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Within the shoving model of the glass transition, the relaxation time and the viscosity are related
to the local cage rigidity. This approach can be extended down to the atomic-level in terms of
the interatomic interaction, or potential of mean-force. We applied this approach to both real
metallic glass-formers and model Lennard-Jones glasses. The main outcome of this analysis is that
in metallic glasses the thermal expansion contribution is mostly independent of composition and is
uncorrelated with the interatomic repulsion: as a consequence, the fragility increases upon increasing
the interatomic repulsion steepness. In the Lennard-Jones glasses, the scenario is opposite: thermal
expansion and interatomic repulsion contributions are strongly correlated, and the fragility decreases
upon increasing the repulsion steepness. This framework allows one to tell apart systems where ”soft
atoms make strong glasses” from those where, instead, ”soft atoms make fragile glasses”. Hence, it
opens up the way for the rational, atomistic tuning of the fragility and viscosity of widely different
glass-forming materials all the way from strong to fragile.

I. INTRODUCTION

One of the most puzzling properties of glass-forming
liquids is the huge increase of viscosity, by many orders
of magnitude, within a narrow range of temperature T
upon approaching the glass transition temperature Tg.
As a consequence, considerable interest is being devoted
to understanding this phenomenon in terms of the under-
lying atomic-level structure and dynamics of supercooled
liquids1.

For many decades, practically all experimental mea-
surements of viscosity or relaxation time as a function
of T upon cooling towards the glass transition Tg, have
been fitted with the Vogel-Fulcher-Tammann (VFT) re-
lation2. This empirical formula, with three fitting pa-
rameters, can capture the exponential or faster-than-
exponential increase of viscosity on cooling of practically
all cooperative liquids, something that physical theories
have struggled to predict on a microscopic basis. Mode-
coupling theory predicts a power-law increase of viscosity,
whereas entropy-based theories such as Adam-Gibbs and
random-first-order are relatively successful in capturing
the exponential3,4 trend using activation concepts. They
involve growing length-scales and moreover can produce
predictions of the different steepness of viscosity as a
function of temperature25. An extended temperature-
volume version of this model was formulated24, which
predicts the fragility parameter m for systems with dif-
ferent composition.

As shown by Angell5, while some systems (strong glass
formers) have a viscosity which follows an Arrhenius
exp(a/T ) dependence on T , other systems (fragile
glass formers) have a much steeper super-exponential
dependence on T . Various attempts have been reported
to formulate physical models that can explain this

fundamental observation in terms of the underlying
microstructure, dynamics and interaction picture.

In spite of these efforts, the VFT relation still lacks a
microscopic derivation and most available closed-form ex-
pression for the viscosity are semi-empirical extensions of
VFT where some parameter is given a tentative physical
meaning in terms of a dynamical or structural parame-
ter6.
Recently, a different approach has been proposed7,8,
which combines the shoving model of the glass transi-
tion10,11 with the atomic theory of elasticity12,13.

There exists experimental support for both the shoving
model30 and the Adams-Gibbs conjecture29. The contri-
butions of the Adam-Gibbs mechanism is, however, not
enough to explain the behavior of the fragility, it has to
be complemented with the effect of anharmonicity28. Ap-
plying the shoving model and the adding the anharmonic
effects to describe the fragility of glass-forming liquids is
the focus of the present approach.

In the shoving model of the glass transition9,10, the
relaxation time is an Arrhenius function of T where the
activation energy is provided by the local rigidity of the
cage. In other words, it is the energy needed to break and
mobilize the cage for a particle to escape, according to
the original idea of Eyring14. Hence, η ∼ exp(G/kBT )15,
where G is the high-frequency shear modulus which de-
scribes the rigidity of the glassy cage. Within this ap-
proach it is possible to make a step further and use the
atomic theory of elasticity to relate the shear modulus
G to the average number Z of mechanically-active in-
teratomic connections per atom, G ∝ Z for the high-
frequency affine modulus. Clearly, if G and Z are rela-
tively insensitive to any change in T , the relaxation time
and the viscosity are a simple Arrhenius function of T ,
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which works well for strong glasses. In the opposite sce-
nario, Z may be a strong function of T because of thermal
expansion: if the attractive part of the interatomic po-
tential is shallow, atoms leaving the cage encounter little
resistance, hence the viscosity drops dramatically upon
increasing T and one recovers the fragile-glass limit.

II. DISENTANGLEMENT OF THE
INTERATOMIC POTENTIAL IN VISCOSITY

AND FRAGILITY

Here we apply these ideas to two key systems: real
metallic glasses on one hand, and Lennard-Jones model
glasses, on the other. The analysis of these systems is
much revealing: it is possible to fully disentangle the
contributions of different segments of the interatomic po-
tential (repulsive and attractive) to the viscosity and
fragility. This outcome is of utmost importance for devel-
oping rational guidelines in the design of glassy materials
with tunable mechanical and viscoelastic properties. In
our recent work7, an analytical model is proposed that
describes the elasticity, viscosity and fragility of metallic
glasses in relation to their atomic-level structure and the
effective interatomic interaction. The model, which has
only one adjustable parameter (the characteristic atomic
volume for high-frequency cage deformation) is tested
against new experimental data from MD simulations of
ZrCu alloys and provides an excellent one-parameter de-
scription of the viscosity down to the glass transition tem-
perature.
We also consider the widely-used Lennard-Jones (LJ) po-
tential defined as: V (r) = ε

(q−p) [p( r0r )q−q( r0r )p], where ε

is the depth of the minimum and r0 is the position of the
energy minimum along the radial coordinate r. In this
formulation, the LJ potential is a very versatile model
system in which the anharmonicity can be varied by tun-
ing the values of power-law exponents (q, p). LJ poten-
tials with different anharmonicity as given by different
values of the pair (q, p) are plotted in Fig.1b. This po-
tential has been extensively used in numerical simulations
starting with the pioneering work of Kob and Andersen
to make binary mixtures that undergo glass transition
upon decreasing the temperature.

The influence of attractive forces in LJ systems has
been studied in detail in Ref.27, where it was concluded
that a variation of attractive intermolecular forces have
only a small influence of the static structure of the LJ
glass, but may drastically alter the dynamical relaxation
behavior, i.e. the viscosity or relaxation time.

Anharmonicity in this model system can be quanti-
fied in various ways. For example, in Ref.16, anhar-
monicity was quantified by the radial distance ξ at which
V (ξ) = −0.5. In the older literature, a different mea-
sure of anharmonicity is given by the cubic coefficient
ζ < 0 in the Taylor expansion of the potential about the
minimum. Classical arguments by Y. Frenkel show that
the linear thermal expansion coefficient is proportional

anharmonicity

αT ~ constant with composition 
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FIG. 1. Ashcroft-Born-Mayer interatomic potential. Rep-
resentation of the AshcroftBornMayer interatomic (see Ap-
pendix A) using the one-parameter logarithmic expression
in terms of the global interaction parameter λ (including
the two separate contributions to the interatomic potential).
This illustrative plot was generated for a repulsive steepness
λ = 99.7.

to | ζ |.
Hence, a direct relationship exists between the thermal
expansion coefficient αT and the attractive anharmonic
tail of the potential, as quantified by either ξ or ζ. In the
same way, a similarly global parameter λ represents the
effect of the repulsive part of the potential, as depicted
in Fig.1 (a) and is directly related to the short-range
ascending slope of the radial distribution function g(r)
through the following simple power-law expression7,8:

g(r) ∼ (r − σ)λ (1)

where σ stands for the ion core diameter.
The complex relationship between these two interac-

tion parameters and its impact on viscosity and fragility
is explored and disentangled in the following.

III. αTTg VERSUS λ FOR METALLIC AND LJ
GLASS-FORMERS

We study the relation between λ and αTTg for a num-
ber of metallic glass-formers, on one hand, and for LJ
systems with varying power-law exponent pairs, on the
other, in a comparative framework.

The proposed interatomic potential of our recent work
has been applied to experimental data of metallic alloys
(see Appendix A). In some cases, λ could be extracted
from experimental data of g(r), whereas in other cases
it has been fitted to the viscosity data. In the fitting of
metallic glass data using our proposed interatomic po-
tential, the values of Tg and αT were taken from the
literature. Hence, using those fittings, it is possible to
analyse the interrelation between λ and αTTg, and the
impact thereof on the fragility m.

For the model LJ systems, instead, we use the sim-
ulation data of Bordat et al.16 from the literature who
studied three different LJ systems with different values
of the power-law exponents as depicted in the Fig.1 (b).
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FIG. 2. Theoritical fittings of simulation data of the LJ sys-
tems. Symbols are simulation data for the α-relaxation time
measured in the simulations of the model LJ systems with
variable exponents in Bordat et al. Solid lines are theoreti-
cal fittings using our effective interatomic potential (see Ap-
pendix A).

The α-relaxation time τα was measured in Ref.16, as a
function of the reduced temperature T/Tref for the three
LJ systems, where Tref ' Tg. Upon using that τ ∝ η, we
fitted the simulation data for τ using our interatomic po-
tential (see Appendix A). The proportionality constant
between τ and η is absorbed in the parameter η0. Fur-
thermore, to keep things simple, we also used the product
VcCG, where Vc corresponds to the characteristic atomic
volume and CG to the shear modulus value at the glass
transition temperature Tg (see Appendix A), as the only
fitting parameter. The values of λ are determined by fit-
ting the ascending flank of the first peak of g(r) (for the
majority particle species, since it is a binary mixtures) as
reported in Bordat et al.16, according to the procedure
reported in Ref.8. The results are shown in Fig. 2.

From the fittings, we thus obtain the values of αT
for the three LJ systems. As expected based on lat-
tice dynamical considerations, αT increases with increas-
ing the anharmonicity of the LJ potential, i.e. from
the most harmonic-like to the most anharmonic, in the
following order: (12, 11) → (12, 6) → (8, 5). Also, we
plotted the values of the product αTTref as a function
of λ in Fig. 3(a), which enter the expression for the
fragility m as a product. By virtue of the definition
of the LJ potential, αT is a decreasing function of λ,
which is also evident from the plots in Fig. 1(a). In ad-
dition to that, the product αTTref follows an empirical
power-law αTTref ∼ λ−1.79. Upon inserting this into
the expression for m, we thus obtain the scaling relation
m ∼ λ−0.79. This implies that, for model LJ systems,
a softer interatomic repulsion is linked to more fragile
glass-former. This is the opposite to what is observed in
soft repulsive colloids and in metallic glasses, where ”soft
atoms/particles make strong glass-formers”. It is impor-
tant to emphasize that in the LJ systems studied, the
increase in anharmonicity in the attractive part of the
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FIG. 3. αTTg versus λ-Experiment and simulations. (a) Fit-
ted values of αTTref for the three different LJ systems as a
function of the corresponding value of interparticle repulsion
λ. (b) literature values of αTTg (αT is the linear thermal ex-
pansion coefficient) of various metallic glasses as a function of
the corresponding value of λ as fitted using Eq.(1) in Ref.7.
From left to right (increasing value of λ): Zr46.75 Ti8.25 Ni10
Cu7.5 Be27.5, Pd43 Cu27 Ni10 P20, Pt57.5 Ni5.3 Cu14.7 P22.5,
La55 Al25 Ni20, Zr41.2 Ti13.8 Ni10 Cu12.5 Be22.5, Pd40 Ni40 P20,
Pd77.5 Cu6 Si16.5. (c) values of αTTg (αT is the volumetric
thermal expansion coefficient) of the ZrCu metallic glass ex-
tracted from MD simulations for different stoichiometries as
a function of λ calculated from the total g(r) of the corre-
sponding system by the way described in our recent work8

(Appendix A)
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FIG. 4. Fragility m as a function of interatomic repulsion
steepness λ. (a) for the LJ systems, while the inset shows how
the fragility m depends on the thermal expansion parameter
αTTref . (b) for various metallic glasses: from left to right
(increasing value of λ): La55 Al25 Ni20, Zr41.2 Ti13.8 Ni10
Cu12.5 Be22.5, Pd40 Ni40 P20, Pd77.5 Cu6 Si16.5. The inset
shows how the fragility m depends on the thermal expansion
parameter αTTg.

potential (which sets the thermal expansion coefficient
αT ) goes hand in hand with softer short-ranged repul-
sion by construction. This is indeed reflected in the fact
that αT is a decreasing function of λ.

Let us now consider the situation with metallic glasses.
In Fig. 3(b), we have plotted values of αTTg (αT is the lin-
ear thermal expansion coefficient) of various real metallic
glasses taken from the experimental literature, as a func-
tion of the corresponding λ values obtained in Ref.7 by
fitting experimental viscosity data with Eq. (5) (see Ap-
pendix). The experimental data sets were obtained at
atmospheric pressure conditions15. Additionally, in Fig.
3(c), the αTTg (αT is the volumetric thermal expansion
coefficient) values versus λ are plotted for a given metal-
lic system, studied by MD simulations, where the role
of the stoichiometry has been added. The situation in
both cases looks as follows: there is no appreciable trend
and αTTg appears to be muss less dependent on λ as in
the LJ case. In particular, αTTg varies very little over a
comparatively much larger λ-interval, within a band of

±0.00131 of its average value 0.00764, in the case of the
real metallic glasses. This behavior has been observed
experimentally for a wide range of different bulk metallic
glasses26. In the second case of the CuZr binary alloy
of varying composition it varies as ±0.00913 around its
average value 0.06266.

In the case of LJ, instead, we had not only a clear
decreasing trend, but also a larger variation in αTTref ,
by more than a factor of 2, over a comparatively much
narrower λ interval. Hence, we can set approximately
αTTg ∼ λ0 ∼ const in Eq. (6) (see Appendix) for the
case of metallic glasses, which gives m ∼ λ for the
fragility. This clearly explains that ”soft atoms make
strong glasses” in the case of metallic glasses, because
the product of the thermal expansion coefficient and the
glass transition temperature in this case is practically in-
dependent of the interatomic repulsion. This is a very
subtle but important point and a deep insight into our
understanding of glasses.

Let us now consider what are the consequences for the
fragility, by looking at the plots of m as a function of λ
and as a function of αTTref and αTTg for the two classes
of systems, respectively. In Fig. 4(a), main panel, we
plotted the fragility as a function of λ for the LJ systems.
As discussed above, in this casem is a decreasing function
of λ, even though m increases with increasing αTTref ,
because αTTref is a nonlinearly decreasing function of
λ. Hence, according to our expression for the fragility,
m = 1

ln 10
VcCG

kBTg
[1+(2+λ)αTTg], derived in the Appendix,

the overall dependence of m is that it decreases in the
order (8, 5)→ (12, 6)→ (12, 11).

In Fig. 4(b), main panel, we plotted the fragility as
a function of λ for the metallic glasses. As anticipated,
here we have the opposite trend: ”soft atoms make strong
glasses”, and the fragility increases upon increasing the
repulsion steepness λ. However, let us look also at the
dependence of m on αTTg: it appears to be qualitatively
the same dependence seen for the LJ systems, i.e. the
fragility increases with increasing the product of the ther-
mal expansion coefficient and the glass transition tem-
perature, αTTg, but the trend is comparatively less pro-
nounced for the same reasons mentioned in the context
of Fig. 3(b).

IV. CONCLUSIONS

Hence, we have shown that the fragility of the glass-
formers investigated here under isobaric conditions is an
increasing function of the product of the thermal ex-
pansion coefficient and the glass transition temperature,
which is directly related to the attractive anharmonicity
for the model LJ glass-formers. The situation, however,
is different for the repulsion steepness (and its inverse,
the softness). In LJ systems, by construction, the repul-
sion steepness decreases upon increasing the attractive
anharmonicity, and the fragility is a decreasing function
or the repulsion steepness parameter λ because αTTref
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is a stronger-than-linear decreasing function of λ in the
fragility formula (Eq.(6) Appendix A). Hence, the overall
dependence of the fragility m on the repulsion steepness
is strongly influenced by the strong dependence of αTTref
on λ. For metallic glasses, the situation is reverse: αTTg
is basically independent of λ. Hence the overall depen-
dence of m on λ in this case is of direct proportionality
as given by the expression for m quoted above (Eq. (6)
in the Appendix).

In physical terms, this analysis clarifies that an in-
creased fragility is associated with larger values of the
product αTTg, which implies larger atomic mobilities at
the level of third and 4th neighbours18, and the ability of
the system to rearrange into more stable local configura-
tions upon decreasing T . At the same time, however, the
fragility also increases upon increasing the short-range
repulsion steepness, because this implies a steeper T -
dependence of the local cage rigidity encoded in the high-
frequency shear modulus G. This, in turn, is controlled
by the local coordination number Z and hence by the
T -dependence of Z19, which is a function of the repul-
sion steepness λ. The conceptual framework developed
here thus mechanistically explains the apparent contra-
diction in the recent literature (that ”soft atoms make
strong glasses” for metals7 and colloids20, whereas ”soft
atoms make fragile glasses”, for LJ systems16) in terms
of the underlying interaction physics. This framework
will prove useful to achieve a rational design of mechan-
ical properties of metallic glasses and other amorphous
advanced materials.

The support of the EU through VitrimetTech ITN net-
work FP7-PEOPLE-2013-ITN-607080 and FG 1394P1 is
thankfully acknowledged.

V. APPENDIX A. EFFECTIVE
ASHCROFT-BORN-MAYER

PSEUDOPOENTIAL-ANALYTICAL
EXPRESSIONS FOR THE HIGH FREQUENCY

SHEAR MODULUS AND THE VISCOSITY

In recent work7, we analysed several amorphous metal-
lic alloys in an attempt to extract an effective, averaged
interatomic potential which describes the short-range re-
pulsion between any two ions in a metallic alloy melt.
Based on the systematic fitting of shear modulus and vis-
cosity data for various three- and 5-component alloys we
proposed the following interatomic potential which com-
prises two contributions: (i) the longer-ranged Thomas-
Fermi (screened-Coulomb) repulsion modulated by the
Ashcroft correction and (ii) the Born-Mayer closed-shell
repulsion due essentially to Pauli repulsion.

V (r) = A
exp−qTF(r−2a0)

r − 2a0
+Be−C(r−σ̄) (2)

where

A = Z2
ione

2 cosh2(qTFRcore) (3)

The Thomas-Fermi contribution is more long-ranged
and is described by a Yukawa-potential type expression.
The Born-Mayer contribution is a simple exponentially-
decaying function of the core-core separation, motivated
by the radial decay of electron wavefunctions for the
closed shells. The effective (average) interatomic poten-
tial for two atoms in a metallic glass or melt is schemat-
ically depicted in Fig.1 of the main article.

We also consider the standard Lennard-Jones potential
defined as: V (r) = ε

(q−p) [p( r0r )q − q( r0r )p], where ε is the

depth of the minimum and r0 is the position of the energy
minimum along the radial coordinate r. Anharmonicity
in this model system can be quantified in various ways.
For example, in Ref.16, anharmonicity was quantified by
the radial distance ξ at which V (ξ) = −0.5. In the old
literature, a different measure of anharmonicity is given
by the cubic coefficient ζ < 0 in the Taylor expansion of
the potential about the minimum. Classical arguments
by Y. Frenkel show that the linear thermal expansion
coefficient is proportional to | ζ |.

Hence, a direct relationship exists between the thermal
expansion coefficient αT and the attractive anharmonic
tail of the potential, as quantified by either ξ or ζ. The
next step, is to find a similarly global parameter like αT
to represent the effect of the repulsive part of the poten-
tial. This can achieved as follows.

A simple parametrization of the short-range repulsive
part of the interatomic potential is obtained by fitting
the repulsive ascending part of the radial distribution
function g(r) to a power-law: g(r) ∼ (r − σ)λ, where
σ corresponds to the soft-core diameter of the atoms.
This fitting is valid between r ≈ 0 and r ≈ r0, where
we approximate the maximum of the first peak of g(r)
with the minimum r0 of the pair potential. Upon invert-
ing the Boltzmann relation g(r) = exp(−Veff(r)/kBT ),
the potential of mean-force Veff is obtained directly from
g(r). The potential of mean-force Veff reduces to the
pair potential V (r) only in the limit of zero density of
particles (ideal gas limit). At the high density of super-
cooled liquids, Veff crucially contains many-body effects
and represents the effective interaction between two par-
ticles mediated by the motions of all other particles in
the liquid17. At short range, however, Veff and V (r) are
very similar and both dominated by the repulsive part of
the interaction (they both diverge as r → 0). Since we
are looking for a global repulsion parameter, analogous
to αT for the attraction, it is important to work with Veff

rather than V (r).
Hence, we can obtain an estimate of the repulsive part

of the potential of mean force using

Veff = −λ ln(r − σ). (4)

where λ comes from a power-law fitting of g(r) up to
the maximum of the first peak as described above and in
Ref.7,8.

The next step, is to find a way to connect the shear
modulus G, which enters the shoving model, to the global
interaction parameters, λ and αT . The high-frequency
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(affine) shear modulus can be written using lattice dy-
namics as G = 1

5π
κ
R0
φZ, where R0 is some average (snap-

shot) distance between two nearest-neighbour atoms in
the equilibrated supercooled liquid, κ is the harmonic
spring constant (i.e. the curvature of the main energy
minimum in Fig.1), and φ is the atomic packing fraction.

Using the fact that the upper integration limit of rmax
increases with the packing fraction φ, integrating the g(r)
up to a threshold which is proportional to φ, as done in
Ref.8, yields the scaling law Z ∼ φ1+λ. Although the
upper limit of the integral could be perhaps identified
with rmax , since we are interested here in the qualitative
behaviour we prefer to leave it as a generic threshold ∝ φ
such that the limit Z → 0 is correctly recovered when
φ→ 0.

Moreover, the definition of the Debye-Grueneisen ther-
mal expansion coefficient αT , in terms of the atomic pack-
ing fraction φ = vN/V (with v the characteristic atomic
volume and N the total number of ions in the material)
gives φ(T ) ∼ e−αTT , as discussed e.g. in Ref.19. Ac-
cording to this result, φ decreases with increasing tem-
perature T , an effect mediated by the thermal expansion
coefficient defined as αT = 1

V (∂V/∂T ) = − 1
φ (∂φ/∂T ).

Replacing the latter relationship between φ and T in
the expression for Z, we finally obtain a closed-form
equation which relates G to the two global interaction
parameters, the short-range repulsion parameter λ and
the attraction anharmonicity parameter αT , G(T ) =
1

5π

κ

R0
exp[−(2 + λ)αTT ].

The above expression for G can be rewritten as

G(T ) = CG exp

[
αTTg(2 + λ)

(
1− T

Tg

)]
. (5)

where CG = ε
5π

κ
R0

e−αTTg(2+λ) is defined as the shear
modulus value at the glass transition temperature Tg, i.e.
CG ≡ G(Tg). The constant ε stems from the integration
of αT and from the dimensional prefactor in the power-
law ansatz for g(r). All the parameters in this expression
are either fixed by the experimental/simulation protocol
or can be found in the literature. The parameter λ has
to be extracted from g(r) data, according to the protocol
that we give in the Section VI of Ref.8.

We can now use our model for G(T ) to evaluate the ac-
tivation energy E(T ) involved in restructuring the glassy
cage and, hence, the viscosity η(T ) of the melts. Within
the framework of the cooperative shear or shoving model
of the glass transition9,10,14, the activation energy for
local cooperative rearrangements is E(T ) = GVc. The
characteristic atomic volume Vc showing up here is ac-
cessible through the theoretical fitting of the viscosity
data, although its value cannot be arbitrary and it must
be representative of the atomic composition of the alloy
and of the atomic sizes of its constituents7,8. Replacing
the expression for E(T ) in the Arrhenius relation given
by the cooperative shear model of the glass transition,
and using Eq. (5) for G(T ) inside E(T ), we obtain the

following analytical expression for the viscosity,

η(T )

η0
= exp

{
VcCG
k T

exp

[
(2 + λ)αTTg

(
1− T

Tg

)]}
.

(6)

where η0 is a normalisation constant set by the high-T
limit of η.

It is important to consider how the double-exponential
dependence of the viscosity on the temperature arises.
The first exponential stems from the elastic activation de-
scribed in the framework of the cooperative shear model,
whereas the second exponential is due to the Debye-
Grüneisen thermal expansion rooted in lattice-dynamical
considerations of anharmonicity. This formula accounts
for both anharmonicity, through αT , and for the repul-
sion steepness λ (or softness 1/λ). It is clear that, de-
pending on the mutual inter-relation between λ and the
thermal expansion factor αTTg, the viscosity may be af-
fected in a different way by the different sectors of the
interatomic interaction as depicted in Fig.1. For exam-
ple, in previous work, it was found that η is a sensitive
function of λ meaning that larger values of λ are associ-
ated with a steeply rising viscosity, and viceversa. This
is reflected in the relation for the fragility m which can
be readily derived from Eq.(5), and gives

m =
1

ln 10

VcCG
kBTg

[1 + (2 + λ)αTTg]. (7)

VI. APPENDIX B. SIMULATION MODEL

We performed Molecular Dynamics (MD) simulations
of the CuxZr100−x system (where x = 35, 46, 50, 60, 65),
by employing a semi-empirical many-body potential21

in analogy to the tight-binding scheme in the second-
moment approximation22,23. The equations of motion
were integrated by using the Verlet algorithm with a time
step of 5 fs. The systems of 1.28 × 105 atoms were pre-
pared by equilibrating them at 300 K in NPT ensemble
(zero pressure) for 100 ps and subsequently heated up to
2000 K for melting. After their equilibration in the liq-
uid state, the configurations were cooled down to 300 K
(NPT) with a cooling rate of 10 K/ps, where they were
finally equilibrated for 100 ps in a NPT ensemble(zero
pressure). In all the production simulation runs the tem-
perature and the pressure were kept constant by coupling
the system to a Nose31 thermostat and to an Andersen32

barostat respectively. Upon cooling the pressure of the
system was maintained zero by alloying the simulation
box to change dimensions without changing its shape.
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