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Seismic tomography of the North Anatolian Fault:
New insights into structural heterogeneity
along a continental strike-slip fault

Elvira Papaleo’"”, David G. Cornwell’""’, and Nicholas Rawlinson’

TSchool of Geosciences, University of Aberdeen, King's College, Aberdeen, UK

Abstract Knowledge of the structure of continental strike-slip faults within the lithosphere is essential
to understand where the deformation occurs and how strain localizes with depth. With the aim to improve
the constraints on the lower crust and upper mantle structure of a major continental strike-slip fault, we
present a high-resolution teleseismic tomography of the North Anatolian Fault Zone (NAFZ) in Turkey. Our
results highlight the presence of a relatively high velocity body between the two branches of the fault and
significant along-strike variations in the NAFZ velocity structure over distances of ~20 km. We interpret
these findings as evidence of laterally variable strain focussing caused by preexisting heterogeneity. Low
velocities observed in the crust and upper mantle beneath the NAFZ support the presence of a narrow shear
zone widening in the upper mantle, where we constrain its width to be ~50 km.

1. Introduction

Continental strike-slip faults can extend for hundreds of kilometers and accommodate slip rates of up to
40 mm/yr [Molnar and Dayem, 2010]. However, despite their size and importance in global plate tectonics,
their deep structure, key to understanding strain localization with depth and the characteristics of the seismic
cycle, is poorly understood. Geological and geophysical evidence from major ancient and active fault zones
[e.g., Sibson, 1977; Vauchez et al., 1995; Pili et al., 1997] indicates that they are not confined to the (brittle)
seismogenic layer but extend deeper into the ductile crust and possibly the upper mantle. Studies of some
present-day examples such as the San Andreas, Altyn Tagh, and Alpine Faults also provide evidence that they
are rooted in the upper mantle [e.g., Fuis et al., 2012; Wittlinger et al., 1998; Karalliyadda and Savage, 2013].

A key debate concerns variations in fault zone width (defined here as the region of influence of the fault in
the crust and upper mantle) as a function of depth in the continental lithosphere, with estimates at the near
surface of <10 km to tens of kilometers in the lower crust and up to several hundreds of kilometers in the
lithospheric mantle [e.g., Platt and Behr, 2011, and references therein]. Various models have been proposed to
understand the structure of continental shear zones in the lower crust and upper mantle (e.g., Sibson [1983],
Molnar et al. [1999], Regenauer-Lieb et al. [2006], or Norris and Toy [2014] for a review). These models span a
wide range of possibilities and include (1) a narrow fault zone that crosscuts the entire lithosphere, possibly
widening with depth, (2) narrow crustal fault zones underlain by broadly distributed shear that may extend
into the upper mantle, and (3) fault zones that include a detachment at lower crust or deeper levels. No single
model currently explains all observations at active continental strike-slip faults or geological evidence from
ancient fault zones, and therefore, more detailed analyses of continental lithosphere bisected by such a fault
zone are required. In this context, we constrain the deep structure of the North Anatolian Fault Zone (NAFZ) in
northwestern Anatolia using teleseismic tomography and produce a detailed 3-D velocity model of the crust
and upper mantle that highlights the complex structure of an active strike-slip plate boundary.

The NAFZ is a dextral strike-slip fault that has variously been estimated at between 1200 and 1500 km in
length, nucleates at the Karliova triple junction, crosses the Anatolian Peninsula to the north, and reaches
the Aegean Sea, where it splays into multiple strands [e.g., Barka, 1992; Le Pichon et al., 2016]. Relative motion
along the fault is driven by collision of the Arabian plate to the east and subduction along the Hellenic Arc
to the west [Reilinger et al., 1997], although more recent studies [e.g., Flerit et al., 2004; Bulut et al., 2012a]
suggest that the present-day motion of the Anatolian Peninsula is predominantly driven by subduction along
the Hellenic Arc. The NAFZ is thought to have formed by progressive strain localization in a westerly widening
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Figure 1. (a) Map of the study area with station locations and surface fault traces. The three main geological units in the area, the Istanbul Zone, the Armutlu
Peninsula, and Almacik Block, and the Sakarya Zone are highlighted in yellow, orange, and blue, respectively. The red square marks the position of Istanbul, while
the two blue stars indicate the epicenters of the 1999 Izmit and Diizce events. The inset on the bottom right shows the location of our study. (b) The locations of
the events used for teleseismic tomography. Yellow dots represent earthquakes of M, > 5.5 from which direct P arrivals are extracted; orange dots earthquakes
of 45< M, < 5.5 from which direct P arrivals are extracted; purple dots represent earthquakes from which PP or PcP arrivals are extracted, and red dots represent
earthquakes from which PKiKP arrivals are extracted.

shear zone that bounds ancient continental basement to the north and subduction-accretion material of
the Tethysides to the south [e.g., Sengdr et al., 2005]. It is seismically active with evidence for a recurrent
series of migrating high-magnitude earthquakes that progressively activate adjacent NAFZ segments [Stein
et al., 19971, most recently at Izmit and Diizce in 1999 (see Figure 1 for the location of the latest 1999 events
and Bohnhoff et al. [2016] for a more comprehensive review). The NAFZ splays into northern and southern
strands (herein NNAF and SNAF, respectively) in our study region; the two strands separate different geologi-
cal terranes, the Istanbul and Sakarya Zones, and bound a crustal block (Armutlu Block) of mixed provenance
comprising Jurassic and pre-Jurassic units (similar to the Sakarya Zone) with metamorphic rocks of unknown
age and provenance [Okay and Tiiystiz, 1999](Figure 1).

Previous regional studies do not agree on the upper mantle seismic signature of the NAFZ in northwestern
Anatolia. Biryol et al. [2011], using teleseismic tomography, constrained a ~4% faster P wave velocity upper
mantle to the north (Istanbul Zone), compared with the south (Sakarya Zone), of the NAFZ. In contrast, Fichtner
etal. [2013] and Govers and Fichtner [2016], using full waveform inversion, imaged a 50— 100 km wide band of
slow S wave velocities extending from 60 to 300 km depth to the east of 32°E longitude but no such signature
beneath the NAFZ farther west. In order to image the NAFZ as it bisects the Anatolian lithosphere on a more
local scale with improved horizontal resolution, a dense network of broadband seismic stations (DANA, Dense
Array for Northern Anatolia, [DANA, 2012]) was deployed on the western segment of the fault where it splits
in two major fault branches (NNAF and SNAF, Figure 1). We find supporting evidence for localized shear zones
beneath the NAFZ that may penetrate the upper mantle with varying along-strike characteristics and discuss
our findings in relation to applicable fault models, strain focussing, and the reactivation of inherited structures.

2. Data and Method

Teleseismic events used in the tomography study were recorded during the period of deployment of the
DANA array (May 2012-0October 2013), which comprised 73 broadband stations with a 7 km nominal spacing
(Figure 1a). A total of 14,183 arrival time residuals from 263 events were used, most of which were direct
P arrivals with M,, > 5.5, restricted to angular distances between 27° and 98° to avoid triplications caused by
mantle discontinuities. We included 37 4.5 < M,, < 5.5 events and a total of 27 PP, PcP, and PKiKP identified
phases to increase the azimuthal coverage of our data set to the south and west (Figure 1b).
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Relative arrival time residuals were obtained using the adaptive stacking code of Rawlinson and Kennett [2004],
which is particularly effective in this setting as it exploits the interstation coherence of teleseismic waveforms.
Prior to stacking, waveforms were filtered between 0.4 and 5.0 Hz and approximately aligned using ak135
predicted arrival times [Kennett et al., 1995]. The results of the stacking procedure were visually checked to
eliminate noisy stations and ensure good quality picks. Relative arrival time residuals were inverted using the
Fast Marching Teleseismic Tomography Package [Rawlinson et al., 2006a], an iterative method combining the
Fast Marching Method [Sethian, 1999] to track the evolving wavefront interface from the base of the model
to the receivers and a subspace inversion method to solve the inverse problem [Kennett et al., 1988]. The 3-D
volume beneath the receiver array was parameterized using cubic B spline volume elements whose values
are controlled by a mesh of velocity nodes in spherical coordinates [Rawlinson et al., 2006b]. The initial veloc-
ity model was modified from ak135 by increasing Moho depth to 37 km and using a crustal velocity model
more relevant to our study area [Karahan et al., 2001; Vanacore et al., 2013; Kahraman et al., 2015] (supporting
information Table S1 and Figure S1). Smoothing and damping parameters required by the inversion proce-
dure were calibrated in order to obtain the optimum trade-off between data fit, model perturbation (relative
to the starting model), and model roughness (see supporting information Figure S2 for trade-off curves).

To assess the resolution and quality of our inversion results, we performed synthetic checkerboard and spike
tests. Checkerboard tests (supporting information Figures S3 and S4) show good recovery of the velocity
anomalies in pattern and amplitude, especially beneath the area covered by the array, where the smallest
checkerboard anomaly able to be recovered confidently is 12 x 12 X 12 km. Spike tests (supporting informa-
tion Figure S5) reveal good recovery of a single 12 x 12 km anomaly at 70 km depth with negligible horizontal
smearing but a 70% loss in amplitudes. Vertical smearing is estimated at +3 to +5 km in areas with good data
coverage and less than +10 km at the edges of our resolved area. We note that in our model the Moho is
assumed to be flat and represented by a strong velocity gradient; this is most likely not the case as the Moho
has been shown to have up to 8 km of topography by other studies [e.g., Frederiksen et al., 2015; Taylor et al.,
2016]. Lateral variations in Moho depth will be mapped as relatively fast anomalies above the input Moho
when the crustal thickness is reduced and as relatively slow anomalies below the input Moho when the crustal
thickness is increased. To assess the effect of two such anomalies in our model, we performed an additional
spike test to simulate the presence of a step in the Moho (supporting information Figure S6). This test shows
that horizontal smearing is less than 2 km; however, vertical smearing at lower crust and upper mantle depths
may be as much as +8 km. In summary, we are confident that our inversion results are robust and that primary
velocity anomalies represent geological variations throughout the crust and upper mantle.

3. Tomographic Model

We show velocity anomalies relative to a background model (supporting information Table S1) for north-south
profiles at longitudes of 30.5, 30.3, and 30.1°E (Figure 2). The profiles are within an area beneath recording
stations where horizontal and vertical resolution is estimated to be <12 km. Common features can be iden-
tified between adjacent profiles, with the most evident being a >200 m/s fast velocity anomaly (labeled “A”
in Figure 2) between the two NAFZ branches. This fast anomaly appears to be confined to the upper crust
(<15 km depth) in the west of our model but extends into the upper mantle (and therefore increases in vol-
ume and significance) farther east. The surface expression of the NNAF (red triangle in Figure 2) occurs at the
interface between the fast anomaly A and a slow velocity anomaly, “B”, to the north, while the surface trace
of the southern NAFZ (blue triangle in Figure 2) is situated above the slowest velocity (—250 m/s) anomaly
observed in our model. Slow velocity (—100 to —200 m/s) anomaly B extends in depth for ~80 km from the
surface to the upper mantle below and immediately north of the NNAF, although it may be confined to the
crust in the westernmost profile (Figure 2c). The extension of slow velocity anomaly B, where it can be iden-
tified below the Moho, typically has a NAFZ-perpendicular width of 30-50 km. The prominent slow velocity
(=100 to —250 m/s) anomaly that lies below and immediately south of the SNAF (labeled “C" in Figure 2) is
wider at >25 km throughout the crust than its counterpart beneath the NNAF and also extends in depth for
~80 km from the surface to the upper mantle in the westernmost profile, again with a NAFZ-perpendicular
width of 30-50 km (Figure 2c). The relationship between slow velocity anomalies B and Cis complex, but they
may be connected at progressively deeper levels from west (Figure 2¢) to east (Figure 2a).

We clearly observe a prominent change in the general pattern of velocity anomalies as we transition from
upper crust to the upper mantle in our depth slices (Figure 3 and Movie S1 in supporting information).
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Figure 2. (a—c) Vertical profiles through the 3-D model with local seismicity recorded during the period of deployment
of the DANA array [Altuncu Poyraz et al., 2015] between +0.05° from the profile plotted as circles. The gray line indicates

the approximate depth of the Moho; red and blue triangles represent the surface locations of the northern and
southern branches of the NAFZ, respectively. The letters A, B, C, denote anomalies discussed in the text.

Comparing depth slices at 15 and 60 km shows that the majority of velocity anomalies trend east-west and
broadly NAFZ-parallel in the upper crust (Figure 3a) and north-south to northeast-southwest below the Moho
(Figure 3c). The general pattern of velocity anomalies is less clear in the lower crust (Figure 3b).

4, Discussion

Slow upper crustal velocities have been attributed, depending on the geological context, to different causes,
such as the presence of deep sedimentary basins, brittle deformation, grain size and/or lithological variations,
positive temperature anomalies, and presence of fluids [e.g., Bourjot and Romanowicz, 1992; Miller and Smith,
1999; Schurr et al., 2006]. In the studied area, these relatively low velocities are most likely to be the result
of brittle deformation caused by the NAFZ, lithological variations [e.g., Okay and Tiiysiiz, 1999], and positive
temperature anomalies [e.g., llkisik, 1995]. It is difficult to assess the relative contributions of these factors;
however, we observe that the majority of local seismicity recorded during the 18 month DANA deployment
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Figure 3. Horizontal slices through the 3-D model. (a) Depth slice at 15 km; black dots are local seismicity [Altuncu Poyraz et al., 2015]. (b) Depth slice at 30 km;
blue lines indicate the position of the profiles in Figure 2. (c) Depth slice at 60 km; black triangles are the station locations of the DANA array.

[Altuncu Poyrazetal., 2015] occurred within relatively slow upper crust and, in particular, is concentrated where
we observe the strongest lateral velocity contrasts beneath the NNAF where it ruptured during the 1999 lzmit
earthquake (Figures 3a and 4). Similarly, the presence of velocity contrasts across segments of the NAFZ in
close proximity to our study area has also been documented by Bulut et al. [2012b] and Najdahmadi et al. [2016]
who looked at fault head waves generated by the presence of a bimaterial interface.

Furthermore, our results agree with a ~7% reduction in P wave velocity and increase in attenuation beneath
the NNAF constrained by local earthquake tomography [Koulakov et al., 2010], and therefore, we infer that
the relatively low velocity region in the crust beneath the NNAF and the minor faults in its close proximity
most likely represents a narrow (~25 km) corridor of brittle deformation associated with ongoing NAFZ shear-
ing. The relatively low velocities observed throughout the Sakarya terrane in our model make it difficult to
constrain an area of brittle deformation caused by the SNAF, and, despite not excluding its existence, it is pos-
sible that low velocities with respect to the background model are a characteristic of the upper crust in the
Sakarya tarrane.

The relatively high velocity body bounded by the NNAF and SNAF coincides with surface outcrops of
Neo-Proterozoic basement, a Lower Cretaceous accretionary complex and an Upper Cretaceous tectonic
melange. This heterogeneous crustal block, originally part of the Almacik Block in the east [Akbayram et al.,
2016], most likely represents a locally resistant/strong block that localizes strain at its margins and in adja-
cent rheologically weaker domains [e.g., Tommasi et al., 1995; Dayem et al., 2009]. Such relatively weak regions
could correspond to a midcrustal low-viscosity zone required to model deformation before and after the 1999
Izmit earthquake [Yamasaki et al., 2014]. Magnetotelluric studies in the region [Tank et al., 2005; Kaya, 2010]

Depth (km)
Depth (km)

o -20

40 2
50" 100 8o NS (km)

0> * NS (km)

Figure 4. Three-dimensional data volume seen from the (a) southeast and (b) northwest. Surface traces of the faults are
drawn in red, the yellow cones indicate station locations, and the black spheres show the local seismicity within the
volume [Altuncu Poyraz et al., 2015]. The horizontal slice at 37 km depth in the data volume shows the approximate
location of the Moho.
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point to the presence of mildly conductive to conductive zones at middle and lower crustal level in close
proximity to the NAFZ. In particular, Tank et al. [2005] image a conductive body between the NNAF and SNAF
extending from 30 to 50 km depth and interpret it as indicative of partial melting causing pore pressure
buildup during the interseismic period. We also note that in this study, Tank et al. observe a clear resistivity
contrast across the NNAF that coincides with the contrast in velocity anomalies that we image with teleseismic
tomography.

Our velocity images allow the structural elements that comprise the NAFZ to be traced from the brittle upper
crust to the ductile regimes of the lower crust and upper mantle. We find that the NNAF represents a narrow
but more diffuse (30-50 km) shear zone in the upper mantle than in the upper crust (~25 km). Such a narrow
shear zone is consistent with the observations from colocated receiver function and autocorrelation studies
that mapped abruptly terminating crust and Moho discontinuities in the proximity of the NNAF [Kahraman
etal., 2015; Tayloretal., 2016]. Itis less clear, but the shear zone may be narrowest in the lower crust. A localized
shear zone in a similar setting beneath the active Altyn Tagh strike-slip fault was also interpreted from slow
velocity anomalies [Wittlinger et al., 1998]. Relatively low velocities beneath the SNAF are less focussed and
mostly confined to the crust except in the westernmost part of our model, where we find evidence of a low
velocity region in the upper mantle. This, coupled with the lack of a clear termination of the Moho signal in
proximity of the SNAF [Kahraman et al., 2015; Taylor et al., 2016] suggests that the presence of a shear zone
beneath this branch of the fault is less likely. Taking into account the lower slip rate on the SNAF (~5-10 mm/yr
asopposed to the ~25 mm/yr of the NNAF [Meade et al., 2002]) and the fact that the NNAF is also exploiting the
presence of the old Intrapontide Suture Zone [Sengér and Yilmaz, 1981], we conclude that the SNAF localizes
shear less effectively than the NAFZ.

The markedly different patterns of velocity anomalies observed outside the NNAF and SNAF relatively low
velocities (Figure 2) may indicate that the Moho represents both a significant compositional and seismological
discontinuity in the study region. The observation of northeast-southwest aligned upper mantle compared
to east-west aligned upper crustal velocity anomalies may hint at a possible decoupling between shallow and
deep parts of the lithosphere. However, an apparent ~20 km offset or curvature in the prominent fast region
that dominates the upper mantle in the east of Figure 3c may be interpreted as ductile deformation of a preex-
isting mantle structure by ongoing NAFZ shear. Further investigations are needed to confirm this hypothesis,
which, if verified, would predict that a quarter to a third of the observed NNAF surface displacement exists in
the upper mantle and that the brittle and ductile parts of the deforming lithosphere are only partially coupled.

Our velocity data suggests that the most plausible tectonic model for the NNAF is that of a narrow shear zone
that crosscuts the entire crust and widens slightly in the upper mantle, while the SNAF may have a more com-
plex structure, also influenced by the extensional tectonic of the region. Moreover, we reveal that both NAFZ
strands are characterized by along-strike variations over short length scales (<20 km), and our interpretation
is that these variations point to preexisting heterogeneity playing a major role in strain localization on a local
scale. The best example of this in our study region is the relatively high velocity block offset by the NNAF and
acting as a wedge of locally strong lithosphere around which the two branches of the NAFZ propagate.

5. Conclusions

We have applied teleseismic tomography to data recorded by a dense seismological array of 73 stations and
show that we can image both crust and upper mantle (to ~80 km depth) of a complex shear zone with a
horizontal and vertical resolution of ~12 km.

Our 3-D velocity model of the area shows a heterogeneous lithosphere beneath the NAFZ, consistently with
the complex tectonic history of the region. The low-velocity anomalies in the crust and upper mantle observed
beneath the NNAF support the idea that the fault zone can be compared to the simple model of a narrow shear
zone that widens in the upper mantle, where we constrain its north-south dimension to be 30-50 km; it is less
clear whether a similar model can be applied to the SNAF as well. We demonstrate that both NNAF and SNAF
are characterized by significant along-strike variations in their velocity structure, which we interpret as local
differences in strain localization influenced by preexisting heterogeneity. In particular, the high velocity body
situated between the two strands of the fault (and originally part of the Almacik Block to the west) is likely
to be a crustal block more resistive to strain around which the NAFZ branches propagate. Clear variations in
the pattern of velocity anomalies above and below Moho depth suggest that there is a decoupling between
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