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Entropy waves are an important source of indirect combustion noise and potentially

contribute to the generation of thermoacoustic instabilities in gas-turbine combustors.

Entropy �uctuations generated by unsteady combustion are known to disperse and

di�use as they convect towards the combustor exit. In this work the propagation of

entropy waves is investigated by means of experiments in a newly developed entropy

rig and numerical simulations based on the LES approach. Both experimental and

numerical results demonstrate that the amplitude of entropy �uctuations decays as

a function of wave parameters and propagation distance and scales well with a local

Helmholtz number, He. A new theoretical model for the computation of the entropy

transfer function suitable for inclusion in low-order models for combustion instabilities

is proposed. Assessment against numerical and experimental results shows the capa-

bility of the model to give a proper representation of the decay of entropy waves in

terms of both magnitude and phase of the entropy transfer function. Furthermore,

by comparison with the LES results, it is shown that at low He the contribution of

the di�erential convection to the decay of entropy waves is dominant whereas for high

values of He the turbulent mixing and di�usion also become important.
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I. Introduction

Combustion noise and thermoacoustic instabilities are becoming very important issues in the de-

sign of gas-turbine combustors, especially when the lean-burn combustion technology is exploited [1].

Therefore, in recent years great attention has been devoted to the investigation of the phenomena

related to noise generation and �ame-acoustics interaction. As discussed in the early work of Marble

and Candel [2], the presence of a non-uniform distribution of entropy in the �ow, for example hot

and cold spots generated by unsteady combustion and convected by the mean �ow, could be an

important source of indirect noise when it is accelerated as it is in the case of the choked nozzle

located at the exit of a gas-turbine combustor. The acceleration of entropy waves through a nozzle

also generates pressure waves that propagate upstream towards the �ame possibly leading to ther-

moacoustic instabilities [3, 4]. The form of propagation of the entropy waves is based on convection

but the amplitude of such waves can also be a�ected by di�usion and dispersion.

Entropy waves, typically generated in the �ame region even if in some con�gurations additional

contributions may also come from the dilution with cold �ow [5], are convected to the combustor

exit by a mean �ow which is non-uniform over the combustor cross-section and subject to intense

turbulent �uctuations which can contribute to the di�usion of entropy waves, especially when the

wavelength of entropy �uctuations is small in comparison with the turbulent length scale [6, 7]. On

the contrary, when the wavelength of entropy perturbations is long compared with the turbulent

length scale, the turbulent mixing does not lead to any signi�cant di�usion of such perturbations [8].

Non-uniformities in the mean �ow pro�le cause di�erent residence times of disturbances generated

at di�erent radial positions and, as discussed in [1, 7], this tends to reduce their cumulative e�ect

and hence the strength of the induced acoustic wave, in a phenomenon usually referred to as shear

dispersion. The importance of the e�ect of a mean velocity pro�le which varies across the section on

the propagation of entropy waves was also recently pointed out by Morgans et al. [9] through a Direct

Numerical Simulation (DNS) of a simpli�ed turbulent channel �ow between two parallel plates. The

work by Morgans et al. [9] can be considered one of the �rst attempts to estimate the dispersion of

entropy waves using Computational Fluid Dynamics (CFD). Neglecting the e�ect of heat addition

due to combustion and assuming the �ow to be incompressible (so that the temperature and entropy
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�uctuations scale with one another), a Gaussian perturbation of the temperature was introduced at

the inlet boundary and its propagation along the channel was analysed. It was found that the losses

in entropy strength are mainly related to the di�erential convection due to a non-uniform mean

�ow across the section. A Gaussian model for the entropy transfer function (which gives a one-

dimensional description of the relation between the entropy �uctuations at the outlet of the channel

and the inlet perturbation) was also suggested and assessed against the numerical data in terms of

magnitude, whereas no comparison between the phase predicted by the model and the numerical

results was given. Some experiments to study phenomena related to entropy waves have also been

performed (e.g. [10�13]), however the focus has usually been on the indirect noise generated by

convection through a nozzle, whilst not much attention has been devoted to the characterization of

the attenuation of entropy waves.

As far as low-order acoustic codes are concerned, although the importance of dispersion and

di�usion of entropy waves has been pointed out by many authors [1, 7, 9, 14], attempts to model

these e�ects are quite rare and such phenomena are usually not considered in simpli�ed analytical

and numerical models of entropy noise [2, 15, 16]. Furthermore, the few attempts to include the

e�ect of entropy di�usion and dispersion (e.g. [7, 17]) are generally based on theoretical and heuristic

arguments without any validation against experimental data.

In order to give more insight into the phenomena occurring during entropy wave propagation

and to analyse the di�usion and dispersion of such waves, numerical simulations and experiments

in a newly developed small-scale entropy rig have been performed. Furthermore, a new theoretical

model for the computation of the entropy transfer function, suitable for low-order acoustic network

codes, has been introduced and assessed against the data obtained in the experiment and numer-

ical simulations. Experimental and numerical results, as well as the new low-order model for the

attenuation of entropy waves, are presented and discussed in this paper.

The paper is structured as follows. In Section II the small-scale entropy rig is described and

experimental results are discussed. Section III is devoted to the numerical investigation. The

numerical method and the computational setup are �rst presented followed by a validation of the

method and comparisons with experimental results. In Section IV the new theoretical model for
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Fig. 1 Schematic of the entropy rig

Table 1 Ranges of Ub and ReD investigated in the experiment.

Ub (m/s) ReD

dnoz = 2.5 mm 3.4-4.1 2200-3100

dnoz = 3.5 mm 6.8-7.8 6600-7700

the entropy transfer function is described. Validation is performed against data collected in the

experimental and numerical investigations with focus on both the magnitude and the phase of the

entropy transfer function. Comparisons with other models available in literature [7, 9] are also

discussed. Conclusions and recommendations for future research close the paper.

II. Experiments

In this section, the small-scale entropy rig is presented, followed by a description of the results

obtained in the experimental investigation. Comparisons with numerical results will be discussed

in Section III C with the main aim of giving useful information for the development of low-order

models for the entropy wave attenuation.

A. Small-scale entropy rig

A schematic of the entropy rig illustrating the key features and dimensions is shown in Fig. 1.

The rig consists of an insulated long stainless steel pipe with an inner diameter D = 21 mm and total

length LT = 1650 mm. A perforated plate was located at zp = 350 mm for both �ow conditioning

and acoustic damping. Air entered the rig upstream via two opposing air jets ports. A fuel supply

pipe of outer diameter 6 mm was positioned concentrically, extending to a distance of z = 400 mm.

The fuel, methane (CH4) was used in all these experiments, was injected through four cross�ow jets
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of diameter dj = 1 mm spaced at 90◦ increments around the fuel pipe. A blu� body of diameter

dbb = 12mm was located 10 mm downstream of the fuel injection point to enhance mixing. Reactant

�ow rates were controlled using rotameters with ranges of 12 SLPM and 200 SLPM for fuel and air

respectively, to maintain a global equivalence ratio of ϕ = 0.35. The reactant mixture was ignited

by two 24 V glow plugs, which protrude 3 mm into the �ow at an axial location z=580 mm. The

experiment was run until thermal equilibrium had been reached before data acquisition commenced.

To generate entropy �uctuations, a fast response valve, controlled by a TGP110 pulse generator,

was connected into the fuel line 670 mm upstream of the injection location. Pulsing close to the

natural frequency of the system at 10.7 Hz permitted the generation of large amplitude entropy

waves. A pulse width of 27 ms was selected to achieve reliable ignition performance. The combustor

was operated with a nozzle diameter dnoz=2.5 mm or dnoz=3.5 mm at exit. It should be noted

here that the use of a choked nozzle is not mandatory to analyse the attenuation of entropy waves,

however operating at a choked condition allows the e�ect of entropy wave di�usion and dispersion

to be assessed using an engine relevant boundary condition. To vary the nozzle mass �ow, the

upstream pressure was varied from approximately 190 to 230 kPa, resulting in di�erent �ow bulk

velocities Ub. The ranges of Ub and the respective Reynolds numbers (based on the rig diameter

D), ReD, investigated with the two nozzle con�gurations are given in Table 1.

Two Kulite XCS-093 pressure transducers (sensitivity: 5.882 ×10−4 mV/Pa, range: 1.7 atm,

accuracy: ±0.15% full scale) were positioned at axial locations z = 800 mm and z = 1600 mm in

order to capture the oscillating pressure response. The transducers were water cooled and �ush

mounted inside an acoustically semi-in�nite stand o� line, 270 mm from the combustor wall. The

pressure signals were ampli�ed and �ltered before being digitised using a National Instruments

16 bit PCI6353 card. Two K-type bare wire thermocouples with a wire diameter of dw = 25 µm

were positioned along the combustor centreline at axial positions T1 = 1100 mm and T2 = 1600 mm

to record unsteady temperature �uctuations. The signals were recorded using an SCXI-1328 block

and SCXI-1000 module. Time series were acquired at 10 kHz with sample lengths of 30 s.

Temperature and pressure signals were analysed spectrally using the Fast Fourier Transform in

order to determine their frequency centred complex amplitude. The thermocouple time constant,
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(a) Input voltage (b) Pressure, P2

(c) Temperature, T1 (d) Temperature, T2

Fig. 2 Time series of �uctuating pressure, �uctuating temperature at two axial locations and

signal generator input voltage for dnoz = 2.5 mm case. The bulk �ow velocity is Ub = 3.8 m/s.

τc, was modelled using the approach of [18] as τc = ρwdwCw/4hw, where ρw, Cw and hw are the wire

density, speci�c heat capacity and heat transfer coe�cient respectively. The empirical correlation

derived by McAdams [19] was used to estimate hw, from Nu = [0.35 + 0.56Re0.52]Pr0.3, resulting

in a time constant of approximately 40 ms, and a cut-o� frequency of 25 Hz. This time constant

was used to compensate for the attenuation and time lag associated with the thermal inertia at

higher frequencies, and was implemented in the spectral domain through a transfer function [20],

H = 1/(1 − ifτc). An assessment of the response determined that frequencies below 80 Hz were

su�cient in terms of their signal to noise ratio.

B. Experimental results

Figure 2 shows times series of the input signal voltage controlling the fuel supply, E (high voltages

indicate the valve opening times), �uctuating pressure, and temperature at two axial locations.

Once the valve is opened, fuel is injected into the air�ow and convected downstream. The delay of

approximately 42.5 ms between valve opening and the large pressure �uctuation shown in Fig. 2(b)

corresponds to the distance between the fuel injection jet location, and glow plug location where
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the fuel is ignited. The magnitude of the pressure response during ignition is considerable due to

the �ow con�nement.

Figures 2(c) and 2(d) show temperature time series at the two axial locations, T1 and T2.

Again, the temperature response at these locations lags the pressure �uctuation by approximately

0.115 s and 0.12 s respectively, corresponding again to the convection time of the hot combustion

products. The magnitude of response at T1 is signi�cantly larger than the response at T2, which is

expected to arise from the mixing of hot products with surrounding �uid and phenomena related to

the convection of the hot spots, resulting in the dispersion of the temperature and therefore of the

entropy �uctuations. It is important to note that the level of entropy �uctuations is determined by

both the pressure and temperature oscillations, however in the current setup the contribution due

to the temperature is dominant and therefore in the following discussion the entropy �uctuations

will be related to temperature oscillations only.

While the system is capable of operating reliably without mis�ring (de�ned as the failure to

ignite an injected pulse of fuel), the variation in the amplitude of both pressure and temperature

�uctuations at location T1 are representative of variations in the ignition performance, due to the

non-premixed nature of the system. Each successive pulse generates a spatially unique mixture

of fuel and air, which is ignited and burned over a di�erent time scale, resulting in the observed

variations in the peak temperature and pressures. The amplitude of these two metrics are seen to

vary by up to 65%, demonstrating considerable variation between successive ignition events. While

the variation between successive temperature �uctuations reduces downstream at location T2, these

should still be considered signi�cant (peak to peak variations of ≈40%). This reduction is expected

as a result of the additional mixing during the convection of hot products downstream, which further

contributes to the decay of entropy �uctuations.

Figure 3 shows spectra of the control valve input signal, pressure and both the original and

compensated temperature �uctuations at the �rst axial location (T1), whereas Fig. 4 summarizes

the location of the peaks in the original and compensated temperature spectra at the two axial

locations (symbols represent the magnitude at the forcing frequency and the lowest 5 harmonics).

As demonstrated in Fig. 3(a), the use of a square wave input signal results in the generation of a large
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(a) Input voltage (b) Pressure, P2

(c) Temperature, T1 (d) Compensated temperature, T1

Fig. 3 Pressure, original and compensated temperature, and signal generator input voltage

spectra for dnoz = 2.5 mm case. The bulk �ow velocity is Ub = 3.8 m/s.

number of harmonics, which decrease in amplitude with increasing frequency. Despite di�erences in

their time series, the pressure and temperature response (shown in Fig. 3(b) and Fig. 3(c)) are also

observed to contain signi�cant energy in a range of harmonics, with the amplitude of �uctuations

again shown to be inversely proportional to frequency. The simultaneous generation of a range

of frequencies permits an investigation into the relative rate of decay of entropy waves. Typical

values of the ratio between the �uctuation and the mean value of the temperature are in the range

0.01-0.10, where the highest values are reached for the �uctuations at the forcing frequency whereas

the smallest ones are obtained for the higher harmonics.

It is also of interest to compare Fig. 4(a) and Fig. 4(b) to examine the e�ect of applying

the thermocouple temperature compensation transfer function, H. The measured response of the

temperature is observed to roll-o� rapidly, with a very low amplitude response to even moderate fre-

quencies (f > 50 Hz). In comparison, the use of the compensation transfer function, H, signi�cantly

increases the amplitude of response, and reduces spectral roll-o�. The compensated temperature

response is observed to more closely match the pressure response at high frequencies, suggesting

that compensation is appropriate.

As expected from the time series plotted in Fig. 2, the amplitude of the response is larger at
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(a) Original response (b) Compensated response

Fig. 4 Original and compensated temperature response at two axial positions for the �rst 6

harmonics (dnoz = 2.5 mm case). The bulk �ow velocity is Ub = 3.8 m/s

the �rst axial position, and decreases signi�cantly with axial distance. The response amplitude is

also observed to monotonically decrease with increasing frequency. The decrease in amplitude at

both locations T1 and T2 may be explained as the result of the unsteady injection and ignition of

fuel, with the response likened to that of a square wave. The amplitude of the temperature response

at location T2, is shown to decrease more rapidly with increasing frequency than that at location

T1, suggesting that the attenuation of entropy waves increases with frequency. This point will be

discussed further in Section III C where a measure of the decay of entropy �uctuations as a function

of frequency is given.

It is also interesting to give an estimation of the level of entropy starting from temperature and

pressure measurements. Figure 5 shows the time series and the spectra at T1 and T2 of the entropy

estimated from temperature and pressure measurements using NASA polynomials and perfect gas

relations and by assuming pure air composition (this can be considered a good approximation

considering the low value of the global equivalence ratio). The e�ect of the pressure oscillations on

the entropy level at the location T2 is also highlighted. It is possible to note that the entropy follows

the same trend observed for the temperature and therefore, as already observed, all the previous

considerations apply equally to both temperature and entropy. It is important to point out that

the assessment of entropy �uctuations from single point measurements is challenging and in the

present work the information coming from the experiment will primarily be used qualitatively even

if, as shown in the following sections, also the quantitative information can be useful to assess the

reliability of the numerical approach used to simulate the propagation of entropy waves.
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(a) Time series at T2. (b) Entropy spectra.

Fig. 5 Estimated entropy time series at location T2 and spectra at two axial positions for the

�rst 6 harmonics (dnoz = 2.5 mm case). The bulk �ow velocity is Ub = 3.8 m/s

III. Numerical investigation using CFD

In order to better understand the phenomena a�ecting the decay of entropy �uctuations and

generate data useful for the development of models for low-order network codes, CFD simulations

of entropy wave propagation in a straight duct have been performed using a compressible Navier-

Stokes equation solver developed in the OpenFOAM [21] (version 2.2) framework. The solver is

based on a second-order accurate pressure-based formulation exploiting the PISO algorithm [22] for

the solution of the pressure-velocity coupling. The energy equation was solved in terms of sensible

enthalpy. The thermophysical properties of the �uid (assumed to be pure air) were computed

using NASA polynomials whereas the Sutherland's law was used for the computation of transport

properties (such as the molecular viscosity). The values of entropy used for the post-processing

of entropy waves were directly extracted from the thermodynamic library as a function of both

pressure and temperature.

A. Numerical modelling

Numerical simulations were performed using the Large Eddy Simulation (LES) approach. The

computational domain consists of a circular duct with the same diameter of the experimental rig

and an axial length L = 0.5 m, and it represents the part of the rig downstream of the ignition

location. Figure 6 shows a schematic of the geometry together with the location of the di�erent

boundaries. The recycling and rescaling method [23] was used for the velocity at the inlet boundary,

in order to reproduce a fully developed �ow. The mapping plane was placed close to the exit of the
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Fig. 6 Schematic of the cases investigated by CFD.

duct (z/L = 0.99) and the rescaling was performed by assigning the bulk velocity, Ub, of the �ow.

A non-re�ecting condition, based on the advective concept [24] with linear relaxation, was used for

pressure at the outlet allowing us to avoid the generation/re�ection of acoustic waves at the exit of

the domain. It should be noted that here the interest is only in the propagation of entropy waves

and without pressure oscillations the entropy �uctuations can be related to temperature �uctuations

only (the pressure oscillations due to compressibility e�ects give a negligible contribution to the level

of entropy �uctuations and therefore in the following the observations made for the temperature

also apply to the entropy). Entropy �uctuations were introduced at the inlet boundary by assigning

a sinusoidal �uctuating temperature at a given frequency f and with a peak-to-peak amplitude

equal to the 10% of the mean value: Tin(t) = Tmean[1 + αsin(2πft)] with Tmean = 500 K and

α = 0.05. At every time step the temperature is uniform at the inlet section. It should be noted

that this assumption is probably not entirely representative of the experimental �ow where the

temperature pro�le depends on the ignition and mixing behaviour and changes with time. However,

the use of this well-de�ned inlet condition will be useful in the derivation of low-order models (see

Section IVA). Similar considerations also apply to the level of �uctuations and, even if in some of the

experimental conditions higher �uctuations were observed, the amplitude chosen in the simulation

allows us to obtain results relevant for the validation and assessment of low-order models based on

small perturbations. No-slip adiabatic conditions were used for the wall of the duct.

The domain was discretised by means of a hexahedral mesh of about 4.5 million cells with a

grid size in the axial direction equal to ∆z ∼ 0.8 mm, ensuring ∆z+ < 50 and at least 60 cells

per wavelength of the entropy �uctuation (i.e. Ub/f) in all the investigated conditions. Re�nement
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Table 2 Investigated cases.

f=50 Hz f=100 Hz f=200 Hz ReD

Ub = 5.0 m/s • 2700

Ub = 10.0 m/s • • • 5400

Ub = 20.0 m/s • • 10800

along the radial direction was adopted in the near wall region in order to have a y+ of the �rst cell

smaller than 1.0 and at least 3 cells in the viscous sublayer. The mesh spacing in the azimuthal

direction satis�ed R∆θ+ < 25 in all the cases. A sensitivity analysis to the grid size was also

performed reducing ∆z down to approximately 0.25 mm. Some signi�cant variations appeared

only in the cases characterized by a small wavelength of the entropy �uctuation with a maximum

absolute deviation of the magnitude of the entropy transfer function (see in the following for the

de�nition) of about 0.02. The constant Smagorinsky model was used for the sub-grid stress tensor

together with van Driest damping [25, 26] to get the correct near-wall asymptotic behaviour of the

sub-grid stresses. Second order accurate schemes were used for spatial discretization whereas the

Crank Nicolson scheme was used for time derivatives.

Several simulations were performed varying the forcing frequency and the bulk velocity of the

�ow. Table 2 gives a summary of the cases investigated in this work. Computations were carried

out at atmospheric pressure resulting in the same range of Reynolds numbers of the cases investi-

gated in the experiment. Results will be presented in terms of 2D maps in the stream-wise section

and frequency analysis at selected locations along the axis. In particular, with the perspective of

exploiting results in low-order acoustic network codes, usually based on a one-dimensional formu-

lation, frequency analysis will be applied to the time evolution of cross-section averaged values at

several locations along the axis (mass-weighted averages have been used). A time step equal to

0.01 ms was used in all the simulations ensuring a Courant number lower than unity and a proper

frequency range for frequency analysis. A fully developed �ow solution, obtained without imposing

the temperature �uctuation at the inlet boundary, was used as initial value in each simulation.

Time averages (for the computation of local statistics in terms of mean value and variance of each

12



quantity) were initialized after two �ow-through times and the total simulated time was chosen in

order to have a proper frequency resolution and converged statistics.

B. Validation

Before analysing the entropy wave propagation, the capability of the adopted method to repro-

duce a fully developed �ow throughout the duct was assessed by comparing results of a simulation

without �uctuating temperature with data published in [27] for a fully developed turbulent pipe

�ow at Re=5400. Mean �ow statistics presented in the following were obtained by performing an

average over 10 �ow-through times. A fully developed �ow was established along the whole pipe

with averaged pro�les which do not change with the axial location. The instantaneous velocity

�eld in a stream-wise cross section is shown in Fig. 7 where it is possible to appreciate the devel-

opment of the turbulent structures. Figure 8 shows comparisons between the mean axial velocity

pro�le from LES and experimental and DNS data from Eggels et al. [27] in both physical and wall

units. The agreement is very good with the wall behaviour of the �ow which appears well captured.

Comparisons in terms of rms values for the three velocity components are shown in Fig. 9 (the

rms values from the LES are based only on the resolved scales without including the sub-grid scale

contribution). The agreement with the experimental measurements is good and follows the same

trend observed by Eggels et al. [27] for DNS results (not reproduced here, please see the reference).

Overall, the results are satisfactory and demonstrate the capability of the present numerical method

to properly capture both the mean velocity pro�le and the turbulent �uctuations which, as will be

discussed in the following, have an important role in the attenuation of entropy waves.

The numerical di�usion of the code was also assessed by simulating the entropy wave convection

in a uniform �ow. The numerical di�usion was evaluated in terms of decay of the amplitude of the

entropy �uctuation at the exit of the duct resulting in a maximum value of the attenuation (found

in the case characterized by the shortest wavelength of the entropy �uctuation, i.e. f = 200 Hz and

Ub = 10.0 m/s) of about 7%. Smaller errors are present at the locations closer to the inlet of the

duct and in the cases characterized by a longer wavelength of the entropy �uctuations. Overall, this

level of error can be considered acceptable for the analysis performed here and con�rms that both
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Fig. 7 Instantaneous velocity (m/s) for a fully developed pipe �ow at Re=5400: (a) axial

component, (b) radial component, (c) tangential component.
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Fig. 8 Mean axial velocity for a fully developed pipe �ow at Re=5400: comparison between

present results and data published in [27].

the mesh and the numerical methods used in this work are suitable for the present investigation.

C. Results and discussion

Figures 10 and 11 show the instantaneous temperature and axial velocity in the stream-wise

cross section of cases with the same bulk velocity (Ub = 10 m/s) but di�erent forcing frequencies. It

is possible to note that the temperature oscillation imposed at the inlet boundary is distorted along

the duct because of the non-uniform velocity across the radius. Results show that the amplitude of

oscillations decays as the wave moves towards the outlet and the amount of decay increases with

the frequency, consistent with experiments. This is also clearly shown in Fig. 12 where the variance

of the entropy �eld (i.e. the variance of the time evolution of the entropy at each spatial location)
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Fig. 9 Velocity �uctuations for a fully developed pipe �ow at Re=5400: comparison between

present results and data published in [27].

Fig. 10 Instantaneous temperature (K) at di�erent frequencies (Ub = 10.0 m/s): (a) f=50 Hz,

(b) f=100 Hz, (c) f=200 Hz.

is reported.

As also discussed in [7, 9], an important phenomenon that contributes to the decay of entropy

�uctuations is the so called shear dispersion, caused by a non-uniform mean velocity pro�le over

the cross-section. The non-uniform convection velocity across the radius determines time delays

dependent on the radial position. Perturbations in the middle of the pipe, where the mean velocity

is higher, move faster compared to the perturbations close to the walls and the hot and cold spots

compenetrate each other losing the planar form imposed at the inlet boundary. This also generates

gradients in the radial direction leading to radial di�usion which further contributes to the mixing

between hot and cold spots. The combined e�ect of the di�erential time delay and radial di�usion

is usually referred to as shear dispersion or Taylor dispersion [28]. This phenomenon reduces the

strength of the entropy �uctuations at a given axial location and the attenuation increases with
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Fig. 11 Instantaneous axial velocity (m/s) at di�erent frequencies (Ub = 10.0 m/s):

(a) f=50 Hz, (b) f=100 Hz, (c) f=200 Hz.

Fig. 12 Entropy variance (J2/(kg K)2) at di�erent frequencies (Ub = 10.0 m/s): (a) f=50 Hz,

(b) f=100 Hz, (c) f=200 Hz.

the axial distance. Additional contributions to the decay of entropy waves also come from the

di�usion in the axial direction and turbulent mixing. Their e�ect is expected to increase with

the residence time and with the decrease of the entropy wavelength. A smaller wavelength of the

entropy perturbation leads to higher gradients making the di�usion process faster. Furthermore, as

the entropy wavelength approaches the turbulent length scale, the turbulent mixing becomes more

and more e�ective further reducing the strength of the entropy �uctuation [1, 29]. The combined

e�ect of all these phenomena leads to the particular shape of the entropy variance shown in Fig. 12

where the entropy �uctuations in the region very close to the walls appear to decrease faster because

of the lower convection velocity and therefore higher residence time and smaller wavelength.

The previous discussion suggests that the attenuation of entropy waves is strongly dependent

on the velocity pro�le, entropy wavelength and the distance travelled by the wave (i.e. the mean

residence time and its dispersion due to a non-uniform mean velocity). In order to give more

insight into the dispersion phenomenon and results useful for low-order network modelling, the
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Fig. 13 Time series and frequency spectra of entropy �uctuations at di�erent axial locations

for the case Ub = 10.0 m/s, f=100 Hz.

instantaneous cross-section averages at di�erent axial locations have been analysed in the frequency

domain. The use of cross-section averages allows us to represent all the variables as a function of

time and axial distance with results that can be directly exploited to build one-dimensional models

for entropy wave propagation (the approach is similar to the one used by Morgans et al. [9]). In

the following, if not di�erently speci�ed, all the quantities should be interpreted as the result of

the instantaneous mass �ux weighted average over the cross section corresponding to each axial

location.

Figure 13 shows the time series of the entropy �uctuations together with the respective frequency

spectra at di�erent locations along the axis. It is possible to note that the amplitude of the entropy

waves decays on moving towards the outlet and their shape becomes more and more distorted

because of the e�ect of both shear dispersion and turbulent �uctuations.

In order to better represent the decay of entropy waves in a form suitable for low-order modelling,

it is useful to introduce an entropy transfer function, Θ, de�ned as the ratio between the frequency

response at a given axial location (at the forcing frequency), and the entropy �uctuation at the inlet

boundary:

Θ(f, z) =
ŝ(f, z)

ŝ(f, 0)
(1)

where the circum�ex indicates that the quantity should be interpreted as a complex component

in the frequency domain. The entropy transfer function as de�ned here is a function of both the

frequency and the axial location and, as every complex quantity, should be described in terms of

both magnitude and phase. According to the results shown in Fig. 10, the overall decay of the
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Fig. 14 Magnitude of the entropy transfer function as a function of He.

entropy �uctuations appears to be in�uenced by both the wavelength of the entropy �uctuation and

the axial distance (or equivalently the frequency and the mean residence time of the �uctuations).

These two quantities can be combined by introducing a local Helmholtz number, He, which allows

us to further reduce the dimension of the problem:

He =
f

Ub
z (2)

where z is the axial distance from the inlet and Ub/f represents the mean wavelength of the entropy

�uctuation (the inlet bulk velocity was used as reference value). Figure 14 shows the amplitude

of the entropy transfer function as a function of the local Helmholtz number. Cases with di�erent

bulk velocity were considered. The decay of entropy waves scales reasonably well with He, even if

some deviations appear. These are probably due to the di�erent shape of the velocity pro�le in the

radial direction, which a�ects the di�erential time delay of the entropy wave across the section and

therefore its dispersion, with further contributions due to turbulent mixing and di�usion which, as

previously discussed, may have an important e�ect on the attenuation of entropy waves especially

in the cases with shorter wavelength. It is also important to point out that the shape of the entropy

transfer function found in the present numerical investigation and shown in Fig. 14 is in good

agreement with the recent �ndings of Morgans et al. [9] based on DNS simulations of a simpli�ed

turbulent channel �ow between two parallel plates.

A similar reduction was also performed for the experimental data and results are included in

Fig. 14. Values at T1 were taken as reference, and the attenuation of entropy waves from T1
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to T2 was computed. The experimental entropy transfer function was directly computed from

temperature measurements, which gave results almost identical to the ones obtained by estimating

the entropy at the two axial locations using the method discussed for Fig. 5. Measurements from

a wide range of experiments conducted at di�erent �ow velocities were considered to demonstrate

the collapse of data from high amplitude at low He exponentially decaying to low amplitudes at

high He. Numerical results agree reasonably well with the experiment. Higher deviations can be

observed at high He where, however, experimental results are a�ected by bigger uncertainties due

to the smaller amplitude of high frequency harmonics. Furthermore, it should be noted that in

the experiment the generation and propagation of entropy waves can be a�ected by some complex

phenomena not included in simulations (e.g. fuel ignition and mixing) and that the single point

measurement technique used in the experiments could lead to further deviations, even if comparisons

with numerical results based on single point samples along the duct axis (not shown here) exhibit

a similar kind of agreement. It should also be noted that in the experiment the �uctuations at the

reference location (T1) are likely to be non-homogeneous over the cross section, di�erent from the

numerical simulations where a uniform pro�le was imposed, and for low values of He the amplitude

of the �uctuations can reach the 10% of the mean value possibly generating further scattering due to

non-linear behaviour. In addition, the choice of the experimental reference location is quite arbitrary

and it could have an in�uence on the dispersion of the data (even if the trend is not a�ected). This

point will be further discussed in Section IVB. Therefore, experimental results should be mainly

used to evaluate the trend of the decay of the entropy �uctuations and from this point of view the

comparison with the numerical results shows a reasonable agreement.

IV. Low-order modelling

Because of the very low computational cost, low order acoustic network codes are widely used

as a preliminary design tool in the thermoacoustic analysis of real systems. Therefore it is of great

interest to develop further these codes by including a more accurate and realistic description of the

decay of entropy waves. As already observed, although the importance of phenomena related to the

dispersion and di�usion of entropy waves has been pointed out by many authors, in low-order codes
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the propagation of entropy waves is usually modelled in a very simplistic way. Stow and Dowling [30]

studied the behaviour of a gas turbine combustor model in the two extreme cases of entropy waves

convected without attenuation and entropy perturbations completely di�used, highlighting that

the presence of entropy waves can have an important role in the stability of the system. The

analysis performed in this work shows that these approximations can be a good representation of

the physical behavior of the entropy transport only in the limiting cases of very small and very

high He, respectively. The �rst attempt of introducing a more comprehensive description of the

entropy wave dispersion valid in the whole range of He is probably represented by the theoretical

work by Sattelmayer [7]. Over the last years, this formulation has been exploited by many other

authors (e.g. [17, 31]), however, to the authors' knowledge, a direct and complete validation or

assessment has never been done. Only very recently, Morgans et al. [9] attempted a more detailed

analysis of the entropy convection using DNS, leading to the development of a Gaussian model for

the entropy wave dispersion. Comparisons against DNS data showed that the Gaussian model was

able to improve the prediction of the magnitude of the entropy transfer function compared to the

Sattelmayer model. However, the assessment was limited to the magnitude of the entropy waves

whereas no comparison for the phase was provided.

Experimental and numerical results obtained in the present work can be used to assess and

calibrate models suitable for low-order acoustic network codes. In the following, a new theoretical

model for the dispersion of entropy waves is proposed. This model only requires the mean velocity

�eld as an input which can be easily obtained with straightforward simulations based on the RANS

approach (or analytical solutions in the case of very simple �ows).

A. Theoretical model for the entropy transfer function

Starting from the relation Ds/Dt = 0, a theoretical model for the computation of the entropy

transfer function can be derived. This model is based on the convection of entropy �uctuations

and considers only the di�erential time delay due to a non-uniform velocity pro�le across the radius

whereas the e�ects of turbulent mixing and di�usion are neglected. This assumption allows us to

derive a simple model and its validity over the whole range of He will be assessed a posteriori by
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comparisons with the present numerical results. In the following, mean quantities will be denoted

with a bar whereas the prime symbol will be used to indicate perturbations from the mean value.

Furthermore, the symbols z, r, θ will be used to indicate respectively the axial, radial and tangential

coordinates/components of the velocity vector. Assuming that (a) the mean �ow is axial and fully

developed, u = (uz, ur, uθ) = (uz(r), 0, 0); (b) the mean entropy varies only with the radius, s(r);

(c) perturbations are linear and u′
r = 0 (u′ is a function of z and θ only), the previous relation can

be written as:

∂s′

∂t
+ uz(r)

∂s′

∂z
= 0 (3)

Considering entropy �uctuations of the form s′(z, r, t) = ŝ(z, r)exp(iωt) and a uniform entropy

�uctuation at the inlet section (i.e. ŝ(0, r) = ŝ0, as in the CFD simulations performed in this work),

Eq. 3 assumes the following form:

ŝ(z, r) = ŝ0exp[−iωz/uz(r)] (4)

Finally, performing the mass-weighted average in the duct of radius R, it is possible to express the

entropy �uctuation at a given axial location as:

ŝ(z) = ŝ0

∫ R

0
ρ2πruz(r)exp[−iωz/uz(r)]dr∫ R

0
ρ2πruz(r)dr

(5)

resulting in the following expression for the entropy transfer function:

Θ =
ŝ(z)

ŝ0
=

2

R2Ub

∫ R

0

ruz(r)exp[−iωz/uz(r)]dr (6)

Introducing the Helmholtz number de�ned in this work (see Eq. 2), Eq. 6 becomes:

Θ =
ŝ(z)

ŝ0
=

2

R2Ub

∫ R

0

ruz(r)exp[−2iπHeUb/uz(r)]dr (7)

The values of the entropy transfer function of Eq. 7 can be numerically calculated using the mean

velocity pro�le coming from numerical simulations. Results for the three di�erent bulk velocities

considered in this work are shown in Fig. 15 and compared with both numerical and experimental

results. The magnitude and the phase predicted by the model are in very good agreement with

results obtained in the experimental and numerical investigations, especially for He < 3.0. The

deviation between the magnitude predicted by the model and the LES results increases with He.
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This can be related to the e�ect of turbulent mixing and di�usion which become more and more

important as the He is increased. The LES results consider all these e�ects and, consistently, the

magnitude of the entropy transfer function predicted by the numerical simulations is always lower

than the respective values determined by the low-order model.

Since the theoretical model considers only the contribution due to the di�erential convection,

comparisons with the LES results also allow us to identify the main contributions to the decay

of entropy waves as a function of He. For low values of He (small mean residence time or long

wavelength of the entropy �uctuations), the magnitude of the entropy transfer function predicted

by the theoretical model is very close to the LES results, therefore the main contribution to the

decay of entropy �uctuations is the one coming from the di�erent time delays determined by a non-

uniform velocity pro�le. At high He, where the deviation between the theoretical model and the

LES prediction is bigger, also the turbulent mixing and di�usion may give an important contribution

to the attenuation of entropy waves. High values of He correspond to high mean residence times or

short wavelengths which, as already discussed, make the di�usion and turbulent mixing processes

more e�ective. As far as the phase is concerned, the theoretical model is in very good agreement

with the LES simulations in the whole range of He investigated here suggesting that the phase

of the entropy transfer function is mainly in�uenced by the convection of the perturbations with

negligible contributions from di�usion and turbulent mixing.

It is important to point out that in typical gas turbine applications, entropy �uctuations of

interest for combustion noise or thermoacoustic instability are usually characterized by low values

of the Helmholtz number, typically He < 3.0, a range where the present formulation seems to give

a good estimation of the entropy transfer function.

It is also useful to de�ne a non-dimensional radius and a non-dimensional mean axial velocity

as r̃ = r/R and ũz = uz/Ub respectively. Introducing these scaled quantities into Eq. 7, a useful

expression for the theoretical model can be found, allowing us to further analyse the convection of

entropy �uctuations:

Θ =
ŝ(z)

ŝ0
= 2

∫ 1

0

r̃ũz(r̃)exp[−2iπHe/ũz(r̃)]dr̃ (8)

According to the form introduced in Eq. 8, the entropy transfer function depends only on two
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Fig. 15 Comparison between the theoretical model and experimental and numerical results in

terms of magnitude and phase of the entropy transfer function.

parameters, the Helmholtz number and the shape of the mean velocity pro�le through the non-

dimensional function uz(r/R)/Ub = ũz(r̃). Cases with the same velocity pro�le are characterized

by the same entropy transfer function when expressed as a function of He. Results shown in Fig. 15

were obtained using the mean velocity pro�le from the LES computation. Therefore, the di�erences

between the cases characterized by di�erent bulk velocity can be ascribed only to di�erent shapes

of the mean velocity pro�le. In order to have a sensitivity to the e�ect of the velocity pro�le

on the shape of the entropy transfer function, it could be instructive to analyse the behaviour of

the model when di�erent functions ũz(r̃) are introduced. Figure 16 shows the results of such an

analysis considering three di�erent shapes of the velocity pro�le [32]. The �rst one is a parabolic

laminar �ow, ũz(r̃) = 2(1 − r̃2), whereas the other two cases represent fully developed turbulent

�ows, ũz(r̃) = C(1− r̃)(1/n), for di�erent values of the exponent n (C is a constant which depends

only on the value of n). Variations of the shape of the mean velocity pro�le introduce a non-

negligible dispersion in both the magnitude and the phase of the entropy transfer function. A

reliable estimation of the velocity pro�le is therefore mandatory for an accurate evaluation of the

attenuation of entropy waves. However, it should be noted that, especially in cases characterized by

a fully developed turbulent velocity pro�le, the trend of the entropy transfer function is dominated

by the Helmholtz number and therefore also in cases where the shape of the velocity pro�le is

a�ected by some uncertainties the only knowledge of He allows a reliable estimation of the decay
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Fig. 16 Analysis of the sensitivity of the theoretical model to the shape of the velocity pro�le.

of entropy waves.

In order to demonstrate the improvements that can be obtained with the proposed formulation,

it could be useful to compare the experimental and numerical results with the other formulations

available in the literature, namely the Sattelmayer model [7] and the Gaussian model recently

proposed by Morgans et al. [9]. As the model introduced in this work, the theoretical entropy

transfer function developed by Sattelmayer [7] considers only the dispersion due to the convection

with a non-uniform mean velocity pro�le. Considering a rectangular distribution of the residence

time, the entropy transfer function between the inlet and outlet sections of a duct can be written

in the following form [31]:

Θ = exp(−iωτ)
sin(ω∆τ)

ω∆τ
= exp(−iωτ)

sin(ωKτ)

ωKτ
(9)

where τ is the mean time delay of the entropy wave from the inlet to the outlet, ω is the angular

frequency of the perturbation and ∆τ is the time spread assumed to be proportional to the time

delay through a real constantK (i.e. ∆τ = Kτ). In this form, the dispersion parameterK represents

the e�ect of the shape of the mean velocity pro�le (di�erent shapes give a di�erent non-dimensional

spread, ∆τ/τ , of the time delay). If the mean time delay is considered equal to τ = z/Ub [31], the

previous expression can be written in terms of the local Helmholtz number introduced in this work,

allowing a direct comparison with the present results:

Θ = exp(−2iπHe)
sin(2πKHe)

2πKHe
(10)
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Fig. 17 Comparison between the Sattelmayer model [7] and experimental and numerical results

in terms of magnitude and phase of the entropy transfer function.

First of all, it should be noted that, similar to the model proposed in this work, the Sattelmayer

model expressed as in Eq. 10 depends only on He and the shape of the velocity pro�le through the

parameter K. Comparisons with the current experimental and numerical results are presented in

Fig. 17 for several values of K. Values in the range 0.15-0.25, which is consistent with the actual

velocity pro�les, seem to give a reasonable estimation of both the magnitude and the phase of the

entropy transfer function even if it is evident that this formulation is less accurate than the proposed

model.

The model proposed by Morgans et al. [9], developed in the context of a channel �ow between two

parallel plates, is applied here to a duct �ow. The model describes the variation of the magnitude of

the entropy transfer function through a Gaussian model whereas the phase shift is simply introduced

by means of a time-lag model based on the time delay of the peak of the Gaussian pulse. In the

absence of a general expression that gives an estimation of the time delay associated with the

convection of the Gaussian pulse at each axial location as a function of the �ow basic quantities

(e.g. bulk velocity), following a common practice in low-order acoustic network codes [1, 30], the

time delay was computed here from the �ow bulk velocity. This will also allow us to assess the

reliability of this modelling assumption. Introducing again the Helmholtz number as de�ned in this
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work, the formulation can be written as:

Θ = exp[−ω2/(4πA2
IR)]exp(−iωτ) = exp[−π(HeUb/zAIR)

2]exp(−2iπHe) (11)

where AIR is a model parameter that can be found from a Gaussian model of the amplitude of the

impulse response, determined for example from the probability density function of the residence

time [9]. It should be noted that the parameter AIR depends on the axial location as well as the

bulk velocity of the �ow. Exploiting the results obtained in the present work where the amplitude

of the entropy transfer function has been found to scale quite well with the local Helmholtz number,

the Gaussian formulation can be re-written as:

Θ = exp[−(He/A)2]exp(−2iπHe) (12)

where A is now a parameter that depends only on the shape of the mean velocity pro�le (in the case

of entropy attenuation dominated by the shear dispersion), but not on the axial location and bulk

velocity of the �ow so that this formulation in only a function of He and the time delay dispersion

as in the models previously discussed. Figure 18 shows comparisons between this model and the

present experimental and CFD results. Values of A able to give a good �t of the magnitude of the

entropy transfer function lie in the range 1.0-3.0. It should be noted that although the magnitude

of the entropy transfer function is reasonably well predicted, the phase is not well represented

demonstrating that the simple time-lag model based on �ow bulk velocity is not able to correctly

represent the phase shift when a non-uniform mean velocity pro�le is present. A better estimation

of the time delay, for example deduced from the probability density function of the time delay as

suggested by Morgans et al. [9], is therefore necessary to improve the prediction of the phase.

The analysis performed so far was based on the use of a mass-weighted average. Sometimes,

as in the work by Morgans et al. [9], an area average may be preferred and therefore it is also

instructive to show the behaviour of the model in the case an area-based average is used to compute

average values in the duct cross section. In this case, the model of Eq. 7 can be rearranged as:

Θ =
ŝ(z)

ŝ0
=

2

R2

∫ R

0

rexp[−2iπHeUb/uz(r)]dr (13)

Introducing the non-dimensional radius and mean axial velocity (r̃ and ũz previously de�ned), Eq. 13
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Fig. 18 Comparison between the Gaussian model [9] (with time-lag model based on the �ow

bulk velocity) and experimental and numerical results in terms of magnitude and phase of

the entropy transfer function.

becomes:

Θ =
ŝ(z)

ŝ0
= 2

∫ 1

0

r̃exp[−2iπHe/ũz(r̃)]dr̃ (14)

Figure 19 shows comparison between the theoretical model and the CFD results based on area

averages. The magnitude of the entropy transfer function is smaller compared to the previous cases

because of the higher in�uence exerted by the �ow close to the wall (characterized by a large area

but a small mass �ow rate), where the level of �uctuations is low as clearly shown in Fig. 12, whereas

no signi�cant di�erences can be observed for the phase. Also in this case, the theoretical model is in

good agreement with numerical results demonstrating that the proposed approach is able to give a

reliable representation of the attenuation of entropy waves also when di�erent averaging operators

are used to reduce the �uctuations to a one-dimensional form. Again, some discrepancies arise at

high values of He where the same considerations reported in the discussion of Fig. 15 still apply.

B. Simpli�ed analytical model

The theoretical model discussed in Section IVA only requires the knowledge of the mean velocity

pro�le and can be, in principle, applied to any con�guration without requiring calibration of model

parameters. However, sometimes the mean velocity pro�le might not be available and therefore
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Fig. 19 Comparison between the theoretical model and experimental and numerical results in

terms of magnitude and phase of the entropy transfer function based on area average.
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Fig. 20 Comparison between the expression in Eq. 15 and experimental and numerical results

for di�erent values of α and B.

it could also be of interest to introduce an analytical expression for the entropy transfer function.

Here, the following simpli�ed expression is proposed (valid for positive frequencies):

Θa = exp[−(2iπα+B)He] (15)

where α and B are real constants which regulate the phase shift (introducing a correction to the

simple time-lag model) and the attenuation, respectively. Figure 20 shows comparisons between

this formulation and both experimental and numerical results for di�erent values of α and B. It is

possible to note that a proper choice of such parameters allows a good representation of both the

magnitude and the phase of the entropy transfer function found in the present investigation. The
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use of this simple expression also allows us to easily describe the entropy dispersion and di�usion

as a composition of subsequent steps. Let us consider for example three generic axial locations, z0,

z1, and z2 such that z0 < z1 < z2, taking the �rst one as the reference location for the computation

of the entropy attenuation. The entropy transfer function between z0 and z2 can be written as the

product of the two intermediate transfer functions:

Θa
z2−z0 =

ŝ(z2)

ŝ(z0)
= Θa

z2−z1Θ
a
z1−z0 =

ŝ(z2)

ŝ(z1)

ŝ(z1)

ŝ(z0)

= exp[−(2iπα+B)f(z2 − z1)/Ub]exp[−(2iπα+B)f(z1 − z0)/Ub]

= exp[−(2iπα+B)f(z2 − z0)/Ub]

(16)

This clearly shows that if the decay of entropy waves follows an exact exponential form, the shape of

the entropy transfer function is independent of the reference location used to compute the relative

decay (this is in general not true for the other models where the decay of the entropy �uctuations

also depends on the previous history). Since, as shown in Fig. 20, the exponential model is a

good approximation of the data found in the CFD investigation, this partly justi�es the use in the

experiments of an arbitrary reference plane for the data reduction making the experimental transfer

function meaningful and consistent at least for getting the trend of the decay of entropy �uctuations.

From another perspective, the good agreement between experiments and numerical results can be

also considered an indirect assessment of the exponential-like behaviour of the attenuation of entropy

waves.

V. Conclusions

The propagation of entropy waves in a small scale rig has been investigated using both exper-

iments and numerical simulations. Results show that the amplitude of entropy waves decays as a

function of the frequency and the mean residence time of the wave and the entropy transfer function

scales well with a local Helmholtz number based on the entropy wavelength and the axial distance.

Considering the di�erential convection as the dominant mechanism in the decay of entropy

waves, a new theoretical model for the entropy transfer function, suitable for application in low-

order acoustic network codes, has been proposed. This model only requires the knowledge of the

mean velocity pro�le which can be obtained from a quick and straightforward RANS calculation of
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the mean �ow. Validation against the present experimental and CFD results shows that the model

is able to properly predict both the magnitude and phase of the entropy transfer function, especially

in the intermediate and low range of the Helmholtz number.

Comparisons between the proposed formulation and numerical results highlight the important

role exerted by the shear dispersion arising from spatial variations of the mean velocity pro�le in

the attenuation of entropy �uctuations for low values of the Helmholtz number. For high values of

the Helmholtz number results suggest that also the turbulent mixing and di�usion could give an

important contribution to the overall decay of the entropy �uctuation.

According to the developed theoretical model, the shear dispersion arising from the di�erential

convection is regulated by only two parameters, the local Helmholtz number introduced in this

work and the shape of the velocity pro�le with the former that plays the most important role in

determining the decay of the entropy transfer function, especially in the case of fully developed

turbulent �ows. Therefore, also in cases where an accurate evaluation of the shape of the mean

velocity pro�le is not available, the knowledge of the Helmholtz number allows a reliable estimation

of both the magnitude and the phase of the entropy transfer function.

It is important to point out that both the range of velocities and the geometry investigated

in this work can be far from real engine applications. Therefore, further investigations should be

carried out in the future in con�gurations much closer to real engines usually characterized by

complex �ow structures such as recirculation zones induced by swirling air �ows which make the

convection and mixing processes a completely three dimensional phenomenon. Furthermore, in this

investigation the diameter of the duct was kept constant. However, the duct diameter limits the

turbulence length scale and this may have an e�ect on the interaction between the entropy wave

and the turbulence suggesting that the decay of entropy waves can also be a function of a Helmholtz

number based on the entropy wavelength and duct radius. This should be addressed in future work

together with an analysis of the behaviour of entropy di�usion and dispersion in the case of high

amplitude of the �uctuations where a higher impact of the temperature oscillations on the �ow �eld

may be expected.
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