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Abstract 

The majority of macromolecular crystal structures are determined using the method of 

molecular replacement, in which known related structures are rotated and translated to 

provide an initial atomic model for the new structure. A new theoretical understanding of the 

signal-to-noise ratio in likelihood-based molecular replacement searches has been developed 

to account for the influence of model quality and completeness, as well as the resolution of 

the diffraction data. Here we show that, contrary to current belief, molecular replacement 

need not be restricted to the use of models comprising a substantial fraction of the unknown 

structure. Instead, likelihood-based methods allow a continuum of applications depending 

predictably on the quality of the model and the resolution of the data. Unexpectedly, our new 

understanding of the signal-to-noise ratio in molecular replacement leads to the finding that, 

with data to sufficiently high resolution, fragments as small as single atoms of elements 

usually found in proteins can yield ab initio solutions of macromolecular structures, including 

some that elude traditional direct methods. 

Significance Statement 

It is now possible to make an accurate prediction of whether or not a molecular replacement 

solution of a macromolecular crystal structure will succeed, given the quality of the model, its 

size, and the resolution of the diffraction data. This new understanding allows the 

development of powerful new structure-solution strategies, and leads to the unexpected 

finding that, with data to sufficiently high resolution, fragments as small as single atoms can 

be placed as the basis for ab initio structure solutions.  



Introduction 

Over the past century, determination of novel crystal structures has evolved from an exercise 

in logic identifying the locations of single atoms by inspecting diffraction patterns (1) or 

vector maps (2), through the development of direct methods for small molecules (3) and of 

isomorphous replacement (4, 5) or anomalous diffraction (6, 7) phasing for molecules as 

large as proteins.  

Currently, about 80% of protein structures are solved by the method of molecular 

replacement (8), exploiting prior structural knowledge of related proteins. In principle, 

molecular replacement (MR) involves rotational and translational searches over many 

possible placements of a molecular model within the unit cell of an unknown structure. The 

most sensitive method of evaluating the fit to the observed data is a likelihood function (9, 

10) that accounts for the effect of measurement errors in the observed diffraction intensities 

(11). Potential solutions are scored by the log-likelihood-gain on intensities (LLGI), the sum 

of the log-likelihoods for individual reflections minus the log-likelihoods for an 

uninformative model (see Methods). 

Success in MR depends on the signal-to-noise of the search, which varies according to two 

parameters in the likelihood function: 𝐷𝑜𝑏𝑠 characterises the precision of each measurement, 

taking values near 1 for moderately well-measured data and only taking values near 0 for 

extremely weak data; 𝜎𝐴 measures the quality of the model in terms of the fraction of a 

crystallographic structure factor that it explains. The resolution-dependent value of 𝜎𝐴 for 

each reflection can be estimated from the fraction (fP) of the X-ray scattering power 

accounted for by the model (where the total scattering power is the sum of the squares of the 

scattering factors for the atoms in the crystal), its estimated accuracy (RMS error ), and the 



resolution (d) of the reflection (9), with (optionally) a correction for the effect of disordered 

solvent described by the parameters fsol and Bsol: 

𝜎𝐴 = √𝑓𝑃 [1 − 𝑓𝑠𝑜𝑙exp (−
𝐵𝑠𝑜𝑙

4𝑑2 )] exp (−
2𝜋2

3

Δ2

𝑑2) (1a) 

𝜎𝐴 ≈ √𝑓𝑃exp (−
2𝜋2

3

Δ2

𝑑2) (1b) 

The simpler expression in equation (1b) neglects the effect of disordered solvent at low 

resolution. 

The signal for an MR search can be estimated prior to the calculation as the expected value, 

or probability-weighted average, of the LLGI for a correctly placed model. The expected 

value of the contribution of one reflection, 〈𝐿𝐿𝐺𝐼〉ℎ𝑘𝑙, can be approximated simply by 

𝐷𝑜𝑏𝑠
4 𝜎𝐴

4/2 (see Methods), an approximation that is particularly good for the low values of 

𝐷𝑜𝑏𝑠𝜎𝐴 characterising the difficult cases of most interest. In the following, we refer to the 

total expected LLGI, summed over all reflections, as the eLLG. 

The variance of eLLG can similarly be approximated as the sum over all reflections of 

𝐷𝑜𝑏𝑠
4 𝜎𝐴

4, leading to the conclusion that the expected signal-to-noise ratio in an MR search will 

be proportional to √𝑒𝐿𝐿𝐺 (see Methods). By the same reasoning, the signal-to-noise ratio 

achieved in a particular search will be proportional to √𝐿𝐿𝐺𝐼. The theoretical deduction that 

confidence in an MR solution can be judged simply by the LLGI value has been validated by 

analysing a database of nearly 22,000 MR calculations, where an LLGI of 60 or more in a 6-

dimensional rotation/translation search typically indicates a correct solution. (See Figure 1, 

which also shows that the required signal scales with the number of degrees of freedom in the 

search.) The database of test calculations also reveals that the translation function Z-score 

(TFZ: the number of standard deviations by which the translation function peak exceeds its 



mean) is roughly on the same scale as √𝐿𝐿𝐺𝐼, though the exact relationship depends on the 

number of primitive symmetry operators; this justifies the success of TFZ as a measure of 

confidence (10). 

An LLGI at the level required to distinguish the correct solution from up to millions of 

alternatives can be achieved by predictable trade-offs among model quality, completeness 

and resolution of the data used. For example, this theoretical insight explains why it is 

possible to place individual -helices with better than random success in the Arcimboldo 

pipeline (12), but also why it is a great advantage to have data extending beyond 2 Å 

resolution: helices are preserved very well, so that  is small and data to the highest 

resolution will contribute to the signal. The theory also predicts, correctly, that calculations 

limited to around 10 Å resolution can give unambiguous MR solutions for ribosome 

structures, because of the large numbers of diffraction observations available to that 

resolution with the large ribosomal unit cell. Importantly, it also allows researchers to 

anticipate when MR is unlikely to succeed, so that they avoid fruitless calculations. 

This new insight led us to consider the most extreme example of a small fragment, i.e. a 

single atom. A single atom is a perfect partial model (Δ=0), for which 𝜎𝐴
2 = 𝑓𝑃 and hence 

〈𝐿𝐿𝐺𝐼〉ℎ𝑘𝑙 ∝ 𝑓𝑃
2 for well-measured data regardless of the resolution. With high-resolution 

data containing a sufficient number of reflections, the eLLG can rise to a substantial number. 

This is particularly true for atoms that are somewhat heavier than average. For instance, the 

square of the scattering power of a sulphur atom (i.e. the fourth power of its scattering factor) 

is about 50 times greater than that of a carbon atom at a very low resolution such as 10 to 20 

Å; because scattering drops off less rapidly for sulphur, that ratio increases to about 300 at 1 

Å resolution. This effect is amplified if a sulphur atom is better ordered than the average 

atom in the structure, because its relative scattering power becomes even greater. 



Furthermore, only half as much signal should be required to place a single atom with 3 

degrees of freedom compared to a molecule with 6 degrees of freedom (Figure 1). Our new 

insights predict that, for crystals that contain up to a few thousand unique ordered atoms and 

diffract beyond about 1 Å resolution, there should be a significant signal in a likelihood 

search carried out by translating a single sulphur atom over all of its possible positions. Even 

if the placement of the first atom is ambiguous, the signal will increase quadratically with the 

number of atoms placed (Figure 2), allowing the ambiguity to be resolved. 

Results 

Test calculations on a number of systems proved the principle of single-atom MR: it was 

indeed possible to find sulphur atoms in a variety of protein crystals, as well as phosphorus 

atoms in one RNA crystal tested (Table S1). The largest structure that yielded to this 

approach was that of aldose reductase (PDB entry 3bcj) (13). The protein has a mass of 

36kDa with 2525 non-hydrogen atoms (2606 including ligands) and no atom heavier than 

sulphur, and the deposited data extend to 0.78 Å resolution. The eLLG for a sulphur atom 

with a B-factor equal to the average in the crystal is 4.0, or 12.6 for a well-ordered sulphur 

atom with a B-factor reduced by only 1 Å
2
. MR implemented in Phaser was able to locate up 

to 10 atoms with clear signal (Table 1).  

A structure comprising a few atoms can then serve as a seed for structure completion by 

using log-likelihood-gradient maps to select locations for new nitrogen atoms (as a surrogate 

for other types) that improve the MR likelihood score (14) (see Methods). Starting from as 

few as the first 2 atoms placed by MR, the structure of aldose reductase was extended 

successfully by log-likelihood-gradient completion. The result was a model with 3051 atoms 

(some accounting for solvent molecules and for static disorder) that yields an LLGI of 483292 

and an R-value of 12.9% (Figure 3). In contrast, all attempts to solve this structure by direct 



methods or their dual-space variants (15, 16) have failed. As far as we can determine, it is the 

largest reported ab initio structure containing nothing heavier than the sulphur atoms found in 

natural protein sequences, although larger ab initio structures containing metal ions have 

been solved (17). 

The new formulation predicts that it should also be possible to place sulphur atoms in smaller 

structures at lower resolution. This was crucial in solving a previously unknown structure, the 

N-terminal domain (residues 22-95) of Shisa3, which crystallised in space group P43212 and 

diffracted to 1.39 Å resolution. The protein did not have detectable sequence identity with 

any protein in the PDB, so there was no template structure for traditional MR. The eLLG 

calculations predict that there should be some signal for placing well-ordered sulphur atoms, 

giving an eLLG of 4.0 for a sulphur atom with a B-factor reduced by 1.5 Å
2
 from the average. 

Indeed, up to 7 of the 8 sulphur atoms in this protein could be placed with good signal (Table 

1). 

Log-likelihood-gradient completion is expected to work more poorly at resolutions where 

atomic peaks are not resolved. Nonetheless, this succeeded in expanding the Shisa3 structure 

to a total of 56 atoms, with the additional atoms largely corresponding to well-ordered main-

chain oxygen and nitrogen atoms. At this point, the phase information was sufficient to 

enable phase improvement by density modification in Parrot (18), and the resulting map 

could be interpreted in terms of an atomic model in ARP/wARP (19). A hybrid approach 

exploiting direct methods algorithms implemented in ACORN (17, 20) or in SHELXE (21) 

was also able to expand a partial structure obtained by single-atom MR. This succeeded when 

starting from as little as one pair of sulphur atoms (Figure 4). The structure, which contains 

no -helices and represents a novel protein fold, was refined to an R-value of 11.5% and has 



been deposited in the PDB with accession code 5m0w. Details of the structure will be 

discussed elsewhere. 

Discussion 

This work brings together high resolution ab initio phasing and low resolution MR in one 

unified framework that spans the continuum of data and model quality, with the eLLG 

directing the tailoring of structure solution to the optimal path for the data available. It 

demonstrates the considerable practical impact, compared to traditional direct methods, of 

accounting rigorously for the effects of sources of error in a likelihood target. It is also 

important to note that these results have been obtained by a deterministic algorithm. Direct 

methods, in contrast, are invariably implemented within a random multi-solution framework, 

an approach that should also improve the outcome of single-atom MR. Finally, the results 

were obtained without taking advantage of any other information that would typically be 

present, e.g. from single-wavelength anomalous diffraction (SAD) effects in crystals with 

intrinsic anomalous scatterers such as sulphur, or even from isomorphous replacement 

experiments. A proper accounting for the effects of uncertainty, as demonstrated here, should 

allow us to extend our approach to use even weak information from these other sources. 

Methods 

Formalism for the eLLG and its approximation 

The likelihood function used to score MR solutions is based on the Rice distribution (9, 10), 

modified to account for the effect of measurement errors in the observed intensities (11). For 

acentric reflections, this is given by 

𝑝𝑎(𝐸𝑒; 𝐸𝐶) =
2𝐸𝑒

1−𝐷𝑜𝑏𝑠
2 𝜎𝐴

2 exp [−
𝐸𝑒

2+(𝐷𝑜𝑏𝑠𝜎𝐴𝐸𝐶)2

1−𝐷𝑜𝑏𝑠
2 𝜎𝐴

2 ] I0 (
2𝐷𝑜𝑏𝑠𝜎𝐴𝐸𝑒𝐸𝐶

1−𝐷𝑜𝑏𝑠
2 𝜎𝐴

2 )  (2) 



where 𝐸𝑒 (an effective normalised structure factor amplitude) and 𝐷𝑜𝑏𝑠 (an estimate of its 

precision) are derived from the observed intensity and its standard error, 𝐸𝐶 is the normalised 

structure factor amplitude calculated from the placed model, 𝜎𝐴 is the fraction of the 

calculated structure factor that is correlated with the true structure factor and I0 is a modified 

Bessel function of order 0. 

The eLLG is defined as the probability-weighted average of the logarithm of the likelihood 

ratio, integrated over all pairs of observed and calculated normalised structure factors. The 

contribution of a single reflection to the eLLG is defined in equation (3). 

〈𝐿𝐿𝐺𝐼〉ℎ𝑘𝑙 = ∫ ∫ 𝑝(𝐸𝑒 , 𝐸𝐶)ln (
𝑝(𝐸𝑒;𝐸𝐶)

𝑝(𝐸𝑒)
) d𝐸𝑒d𝐸𝐶

∞

0

∞

0
  (3a) 

where, for the acentric case, 

𝑝𝑎(𝐸𝑒 , 𝐸𝐶) =
4𝐸𝑒𝐸𝐶

1−𝐷𝑜𝑏𝑠
2 𝜎𝐴

2 exp (−
𝐸𝑒

2+𝐸𝐶
2

1−𝐷𝑜𝑏𝑠
2 𝜎𝐴

2) I0 (
2𝐷𝑜𝑏𝑠𝜎𝐴𝐸𝑒𝐸𝐶

1−𝐷𝑜𝑏𝑠
2 𝜎𝐴

2 )  (3b) 

and 

𝑝(𝐸𝑒) = 2𝐸𝑒exp(−𝐸𝑒
2)  (3c) 

The Maclaurin series expansion of the integrand of equation (3a) for the acentric case, to 

fourth order in 𝐷𝑜𝑏𝑠𝜎𝐴, is given in equation (4): 

𝑝𝑎(𝐸𝑒 , 𝐸𝐶)ln (
𝑝𝑎(𝐸𝑒;𝐸𝐶)

𝑝𝑎(𝐸𝑒)
) ≈ 𝑎 + 𝑏𝐷𝑜𝑏𝑠

2 𝜎𝐴
2 + 𝑐𝐷𝑜𝑏𝑠

4 𝜎𝐴
4 (4a) 

where 

𝑎 = 4e−𝐸𝑒
2−𝐸𝐶

2
𝐸𝑒𝐸𝐶 [ln(𝐸𝑒e−𝐸𝑒

2
) − ln(𝐸𝐶e−𝐸𝐶

2
)] (4b) 

𝑏 = 4e−𝐸𝑒
2−𝐸𝐶

2
𝐸𝑒𝐸𝐶(1 − 𝐸𝑒

2)(1 − 𝐸𝐶
2) [1 + ln(𝐸𝑒e−𝐸𝑒

2
) − ln(𝐸𝐶e−𝐸𝐶

2
)] (4c) 



𝑐 = e−𝐸𝑒
2−𝐸𝐶

2
𝐸𝑒𝐸𝐶 {6 + 4𝐸𝐶

2[𝐸𝐶
2 − 3] − 4[3 − 6𝐸𝐶

2 + 2𝐸𝐶
4]𝐸𝑒

2 + [4 − 8𝐸𝐶
2 + 3𝐸𝐶

4]𝐸𝑒
4 +

[2 − 4𝐸𝑒
2 + 𝐸𝑒

4][2 − 4𝐸𝐶
2 + 𝐸𝐶

4] [ln(𝐸𝑒e−𝐸𝑒
2
) − ln(𝐸𝐶e−𝐸𝐶

2
)]} (4d) 

The double integrals over a and b both evaluate to zero, whereas the double integral over c 

yields 1/2. Figure S1 shows that 𝐷𝑜𝑏𝑠
4 𝜎𝐴

4/2 is an excellent approximation to 〈𝐿𝐿𝐺𝐼〉ℎ𝑘𝑙, 

especially for the smaller values of 𝐷𝑜𝑏𝑠𝜎𝐴 that would be encountered in difficult structure 

solutions. Though the forms of the probability distributions for the centric case are different, 

the same result is achieved by integrating a series expansion, i.e. that 〈𝐿𝐿𝐺𝐼〉ℎ𝑘𝑙 is 

approximately equal to 𝐷𝑜𝑏𝑠
4 𝜎𝐴

4/2. 

The variance of 〈𝐿𝐿𝐺𝐼〉ℎ𝑘𝑙 is defined in equation (5). 

𝜎2(〈𝐿𝐿𝐺𝐼〉ℎ𝑘𝑙) = 〈𝐿𝐿𝐺𝐼2〉ℎ𝑘𝑙 − 〈𝐿𝐿𝐺𝐼〉ℎ𝑘𝑙
2   (5a) 

where 

〈𝐿𝐿𝐺𝐼2〉ℎ𝑘𝑙 = ∫ ∫ 𝑝(𝐸𝑒 , 𝐸𝐶)ln (
𝑝(𝐸𝑒;𝐸𝐶)

𝑝(𝐸𝑒)
)

2

d𝐸𝑒d𝐸𝐶
∞

0

∞

0
  (5b) 

For the small values of 𝐷𝑜𝑏𝑠𝜎𝐴 that characterise difficult cases, equation (5a) will be 

dominated by the first term (as the second term will have a value of the order of 𝐷𝑜𝑏𝑠
8 𝜎𝐴

8). The 

Maclaurin series expansion of the integrand of equation (5b) for the acentric case, to fourth 

order in 𝐷𝑜𝑏𝑠𝜎𝐴, is given in equation (6): 

𝑝𝑎(𝐸𝑒 , 𝐸𝐶)ln (
𝑝𝑎(𝐸𝑒;𝐸𝐶)

𝑝𝑎(𝐸𝑒)
)

2

≈ 4e−𝐸𝑒
2−𝐸𝐶

2
𝐸𝑒𝐸𝐶(1 − 𝐸𝑒

2)2(1 − 𝐸𝐶
2)2𝐷𝑜𝑏𝑠

4 𝜎𝐴
4 (6) 

The double integral over this single term yields simply 𝐷𝑜𝑏𝑠
4 𝜎𝐴

4. The same result is obtained 

for the contributions of centric reflections to the variance of the eLLG. 



Because the variance of 〈𝐿𝐿𝐺𝐼〉ℎ𝑘𝑙 is proportional to 〈𝐿𝐿𝐺𝐼〉ℎ𝑘𝑙 itself, the variance of the total 

eLLG, summed over all reflections, is also proportional to the total eLLG. Therefore, the 

signal-to-noise ratio for any eLLG is proportional to √𝑒𝐿𝐿𝐺, regardless of how that eLLG is 

achieved through a combination of model quality, completeness, data quality and data 

resolution. Similarly, the value of LLGI obtained in an MR search will indicate the 

confidence that can be placed in the corresponding solution, regardless of how the LLGI was 

achieved. Indeed the translation function Z-score, which is used as a measure of confidence 

in a MR solution (10), is seen to be roughly proportional to the square root of the LLGI in the 

database of MR calculations. 

Mathematical derivations 

Series approximations and integrals used in the derivation of equations (3) to (6) were 

computed with Mathematica (22), which was also used to prepare Figures 2 and S1. 

Single-atom MR protocol 

In the single-atom MR protocol, the first step is to carry out translation searches for a 

specified number of the heavier atoms expected in the structure. For the trials summarised in 

Table S1, the search looked for 4 atoms unless fewer sufficiently heavy atoms were expected. 

In the next step, log-likelihood-gradient completion (described in the next section) was used 

to complete each of the potential few-atom solutions by adding nitrogen atoms as surrogates 

for all remaining atom types. Refinement, at each step, of the occupancies of the nitrogen 

atoms compensates for the difference in scattering power compared to other atom types, such 

as carbon or oxygen. The log-likelihood-gradient completion continues to convergence, when 

no further peaks are identified. 



The test cases in Table S1 were chosen from the PDB based initially on the criteria that data 

extending to atomic resolution (1.2 Å or better) were deposited in the form of intensities 

rather than amplitudes, and that there were no atoms heavier than S in the structure. The 

initial set was supplemented with several cases at lower than 1 Å resolution in which there 

are atoms heavier than S, as the success rate was otherwise low in this resolution range. Note 

that the LLGI per atom after the initial search for individual heavier atoms provides a 

reasonable diagnostic indication of success. For the cases where the protocol succeeded, 

LLGI/atom ranged from 21.5 to 272.2 with a mean of 88.3, whereas for cases where the 

protocol failed, LLGI/atom ranged from 19.0 to 43.5 with a mean of 28.4. The difference in 

LLGI/atom distributions for the data from Table S1 is illustrated in Figure S2 by a box plot, 

generated with BoxPlotR (23). 

Log-likelihood-gradient completion 

In a log-likelihood-gradient map, peaks show positions where the addition of atoms of a 

specified type would tend to increase the corresponding likelihood target. The single-atom 

MR algorithm implemented in Phaser computes a log-likelihood-gradient map corresponding 

to the MR likelihood function, but does so by using the equivalent functionality required for 

handling singletons (reflections with only one member of a Friedel pair, hence no anomalous 

scattering phase information) in the SAD likelihood target (14). Peak-picking is carried out 

using the same defaults as for log-likelihood-gradient SAD completion, i.e. peaks above 6 

times the RMS value of the map are selected, unless the deepest hole in the map has a greater 

magnitude. Log-likelihood-gradient completion is iterative, with the addition of atoms 

increasing the signal in subsequent log-likelihood-gradient maps. 
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Table 1. Progress of single-atom MR.  

 Aldose reductase (3bcj) Shisa3 (5m0w) 

Atom number LLGI TFZ Atom type B (Å
2
) LLGI TFZ Atom type B (Å

2
) 

1 22 4.2 S -0.9 19 6.1 S -1.5 

2 67 8.8 S -0.4 57 8.3 S -1.0 

3 154 12.7 P -0.7 80 6.1 S -1.8 

4 243 12.7 P -0.2 122 8.3 S -1.6 

5 346 13.3 S 0.3 161 8.3 S -0.1 

6 463 14.4 S 0.1 221 10.1 S -0.4 

7 613 16.5 S -0.2 297 11.3 S -1.4 

8 691 12.0 P 1.2 – –  – 

9 829 15.7 S 0.1 – –  – 

10 908 11.8 S 1.3 – –  – 

LLGI = log-likelihood-gain on intensities, TFZ = translation function Z-score, B = refined 

difference from overall average B-factor. Note that the searches become more unambiguous 

as more well-ordered S or P atoms are placed because, for equal atoms, the total LLGI should 

be proportional to the square of the number of atoms placed.  



Figure Legends 

Figure 1. Confidence in MR solution as function of final LLGI score. The final refined 

LLGI score provides a clear diagnostic for success in MR. The 3 curves show how the 

success rate for placing the first copy by MR varies with LLGI in 3 different space group 

symmetry classes: P1 (only 3 rotational degrees of freedom; red; total of 263 MR trials), 

polar (3 rotational and 2 translational degrees of freedom, with an arbitrary origin along one 

axis; blue; 4738 MR trials) and non-polar (3 rotational and 3 translational degrees of 

freedom; black; 16,740 MR trials). 

 



Figure 2. Increase in eLLG with resolution and number of atoms. The 3 curves show how 

the eLLG increases with the number of atoms placed (1 atom: blue curve, 2 atoms: orange 

curve, 3 atoms: green curve) and with increasing numbers of reflections to higher resolution. 

The calculations are based on the aldose reductase test case (3bcj), for which the data extend 

to 0.78 Å resolution and the heaviest atoms are sulphurs. It is assumed that B-factors for the 

best-ordered S atoms will be lower than the mean for the whole structure; by choosing a B-

factor reduced by just 1.3 Å
2
 from the mean, the actual LLGI values obtained from placing 

single S atoms (Table 1) can be reproduced fairly well. The eLLG values rise rapidly with 

resolution, as the number of observed reflections increases and the relative scattering power 

of the S atoms increases. 

 



Figure 3. Single-atom model and electron density for aldose reductase. Two single 

sulphur atoms were placed by MR, then nitrogen atoms were positioned using the log-

likelihood-gradient completion algorithm. Atoms forming the sequence Tyr-Pro-Phe and its 

environment are shown as grey spheres, and the electron density map phased with the atomic 

model is shown in magenta, contoured at 2.3 times the rms electron density. Refined 

occupancies allow the nitrogen atoms to serve as surrogates for all atom types. 

 



Figure 4. Two-sulphur model and phase-extended density for Shisa3. The two sulphur 

atoms shown as spheres were placed individually by MR, then the program ACORN was 

used to refine the phase information, giving the map shown in magenta lines, contoured at 0.6 

times the rms electron density. 

 



Figure S1. Series approximation of eLLG. The blue curve shows the contribution of a 

single reflection to the total LLGI, <LLGI>hkl, evaluated by numerical integration, compared 

to the fourth order series approximation (𝐷𝑜𝑏𝑠
4 𝜎𝐴

4/2) in orange, as a function of the combined 

measure of data and model quality, 𝐷𝑜𝑏𝑠𝜎𝐴. 

 



Figure S2. Box plot comparing LLGI/atom with success and failure in single-atom MR. 

The box plot presents the distributions of LLGI per atom for the successful and unsuccessful 

single-atom MR trials tabulated in Table S1. 

 



Table S1. Tests of single-atom MR protocol. Test cases are sorted in order of resolution. 

Cases in which the single-atom MR protocol failed to correctly place the heaviest atoms are 

highlighted in italics. 

 

* Resolution 

†
 Four atoms were placed in all test cases except 1a6m (3) and 3po0 (1) 

‡
 R-factor = 0.275 after phase improvement with ACORN and model-building with 

ARP/wARP 

¶
 R-factor = 0.298 after phase improvement with ACORN and model-building with 

ARP/wARP 


