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Abstract

We present expected F-measure training for
shift-reduce parsing with RNNs, which en-
ables the learning of a global parsing model
optimized for sentence-level F1. We apply
the model to CCG parsing, where it improves
over a strong greedy RNN baseline, by 1.47%
F1, yielding state-of-the-art results for shift-
reduce CCG parsing.

1 Introduction

Shift-reduce parsing is a popular parsing paradigm,
one reason being the potential for fast parsers based
on the linear number of parsing actions needed to an-
alyze a sentence (Nivre and Scholz, 2004; Sagae and
Lavie, 2006; Zhang and Clark, 2011; Goldberg et
al., 2013; Zhu et al., 2013; Xu et al., 2014). Recent
work has shown that by combining distributed rep-
resentations and neural network models (Chen and
Manning, 2014), accurate and efficient shift-reduce
parsing models can be obtained with little feature
engineering, largely alleviating the feature sparsity
problem of linear models.

In practice, the most common objective for opti-
mizing neural network shift-reduce parsing models
is maximum likelihood. In the greedy search set-
ting, the log-likelihood of each target action is max-
imized during training, and the most likely action is
committed to at each step of the parsing process dur-
ing inference (Chen and Manning, 2014; Dyer et al.,
2015). In the beam search setting, Zhou et al. (2015)
show that sentence-level likelihood, together with
contrastive learning (Hinton, 2002), can be used
to derive a global model which incorporates beam

search at both training and inference time (Zhang
and Clark, 2008), giving significant accuracy gains
over a fully greedy model. However, despite the ef-
fectiveness of optimizing likelihood, it is often de-
sirable to directly optimize for task-specific metrics,
which often leads to higher accuracies for a variety
of models and applications (Goodman, 1996; Och,
2003; Smith and Eisner, 2006; Rosti et al., 2010;
Auli and Lopez, 2011; He and Deng, 2012; Auli et
al., 2014; Auli and Gao, 2014; Gao et al., 2014).

In this paper, we present a global neural net-
work parsing model, optimized for a task-specific
loss based on expected F-measure. The model natu-
rally incorporates beam search during training, and
is globally optimized, to learn shift-reduce action se-
quences that lead to parses with high expected F-
scores. In contrast to Auli and Lopez (2011), who
optimize a CCG parser for F-measure via softmax-
margin (Gimpel and Smith, 2010), we directly op-
timize an expected F-measure objective, derivable
from only a set of shift-reduce action sequences and
sentence-level F-scores. More generally, our method
can be seen as an alternative approach for training
a neural beam search parsing model (Watanabe and
Sumita, 2015; Weiss et al., 2015; Zhou et al., 2015),
combining the benefits of global learning and task-
specific optimization.

We also introduce a simple recurrent neural net-
work (RNN) model to shift-reduce parsing on which
the greedy baseline and the global model is based.
Compared with feed-forward networks, RNNs have
the potential to capture and use an unbounded his-
tory, and they have been used to learn explicit
representations for parser states as well as actions
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performed on the stack and queue in shift-reduce
parsers (Dyer et al., 2015; Watanabe and Sumita,
2015), following Miikkulainen (1996) and May-
berry and Miikkulainen (1999). In comparison, our
model is a natural extension of the feed-forward ar-
chitecture in Chen and Manning (2014) using Elman
RNNs (Elman, 1990).

We apply our models to CCG, and evaluate the re-
sulting parsers on standard CCGBank data (Hock-
enmaier and Steedman, 2007). More specifically,
by combining the global RNN parsing model with
a bidirectional RNN CCG supertagger that we have
developed (§4) — building on the supertagger of Xu
et al. (2015), we obtain accuracies higher than the
shift-reduce CCG parsers of Zhang and Clark (2011)
and Xu et al. (2014). Finally, although we choose to
focus on shift-reduce parsing for CCG, we expect the
methods to generalize to other shift-reduce parsers.

2 RNN Models

In this section, we start by describing the baseline
model, which is also taken as the pretrained model to
train the global model (§2.4). We abstract away from
the details of CCG and present the models in a canon-
ical shift-reduce parsing framework (Aho and Ull-
man, 1972), which is henceforth assumed: partially
constructed derivations are maintained on a stack,
and a queue stores remaining words from the input
string; the initial parse item has an empty stack and
no input has been consumed on the queue. Parsing
proceeds by applying a sequence of shift-reduce ac-
tions to transform the input until the queue has been
exhausted and no more actions can be applied.

2.1 Model

Our recurrent neural network model is a standard El-
man network (Elman, 1990) which is factored into
an input layer, a hidden layer with recurrent con-
nections, and an output layer. Similar to Chen and
Manning (2014), the input layer xt encodes stack
and queue contexts of a parse item through con-
catenation of feature embeddings. The output layer
yt represents a probability distribution over possible
parser actions for the current item.

The current state of the hidden layer is determined
by the current input and the previous hidden layer
state. The weights between the layers are repre-

sented by a number of matrices: matrix U contains
weights between the input and hidden layers, V con-
tains weights between the hidden and output layers,
and W contains weights between the previous hid-
den layer and the current hidden layer.

The hidden and output layers at time step t are
computed via a series of vector-matrix products and
non-linearities:

ht = f(xtU + ht−1W),
yt = g(htV),

where

f(z) =
1

1 + e−z
, g(zm) =

ezm∑
k e

zk

are sigmoid1 and softmax functions, respectively.

2.2 Feature Embeddings
Given a parse item, we first extract features using
a set of predefined feature templates; each template
belongs to a feature type f (such as word or POS

tag), which has an associated look-up table, denoted
as Lf , to project a feature to its distributed represen-
tation; and Lf ∈ Rnf×df , where nf is the vocabu-
lary size of feature type f and df is its embedding
dimension. The embedding for a concrete feature is
obtained by retrieving the corresponding row from
Lf . At time step t, the input layer xt is:

xt = [ef1,1 ; . . . ; ef1,|f1| ; . . . ; efk,1 ; . . . ; efk,|fk| ],

where “; ” denotes concatenation, |fk| is the num-
ber of feature templates for the kth feature type and
xt ∈ R1×(df1 |f1|+...+dfk |fk|). For each feature type,
a special embedding is used for unknown features.

2.3 Greedy Training
To train a greedy model, we extract gold-standard
actions from the training data and minimize cross-
entropy loss with stochastic gradient descent (SGD)
using backpropagation through time (BPTT; Rumel-
hart et al., 1988). Similar to Chen and Manning
(2014), we compute the softmax over only feasible
actions at each step.

Unfortunately, although we use an RNN, which
keeps a representation of previous parse items in its

1We also experimented with tanh, and found no difference
in resulting performance.
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hidden state and has the potential to capture long-
term dependencies, the resulting model is still fully
greedy: a locally optimal action is taken at each step
given the current input xt and the previous hidden
state ht−1. Therefore, once a sub-optimal action has
been committed to by the parser at any step, it has
no means to recover and has to continue from that
mistake. Such mistakes accumulate until the goal is
reached, and they are referred to as search errors.

In order to enlarge the search space of the greedy
model thereby alleviating some search errors, we ex-
periment with applying beam search decoding dur-
ing inference; and we observe some accuracy im-
provements by taking the highest scored action se-
quence as the output (Table 3). However, since the
greedy model itself is only optimized locally, as ex-
pected, the improvements diminish after a certain
beam size. Instead, we show below that by using
the greedy model weights as a starting point, we can
train a global model optimized for an expected F-
measure loss, which gives further significant accu-
racy improvements (§5).

2.4 Expected F1 Training
The RNN we use to train the global model has the
same Elman architecture as the greedy model. Given
the greedy model, we summarize its weights as θ =
{U,V,W} and initialize the weights of the global
model to θ, and training proceeds as follows:

1. We use a beam-search decoder to parse a sen-
tence xn in the training data and let the decoder
generate a k-best list2 of output parses using the
current θ, denoted as Λ(xn). Similar to other
structured training approaches that use inexact
beam search (Zhang and Clark, 2008; Weiss et
al., 2015; Watanabe and Sumita, 2015; Zhou et
al., 2015), Λ(xn) is as an approximation to the
set of all possible parses of an input sentence.

2. Let yi be the shift-reduce action sequence of a
parse in the k-best list Λ(xn), and let |yi| be its
total number of actions and yij be the jth ac-
tion in yi, for 1 ≤ j ≤ |yi|. We compute the
log-linear action sequence score of yi, ρ(yi),
as a sum of individual action scores in that

2We do not put a limit on k, and whenever an item is fin-
ished, it is appended to the k-best list. We found the size of the
k-best lists were on average twice the size of a given beam size.

sequence: ρ(yi) =
∑|yi|

j=1 log sθ(yij), where
sθ(yij) is the softmax action score of yij given
by the RNN model. For each yi, we also com-
pute its sentence-level F1 using the set of la-
beled, directed dependencies, denoted as ∆, as-
sociated with its parse item. (We assume F1
over labeled, directed dependencies is also the
parser evaluation metric.)

3. We compute the negative expected F1 objective
(-xF1, defined below) for xn using the scores
obtained in the above step and minimize this
objective using SGD (maximizing the expected
F1 for xn). These three steps repeat for other
sentences in the training data, updating θ after
processing each sentence, and training iterates
in epochs until convergence.

We note that the above process is different from
parse reranking (Collins, 2000; Charniak and John-
son, 2005), in which Λ(xn) would stay the same for
each xn in the training data across all epochs, and a
reranker is trained on all fixed Λ(xn); whereas the
xF1 training procedure is on-line learning with pa-
rameters updated after processing each sentence and
each Λ(xn) is generated with a new θ.

More formally, we define the loss J(θ), which in-
corporates all action scores in each action sequence,
and all action sequences in Λ(xn), for each xn as

J(θ) = −xF1(θ)

= −
∑

yi∈Λ(xn)

p(yi|θ)F1(∆yi ,∆
G
xn), (1)

where F1(∆yi ,∆
G
xn) is the sentence level F1 of the

parse derived by yi, with respect to the gold-standard
dependency structure ∆G

xn of xn; p(yi|θ) is the nor-
malized probability score of the action sequence yi,
computed as

p(yi|θ) =
exp{ρ(yi)}∑

y∈Λ(xn) exp{ρ(y)} . (2)

To apply SGD, we derive the error gradients used
for backpropagation. First, by applying the chain
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rule to J(θ), we have

∂J(θ)
∂θ

= −
∑

yi∈Λ(xn)

∑
yij∈yi

∂J(θ)
∂sθ(yij)

∂sθ(yij)
∂θ

= −
∑

yi∈Λ(xn)

∑
yij∈yi

δyij
∂sθ(yij)
∂θ

,

where ∂sθ(yij)
∂θ is the standard softmax gradients.

Next, to compute δyij , which are the error gradients
propagated from the loss to the softmax layer, we
rewrite the loss in (1) as

J(θ) = −xF1 = −G(θ)
Z(θ)

(3)

= −
∑

yi∈Λ(xn) exp{ρ(yi)}F1(∆yi ,∆
G
xn)∑

yi∈Λ(xn) exp{ρ(yi)} ,

and by simplifying:

∂G(θ)
∂sθ(yij)

=
1

sθ(yij)
exp{ρ(yi)}F1(∆yi ,∆

G
xn),

∂Z(θ)
∂sθ(yij)

=
1

sθ(yij)
exp{ρ(yi)},

since
∂ρ(yi)
∂sθ(yij)

=
1

sθ(yij)
.

Finally, using (2) and (3) plus the above simplifica-
tions, the error term δyij can be derived using the
quotient rule:

δyij = −∂xF1(θ)
∂sθ(yij)

= −∂(G(θ)/Z(θ))
∂sθ(yij)

=
G(θ)Z ′(θ)−G′(θ)Z(θ)

Z2(θ)

=
exp{ρ(yi)}
Z(θ)

(xF1(θ)− F1(∆yi ,∆
G
xn))

1
sθ(yij)

= p(yi|θ)(xF1(θ)− F1(∆yi ,∆
G
xn))

1
sθ(yij)

,

(4)

which has a simple closed form.
A naive implementation of the xF1 training pro-

cedure would backpropagate the error gradients in-
dividually for each yi in Λ(xn). To make it efficient,

we observe that the unfolded network in the beam
containing all yi becomes a DAG (with one hidden
state leading to one or more resulting hidden states)
and apply backpropagation through structure (Goller
and Kuchler, 1996) to obtain the gradients.

3 Shift-Reduce CCG Parsing

We explain the application of the RNN models to
CCG by first describing the CCG mechanisms used
in our parser, followed by details of the shift-reduce
transition system.

3.1 Combinatory Categorial Grammar
A lexicon, together with a set of CCG rules, for-
mally constitute a CCG. The former defines a map-
ping from words to sets of lexical categories repre-
senting syntactic types, and the latter gives schemas
which dictate whether two categories can be com-
bined. Given the lexicon and the rules, the syntactic
types of complete constituents can be obtained by
recursive combination of categories using the rules.

More generally, both lexical and non-lexical CCG

categories can be either atomic or complex: atomic
categories are categories without any slashes, and
complex categories are constructed recursively from
atomic ones using forward (/) and backward slashes
(\) as two binary operators. As such, all categories
can be represented as follows (Vijay-Shanker and
Weir, 1993; Kuhlmann and Satta, 2014):

x := α|1z1|2z2 . . . |mzm,
where m ≥ 0, α is an atomic category, |1, . . . , |m ∈
{\, /} and zi are meta-variables for categories.

CCG rules have the following two schematic
forms, each a generalized version of functional com-
position (Vijay-Shanker and Weir, 1993):

x/y y|1z1 . . . |mzm → x|1z1 . . . |mzm,
y|1z1 . . . |mzm x\y → x|1z1 . . . |mzm.

The first schematic form above instantiates into a
forward application rule (>) for m = 0, and for-
ward composition rules (>B) for m > 0. Similarly,
the second schematic form, which is symmetric to
the first, instantiates into backward application (<)
and composition (<B) rules.

Fig.1 shows an example CCG derivation. All the
rule instances in this derivation are instantiated from
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the flying ginger cat

NP/N N /N N /N N
>B

N /N
>

N
>

NP

Figure 1: An example CCG derivation.

forward rules; for example, N /N N /N → N /N is
an instance of forward composition and N /N N →
N is an instance of forward application.

Given CCGBank (Hockenmaier and Steedman,
2007), there are two approaches to extract a gram-
mar from this data. The first is to treat all CCG

derivations as phrase-structure trees, and a binary,
context-free “cover” grammar, consisting of all CCG

rule instances in the treebank, is extracted from local
trees in all the derivations (Fowler and Penn, 2010;
Zhang and Clark, 2011). In contrast, one can extract
the lexicon from the treebank and define only the
rule schemas, without explicitly enumerating any
rule instances (Hockenmaier, 2003). This is the ap-
proach taken in the C&C parser (Clark and Curran,
2007) and the one we use here. Moreover, follow-
ing Zhang and Clark (2011), our CCG parsing model
is also a normal-form model, which models action
sequences of normal-form derivations in CCGBank.

3.2 The Transition System
The transition system we use in this work is based
on the CCG transition system of Zhang and Clark
(2011). We denote parse items as (j, δ, β,∆)3,
where δ is the stack (with top element δ|s0), β is the
queue (with top element xwj |β), j is the positional
index of the word at the front of the queue, and ∆
is the set of CCG dependencies realized for the input
consumed so far (needed to calculate the expected
F-score). We also assume a set of lexical categories
has been assigned to each word using a supertag-
ger (Bangalore and Joshi, 1999; Clark and Curran,
2004). The transition system is specified using three
action types:

• SHIFT (sh) removes one of the lexical cate-
gories xwj of the front word wj in the queue,
and pushes it onto the stack; and removes wj
from the queue.

3We partly adopt standard notations from dependency pars-
ing (Nivre, 2008).

input: w0 . . . wn−1

axiom: 0 : (0, ε, β, φ)

goal: 2n− 1 + µ : (n, δ, ε,∆)

ω : (j, δ, xwj |β,∆)
ω + 1 : (j + 1, δ|xwj , β,∆)

(sh; 0 ≤ j < n)

ω : (j, δ|s1|s0, β,∆)
ω + 1 : (j, δ|x, β,∆ ∪ 〈x〉)) (re; s1s0 → x)

ω : (j, δ|s0, β,∆)
ω + 1 : (j, δ|x, β,∆)

(un; s0 → x)

Figure 2: The shift-reduce deduction system.

• REDUCE (re) combines the top two subtrees s0

and s1 on the stack using a CCG rule (s1s0 →
x) and replaces them with a subtree rooted in
x. It also appends the set of newly created de-
pendencies on x, denoted as 〈x〉, to ∆.

• UNARY (un) applies either a type-raising or
type-changing rule (s0 → x) to the stack-top
element and replaces it with a unary subtree
rooted in x.

The deduction system (Fig. 2) of our shift-reduce
parser follows from the transition system.4 Each
parse item is associated with a step indicator ω,
which denotes the number of actions used to build
it. Given a sentence of length n, a full derivation
requires 2n − 1 + µ steps to terminate, where µ is
the total number of un actions applied. In Zhang
and Clark (2011), a finish action is used to indicate
termination, which we do not use in our parser: an
item finishes when no further action can be taken.
Another difference between the transition systems is
that Zhang and Clark (2011) omit the ∆ field in each
parse item, due to their use of a context-free, phrase-
structure cover, and dependencies are recovered at a
post-processing step; in our system, we build depen-
dencies as parsing proceeds.

4We abuse notation slightly for the sh deduction, using
xwj |β to denote that the lexical category xwj is available for
the front word on the queue.
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s0.w s1.w s2.w s3.w
s.w0 s.w1 s.w2 s.w3

s0.l.w s1.l.w so.r.w s1.r.w
q0.w q1.w q2.w q3.w
s0.c s0.l.c s0.r.c
s1.c s1.l.c s1.r.c
s2.c s3.c

Table 1: Atomic feature templates.

3.3 RNN CCG Parsing
We use the same set of CCG rules as in Clark and
Curran (2007) and the total number of output units
in our RNN model is equal to the number of lexical
categories (i.e., all possible sh actions), plus 10 units
for re5 and 18 units for un actions.

All features in our model fall into three types:
word, POS tag and CCG category. Table 1 shows the
atomic feature templates and we have |fw| = 16,
|fp| = 16 and |fc| = 8 (all word-based features are
generalized to POS features). Each template has two
parts: the first part denotes parse item context and
the second part denotes the feature type. s denotes
stack contexts and q denotes queue contexts; e.g.,
s0 is the top subtree on the stack, and so.l is its left
child. w represents head words of constituents and
w0 is the right-most word of the input string that has
been shifted onto the stack.

4 Bidirectional Supertagging

We extend the RNN supertagging model of Xu et al.
(2015) by using a bidirectional RNN (BRNN). The
BRNN processes an input in both directions with
two separate hidden layers, which are then fed to
one output layer to make predictions. At each time
step t, we compute the forward hidden state ht for
t = (0, 1, . . . , n − 1); the backward hidden state h′t
is computed similarly but from the reverse direction
for t = (n− 1, n− 2, . . . , 0) as

h′t = f(xtU′ + ht+1W′), (5)

and the output layer, for t = (0, 1, . . . , n − 1), is
computed as

yt = f([ht;h′t]V
′). (6)

The BRNN introduces two new parameter matrices
U′ and W′ and replaces the old hidden-to-output

5In principle, only 1 re unit is needed, but we use 9 addi-
tional units to handle non-standard CCG rules in the treebank.

matrix V with V′ to take two hidden layers as in-
put. We use the same three feature embedding types
as Xu et al. (2015), namely word, suffix and capital-
ization, and all features are extracted from a context
window size of 7 surrounding the current word.

5 Experiments

Setup. All experiments were performed on CCG-
Bank (Hockenmaier and Steedman, 2007) with the
standard split.6 We used the C&C supertagger (Clark
and Curran, 2007) and the RNN supertagger model
of Xu et al. (2015) as two supertagger baselines.
For the parsing experiments, the baselines were the
shift-reduce CCG parsers of Zhang and Clark (2011)
and Xu et al. (2014) and the C&C parser of (Clark
and Curran, 2007).

To train the RNN parser, we used 10-fold cross
validation for both POS tagging and supertagging.
For both development and test parsing experiments,
we used the C&C POS tagger and automatically as-
signed POS tags. The BRNN supertagging model
was used as the supertagger by all RNN parsing
models for both training and testing. F-score over di-
rected, labeled CCG predicate-argument dependen-
cies was used as the parser evaluation metric, ob-
tained using the script from C&C.

Hyperparameters. For the BRNN supertagging
model, we used identical hyperparameter settings
as in Xu et al. (2015). For all RNN parsing mod-
els, the weights were uniformly initialized using
the interval [−2.0, 2.0], and scaled by their fan-
in (Bengio, 2012); the hidden layer size was 220,
and 50-dimensional embeddings were used for all
feature types and scaled Turian embeddings were
used (Turian et al., 2010) for word embeddings. We
also pretrained CCG lexcial category and POS em-
beddings by using the GENSIM word2vec implemen-
tation.7 The data used for this was obtained by pars-
ing a Wikipedia dump using the C&C parser and
concatenating the output with CCGBank Sections
02-21. Embeddings for unknown words and CCG

categories outside of the lexical category set were
uniformly initialized ([−2.0, 2.0]) without scaling.

6Training: Sections 02-21; development: Section 00; test
Section 23.

7https://radimrehurek.com/gensim/
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Supertagger Dev Test
C&C (gold POS) 92.60 93.32
C&C (auto POS) 91.50 92.02
RNN 93.07 93.00
BRNN 93.49 93.52

Table 2: 1-best supertagging accuracy comparison.

To train all the models, we used a fixed learning
rate of 0.0025 and did not truncate the gradients for
BPTT, except for training the greedy RNN parsing
model where we used a BPTT step size of 9. We
applied dropout at the input layer (Legrand and Col-
lobert, 2015), with a dropout rate of 0.25 for the su-
pertagger and 0.30 for the parser.

5.1 Supertagging Results

Table 2 shows 1-best supertagging results. The
MaxEnt C&C supertagger uses POS tag features and
a tag dictionary, neither of which are used by the
RNN supertaggers. For all supertaggers, the same
set of 425 lexical categories is used (Clark and Cur-
ran, 2007). On the test set, our BRNN supertag-
ger achieves a 1-best accuracy of 93.52%, an abso-
lute improvement of 0.52% over the RNN model,
demonstrating the usefulness of contextual informa-
tion from both input directions.

Fig. 3a shows multi-tagging accuracy comparison
for the three supertaggers by varying the variable-
width beam probability cut-off value β for each su-
pertagger. The β value determines the average num-
ber of supertags (ambiguity) assigned to each word
by pruning supertags whose probabilities are not
within β times the probability of the 1-best supertag;
for this experiment we used β values ranging from
0.09 to 2 × 10−4 and it can be seen that the BRNN
supertagger consistently achieves better accuracies
at similar ambiguity levels.

Finally, all shift-reduce CCG parsers mentioned in
this paper take multi-tagging output obtained with
a fixed β for training and testing; and in general, a
smaller β value can be used by a shift-reduce CCG

parser than by the C&C parser. This is because a β
value too small may explode the dynamic program
of the C&C parser, and it thus relies on an adap-
tive supertagging strategy (Clark and Curran, 2007),
by starting from a large β value and backing off
to smaller values if no spanning analysis can found
with the current β.

Supertagger β
0.09 0.08 0.07 0.06

b = 1 84.61 84.58 84.55 84.50
b = 2 84.94 84.86 84.86 84.81
b = 4 85.01 84.95 84.92 84.92
b = 6 85.02 84.96 84.94 84.93
b = 8 85.02 84.99 84.96 84.95
b = 16 85.01 84.95 84.97 84.98

Table 3: The effect on dev F1 by varying the beam size and
supertagger β value for the greedy RNN model.

5.2 Parsing Results

To pretrain the greedy model, we trained 10 cross-
validated BRNN supertagging models to supply su-
pertags for the parsing model, and used a supertag-
ger β value of 0.00025 which gave on average 5.02
supertags per word. We ran SGD training for 60
epochs, observing no accuracy gains after that, and
the best greedy model was obtained after the 52nd

epoch (Fig. 3b).
Furthermore, we found that using a relatively

smaller supertagger β value (higher ambiguity) for
training, and a larger β value (lower ambiguity) for
testing, resulted in more accurate models; and we
chose the final β value used for the greedy model
to be 0.09 using the dev set (Table 3). This obser-
vation was different from Zhang and Clark (2011)
and Xu et al. (2014), which are two shift-reduce CCG

parsers using the averaged perceptron and beam
search (Collins, 2002; Collins and Roark, 2004;
Zhang and Clark, 2008): they used the same β val-
ues for training and testing, which resulted in lower
accuracy for our greedy model.

Table 3 also shows the effect on dev F1 by us-
ing different beam sizes at test time for the greedy
model: with b = 6, we obtained an accuracy of
85.02%, an improvement of 0.41% over b = 1 (with
a β value of 0.09); we saw accuracy gains up to
b = 8 (with very minimal gains with b = 16 for
β values 0.06 and 0.07), after which the accuracy
started to drop. F1 on dev with b = 6 across all
training epochs are shown in Fig. 3b as well, and the
best model was obtained after the 43rd epoch.

For the xF1 model, we used b = 8 and a supertag-
ger β value of 0.09 for both training and testing.
Fig.3c shows dev F1 versus the number of train-
ing epochs. The best dev F1 was obtained after
the 54th epoch with an accuracy of 85.73%, 1.12%
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Figure 3: Experiment results on the dev set. (a) shows multi-tagging accuracy using the best tagging model. (b) shows F1 scores
for the greedy RNN parsing models with beam size b ∈ {1, 6}. (c) shows F1 scores for the xF1 models with b = 8.

Section 00 Section 23
Model LP LR LF CAT LP LR LF CAT Speed
C&C (normal) 85.18 82.53 83.83 92.39 85.45 83.97 84.70 92.83 97.90
C&C (hybrid) 86.07 82.77 84.39 92.57 86.24 84.17 85.19 93.00 95.25
Zhang and Clark (2011) (b = 16) 87.15 82.95 85.00 92.77 87.43 83.61 85.48 93.12 -
Zhang and Clark (2011)* (b = 16) 86.76 83.15 84.92 92.64 87.04 84.14 85.56 92.95 49.54
Xu et al. (2014) (b = 128) 86.29 84.09 85.18 92.75 87.03 85.08 86.04 93.10 12.85
RNN-greedy (b = 1) 88.12 81.38 84.61 93.42 88.53 81.65 84.95 93.57 337.45
RNN-greedy (b = 6) 87.96 82.27 85.02 93.47 88.54 82.77 85.56 93.68 96.04
RNN-xF1 (b = 8) 88.20 83.40 85.73 93.56 88.74 84.22 86.42 93.87 67.65

Table 4: Final parsing results on Section 00 and Section 23 (100% coverage). Zhang and Clark (2011)* is a reimplementation
of the original. All speed results (sents/sec) are obtained using Section 23 and precomputation is used for all RNN parsers. LP
(labeled precision); LR (labeled recall); LF (labeled F-score over CCG dependencies); CAT (lexical category assignment accuracy).
All experiments using auto POS.

higher than that of the greedy model with b = 1 and
0.71% higher than the greedy model with b ∈ {6, 8}.
This result improves over shift-reduce CCG models
of Zhang and Clark (2011) and Xu et al. (2014) by
0.73% and 0.55%, respectively (Table 4).

Table 4 summarizes final results.8 RNN-xF1,
the xF1 trained beam-search model, is currently the
most accurate shift-reduce CCG parser, achieving a
final F-score of 86.42%, and gives an F-score im-
provement of 1.47% over the greedy RNN base-
line. We show the results for the model of Xu et
al. (2014) for reference only, since it uses a more
sophisticated dependency, rather than normal-form
derivation, model.

At test time, we also used the precomputation
trick of Devlin et al. (2014) to speed up the RNN
models by caching the top 20K word embeddings

8The C&C parser fails to produce spanning analyses for a
very small number of sentences (Clark and Curran, 2007) on
both dev and test sets, which is not the case for any of the shift-
reduce parsers; and for brevity, we omit C&C coverage results.

and all POS embeddings,9 and this made the greedy
RNN parser more than 3 times faster than the C&C

parser (all speed experiments were measured on a
workstation with an Intel Core i7 4.0GHz CPU).10

6 Related Work

Optimizing for Task-specific Metrics. Our train-
ing objective is largely inspired by task-specific opti-
mization for parsing and MT. Goodman (1996) pro-
posed algorithms for optimizing a parser for var-
ious constituent matching criteria, and it was one
of the earliest work that we are aware of on opti-
mizing a parser for evaluation metrics. Smith and
Eisner (2006) proposed a framework for minimiz-
ing expected loss for log-linear models and applied
it to dependency parsing by optimizing for labeled
attachment scores, although they obtained little per-

9We used b = 8 to do the precomputation.
10The speed results for the C&C parser were ob-

tained using the per-compiled C&C binary for Linux avail-
able from http://svn.ask.it.usyd.edu.au/trac/
candc/wiki/Download.
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formance improvements. Auli and Lopez (2011) op-
timized the C&C parser for F-measure. However,
they used the softmax-margin (Gimpel and Smith,
2010) objective, which required decomposing preci-
sion and recall statistics over parse forests. Instead,
we directly optimize for an F-measure loss. In MT,
task-specific optimization has also received much
attention (e.g., see Och (2003)). Closely related
to our work, Gao and He (2013) proposed train-
ing a Markov random field translation model as an
additional component in a log-linear phrase-based
translation system using a k-best list based expected
BLEU objective; using the same objective, Auli et
al. (2014) and Auli and Gao (2014) trained a large
scale phrase-based reordering model and a RNN lan-
guage model respectively, all as additional compo-
nents within a log-linear translation model. In con-
trast, our RNN parsing model is trained in an end-to-
end fashion with an expected F-measure loss and all
parameters of the model are optimized using back-
propagation and SGD.

Parsing with RNNs. A line of work is devoted to
parsing with RNN models, including using RNNs
(Miikkulainen, 1996; Mayberry and Miikkulainen,
1999; Legrand and Collobert, 2015; Watanabe and
Sumita, 2015) and LSTM (Hochreiter and Schmid-
huber, 1997) RNNs (Vinyals et al., 2015; Balles-
teros et al., 2015; Dyer et al., 2015; Kiperwasser and
Goldberg, 2016). Legrand and Collobert (2015) used
RNNs to learn conditional distributions over syntac-
tic rules; Vinyals et al. (2015) explored sequence-
to-sequence learning (Sutskever et al., 2014) for
parsing; Ballesteros et al. (2015) utilized character-
level representations and Kiperwasser and Gold-
berg (2016) built an easy-first dependency parser
using tree-structured compositional LSTMs. How-
ever, all these parsers use greedy search and are
trained using the maximum likelihood criterion (ex-
cept Kiperwasser and Goldberg (2016), who used a
margin-based objective). For learning global mod-
els, Watanabe and Sumita (2015) used a margin-
based objective, which was not optimized for the
evaluation metric; although not using RNNs, Weiss
et al. (2015) proposed a method using the averaged
perceptron with beam search (Collins, 2002; Collins
and Roark, 2004; Zhang and Clark, 2008), which re-
quired fixing the neural network representations, and

thus their model parameters were not learned using
end-to-end backpropagation.

Finally, a number of recent work (Bengio et al.,
2015; Vaswani and Sagae, 2016) explored train-
ing neural network models for parsing and other
tasks such that the network learns from the oracle
as well as its own predictions, and are hence more
robust to search errors during inference. In princi-
ple, these techniques are largely orthogonal to both
global learning and task-based optimization, and we
would expect further accuracy gains are possible by
combining these techniques in a single model.

7 Conclusion

Neural network shift-reduce parsers are often trained
by maximizing likelihood, which does not optimize
towards the final evaluation metric. In this paper,
we addressed this problem by developing expected
F-measure training for an RNN shift-reduce pars-
ing model. We have demonstrated the effective-
ness of our method on shift-reduce parsing for CCG,
achieving higher accuracies than all shift-reduce
CCG parsers to date and the de facto C&C parser.11

We expect the general framework will be applicable
to models using other types of neural networks such
as feed-forward or LSTM nets, and to shift-reduce
parsers for constituent and dependency parsing.
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