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Abstract

We consider the problem of resource allocation in a decentralized market where users and suppliers trade for a single commodity.
Due to the lack of strict concavity, convergence to the optimal solution by means of classical gradient type dynamics for
the prices and demands, is not guaranteed. In the paper we explicitly characterize in this case the asymptotic behaviour of
trajectories and provide an exact characterization of the limiting oscillatory solutions. Methods of modifying the dynamics
are also given, such that convergence to an optimal solution is guaranteed, without requiring additional information exchange
among the users.

1 Introduction

Problems of distributed resource allocation have been
extensively studied by several scientific communities as
a result of their significance in important applications
such as allocation of resources in a communication net-
works (e.g. Internet congestion control, multipath rout-
ing), or market mechanisms in economic networks (e.g.
[17,25,15,26]). A classical approach in this context is to
consider the problem of maximizing an aggregate user
utility by means of appropriate decentralized update
schemes for the primal and dual variables, so as to reach
a saddle point of the corresponding Lagrangian.

It is well known that if a concave-convex Lagrangian
is strictly concave with respect to the primal variables,
then the gradientmethod introduced by Arrow, Hurwicz
and Uzawa [2] is guaranteed to converge to the opti-
mal solution. The gradient method has been extensively
used in network optimization problems due to the sim-
plicity and decentralized form of the protocols it leads
to; see e.g. the nice overview in [9], the convergence
results in [6] where the non-smooth character of con-
tinuous time gradient dynamics is explicitly addressed,
the recent discrete time results in [22], the significant
works in [17,15], and the use of gradient dynamics in
various important applications such as communication
networks [7,19], distributed optimization [12,27], game
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theory [11], and power networks [28,21]. In many cases,
however, the underlying structure of the problem gives
rise to a concave-convex Lagrangian which is not strictly
concave, in which case convergence to the optimal solu-
tion, by means of classical gradient type dynamics, can
be problematic. This oscillatory behaviour was noted in
the early work of Arrow, Hurwicz and Uzawa in [2] and
subsequent economic studies [15], but such oscillations
due to a lack of strict concavity have also been observed
in more recent works, see e.g. the discussion in [9] and
the examples provided therein, and also analogous oscil-
lations observed in [23] in the context of smart grids. De-
spite the significance of the gradient method, the prob-
lem of providing an exact characterization to its asymp-
totic behaviour in cases where it does not necessarily
converge to an equilibrium point has not been addressed
in the literature. This is, in fact, in general a non trivial
problem due to the non-linearity of the dynamics.

We focus in this paper on an important such case where
oscillations can emerge. In particular, we consider the
problem of distributed resource allocation in an eco-
nomic network where multiple consumers and suppliers
trade for a single commodity with constraints in the sup-
ply. This is a classical problem in microeconomics [26],
[2] which is known to be not strictly concave and hence
conventional gradient based schemes for updating the
supply and demand are not guaranteed to converge to
the optimum. One of our main results is to fully char-
acterize in this case the asymptotic behaviour of trajec-
tories, giving an exact characterization to the limiting
oscillatory solutions. This allows to quantify how severe

Preprint submitted to Automatica

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/83939779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


these oscillations can be in a general network (it is shown
in the paper that these can be of arbitrarily large am-
plitude, and cannot be mitigated by the choice of utility
functions) and also motivate ways of avoiding them.

We also discuss within the paper how appropriate mod-
ifications, which lead to higher order dynamics in the lo-
cal update schemes, provide guarantees for convergence
to the desired equilibrium point. A distinctive feature
of the modifications proposed, is that apart from being
distributed, they do not require any additional informa-
tion transfer among users/suppliers, which can be im-
portant in a competitive economic setting. A compar-
ison is also made with other distributed modifications,
such as ones where the network constraints are incorpo-
rated in a modified Lagrangian. These go back to the
early work of Arrow, Hurwicz and Uzawa [2] and have
also been used in more recent studies, such as the contin-
uous time modifications described in [9], which are also
linked with corresponding discrete time methods such
as the ADMM mechanism reviewed in [4]. These lead
here, however, to schemes where each user needs to be
aware of the demand of other users which use the same
supplier, and thus require additional cooperative infor-
mation exchange.

Also a side technical result in the paper for general gra-
dient dynamics, is the fact that when the problem is not
strictly concave, in which case trajectories are not guar-
anteed to converge to an equilibrium point, the gradient
dynamics satisfy a notion of stability linked to incremen-
tal stability [1].

This paper is an extended version of the manuscript [13],
where preliminary results have been stated. In a recent
study [14] we have also shown that some of the fea-
tures of the oscillatory solutions (such as the fact that
they satisfy linear ODEs), are retained in the case where
(sub)gradient methods are applied on general concave-
convex functions. Nevertheless an exact characterization
of the oscillations, as in this paper, is in general an in-
volved problem due to the non-linear and switching na-
ture of the dynamics, and requires an exploitation of the
underlying structure.

The paper is structured as follows.

• In section 2 various preliminary results and definitions
are provided that are necessary to formulate the prob-
lem. These include the notions of stability that will be
used, and also results on the Arrow-Hurwicz-Uzawa
gradient method for convergence to a saddle point of
a concave-convex function.

• In section 3 we provide the problem formulation. The
economic network that will be studied is described in
detail and we consider non-linear ODEs that follow
when classical gradient dynamics are used in this con-
text.

• In section 4 we state the main results of the paper.
In particular, we classify the asymptotic behaviour of
the system described in section 3 and provide an ex-
act characterization of the limiting oscillatory trajec-
tories.

• Section 5 discusses methods of modifying the dynam-
ics such that convergence to an optimal point can be
guaranteed, focusing on schemes that do not introduce
additional information transfer among users.

• Numerical examples are provided in section 6 and con-
clusions are drawn in section 7.

• The proofs of the results presented in the main text of
the paper are given in appendix A. In appendix B an
extended version of Theorem 17 is presented, where a
technical assumption associated with the existence of
a strictly positive saddle point is relaxed.

2 Preliminaries

2.1 Notation

Real numbers are denoted by R, and the non-negative
reals by R+. For vectors x, y ∈ R

n the inequality x < y
means xi < yi for all i = 1, . . . n, ‖·‖ denotes a norm on
R

N and | · | denotes specifically the Euclidean norm.

For a matrix A ∈ R
n×m, the entries of A are denoted by

Aij and the kernel and transpose of A are denoted by
ker(A) andAT respectively. The matrix diag(J1, . . . , Jn)
with J1, . . . , Jn square matrices, of possibly different
sizes, will denote the block diagonal matrix with diago-
nal blocks the matrices J1, . . . , Jn.

The space of k times continuously differentiable func-
tions is denoted by Ck. For a sufficiently differentiable
function f(x, y) : R

n × R
m → R we denote the par-

tial derivatives with respect to each component of the
vectors x or y by fxi and fyi respectively. fx will de-
note the gradient of f with respect to x, i.e. the vector
(fx1 , fx2, . . . fxn), respectively fy. The Hessian matrices
of f with respect to x and y are denoted by fxx and
fyy respectively, while fxy denotes the matrix of partial

derivatives defined as [fxy]ij :=
∂2f

∂xi∂yj
.

The distance from a vector x ∈ R
n to a subset E ⊂ R

n

will be denoted and defined by dist(x,E) = dist(E, x) =
inf{‖x− y‖ : y ∈ E}.

We will use the notation (x̄, ȳ) to denote a saddle point
of a function f(x, y) (see Definition 6 in section 2.3).

For two trajectories x(t), y(t) of a dynamical system
that take values in R

n we say x(t) converges to y(t) if
‖x(t) − y(t)‖ → 0 as t→ ∞.
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2.2 Stability

For the purposes of this section we will look at the au-
tonomous differential equation

ẋ = f(x) (1)

where x ∈ R
N , and f : D → R

N is nice enough for the
solution to exist and be unique for any initial condition
x(0).

A standard definition of stability of equilibrium points
can be found in, for example, [18]. This extends to stabil-
ity of positively invariant sets in the following manner.

Definition 1 (Stability of positively invariant sets)
A positively invariant set E is stable if for any ε > 0
there is a δ > 0 such that any solution x(t) of (1) with
dist(x(0), E) < δ has dist(x(t), E) < ε for all t ≥ 0.

The notion of stability of an invariant set can be used to
define stability of solutions x(t) by considering stability
of their positive orbit {x(t) : t ≥ 0}; however, in the
analysis that follows we are able to establish a stronger
form of stability.

Definition 2 (Pathwise stability) We say that the
flow generated by (1) is pathwise stable, if there is a norm
‖·‖ such that for any two solutions x(t), y(t) of (1),

sup
t≥0

‖x(t)− y(t)‖ ≤ ‖x(0)− y(0)‖ . (2)

Remark 3 This notion is similar to that of Incremental
stability (see e.g.[1]), which is usually taken to mean that
‖x(t) − y(t)‖ converges to zero.

Remark 4 Pathwise stability implies the stability (Def-
inition 1) of any positively invariant set.

2.3 Arrow-Hurwicz-Uzawa gradient method

In this section we summarise the results of Arrow, Hur-
wicz and Uzawa [2]. The reader is encouraged to consult
[9] for a more modern view with various applications.

Definition 5 (Concave-Convex function) We say
that a function g(x, y) : Rn × R

m → R is (strictly) con-
cave in x (respectively y) if for any fixed y (respectively
x), g(x, y) is (strictly) concave as a function of x, (re-
spectively y). If g is concave in x and convex in y we call
g concave-convex.

Concave programming is concerned with an optimisa-
tion problem of maximising a concave function f(x) :
R

n → R subject to the restriction, g(x) ≥ 0, where
g : Rn → R

m is a concave function. Some well known

preliminary results will now be stated without proof (see
for example [2] or the more recent [5]). We will be con-
sidering in the paper primal problems of the form

max
x≥0, g(x)≥0

f(x) (3)

where f(x) : Rn → R, g(x) : Rn → R
m are concave

functions.
The Lagrangian for (3) is

ϕ(x, y) = f(x) + yT g(x) (4)

where y ∈ R
m
+ are the Lagrange multipliers.

Definition 6 (Saddle point) A saddle point of
ϕ(x, y) : R

n × R
m → R is a non-negative pair

(x̄, ȳ) ∈ R
n × R

m such that ∀x, y ≥ 0,

ϕ(x, ȳ) ≤ ϕ(x̄, ȳ) ≤ ϕ(x̄, y). (5)

Theorem 7 Let g be concave on x ≥ 0, and Slater’s
condition hold, i.e.,

∃x′ > 0 with g(x′) > 0. (6)

Then x̄ is an optimum of (3) iff ∃ȳ with (x̄, ȳ) a saddle
point of (4).

Theminmax optimization problem associatedwith find-
ing a saddle of (4) is the dual problem of (3).

Suppose that ϕ is a Lagrangian such that:

ϕ(x, y) : Rn × R
m → R,

ϕ ∈ C2, ϕ is concave in x and convex in y.
(7)

Wewish to design a dynamical system that will enable us
to converge to a saddle point. An obvious choice would
be to send x in the direction of increasing ϕ, and y in
the direction of decreasing ϕ. So we choose

ẋi =

{
0 if xi = 0 and ϕxi < 0

ϕxi otherwise

ẏi =

{
0 if yi = 0 and ϕyi > 0

−ϕyi otherwise

(8)

where the cases above are used to keep x, y ≥ 0. This is
called the Arrow-Hurwicz-Uzawa gradient method.

The following definitions characterise solutions to the
gradient method in terms of the switching at the bound-
ary, and will be important in the analysis throughout
the paper.

Definition 8 We say that a coordinate i of x in a solu-
tion pair (x, y) of (8) is,
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• Active if either xi > 0 or ϕxi > 0.
• Semi-active if xi = 0 and ϕxi = 0.
• Inactive if xi = 0 and ϕxi < 0.

We use the same definitions for the components of y, but
with −ϕyi .

Note that xi (or yi) cannot be negative, so a coordinate
is either active, inactive or semi-active.

Definition 9 We say a solution (x(t), y(t)) of the gra-
dient method (8) applied to (7) is proper, iff no coordi-
nate xi or yj ever becomes inactive. This is equivalent to
(x(t), y(t)) solving

ẋ= ϕx, ẏ= −ϕy, (9)

which is (8) without the switching at the boundary.

In practical terms, we can just ignore the switching at
the boundary for proper solutions.

The following is a known convergence result associated
with the case that ϕ is strictly concave in x.

Theorem 10 (Arrow, Hurwicz and Uzawa[2]) Let
(7) hold, and in addition ϕ(x, y) be strictly concave
in x. Let ϕ have a saddle point (x̄, ȳ) ≥ 0. Then x̄ is
unique, and when the gradient method (8) is applied to
ϕ, x(t) → x̄ for any initial condition (x(0), y(0)) ≥ 0.

If ϕ is only concave-convex, then the gradient method
may have solutions that do not converge to a saddle.
However we can make some statements about such so-
lutions.

Theorem 11 (Arrow, Hurwicz and Uzawa [2])
Let (7) hold, (x̄, ȳ) be a saddle point and (x(t), y(t)) be a
solution of (8). Then (x(t), y(t)) converges to the set of
solutions (x′(t), y′(t)) of (8) which have the Euclidean
norm |(x′(t), y′(t)) − (x̄, ȳ)| constant.

3 Economic network

Throughout the paper we consider the problem of dis-
tributed resource allocation in an economic network
where consumers and suppliers trade for a single com-
modity. As it will be discussed in this section, the un-
derlying structure of the problem leads to a lack of strict
concavity in the Lagrangian, hence classical pricing and
user dynamics can fail to converge to the desired optimal
solutions. One of our main results is to fully characterize
in this case the asymptotic behaviour of trajectories.

We define a network G = (S,C, Z) of suppliers S =
(si)

m
1 , consumers C = (ci)

n
1 and the links between them

z3 z4
z5z1 z2

s3

c2

s1 s2

c1

Fig. 1. An example network.

Z = (zl)
L
1 . The links determine the suppliers each con-

sumer can trade with. We will always assume that the
network is connected.

Notation. We write ∼ to indicate connection between
consumers, suppliers and links. So that ci ∼ zl iff ci is
connected to zl, sj ∼ zl iff sj is connected to zl, and
sj ∼ ci iff the supplier sj is connected to the consumer
ci via some link zl.

If ci is specified then the sum
∑

zl∼ci
will be over all

links zl that are connected to ci, and similarly in other
cases. We will overload zl to be both the lth link, and
the amount of goods being sent down the lth link. The
set of L links forms a vector z ∈ R

L.

Each consumer ci has a strictly concave utility function
Ui : R+ → R, which gives the utility of the consumer
as a function and of his aggregate demand

∑
ci∼zl

zl.
Each supplier sj has a maximum output Yj ≥ 0. We
also denote Y = (Y1, Y2, . . . , Yn). The primal problem of
maximising total utility is then

Primal: max
z≥0

∑
ci

Ui

(∑
ci∼zl

zl

)
(10)

s.t.
∑
ci∼zl

zl ≤ Y.

It is easy to see that this problem is concave and it is
also assumed that Slater’s condition (6) is satisfied, so
we formulate the dual problem using the Lagrangian

ϕ(z, p) =
∑
ci

Ui

(∑
ci∼zl

zl

)
+
∑
sj

pj

⎛
⎝Yj− ∑

zl∼sj

zl

⎞
⎠ (11)

where p ∈ R
m
+ are Lagrange multipliers (or marginal

prices in economic terms). The dual problem is then,

Dual: Find a saddle point of ϕ(z, p) in z≥0, p≥0 (12)

with ϕ(z, p) as defined in (11).

Solving problem (10) in a decentralised manner is a clas-
sical problem in microeconomics [26]. A standard ap-
proach is to use the gradient method [2] to solve the
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problem, which leads to decentralized update rules for
the prices and demands.

In particular, the gradient method (8) applied to (11)
yields the system:

żl =Mzl

(
U ′
i

(∑
ci∼zl

zl

)
− pj

)
where sj ∼ zl ∼ ci

ṗj =Mpj

⎛
⎝∑

zl∼sj

zl − Yj

⎞
⎠ (13)

where U ′
i is the derivative of Ui. The Mzl and Mpj are

operators that act to keep the supply along the links and
the prices non-negative and are defined by

Mpjq =

{
0 if q < 0 and pj = 0

q otherwise.
(14)

In this paper we are concerned with the asymptotic be-
haviour of (13) and we will give a complete characteri-
sation of its limiting solutions.

Remark 12 The gradient dynamics (13) for the prices
and demand can be given an economic interpretation as
the action of consumers and suppliers in a decentralised
market who aim to optimise their individual utility and
profit, respectively, by means of only local information
[15], [26]. More precisely, each consumer ci is viewed as
having the net utility function Vi given by

Vi(z, p) = Ui

(∑
ci∼zl

zl

)
−

∑
ci∼zl∼sj

pjzl (15)

where Ui has been adjusted with the cost of purchasing the
commodity at the current prices. The gradient dynamics
are then interpreted as each consumer ci performing gra-
dient updates to maximise Vi, assuming, due to lack of
global knowledge, that marginal prices will remain fixed.
At the same time, the suppliers sj adjust the prices pj
based on the aggregate demand of the consumers con-
nected to them such that at equilibrium this will be equal
to the supply Yj (i.e. price updates are analogous to those
in a classical tatonnement process [26]).

Remark 13 It should be noted that, despite the strict
concavity of the utility functions, the optimisation prob-
lem (10) and associated Lagrangian (11) are not strictly
concave if any consumer is connected to more than one
link. The lack of strict concavity means that the gradi-
ent method is not guaranteed to converge to an optimal
solution to (10). The asymptotic behaviour is hence com-
prised of non-trivial trajectories and one of the main re-
sults in the paper is to provide an exact characterization

of those, showing that these are solutions to explicit lin-
ear ODEs 1 .

We will rewrite the system (13) in vector form, defining
two matrices that determine the connections between
suppliers, consumers and the links.

The matrices H ∈ R
n×L and A ∈ R

m×L are defined by

Hil = 1 if ci ∼ zl, and 0 otherwise.

Ajl = 1 if sj ∼ zl, and 0 otherwise.
(16)

To illustrate this we give these in the case of the example
in figure 1.

H =

[
1 1 0 1 0

0 0 1 0 1

]
, A =

⎡
⎢⎢⎣
1 0 0 0 0

0 1 1 0 0

0 0 0 1 1

⎤
⎥⎥⎦ . (17)

We will also consider the addition of gains to (13), in-
troducing positive constants k1, . . . , km and k′1, . . . , k

′
L.

The final system is, (using the notation in (13)),

ż =MzK
′(HTU ′(Hz)−AT p)

ṗ =MpK(Az − Y )
(18)

where Mp, Mz act diagonally by Mpj and Mzl respec-
tively, K = diag(k1, . . . , km), K ′ = diag(k′1, . . . , k

′
L),

and U ′ is defined by

(U ′(y))i = U ′
i(yi) for i = 1, . . . , n. (19)

Remark 14 As defined, Mz and Mp are operators not
matrices, but for simplicity we will from now on view
them as 0-1-matrices that are defined to depend on the
expressions they are applied to in (18).

Remark 15 Using (11), (18) could also be formulated
as

ż =MzK
′ϕz

ṗ =MpK(−ϕp).
(20)

We will put a regularity requirement on the utility func-
tions:

Ui : R+ → R, Ui ∈ C2,

Ui is strictly increasing and strictly concave.
(21)

It will be useful for the later analysis to single out a
saddle point (z̄, p̄). The results will not depend on the

1 It should be noted that a such a complete characterisation
of the asymptotic behaviour does not exist in the literature
in either a discrete or continuous time setting.
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choice of (z̄, p̄) from among the possibly multiple saddle
points.

Finally, it will sometimes be more convenient to work
under the assumption:

(z̄, p̄) is strictly positive. (22)

Results in section 4 make use of this assumption. When
this assumption does not hold then these results aremore
technical and are presented in appendix B. Note that sec-
tion 5, where modification methods are discussed, does
not use this assumption.

4 Asymptotic behaviour

In this section we provide an exact characterization of
the asymptotic behaviour of system (18). In particular,
one of our main results is to show that despite the non-
linearity of the dynamics, all solutions of (18) converge
to trajectories that satisfy an explicit linear ODE. To
state this result we will first need to define the following.

We define a matrix Q and an associated second order
ODE by

Q= K ′ATKA, ¨̃z(t) +Qz̃(t) = 0 (23)

and a subspace Q by

Q=span ({v ∈ ker(H) : v is an eigenvector of Q}). (24)

With these definitions we can now define the set X of
limiting trajectories of (18).

Definition 16 WedefineX as trajectories (z(t), p(t)) ≥
0 of the form

(z(t), p(t)) = (z̄, p̄) + (z̃(t), p̃(t)) (25)

where (z̄, p̄) > 0 is a saddle point of the Lagrangian ϕ
in (11) and z̃(t) solves the linear ODE (23) with initial

conditions z̃(0), ˙̃z(0) in subspace Q defined in (24). p̃(t)
is recovered in terms of z̃(t) from

˙̃z(t) = −K ′AT p̃(t) (26)

which is well defined as AT has trivial kernel.

We now state the main result on the asymptotic be-
haviour of (18) which is proved in appendix A.

Theorem 17 Let (21),(22) hold. Then the solutions of
(18) satisfy the following:

(i) For all initial conditions, a solution of (18) con-
verges to a proper solution in the set X defined by
Definition 16 or is of that form.

(ii) The flow generated by (18) is pathwise stable.

Various remarks on this result are included below.

Remark 18 Despite the non-linearity of the dynamics,
the set X has an explicit characterization as sinusoidal
oscillating solutions to a linear ODE, with an explicit set
of initial conditions.

Remark 19 The form of the linear ODE (23) depends
only on the network structure and gain parameters. In
particular, the ODE does not depend on the choice of util-
ity functionsUi; the setX depends on the utility functions
Ui only through the location of the saddle point (z̄, p̄).

Remark 20 The existence of such oscillations has been
observed before in the literature in examples with specific
utility functions and network topologies (see e.g. [2],[9]
and the references therein). Theorem 17 provides an ex-
act characterization of these oscillations in a general net-
work, thus allowing to quantify how severe these oscilla-
tions can be. In particular, the Theorem shows that these
can be of arbitrarily large size and cannot be mitigated by
the choice of utility functions. Furthermore, the oscilla-
tions are not among the optimal points of problem (10)
and can lead to arbitrarily large deviations from the op-
timum. It should also be noted that the exact structure of
the limiting oscillatory solutions can give insight into de-
signing schemes to avoid them (discussed in section 5).

Remark 21 It is possible for the network parameters to
be such that the set X of limiting solutions of (18) con-
tains only the saddle points. In this case Theorem 17 es-
tablishes convergence of (18) to an optimum of the op-
timisation problem (10). However, in section 6 we illus-
trate bymeans of simulations that, even when the network
parameters are such that convergence is achieved, pro-
longed transient oscillatory behaviour can be observed, if
the network parameters are close to a set of parameters
that give rise to permanent oscillations.

The explicit form of the linear ODE (23) in terms of the
network structure allows us to compute the eigenvectors
and eigenvalues of Q and solve (23).

Corollary 22 Let (z(t), p(t)) = (z̄, p̄)+ (z̃(t), p̃(t)) be a
solution in X . Then z̃(t) can be written in the form

z̃l(t) = z̃0l + z̃1l (0) cos(
√
λjt) +

˙̃z1l (0)√
λj

sin(
√
λjt) (27)

where z̃0 ∈ ker(Q) ∩ Q, z̃1(0) ∈ Q with K ′z̃1(0) ∈
ker(Q)⊥ where Q and Q are defined by (23) and (24)
respectively. The constants λj are the (non-zero) eigen-
values of Q given by

λj = kj(k
′
l + · · ·+ k′l+l′) (28)

for sj ∼ zl.
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The proofs of Theorem 17 andCorollary 22may be found
in appendix A. These make use of some geometric prop-
erties of the general gradient method (8), while also ex-
ploiting the structure of the problem considered. A side
result that follows from the derivations is also the fact
that the pathwise stability property (Theorem 17(ii))
holds for general gradient dynamics (Corollary 29 in ap-
pendix A).

5 Modification methods for convergence

We will now look at ways of modifying the system to
avoid the occurrence of the oscillatory behaviour and
cause convergence to a saddle point. It should be noted
that for centralized optimisation problems more ad-
vanced methods with improved convergence rates are
feasible (e.g. [5]). Here we focus on modifications that
preserve the distributed structure of the problem dis-
cussing also how these can lead to different degrees of
localization.

One such modification method was introduced by Ar-
row, Hurwicz and Uzawa [2], and works by transform-
ing the constraints to compensate for the lack of strict
concavity of the original Lagrangian. More precisely, the
Lagrangian of (3) is formulated as

ϕ(x, y) = f(x) +

m∑
j=1

yjρj(gj(x)) (29)

where ρj : R → R are strictly increasing and strictly con-
cave functions. The resultant system of equations when
the gradient method is applied has a distributed struc-
ture; however, in the case of the economic problem con-
sidered here they are not fully localized, as each user
needs to also be aware of the demand of other users trad-
ing with the same supplier 2 .

A second such method is to add penalty functions (see
e.g. [9]) to the Lagrangian to penalise violated con-
straints. The new Lagrangian of (3) becomes,

ϕ(x, y) = f(x) +

m∑
j=1

yjgj(x) +

m∑
i=1

ψi(gi(x)) (30)

where ψj : R → R are C2 functions such that ψj(u) = 0
for u ≥ 0 and ψi(u) is strictly increasing and strictly
concave on u ≤ 0. This corresponds to a modification
of the utility function f . However, in the case of the
economic problem the new update rules are again not
fully localized as above, requiring additional information
exchange among users.

2 This is due to the non-linearity of the functions ρj and the
form of the constraints gj , which involve the demand of all
users trading with the same supplier sj .

Analogous methods exist in discrete time, with the ad-
ditional complication of having to incorporate ordering
of the updates and appropriate choice of step size 3 . Ex-
amples of such methods are the alternating direction
method of multipliers (ADMM) [4], [10] and proximal
point algorithms [24], [8], [16]. Within the paper we will
restrict our analysis to continuous time and show below
that a simple modification method motivated from the
structure of the oscillations can be sufficient to obtain
convergence.

In particular, for the remainder of this section we will
consider schemes where the the total utility function
is modified by introducing local auxiliary variables; it
will be seen that these can lead to schemes with guar-
anteed convergence to optimality without introducing
additional information transfer. More precisely, we will
look at modifications of the form

Unew(z, z
′) = Uold(z) + γ(Bz − z′) (31)

where γ : RL′ → R is a strictly concave function with
a sole maximum γ(0) = 0, B is a constant matrix and

z′ ∈ R
L′

is an additional vector to be maximised over.
Observe that this has the same z maximisers, meaning
that a maximiser z̄ of Uold, corresponds to a maximiser
(z̄, Bz̄) of Unew, because γ(Bz − z′) ≤ 0 and = 0 iff
z′ = Bz.

Note that, although the function γ is strictly concave,
the function γ(Bz − z′) will not be strictly concave as a
function of (z, z′), so the new utility function Unew(z, z

′)
will not be strictly concave.

The importance of this modification is that, despite the
lack of strict concavity, an appropriate choice of B and
γ can lead to distributed update schemes that are fully
localized (discussed in the end of the section), and have
guaranteed convergence to a saddle point.

The corresponding Lagrangian and assumptions for the
analysis when (31) is used as an objective are

ϕ(z, z′, p) =
∑
ci

Ui

(∑
zl∼ci

zl
)
+

+ γ(Bz − z′) + pT (Y −Az)

ϕ : RL × R
L′ × R

m → R, γ : RL′ → R

γ ∈ C2 strictly concave with maximum γ(0) = 0

B ∈ R
L′×L is a constant matrix, and (21) holds.

(32)

3 It should be noted that when a large step size is used dis-
crete time gradient dynamics can exhibit oscillations even
for strictly concave problems. Various methods such as di-
minishing step size and Armijo rule [3] can be used to avoid
such oscillations.
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We define the generalised gradient method on (32) by
setting

ż =MzK
′ϕz (33)

ż′ =Mz′K ′′ϕz′ (34)

ṗ =MpKϕp (35)

in analogy with (20), whereK ′′ is an additional diagonal
matrix with strictly positive entries k′′i .

The proposition below states that the generalised gra-
dient method (33)-(35) is guaranteed to converge to a
saddle point. Note that since the concavity of the La-
grangian ϕ(z, z′, p) defined by (32) is not strict, Theo-
rem 10 cannot be used to deduce this result.

Proposition 23 Let (32) hold and B have a trivial ker-
nel, then the generalised gradient method (33)-(35) on
the modified Lagrangian (32) converges to a maximum
of the original problem given by (10).

It is shown below that the addition of L extra variables,
i.e. z′ ∈ R

L, is not always necessary. We only need to
add enough to make up for the non-strict concavity of
the sum of Ui

(∑
ci∼zl

zl
)
as a function of z. This leads

to the following Theorem, which is a generalization of
Proposition 23 and is proved in appendix A.

Theorem 24 The generalised gradient method (33)-
(35) applied to (32) will converge to a maximum of the
original problem (10) if ker(B) ∩ ker(H) = {0}.

Remark 25 The condition ker(B) ∩ ker(H) = {0} in
Theorem 24 is related to the structure of the oscilla-
tions (Theorem 17) stated in section 4. In particular,
the oscillations characterised in the set X lie in the sub-
space 4 Q given by (24). As Q ⊆ ker(H), the condi-
tion ker(B) ∩ ker(H) = {0} of Theorem 24 can be seen
as adding sufficient strict concavity to the modified La-
grangian so as to disrupt these oscillations. Note, how-
ever, that the modified Lagrangian is still not strictly con-
cave.

For the update rules to be distributed when the gradient
method is applied, we consider a class of functions γ
which are of the form

γ(y) =

L′∑
a=1

γa(ya) (36)

for some strictly concave C2 functions γa : R → R. The
additional information transfer in the gradient dynamics

4 More precisely, z̃ (the deviation of z from the saddle point)
satisfies z̃(t) ∈ Q for all t ≥ 0. This is shown in the proof of
Theorem 17 in appendix A.

due to the modification will be determined in this case
by the sparsity structure of B.

In particular, an important class of matrices B is when
the sparsity of the rows of B is chosen such that for all
a = 1, . . . , L′, the a’th element of Bz is equal to a linear
combination of zl that are connected to same consumer.
This implies that when the gradient method is applied,
the update rules for the users will be based on only local
information, without requiring additional information
from other users.

Indeed, the additional term in the dynamics for a single
link zl connected to consumer ci is given by

żl = k′lMzl

(
· · ·+

∑
a

Balγ
′
a

(∑
d

Badzd − z′a

))
(37)

Hence if Bal are chosen to be zero unless zl and za are
connected for all a to the same consumer ci, all the terms
in (37) are local to this consumer. Explicitly the sums
reduce to

∑
a:za∼ci∼zl

Balγ
′
a

( ∑
d:zd∼ci∼za

Badzd − z′a

)
(38)

A similar computation can be done for the dynamics
of z′a, and the price dynamics are the same as in the
unmodified gradient method.

An obvious special case is whenB is the identity matrix.
In this case the term in (38) reduces to the simple form

γ′l (zl − z′l) (39)

and the dynamics for z′ simplify to 5

ż′l = −k′′l Mz′
l
γ′l(zl − z′l). (40)

We can also exploit Theorem 24 to reduce the number
of additional variables z′l , as in the following corollary
(proved in appendix A).

Corollary 26 Let (32) hold. Split the indices of the links
up into setsZi = {1 ≤ l ≤ L : ci ∼ zl} of those connected
to each consumer. Then pick one index bi arbitrarily from
each set Zi and form B ∈ R

(L−n)×L by taking the L ×
L identity matrix and removing the bith row for each
i = 1, . . . , n. With this B and γ of the form (36) the
generalised gradient method (33)-(35) applied to (32) will
converge to a maximum of the original problem (10).

5 Note that when γl(·) is a quadratic function, then (40)
becomes analogous to a low pass filtering of zl.
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Fig. 2. Oscillations of the gradient method (18) applied to
the network in Figure 1, with kj , k

′
l, Yj , k

′′
i all set to 1. In this

system Q is non-trivial and this is evident in the presence of
oscillatory modes that do not decay.

6 Numerical Examples

In this section we present some numerical examples that
demonstrate the results. We will use the network in Fig-
ure 1, which can exhibit both convergent and oscilla-
tory behaviour. The utility functions are set as Ui(x) =
log(1 + x) and the constants kj , k

′
1, k

′
3, k

′
5, Yj , k

′′
i are all

set to 1, with k′2, k
′
3 = 1 in Figures 2 and 3, but equal

to 1.1 in Figures 4 and 5. The trajectories in Figures 2
and 4 are generated by means of the unmodified gradi-
ent method (18). The modified gradient method (32)-
(36) is used in Figures 3 and 5 with the functions γl(·)
set to γl(u) = − 1

2u
2 for all l, and the matrix B set to

the identity matrix of the appropriate size. The initial
conditions are the same for all Figures.

The form of Q (defined in (35)) gives rise to permanent
oscillatingmodes in the unmodified gradientmethod and
these are demonstrated in Figure 2, where we have con-
vergence to such an oscillating trajectory. In Figure 3 we
see that the modified gradient method gives convergence
to a saddle point with the same initial conditions.

In Figures 4 and 5 the different values of k′2, k
′
3 result in a

different Q which no longer gives rise to any permanent
oscillating modes in the unmodified gradient method.
Figure 4 shows the predicted convergence of the unmod-
ified gradient method to a saddle point. However the
closeness of the parameters kj , k

′
l to those in Figures 2

and 3, where there are permanent oscillations, causes
prolonged transient oscillatory behaviour. In Figure 5 we
see that the modified gradient method gives more rapid
convergence in this case, with behaviour very similar to
that in Figure 3.
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Fig. 3. Convergence of the modified gradient method
(32)-(36) applied to the network in Figure 1, with
kj , k

′
l, Yj , k

′′
i all set to 1, the functions γl(·) defined by

γl(u) = − 1
2
u2, B set as the identity matrix, and the same

initial conditions as in Figure 2. The modification always
converges, and this is evident in the rapid decay of oscilla-
tions.
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Fig. 4. Oscillations of the gradient method (18) applied to the
network in Figure 1 with k′

2, k
′
3 = 1.1, the rest of kj , k

′
l, Yj , k

′′
i

set to 1, and the same initial conditions as in Figure 2. In
this case Q, which depends on the kj , k

′
l, does not cause any

permanent oscillatory modes. Instead all oscillatory modes
are damped and the system converges as predicted. However
the closeness of the kj , k

′
l parameters to the case in Figures

2 and 3 where Q does give rise to permanent oscillations is
shown in the slow rate of decay of these oscillating modes.

7 Conclusions

We have considered the problem of distributed resource
allocation in an economic network where users and sup-
pliers trade for a single commodity. It has been discussed
that due to the underlying structure of the problem the
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Fig. 5. Convergence of the modified gradient method
(32)-(36) applied to the network in Figure 1, with
k′
2, k

′
3 = 1.1, the rest of kj , k

′
l, Yj , k

′′
i set to 1, the functions

γl(·) defined by γl(u) = − 1
2
u2, B set as the identity matrix,

and the same initial conditions as in Figure 2. The conver-
gence behaviour of the modified gradient dynamics is almost
identical to that in figure 3 where k′

2, k
′
3 = 1 and all oscilla-

tory modes are rapidly damped.

corresponding Lagrangian is not strictly concave-convex
and hence convergence to an optimal solution by means
of gradient type dynamics is not guaranteed. We have
provided in this case a characterization of the asymp-
totic behaviour of trajectories, and provided an explicit
description of the limiting solutions. Modifications have
also been discussed such that convergence to an opti-
mal solution can be guaranteed. Directions for future re-
search include applications of these results and analysis
tools in specific examples, such as analysis of electricity
markets and improved schemes for multipath routing in
communication networks.

It should also be noted that the derivations in the pa-
per are of independent technical interest as they can
be used as a basis for various extensions. For example,
the pathwise stability property proved in this paper for
general gradient dynamics, has been exploited in [14] to
prove linearity of the asymptotic behaviour for general
unconstrained gradient dynamics and subgradient dy-
namics with an internal saddle point. Extensions to gen-
eral classes of subgradient dynamics will be addressed in
future work.

Appendix A

In this appendix we provide the proof of the main results.
For the convenience of the reader each of the proofs is
presented in a separate subsection. The proof of Theo-
rem 17 is given in section A.1. In section A.2 the proof
of Corollary 22 is provided. Finally, in section A.3, the
proofs of Theorem 24 and Corollary 26 are presented.

A.1 Proof of Theorem 17

In this subsection we prove Theorem 17. For the readers
benefit we provide first an outline of the proof of the
theorem. The proof is split into four steps.

• In step 1 we prove the pathwise stability of (18) which
forms Theorem 17(ii). To do so, we define a new norm
(denoted ‖·‖W) and show that the distance between
any two solutions is non-increasing.

• In step 2 we prove that any solution of (18) converges
to the orbit of a solution of (18) that lies a constant
W-distance from any saddle point.

• In step 3 we classify the solutions to (18) that lie a
constantW-distance from any saddle point, and show
that the set of such solutions is the set X given by
Definition 16.

• In step 4 we combine steps 2 and 3 to establish con-
vergence of solutions of (18) to the set X . We then use
the pathwise stability property proved in step 1 to up-
grade a weaker notion of convergence that is used in
step 2, to the stronger convergence property claimed
by the theorem.

Step 1. In this step will prove that trajectories of (18)
are pathwise stable, which will establish Theorem 17(ii).

We begin by defining a norm to take account of the
matrices K and K ′.

Definition 27 We define the W-norm on R
L × R

n as

‖(z, p)‖2W = zTK ′−1z + pTK−1p. (A.1)

For z ∈ R
L this is defined as ‖z‖W = ‖(z, 0)‖W .

Pathwise stability is a consequence of the following
lemma.

Lemma 28 Let (21) hold, and let (z′(t), p′(t)) and
(z(t), p(t)) be two solutions of (18). Then

d

dt
‖(z′(t)− z(t), p′(t)− p(t)‖2W ≤ 0. (A.2)

Equality in (A.2) holds if and only if for each index l, j,

(a) ϕ is a linear function on the line from (z, p) to (z′, p′).
(b) If zl (respectively pj) is active then z′l (respectively

p′j) is active or semi-active.

(c) If zl (respectively pj) is inactive then z
′
l (respectively

p′j) is inactive or semi-active.

PROOF. We start with the inequality, and first prove
the result for proper solutions. Let (z′(t), p′(t)) and
(z(t), p(t)) be two proper solutions of (18) and define
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W (t) = 1
2 ‖(z′(t), p′(t))− (z(t), p(t))‖2W . Using the for-

mulation of (18) in Remark 15,

Ẇ = (z′ − z)TK ′−1(ż′ − ż) + (p′ − p)TK−1(ṗ′ − ṗ)

= (z′ − z)T (ϕ′
z − ϕz)− (p′ − p)T (ϕ′

p − ϕp)

=

∫ 1

0

d

ds

{
(z′ − z)Tϕz ◦ γ(s)− (p′ − p)Tϕp ◦ γ(s)

}
ds

(A.3)

where ϕ′
z denotes ϕz at (z′, p′), and γ(s) = ((z′ − z)s+

z, (p′ − p)s + p) traverses the line from (z, p) to (z′, p′)
linearly. Note that only the partial derivatives of ϕ de-
pend on s. Continuing, letting ẑ = z′− z and p̂ = p′−p,

Ẇ =

∫ 1

0

ẑTϕzz ◦ γ(s)ẑ ds+
∫ 1

0

ẑTϕzp ◦ γ(s)p̂ ds+

−
∫ 1

0

p̂Tϕpp ◦ γ(s)p̂ ds−
∫ 1

0

p̂Tϕpz ◦ γ(s)ẑ ds

=

∫ 1

0

ẑTϕzz ◦ γ(s)ẑ ds−
∫ 1

0

p̂Tϕpp ◦ γ(s)p̂ ds.

(A.4)

By concavity/convexity we have that ϕzz , ϕpp are nega-

tive/positive semi-definite which shows that Ẇ ≤ 0 with
equality if and only if they vanish along the line, which
proves claim (a).

Now we consider fully general solutions. This has the ef-
fect of replacing żl = k′lϕzl with k

′
l max(0, ϕzl) if zl = 0.

We will compare this modification with the computation
above and show that the modification can never make
Ẇ positive. We will look at the z coordinates. The p co-
ordinates are similar. The first line of (A.3) above shows

that Ẇ is the sum of contributions from each index l.
For each l there are three possibilities:

(i) zl, z
′
l are both active or semi-active. Then there is

no modification and the contribution to Ẇ is non-
positive as shown before.

(ii) zl, z
′
l are both inactive or semi-active. Then zl =

z′l = 0 and the contribution is zero.
(iii) One of zl, z

′
l is active and the other active. By sym-

metry we need only consider z′l active and zl inac-
tive. Then

(z′l − zl)k
′
l
−1

(ż′l − żl) =

= (z′l − zl)(ϕ
′
zl
−max(ϕzl , 0))

= (z′l − zl)(ϕ
′
zl
− ϕzl) + (z′l − zl)min(0, ϕzl).

(A.5)

The first term is the same as in the case (i), so is
non-positive. The second term is strictly negative
as z′l > zl = 0 and ϕzl < 0 as zl is inactive, which
proves (b) and (c). �

An immediate consequence of this proof is the fact that
Lemma 28 also holds for the general gradient method

(7), (8), without this being restricted to the economic
network. We hence have the following corollary.

Corollary 29 Let (7) hold. Then the flow generated by
the gradient method (8) is pathwise stable.

Step 2. In this step we will prove that any solution of
(18) converges to the orbit (see Definition 30 below) of
a solution of (18) that lies a constant distance from any
saddle point.

A simple consequence of Lemma 28 from step 1, is that
the W-distance of a solution of (18) to any saddle point
is non-increasing in time. It seems natural, therefore, to
apply LaSalle’s theorem with theW-distance to the sad-
dle point as the Lyapunov like function. However, due
to the switching in (18), an application of LaSalle’s the-
orem in its classical form (as in e.g. [18]) is not possi-
ble. We will instead provide a direct proof that relies on
pathwise stability 6 . To this end we need to define a form
of convergence of trajectories.

Definition 30 Let (z(t), p(t)) and (z′(t), p′(t)) be two
solutions of (18). We say that (z(t), p(t)) converges to
the orbit of (z′(t), p′(t)) if, as t→ ∞,

dist((z(t), p(t)), {(z′(t), p′(t)) : t ≥ 0}) → 0. (A.6)

Lemma 31 Let (21) hold and (z(t), p(t)) be a solution of
(18). Then (z(t), p(t)) converges to the orbit of a solution
(z′(t), p′(t)) of (18) which lies a constant W-distance
from any saddle point.

PROOF. We will first construct a solution (z′(t), p′(t))
and show that (z(t), p(t)) converges to its orbit. Then we
will establish that the constructed solution (z′(t), p′(t))
is a constant W-distance from any saddle point.

By Lemma 28 (z(t), p(t)) is bounded as t→ ∞ so it has
an ω-limit point. We define (z′(0), p′(0)) to be such a
limit point, then there is a sequence Tn → ∞ as n→ ∞
such that ‖(z′, p′)(0)− (z, p)(Tn)‖W < 1/n. By Lemma
28 this implies that ‖(z′, p′)(t)− (z, p)(t+ Tn)‖W < 1/n
for all t ≥ 0, which establishes the convergence of
(z(t), p(t)) to the orbit of (z′(t), p′(t)).

To show that the distance to any saddle point is constant,
we will first prove that (z′(t), p′(t)) is almost periodic in
the sense that there is a sequence τn → ∞ as n→ ∞ for
which, as n→ ∞,

sup
t≥0

‖(z′, p′)(t)− (z′, p′)(t+ τn)‖W → 0. (A.7)

6 We would like to thank A. Cherukuri, E. Mallada and J.
Cortés for kindly pointing out that the invariance principle
for hybrid automata [20] also does not apply to the system
(18).
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We claim that τk = Tnk
− Tn′

k
, with nk, n

′
k → ∞ as

k → ∞ chosen so that nk > n′
k and τk → ∞ as k → ∞,

is such a sequence. Indeed, for any t ≥ 0 we have,

‖(z′, p′)(t)− (z′, p′)(t+ τk)‖W ≤∥∥∥(z′, p′)(t) − (z, p)(t+ Tn′
k
)
∥∥∥
W

+∥∥∥(z′, p′)(t+ τk)− (z, p)(t+ Tn′
k
+ τk)

∥∥∥
W

+∥∥∥(z, p)(t+ Tn′
k
)− (z, p)(t+ Tn′

k
+ τk)

∥∥∥
W

(A.8)

The first two terms on the right hand side are each less
than 1/n′

k. The final term is less than 1
n′
k
+ 1

nk
by the

triangle inequality and the definition of Tn. Thus as k →
∞ all three terms go to zero proving the claim.

Now let (z̄, p̄) be an arbitrary saddle point. By Lemma
28, the distanceW (t) = ‖(z′(t), p′(t))− (z̄, p̄)‖W is non-
increasing in time t. By the almost periodicity shown
above, W (t) takes values arbitrarily close to W (0) at a
sequence of times tn → ∞ as n→ ∞. Therefore it must
be constant. �

Step 3. In this step we will characterise the solutions
of (18) that lie a constant W-distance to any saddle
point, and show that the set of such solutions is given
by the set X (Definition 16). To do so, we shall choose a
particular saddle point (z̄, p̄) and find all solutions which
have constantW-distance to this particular saddle point.
Then, a posteriori, we deduce that these solutions are
also a constant W-distance to all saddle points.

From assumption (22) the saddle point (z̄, p̄) is strictly
positive. We begin with the following lemma, which al-
lows us to ignore the switching at the boundary.

Lemma 32 Let (21) hold and (z̄, p̄) > 0 be a saddle
point. Then all solutions of (18) which have constantW-
distance to this saddle point are proper.

PROOF. This is immediate from Lemma 28(b),(c) as
all coordinates of the saddle point are active. �

When we express solutions of (18) as (z̄+ z̃(t), p̄+ p̃(t)),
it can be directly verified from (18) that the contribution
of the non-linearity coming from the utility functions
is zero if and only if z̃(t) ∈ ker(H). Indeed, for proper
solutions we may ignore the switching at the boundary
and convert to the second order differential equation,

¨̃z = K ′(HT (U ′(H(z̃ + z̄)))′−ATKA(z̃+z̄)+ATY )(A.9)

where (U ′(Hz))′ is d
dt (U

′(Hz)). If z̃ ∈ ker(H) then the

right hand side reduces to−K ′ATKAz̃ as all other terms

cancel because (z̄, p̄) is a saddle point. This discussion
leads to the following lemma.

Lemma 33 Let (21),(22) hold. Suppose that (z̃(t) +
z̄, p̃(t)+ p̄) is a proper solution of (18). Then if for some
time t0 we have z̃(t0) ∈ ker(H) then for that time,

¨̃z(t0) +Qz̃(t0) = 0, (A.10)

where Q is defined by (23).

When this condition does not hold, Lemma 28 shows
that theW-distance from the saddle point is decreasing.
Indeed, we have slightly more.

Lemma 34 Let (21) hold, then for any two proper so-
lutions (z′(t), p′(t)), (z(t), p(t)) of (18), define W (t) =

‖(z′ − z, p′ − p)‖2W . Then Ẇ = 0 at time t iff z′(t) −
z(t) ∈ ker(H).

PROOF. ByLemma 28(a) it is sufficient to show thatϕ
is linear on the line between (z′(t), p′(t)) and (z(t), p(t))
if and only if z′(t) − z(t) ∈ ker(H). As ϕ is a linear
function of p, this follows by the strict concavity of the
utility functions Ui. �

Thus all solutions which are at a constant W-distance
to the saddle point will have z̃(t) ∈ ker(H) for all times
t, and hence will, by Lemma 33, satisfy the linear ODE
(23). It is however possible to find solutions which have
z̃(t0) ∈ ker(H) for some time t0, but which are not at a
constantW-distance to the saddle point. The exact con-
dition for the W-distance to the saddle point to remain
constant is for z̃ to lie in the subspace defined below.
This is an alternate definition to that given by (24). The
equivalence between the two definitions will be proved
below in Lemma 38.

Definition 35 (Subspace Q) WedefineQ = K ′ATKA
and Q to be the largest subspace of ker(H) which is in-
variant under the action of Q. By which we mean that if
v ∈ Q then Qv ∈ Q.

Remark 36 It is easy to see that Q can equivalently be
defined as

Q =

∞⋂
i=0

Qi ker(H). (A.11)

The contrapositive of this is that

v �∈ Q =⇒ ∃i ∈ N, such that Qiv �∈ ker(H). (A.12)

Remark 37 There is no guarantee thatQ is non trivial.
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Lemma 38 Definition 35 and Equation (24) define the
same set Q.

PROOF. First suppose that v is in the span defining
Q in (24). As both definitions define a linear space and
Q is symmetric with respect to the inner product asso-
ciated with the W-norm on R

L, we may without loss of
generality take v to be an eigenvector of Q with some
eigenvalue λ. Then clearly Qiv = λqv ∈ ker(H) for all
positive integer q, so v ∈ Q as defined by Definition 35.

Second suppose that v ∈ Q as defined by Definition 35.
As before, we express v as a linear combination of eigen-
vectors of Q. If v ∈ ker(A) then certainly v is an eigen-
vector ofQ so it is in the span defining Q in (24). By lin-
earity it is sufficient to also consider the case where v is
W-orthogonal to ker(A). We express v as a linear combi-
nation of the eigenvectors of Q, v =

∑m
j=1 ajv

j . Let the
corresponding eigenvalues of Q be λ1, . . . , λm. Take the
set of eigenvalues with maximum magnitude, i.e. λj for
which |λj | = maxk=1,...,m |λk|. This is associated with a
subset of the eigenvectors, which without loss of gener-
ality we take to be v1, . . . , vs. We compute for integer i,

|λ1|−2iQ2iv =

s∑
j=1

ajv
j +

m∑
j=s+1

ajv
j

(
λj
|λ1|

)2i

. (A.13)

When we take i → ∞ the second term on the right
vanishes, and as the left hand side is in ker(H) the first
term on the right is also. Hence this term belongs to
the span. We then subtract this term from v and argue
inductively on the difference to show that v is in the span
defining Q in (24). �

To prove that z̃(t) ∈ Q for some time t if and only if the
solution (z(t), p(t)) is a constant W-distance from the
saddle point, we first show (Lemma 39) that if we start

a solution to (18) with initial condition z̃(0), ˙̃z(0) ∈ Q
then it obeys the linear equation (23).

Solutions to (23), with this restriction on the initial con-
ditions, will remain inQ for all time, and, by Lemma 34,
will remain a constant W-distance to the saddle point.

Lemma 39 Let (21),(22) hold. Suppose a proper solu-

tion of (18), (z̃(t) + z̄, p̃(t) + p̄), has z̃(t0), ˙̃z(t0) ∈ Q
for some t0, then z̃(t), ˙̃z(t) ∈ Q for all t ≥ t0, and z̃(t)
satisfies (23).

PROOF. A solution of the linear equation (23) exists
and is proper. For this solution the non-linear terms in
equation (18) are zero as z̃(t) ∈ Q ⊂ ker(H). Hence it
is a solution of the full non-linear equation (18) and by
uniqueness is the solution of (18). �

Solutions in X satisfy z̃(t) ∈ Q ⊂ ker(H) for all times
t and are hence a constant W-distance from the sad-
dle point (Lemma 34). To prove that these exhaust all
proper solutions which lie a constant W-distance to the
saddle point we consider the case where a solution has
z̃(t) ∈ ker(H) for all times t (a necessary and sufficient
condition for the distance from the saddle point to be
constant by Lemma 34), and deduce that z̃(t) ∈ Q.

Lemma 40 Assume (21),(22) and let (z(t), p(t)) be a
proper solution of (18) then if z(t)− z̄ ∈ ker(H) for all
time t, then z(t)− z̄ ∈ Q for all time t.

PROOF. As the solution is proper and z̃(t) = z(t)−z̄ ∈
ker(H) for all times t, Lemma 33 implies that z̃ solves the
linear ODE (23). Any solution of this is analytic, and in
particular we can expand z̃ as a power series in t about
any t0 to arbitrarily high order. Suppose z̃ ∈ ker(H) for
all time t, as assumed in the lemma, but there is a t0 for
which z̃(t0) �∈ Q. Then by Remark 36 there is smallest
integer q ≥ 0 such that HQqz̃ �= 0, i.e. Qq z̃ �∈ ker(H).
Expanding to twice this order,

z̃(t0 + t) = z̃(t0) + ˙̃z(t0)t+
1
2
¨̃z(t0)t

2 + · · ·
· · ·+ 1

(2q)!

d2q z̃

dt2q
(t0)t

2q +O(t2q+1)
(A.14)

From the equation for z̃ we can compute these deriva-
tives,

d2iz̃

dt2i
(t0) = (−Q)iz̃(t0)

d2i+1z̃

dt2i+1
(t0) = (−Q)i ˙̃z(t0)

(A.15)

for integer i ≥ 0. By assumption the first 2q − 1 deriva-
tives lie in ker(H), but the 2qth derivative does not. By
Taylor’s theorem, there is some interval for which z̃(t)
does not lie in ker(H), which is a contradiction. �

In summary, we have shown that a solution of (18) lies
a constant W-distance from the saddle point (z̄, p̄) if
and only if it is in the set X . It remains to show that
solutions in X are a constant distance from all saddle
points. It can be seen from the form of the linear ODE
(23), (or from the explicit solutions given by Corollary
22), that solutions in X return to any neighbourhood
of their initial condition, and as Lemma 28 implies that
they cannot become further away from any saddle point,
this implies that they also cannot become closer. This
leads to the proposition below.

Proposition 41 Assume that (21),(22) hold. Then the
set of solutions of (18) that lie a constant W-distance to
any saddle point is exactly the set X given by Definition
16.
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Step 4. In this step we will combine the results of the
previous steps and complete the proof of Theorem 17(i),
that solutions of (18) converge to solutions in X .

By Proposition 41 the setX is exactly the set of solutions
to (18) that lie a constant distance to any saddle point,
therefore Lemma 31 implies convergence to the orbit of a
solution in X . However, to obtain the full result we must
upgrade the weaker convergence to the orbit of a solution
in X given by Lemma 31 to the stronger convergence to
a solution in X .

Proposition 42 Let (21),(22) hold and (z(t), p(t)) be a
solution of (18). Then, (z(t), p(t)) converges to a solution
in X (defined in Definition 16).

PROOF of Proposition 42. Let (z(t), p(t)) be a solu-
tion of (18). By Lemma 31 (z(t), p(t)) converges to the
orbit of a solution (z′(t), p′(t)) of (18) that lies a con-
stantW distance from any saddle point. By Proposition
41, the set of all solutions that lies a constant W dis-
tance from any saddle point is exactly X . In particular,
(z(t), p(t)) converges to the set X .

It now remains to upgrade the convergence to the set
X to convergence to a solution. To this end we use the
convergence to the set X and Lemma 28 to obtain points
(z(n), p(n)) ∈ X and times tn such that,

∥∥∥(z(tn)− z(n), p(tn)− p(n))
∥∥∥
W

≤ 1/n. (A.16)

By the form of X there are solutions (z(n)(t), p(n)(t)) ∈
X with (z(n)(tn), p

(n)(tn)) = (z(n), p(n)), and by an ap-
plication of Lemma 28, we have for all t ≥ tn,∥∥∥(z(t)− z(n)(t), p(t)− p(n)(t))

∥∥∥
W

≤ 1/n. (A.17)

By the boundedness of trajectories, the set of initial con-
ditions of these solutions {(z(n)(0), p(n)(0)) : n ∈ N} is
relatively compact, and we can pass to a subsequence
nk for which (z(nk)(0), p(nk)(0)) → (z′(0), p′(0)) ∈ X as
k → ∞. We claim that ‖(z(t), p(t)) − (z′(t), p′(t))‖W →
0 as t → ∞. Indeed, for any ε > 0 there is a k ∈ N such
that for all t ≥ tnk

, we have

∥∥∥(z(t)− z(nk)(t), p(t)− p(nk)(t))
∥∥∥
W

≤ ε/2 (A.18)

and also for all t ≥ 0,

∥∥∥(z′(t)− z(nk)(t), p′(t)− p(nk)(t))
∥∥∥
W

≤ ε/2 (A.19)

where in each case we have used Lemma 28 to ex-
tend to later times. The claim now follows from the

triangle inequality, which completes the proof of the
proposition. �

This concludes the proof of Theorem 17.

A.2 Proof of Corollary 22

To prove Corollary 22 we will calculate the eigenvectors
and eigenvalues of the matrix Q. We begin by splitting
Q into blocks that each correspond to a single supplier.

Lemma 43 Q has the structure (up to a reordering of
the coordinates of z̃):

Q = diag(J1, . . . , Jm)

Jj = kj

⎡
⎢⎢⎢⎢⎢⎣

k′l . . . k′l
k′l+1 . . . k′l+1

...
...

...

k′l+l′ . . . k
′
l+l′

⎤
⎥⎥⎥⎥⎥⎦

(A.20)

where zl, . . . , zl+l′ are all the links connected to the sup-
plier sj.

PROOF. We can compute the entries of Q explicitly
from its definition.

Qab =
∑
i,j,k

K ′
aiA

T
ijKjkAkb

=
∑
j

k′aAjakjAjb

=

{
k′akj if za ∼ sj ∼ zb
0 otherwise

(A.21)

The stated form then follows immediately when we re-
order the coordinates into blocks of links connected to
the same supplier. �

The block diagonal structure of Q means that the eigen-
values of Q are completely determined by the eigenval-
ues of each Jj .

Lemma 44 The contribution to the eigensystem of Q
from each Jj defined by (A.20) is l′ zero eigenvalues with
eigenvectors in ker(A), and a single eigenvalue/vector
pair:

vj = [k′l, . . . , k
′
l+l′ ]

T

λj = kj(k
′
l + · · ·+ k′l+l′)

(A.22)

where the vector vj is written out in its form as an eigen-
vector of Jj.
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PROOF. By inspection, a basis of RL for the eigenvec-
tors with eigenvalue 0 is,

{el − el+a : 1 ≤ a ≤ l′} (A.23)

where ei is the standard Euclidean basis. These all lie
in ker(A), and the dimension of the span is l′. The final
eigenvector can be verified again by inspection, and this
makes exactly l′+1 eigenvectors, which is the size of Jj ,
so it is all of them. �

Proving Corollary 22 is now a simple computation which
we leave to the reader.

A.3 Convergence of the modified dynamics

In this section we present the proof of the convergence
of the modified dynamics (33)-(35) to an optimum point
of (10).

PROOF of Theorem 24. It should be noted that the
W-norm (Definition 27) and the proof of Lemma 28 eas-
ily extends to the generalised gradientmethod (33)-(35),
and this allows Lemma 31 to also be extended to apply
to solutions of (33)-(35). Therefore, any solution of (33)-
(35) will converge to the set of solutions to (33)-(35) that
lie a constant W-distance to any saddle point. It hence
suffices to show that the only solutions that have this
distance constant are saddle points.

Let ((z(t), z′(t)), p(t)) be a solution at constant W-
distance from a saddle point ((z̄, z̄′), p̄). By Lemma
28(a), using the fact that ϕ is always a linear function of
p and also the strict concavity of both the utility func-
tions and γ, we deduce that Bz−z′ andHz are constant
on the line from the saddle point to ((z(t), z′(t)), p(t)).

By evaluating Bz − z′ and Hz at the saddle point we
deduce that Bz(t) − z′(t) = 0 and Hz(t) = Hz̄. Next
we use the properties of the saddle point and (32) to ex-
press ϕz(t) = −AT (p(t)− p̄) +BT ((∇γ)(Bz(t)− z′(t)))
and ϕz′(t) = −(∇γ)(Bz(t)− z′(t)). Using that Bz(t) −
z′(t) = 0 and γ has a maximum at 0, we deduce that
ϕz(t) = −AT (p(t) − p̄) and ϕz′(t) = 0. By taking the
time derivative of the relation Bz(t)− z′(t) = 0 we have
BMzK

′ϕz(t) = Mz′K ′′ϕz′(t) = 0, and the condition
ker(B) ∩ ker(H) = {0} gives that either MzK

′ϕz(t) = 0
or MzK

′ϕz(t) �∈ ker(H). The second possibility is ruled
out by the relationHz(t) = Hz̄ = constant, which when
time differentiated givesHMzK

′ϕz(t) = 0. Therefore we
have ż = 0 and z is constant. This means that ṗ is also
constant, and by the boundedness of trajectories implied
by the fact that theW-norm distance to the saddle point
is non-increasing, p must be constant also. Therefore all
the time derivatives are zero and ((z(t), z′(t)), p(t)) is a
saddle point. �

PROOF of Proposition 23 The proposition follows
directly from Theorem 24.

PROOF of Corollary 26 The corollary follows from
Theorem 24, and by noting that non-trivial elements of
ker(B) are not in ker(H). �

Appendix B

Here we will present an extended version of Theorem 17
that holds without the assumption of (22). In this case
the boundary switching plays a key role, and the limit-
ing trajectories can lie on the boundary. To relax (22),
we introduce the concept of a maximally active saddle
point, which will be used to define the set of limiting
trajectories.

Definition 45 Given two saddle points (z̄, p̄) and (z̄′, p̄′)
we say that

• (z̄, p̄) is not less active than (z̄′, p̄′), which is denoted
(z̄′, p̄′) � (z̄, p̄), if, for any index l, z̄′l > 0 implies that
z̄l > 0.

• (z̄, p̄) is more active than (z̄′, p̄′), which is denoted
(z̄′, p̄′) ≺ (z̄, p̄), if both (z̄′, p̄′) � (z̄, p̄) and there is an
index l for which z̄′l = 0 and z̄l > 0.

We say that (z̄, p̄) is maximally active, if for any other
saddle point (z̄′, p̄′) we have (z̄′, p̄′) � (z̄, p̄).

It will be shown later in the appendix (Lemma 51) that
a maximally active saddle is always guaranteed to exist.

The following proposition is an extension of Theorem 17
where (22) is not required to hold. As in the main text,
we must first define the set of limiting solutions X ′.

Definition 46 Let (z̄, p̄) be a maximally active saddle

point.We define Ĝ to be the network obtained by removing
the links zl, that have z̄l = 0, from the original network
G. We denote the corresponding version of the set X
computed from Ĝ as X̂ .

Given a trajectory (ẑ, p̂) in X̂ we extend it to (z(t), p(t)) ∈
R

L+n by putting zl = 0 for each of the removed links.
The set X ′ is then defined those (z(t), p(t)) obtained in
this way, that additionally satisfy ϕzl(t) = 0 for each of
the previously removed links.

Proposition 47 Let (21) hold. Then the solutions (18)
satisfy the following:

(i) For all initial conditions, a solution of (18) con-
verges to a solution in the set X ′ defined by Defini-
tion 46, or is of that form.
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(ii) The flow generated by (18) is pathwise stable.

Remark 48 When (22) holds, the sets X and X ′ are
equal and Proposition 47 reduces to Theorem 17.

The remainder of this section will consist of a proof of
this Proposition.

PROOF of Proposition 47(ii). We simply note that
the reasoning used in the proof of Theorem 17(ii) still
holds as Lemma 28 does not depend on (22). �

PROOF of Proposition 47(i).
To proveProposition 47(i), andmotivate why one should
expect it to be true, we will first consider the more
straightforward case where there is a saddle point which
has all its coordinates either active or inactive, but not
semi-active. 7 The remaining case, where there are semi-
active coordinates at the saddle point, is substantially
longer and more complex, and will be considered later.
During this first part of the proof we shall single out a
saddle point (z̄, p̄) with this property. 8

We will follow the same basic strategy as in the proof
of Theorem 17. However, in this case we cannot assume
that the trajectories that are a constant W-distance to
the saddle point are proper. Instead, wewill use the prop-
erties of the chosen saddle point (z̄, p̄) to appropriately
transform the problem.

Lemma 28(b)-(c) implies that trajectories (z(t), p(t))
that are a constant W-distance from the saddle point
(z̄, p̄) have zl always inactive or semi-active if z̄l is inac-
tive. Thus these coordinates are always zero and the tra-
jectories are also solutions to the reduced system where
we remove links zl that are inactive at the saddle point.

This leads us to the following lemma.

Lemma 49 Let (21) hold and let (z̄, p̄) be a maximally
active saddle point with no semi-active coordinates. Then
the set X ′ obtained from (z̄, p̄) is the set of solutions
of (18) that have the W-distance to this saddle point
constant.

PROOF. The above discussion together with Theorem
17 applied to the reduced system Ĝ establishes that any

7 Note that any saddle point with this property will be max-
imally active by Lemma 28(b)-(c), so the notion of maxi-
mally active will not be needed directly in this case, but will
become important in the second part of the proof at the end
of the appendix.
8 As in section 4, the results obtained are independent of
this choice of saddle point.

solution of (18) which is a constantW-distance to (z̄, p̄)

will lie in X̂ . Next we observe that the condition that
ϕzl(t) ≤ 0 in the definition of X ′ is necessary to ensure
that theses trajectories are also solutions to the non-
reduced system. Conversely, any trajectory in X ′ is a
solution to (18) that is a constant W-distance to the
saddle point. �

To prove convergence to these solutions we use the same
strategy as in the proof of Theorem 17.

Lemma 50 Let (21) and (z(t), p(t)) be a solution of
(18) and (z̄, p̄) be a maximally active saddle point with
no semi-active coordinates. Then, (z(t), p(t)) converges
to a solution in X ′ (defined in Definition 46).

PROOF. This is identical to that of Proposition 42 but
using Lemma 49 and set X ′ instead of set X . �

This completes the proof of Proposition 47 when a maxi-
mally active saddle point has no semi-active coordinates.

We now move on to the remaining case, where any max-
imally active saddle point has at least one semi-active
coordinate. We first show that a maximally active sad-
dle point must exist.

Lemma 51 Let (21) hold. Then there exists amaximally
active saddle point.

PROOF. It is sufficient to show that for any two saddle
points (z̄, p̄) and (z̄′, p̄′), there is a saddle point (z̄′′, p̄′′)
with (z̄, p̄) � (z̄′′, p̄′′) and (z̄′, p̄′) � (z̄′′, p̄′′). We claim
that (z̄′′, p̄′′) = 1

2 (z̄ + z̄′, p̄+ p̄′) is such a saddle point.

To show this is indeed a saddle point we use that Lemma
28 implies that (z̄′′, p̄′′) is an equilibrium point of (18).
Indeed, by Lemma 28 the solution of (18) starting at
(z̄′′, p̄′′) is constrained to not become further in W-
distance from either (z̄, p̄) or (z̄′, p̄′) as time increases.
By strict convexity of the W-norm the only point obey-
ing both conditions is (z̄′′, p̄′′) itself.

That (z̄, p̄) � (z̄′′, p̄′′) and (z̄′, p̄′) � (z̄′′, p̄′′) is now a
simple computation. �

We now state a lemma that will allow us to prove Propo-
sition 47(i) in the remaining case. Recall that the notion
of convergence to the orbit of a solution was defined in
Definition 30.
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Lemma 52 Let (21) hold, and (z(t), p(t)) be a solu-
tion of (18). Let (z̄, p̄) be a maximally active saddle
point. Then (z(t), p(t)) converges to the orbit of a solu-
tion (z′(t), p′(t)) of (18) that is a constant W-distance
to (z̄, p̄) and that satisfies, for each index l, z′l(t) = 0 if
z̄l = 0.

With this lemma, the remaining case of Proposition 47
may be proved as follows. By construction, the set X ′
consists of exactly those solutions of (18) that are both
a constant W-distance to the saddle point, and have zl
vanishing for lwhich have z̄l = 0. Thus, the above lemma
gives convergence of an arbitrary solution to the orbit
of a solution in X ′. Once we have this weaker form of
convergence, the convergence can be upgraded as in the
proof of Proposition 42.

The remainder of this section will be devoted to proving
Lemma 52. To begin, we will extend Lemma 31 with an
additional invariance property.

Lemma 53 Let (21) hold and (z(t), p(t)) be a solution of
(18). Then (z(t), p(t)) converges to the orbit of a solution
(z′(t), p′(t)) that satisfies the following:

(i) For any τ ≥ 0, the distance

‖(z′, p′)(t)− (z′, p′)(t+ τ)‖W (B.1)

does not depend on t.
(ii) (z′(t), p′(t)) is a constantW-distance from any sad-

dle point.

PROOF. Lemma 31 implies both the convergence to
the orbit of a solution (z′(t), p′(t)) and property (ii).
(i) follows from the same arguments that are used to
establish (ii) in the proof of Lemma 31. �

The above properties in particular allows us to rule out
convergence to solutions that have switching.

Corollary 54 Let (21) hold and (z(t), p(t)) be a solution
to (18) which satisfies Lemma 53 (i). Then for any index
l, one of the following holds:

(a) zl is identically zero.
(b) zl is never inactive.

and similarly for pj.

PROOF. We will consider the links zl, the prices pj
are similar. Suppose, for a contradiction, that there is an
index l for which neither of (a) or (b) hold. Then there
are times t1, t2 for which zl(t1) is inactive and zl(t2) is
active. Suppose t2 > t1, the reverse case is similar. Let

W (t) = 1
2 ‖(z, p)(t)− (z, p)(t+ (t2 − t1))‖2W , then, by

Lemma 28, W is non-increasing and strictly decreasing
at t = t1, which contradicts Lemma 53(i). �

The only way our constructed limiting solution
(z′(t), p′(t)) could not satisfy the claim of Lemma 52 is
if, for some index l, z̄l = 0 and case (b) of Corollary 54
holds, while case (a) does not. We shall show that this
case would imply that (z̄, p̄) is not maximally active,
which is a contradiction.

PROOF of Lemma 52. Lemma 53 gives convergence
of (z(t), p(t)) to the orbit of a solution (z′(t), p′(t)) that
satisfies the two conditions stated in the lemma. As we
do not need to refer to the original solution (z(t), p(t))
again, we will drop the primes from (z′(t), p′(t)) to ease
notation.

We will argue by contradiction. Assume that there is
an index l for which z̄l = 0 but zl(t) is not identically
zero. We will prove that this implies that (z̄, p̄) is not
maximally active. To do this we will exhibit a saddle
point that is more active than (z̄, p̄).

Corollary 54 implies that for any index l′, zl′ is either
identically zero or never inactive. Let Ĝ be the network
obtained from G by removing links zl′ that have zl′(t)
identically zero. Denote the version of X obtained from
Ĝ as X̂ , the vector z(t) with these links removed as ẑ(t)
and similarly for other quantities.

(ẑ(t), p̂(t)) is then a solution to the reduced system, and
as, by Corollary 54, the remaining links zl′ and prices
pj are never inactive, it is a proper solution. Because
(ẑ(t), p̂(t)) is proper, it is also a solution to (B.2), i.e. the
system without the switching at the boundary.

˙̂z = K̂ ′ϕ̂ẑ

˙̂p = −K̂ϕ̂p̂.
(B.2)

By Lemma 28(b)-(c) and Lemma 53(ii), (ˆ̄z, ˆ̄p) has no
inactive coordinates and is an equilibrium point of (B.2).
Lemma 53(ii) and the arguments 9 from section 4 show

that (ẑ(t), p̂(t)) ∈ X̂ , and is of the form,

(ẑ(t), p̂(t)) = (ˆ̄z, ˆ̄p) + (ˆ̃z0, 0) + (ˆ̃z1(t), ˆ̃p(t)) (B.3)

and ˆ̃z0, ˆ̃z1(t), ˆ̃p(t) obey the constraints given in the defi-

nition of X . In particular, (ˆ̄z+ ˆ̃z0, ˆ̄p) is a saddle point of

9 In section 4 assumption (22) was used to justify neglect-
ing the switching at the boundary. In equation (B.2) this
switching is neglected, so the analysis in section 4 can still
be used to show that (ẑ(t), p̂(t)) is of the form given in the

definition of X̂ .
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ϕ̂. We wish to prove that (ˆ̄z+ ˆ̃z0, ˆ̄p) is more active than
(z̄, p̄), for which, as ˆ̄zl = 0, it is sufficient to show that
ˆ̃z0l > 0. This follows from (B.3), as ẑl(t) is non-negative

and not identically zero, ˆ̃z1l (t) oscillates around 0, and
ˆ̄zl = 0.

Finally, we must show that (ˆ̄z + ˆ̃z0, ˆ̄p) induces a saddle

point (z̄ + z̃0, p̄) ≥ 0 of ϕ. This follows from ˆ̃z0 ≥ 0,
which holds because (ẑ(t), p̂(t)) ≥ 0, and the fact that

extending a vector in ker(Ĥ) or ker(Â) with zeros for
the removed links yields a vector in ker(H) or ker(A)
respectively. �

This completes the proof of Proposition 47.
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