that the suggested PML synthesizer provides a
similar quality compared to STRAIGHT, while solving the lim-
itations of HMPD mentioned in the introduction and keeping
the uniform representation.

A subset of the resyntheses can be found at: http://
gillesdegottex.eu/LT/DemoPMPDResynth/

3.3. Text-to-speech (TTS) parametric synthesis

For this experiment, we trained HTS-DNN systems for the 3
different vocoders on the 6 voices used above. For each voice,
an HTS system [21] was first trained using five-state, left-
to-right, no-skip hidden semi-Markov models (HSMMs [21]).
Each observation vector consisted of 60 Mel-cepstral coeffi-
cients [22], log f0 values, and 60 Mel-cepstral aperiodicity co-
efficients or 60 Mel-cepstral PDD coefficients, depending on the
vocoder’s need, together with the first and second derivatives,
extracted every 5ms. Since the aperiodicity is a real-valued
spectral measure, like the amplitude spectrum, the basic idea
of the Mel-cepstral aperiodicity is to compress the aperiodicity
exactly like the amplitude spectrum. This compression tech-
nique has two advantages. Firstly, the dimensionality does not
depend on the sampling rate of the waveform, conversely to the
band aperiodicity. Secondly, high orders can be used (here 59,
whereas it is fixed to 24 bands aperiodicity for a 32kHz sam-
pling rate), thus, allowing a statistical model with higher res-
olution. For this work, this strategy minimizes the impact of
the feature compression issue on the studied subject. More im-
portantly, it allows a fair comparison between the TTS systems
using STRAIGHT and those using HMPD and PML by using
the same dimensionality for the noise feature. For the 6 systems
trained for STRAIGHT, a multi-space probability distribution
(MSD) [23] was used to model log f0 sequences consisting of
voiced and unvoiced observations (taken from REAPER[17]).
For the 6 systems trained for HMPD and PML, no MSD was
used since the f0(t) is continuous. The rest of the topology
of the HMM models and systems was similar to the one used
for the Nitech-HTS system ([24]). The resulting systems pro-
vided state-aligned labels used for training Deep Neural Net-
works (DNN) in order to improve the features prediction. The
used DNN pipeline is exactly the same as the DNN baseline
used in [25]. 592 binary and 9 numerical features were derived
from the questions used in the HTS systems. The output fea-
tures were exactly the same as the ones used for the HTS sys-
tems. Input features were normalised to [0.01, 0.99] and output
features were normalised to zero mean and unit variance. The
DNN topology was made of 6 hidden layers of 1024 units. Fur-
ther details about the learning process can be found in [25].

In order to compare the vocoders and assess their impact
on TTS, we carried out a Comparative Mean Opinion Score
(CMOS) listening test. Using the systems described above,
we synthesized 142 sentences for each of the 6 voices using
the duration models of the HTS systems and the features pre-
dicted from the DNN systems. Common duration were used
between the vocoders, as well as f0(t) curves and amplitude
spectra in order to remove the impact of the prosody and the
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influence of the amplitude modelling, which is not the sub-
ject of this work. The systems trained for STRAIGHT were
used to build these common features (f0(t) was then linearly
interpolated for HMPD and PML). Each listener taking the
test assessed the 3 pairs of vocoder combinations for 8 ran-
dom sentences among the 142x6=852 synthesized sentences
[26]. Again, workers from Amazon Mechanical Turk were
asked to take the test for a small reward. 53 listeners took
the test properly and the aggregated results are shown in Fig.
5. From this figure, one can see that both STRAIGHT and
PML outperform HMPD. According to this result and that of

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
CMOS

STRAIGHT

HMPD

PML

Figure 5: Comparative mean opinion scores (CMOS) for 3
vocoders using HTS-DNN systems over 6 voices (with the 95%
confidence intervals).

the previous test, it seems clear that PML solves the major
drawbacks of HMPD, while using the same features in the sta-
tistical model, while preserving the uniformity of representa-
tion between voiced and unvoiced segments and using an even
simpler synthesis technique. The confidence intervals between
STRAIGHT and PML clearly overlap. However, a strong trend
favours the STRAIGHT vocoder. Nevertheless, with regard to
the safe approach taken by STRAIGHT, as discussed in the in-
troduction, which eludes the difficulty to properly resynthesize
the noise component in voiced segments, this result is quite en-
couraging for future development of better masks or noise con-
trol based on PML.

A subset of the syntheses can be found at http://
gillesdegottex.eu/LT/DemoPMPDTTS/

4. Conclusions
The contribution of this paper was twofold. Firstly, we have
shown the noise reconstruction problem that is present in state-
of-the-art vocoders and we discussed the limitations that it im-
plies in synthesis of voice qualities and the overall improve-
ment of the vocoders’ quality for SPSS technologies. Secondly,
we suggested a very simple signal model for a new synthesizer
called PML, in order to suggest a new approach to noise syn-
thesis for addressing the issue above.

This synthesizer was shown to better reconstruct the noisi-
ness of the speech signal, compared to STRAIGHT and HMPD
vocoders, thus, offering an encouraging alternative for future
works in this new approach. In terms analysis/resynthesis qual-
ity, this PML synthesizer outperformed the HMPD vocoder,
while preserving a uniform time-frequency representation for
both voiced and unvoiced segments. Even though PML was
found to have only similar or slightly worse quality than
STRAIGHT in a text-to-speech experiment, the uniformity, the
flexibility and the simplicity of the suggested PML synthesizer
is quite encouraging for future developments, in order to tackle
the current limitations of voice quality reconstruction.

Future works will focus on continuous masks for morph-
ing the deterministic content into noise. Because it relies on a

harmonic model, the used PDD feature, which is currently used
for building this mask, has also some limitations that should be
addressed, especially in creaky voice segments.
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