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Abstract 

 

Rationale 

 

Improving the early detection and chemoprevention of lung cancer are key to 

improving outcomes. The pathobiology of early squamous lung cancer is poorly 

understood. We have shown that amplification of SOX2 is an early and consistent 

event in the pathogenesis of this disease but its functional oncogenic potential 

remains uncertain. We tested the impact of deregulated SOX2 expression in a 

novel organotypic system that recreates the molecular and microenvironmental 

context in which squamous carcinogenesis occurs. 

 

Objectives 

 

1) To develop an in vitro model of bronchial dysplasia that recapitulates key 

molecular and phenotypic characteristics of the human disease 

2) To test the hypothesis that SOX2 deregulation is a key early event in the 

pathogenesis of bronchial dysplasia 

3) To use the model for studies on pathogenesis and chemoprevention  

 

 

 

 



Methods 

We engineer the inducible activation of oncogenes in immortalised bronchial 

epithelial cells. We use 3-dimensional tissue culture to build an organotypic 

model of bronchial dysplasia.  

 

Measurements and Main Results 

 

We recapitulate human bronchial dysplasia in vitro. SOX2 deregulation drives 

dysplasia, and loss of TP53 is a co-operating genetic event that potentiates the 

dysplastic phenotype. Deregulated SOX2 alters critical genes implicated in 

hallmarks of cancer progression. Targeted inhibition of AKT prevents the 

initiation of the dysplastic phenotype. 

 

Conclusion 

 

In the appropriate genetic and microenvironmental context acute deregulation 

of SOX2 drives bronchial dysplasia. This confirms it’s oncogenic potential in 

human cells and affords novel insights into the impact of SOX2 deregulation. This 

model can be used to test therapeutic agents aimed at chemoprevention. 

 

Word count 250 words 

Key words: Early lung cancer, SOX2, bronchial dysplasia, squamous lung cancer, 

organotypic culture  



Introduction 

Lung cancer is one of the most common causes of cancer-related mortality in the 

world (1). Squamous lung cancer (SQC) accounts for approximately 30% of all 

lung cancers. There are a number of challenges to reducing the mortality from 

SQC and these include improving smoking cessation, early detection and 

diagnosis, and the development of novel approaches to the chemoprevention and 

treatment of lung cancer (2-4). 

 

A key aspiration is to understand the molecular pathogenesis of SQC and to use 

this information to drive developments in early detection, chemoprevention and 

treatment (2). This would be significantly facilitated by model systems that 

faithfully recapitulate the human disease. There has recently been progress in 

the development of murine models of squamous lung cancer and these models 

will lead to new insights (5-7). However there are advantages to in vitro models, 

including the use of human cells, genetic tractability, throughput, costs and 

reduction in animal use.   

 

The epithelial cell-microenvironment interaction is critical to the pathogenesis of 

epithelial malignancies, and to resistance to therapeutics (8). It has been 

repeatedly demonstrated that cancer cells behave differently and have very 

different phenotypic outcomes in complex compared to traditional culture 

systems (9). Advances in tissue engineering have made it possible to use in vitro 

models of the bronchial wall to investigate pathological mechanisms in asthma, 

COPD and cancer (10, 11). In the current study we have built on these studies to 



build a rational model of bronchial dysplasia, the precursor lesion to squamous 

lung cancer. 

 

The key molecular drivers in the early pathogenesis of squamous lung cancer 

(SQC) remain obscure. In a series of reports on a small number of patients it has 

been demonstrated that loss or mutation of p53 is an early event (12, 13) that 

appears to afford a clonal survival and expansion benefit, even at the earliest 

histopathological stages. Further, TP53 is disrupted in almost all invasive 

squamous lung cancers (14). 

 

It has repeatedly been demonstrated that 3q amplification occurs prior to 

invasion in the pathogenesis of SQC (15). In previous work we have shown that 

3q amplification marks the progression between low and high-grade dysplasia 

and has implications for prognosis (16). This has been confirmed in a larger 

cohort (17). It is likely that multiple genes on 3q can contribute to squamous 

carcinogenesis (18). However, previous mapping studies, both in SQC and 

bronchial dysplasia have identified SOX2 as a likely key target of the 3q amplicon 

(16, 19, 20). 

 

Therefore the available molecular epidemiological evidence suggest that p53 is 

disrupted early in the pathogenesis of the disease and that 3q amplification and 

associated deregulation of SOX2 expression occurs at the epidemiological and 

histological bottle-neck between low- and high-grade bronchial dysplasia (16, 

17, 21). 

 



 

SOX2 is a single exon nuclear transcription factor. It is pleiotropic, with critical 

roles in stem cell and developmental biology and it is particularly important in 

the development of the lung (22, 23).  There have been a number of reports 

regarding the potential for SOX2 overexpression to drive carcinogenesis in 

murine models. In one report deregulated SOX2 was unable to drive 

carcinogenesis when its overexpression was restricted to Club cells using the 

Scgb1a1 promoter (24); in a separate report marked overexpression was 

sufficient to form phenotypic adenocarcinomas that were positive for p63, a 

squamous carcinoma marker (25). More recently, the delivery of intratracheal 

lentivirus containing SOX2 in conjunction with loss of LKB1 was sufficient to 

drive squamous carcinogenesis, albeit at relatively low penetrance (6). 

 

In vitro experiments using immortalised human cell lines have given varying 

results. Overexpression of SOX2 was sufficient to transform SV40 large T-antigen 

immortalised BEAS2B cells (20); virally immortalised small airway epithelial 

cells (AALE) were transformed by SOX2, but only in conjunction with co-

operating genetic lesions (19).  

 

We have modelled the earliest stages of bronchial epithelial carcinogenesis using 

non-virally immortalised human bronchial epithelial cells with a stable 

karyotype and an intact p53 signalling response/pathway (26). Using lentiviral 

constructs we sequentially knockdown TP53 and inducibly deregulate SOX2 

expression. We establish short-term organotypic cultures and demonstrate that 

SOX2 deregulation, on a background of p53 knockdown in a confluent epithelial 



monolayer at the air-liquid interface, drives the dysplastic phenotype in vitro.  

We show that SOX2 alters key cell signaling pathways, recapitulating signatures 

seen in invasive SQC and that it deregulates multiple genes implicated in 

hallmarks of cancer progression - including inhibition of apoptosis, driving cell 

proliferation, and cell migration and epithelial mesenchymal transition (EMT). 

We demonstrate that the model can be used to test chemoprevention strategies, 

and that a specific inhibitor of Akt that is already in early phase trials prevents 

the development of the dysplastic phenotype. This work establishes that SOX2, in 

the appropriate molecular and environmental context is sufficient to drive lung 

squamous carcinogenesis in human cells and establishes a novel model of human 

bronchial carcinogenesis with broad utility.  

 

This work has been presented in part in abstract format at a number of scientific 

meetings (27-29).  



Methods 

 

Cell culture. 

 

Human bronchial epithelial cells immortalized with hTERT and CDK4 (hereafter 

called KT cells) were kindly provided by Professors JW Shay and JD Minna 

(University of Texas Southwestern Medical Center, Dallas, Texas). The following 

plasmids were used to generate lentiviral particles using standard protocols – 

FUW M2rtTA and FUW tetO-lox-hSOX2 (30), pLVUHshp53-tTR-KRAB and pLVU-

tTR-KRAB (31). KT cells were sequentially transduced with lentiviral particles to 

create a suite of cell lines with different genotypes. Cell lines were cultured in 

Keratinocyte Serum-Free Medium (KSFM) supplemented with human 

recombinant Epidermal Growth Factor (EGF) and Bovine Pituitary Extract (BPE) 

(Life Technology, Paisley, UK) and Bronchial Epithelial Basal Medium (BEBM, 

(Lonza, Basel, Switzerland)). A549 cells with a tetracycline inducible RFP 

reporter were maintained in DMEM/10% Foetal Bovine Serum (FBS). 

 

Organotypic culture.  

 

Organotypic cultures were established in 12-well transwell plates with a porous 

membrane insert (pore size 0.4µm) (Corning 3460, Corning, Weisbaden, 

Germany). On day 1, a mixture of collagen (Corning Collagen I, Rat Tail), 10X 

DMEM, 10% tetracycline low FBS, 7.5% sodium bicarbonate and 5x105/ml MRC-

5 fibroblasts was prepared on ice. This solution was inverted gently in order to 

obtain a homogenous solution without bubbles. The pH was adjusted to 7.25-7.3 



with 1M sodium hydroxide and 600 μl of the mixture poured into each transwell. 

Plates were incubated at 37°C for 30 min and medium (KSFM plus supplements) 

was added to both the upper and lower chambers. The fibroblasts were left to 

contract the collagen for 5 days and HBECs then overlaid on the collagen layer. 

HBECs were kept covered until they reached confluence and on day 8 an air-

liquid interface (ALI) was generated through the removal of medium from the 

upper chamber. Medium with or without 2-5µg/ml doxycycline supplementation 

in the lower chamber was changed every 48h and samples fixed on or after day 

14 with 10% formaldehyde at 4°C prior to further processing. 4.5µm sections 

were prepared for immunofluorescence or immunohistochemistry using 

standard protocols. The following antibodies and dilutions were used: SOX2 (Cat 

No. MAB2018, R&D Systems-dilution 1:200), Ki67 (Cat No. RM-9106-S1, Thermo 

Scientific-dilution 1:200), p-AKT (Ser473) (Cat No. 3787, Cell Signaling 

Technology-dilution 1:50), p-ERK1/2 (Cat No. 4376, Cell Signaling Technology-

dilution 1:1000) and Acetylated Tubulin (Cat No. T7451, Sigma-dilution 1:1000).  

For chemoprevention studies AZD5363 was dissolved in DMSO and added to the 

lower chamber to a final concentration of 10µM at the same time that 

doxycycline was added. 

 

Differentiation culture  

 

24-well transwells (Cat No. 353095, Corning) were coated with collagen 1x104 

cells were plated onto each transwell and submerged in 200μl of Complete 

PneumaCultTM expansion medium (Cat No. 05008, Stem Cell Technologies) plus 

penicillin/streptomycin, with 500µl in the lower chamber. On day 5, an air-liquid 



interface was generated by the removal of the medium from the upper chamber. 

500μl of PneumaCultTM ALI Maintenance medium plus penicillin/streptomycin 

was added to the lower chamber (Cat No. 05001, Stem Cell Technologies) and 

cells were washed with PBS and medium changed every 3 days. 23-day ALI 

cultures were then fixed with 4% PFA for 10min at room temperature. 

Membranes were cut from the transwells and cells permeabilised with PBS + 

0.3% Triton for 15 min followed by blocking with PBS + 0.1% Triton + 5% NGS + 

1% BSA for 45 min. Membranes were then incubated with the following 

antibodies and dilutions: Keratin 5 (Cat No. PRB-160P, Covance - dilution 1:500), 

Mucin 5AC (Cat. No. MS-145P0, Thermo Scientific - dilution 1:200), γ-Tubulin 

(Cat. No. SAB4503045, Sigma - dilution 1:200), Acetylated tubulin (Cat No. 

T7451, Sigma - dilution 1:1000) and CC10 (Cat No. sc25555, Santa Cruz 

Biotechnology – dilution 1:500).  Nuclei were stained using Hoechst 33258 dye 

(Sigma), samples were mounted in Fluoromount Aqueous Mounting Medium 

(Sigma) and, analysed using an AxioImager compound microscope (Carl Zeiss). 

 

 

Western blotting 

Protein extracts were obtained using RIPA buffer. 40 μg of protein was loaded 

onto 4–12% Tris-Acrylamide gels followed by transference to a PVDF membrane 

(Millipore). The following antibodies were blotted: SOX2 (Cat No. MAB2018, R&D 

Systems-dilution 1:1000), p53 (Cat No. sc-126, Santa Cruz Biotechnology-

dilution 1:1000), Keratin 5 (Cat No. ab24647, Abcam-dilution 1:1000), p63 (Cat 

No. ab735, Abcam-dilution 1:1000) and β-actin (Cat No. sc-47778, Santa Cruz 

Biotechnology-dilution 1:5000). Blotting results were detected by an ECL 



chemiluminescence kit (Thermo Scientific) before exposing to X-ray film 

(Fujifilm). 

 

Cell culture assays and cell cycle analysis 

 

For cell growth assays in standard culture 0.1x105 cells from each cell line were 

seeded with or without 1µg/ml doxycycline. Cells were trypsinised at specified 

timepoints and counted using the Countess Automated Cell Counter 

(ThermoFisher Scientific, Paisley, UK). For cell cycle analysis, 0.1x106 cells were 

plated in a 6 well plate. For 3D cultures, to harvest the cells at the air-liquid 

interface medium was removed from both lower and upper chamber and the 

porous membrane of each transwell wrapped in cling film. Collagen discs were 

washed twice with PBS and treated with trypsin for 12 min at 37°C. Cells were 

collected in DMEM/10% FBS and the pellet resuspended in phosphate-buffered 

saline-5mM EDTA. Cells were fixed and stained with propidium iodide. Samples 

were analysed on an Accuri C6 (BD Biosciences, UK) and further analysis was 

performed using FlowJo software (FlowJo LLC, Ashland, Oregon, USA). 

 

Tissue microarray 

A tissue microarray was constructed using surgical and endobronchial patient 

biopsy specimens from Papworth Hospital NHS Trust, Cambridge, UK. Biopsies 

assessed by a consultant thoracic histopathologist to be high-grade bronchial 

dysplasia were used for this study (limited to one core per individual patient). 

 

Chromatin Immunoprecipitation-PCR  



Bronchial epithelial cells were cultured in the organotypic culture system (OTC) 

and untreated/treated with 2μg/ml doxycycline for 8 days prior to being 

trypsinised and harvested. Cells were processed using the Magna ChIP™ G - 

Chromatin Immunoprecipitation kit as per manufacturer’s instructions 

(Millipore, UK). Chromatin shearing was performed using Covaris S2 series and 

the following programme: Duty cycle: 2%, Intensity: 3, Cycles per burst: 200, for 

12 min. 50 µl of sheared chromatin was incubated with magnetic beads and the 

following antibodies: SOX2 (Cat No. AF2018, R&D systems- 5μg) and IgG control 

(Cat No. AB-108-C, R&D systems- 5μg). Samples were validated using the 

manufacturer’s recommended antibody followed by PCR of the eluted DNA 

(ChIPAb+ RNA Pol II - ChIP Validated Antibody and Primer set, Millipore). 

 

RNA extraction and quantitative PCR (QPCR): 

RNA was extracted from cells cultured in 3D, untreated/treated with 2μg/ml 

doxycycline for 8 days, using the miRNeasy Mini Kit (Qiagen, Manchester, UK). 

Collagen disks were solubilized with 1ml of QIAzol Lysis Reagent (Qiagen, 

Manchester, UK) by vortexing and RNA was isolated following manufacturer’s 

instructions. RNA was eluted with RNase-free water and treated with DNase I 

(Thermo Scientific, Paisley, Scotland). cDNA was prepared with 1μg of total RNA 

using the High Capacity cDNA Reverse Transcription Kit (Thermo Scientific, 

Paisley, Scotland). Quantitative PCR was performed using SYBR green reagents 

and GAPDH as internal control. Thermal cycling conditions were as follows: 95°C 

for 3min, 40 cycles at 95°C for 15s and 55°C for 30s. The relative amount of 

mRNA in each sample was quantified using ΔΔCt method.  

 



RNA sequencing 

 

 Sample sequencing libraries were prepared from 200ng of total RNA extracted 

from treated and control organotypic cultures four days after the addition of 

doxycycline. The TruSeq Stranded mRNA HT sample preparation kit (Illumina, 

Chesterford UK) was used according to the manufactures instructions. Samples 

were individually indexed for pooling using a dual index strategy. Libraries were 

quantified on a Tapestation DNA 1000 Screen tape (Agilent, Cheadle UK) and by 

qPCR using an NGS Library Quantification Kit (KAPA Biosystems, London UK) on 

an AriaMx qPCR system (Agilent). Libraries were then normalised, pooled, 

diluted and denatured for sequencing on the NextSeq 500 (Illumina) according 

to the manufacturer’s instructions. Samples were pooled such that a minimum of 

25M unique clusters per sample was achieved. PhiX control library (Illumina) 

was spiked into the main library pool at 1% v/v for quality control purposes. 

Sequencing was performed using a high output flow cell with 2x75 cycles of 

sequencing providing 800M paired end reads from 400M unique clusters.  

RNA-seq was performed and analysed as a service by Cambridge Genomic 

Services (Department of Pathology, University of Cambridge). RNA was 

sequenced (2x75bp) using the Illumina NextSeq500. The quality control of the 

reads was evaluated using FastQC (32) and reads were trimmed using Trim 

Galore (33). Reads were mapped to the reference human genome (Ensembl 

Homo_sapiens.GRCh38.80 GTF file) using STAR (34). The number of reads that 

map to a genomic feature was calculated using HTSeq (35) and differential 

expression analysis was performed using the counted reads and the R package 

edgeR (v3.8.6) (36). We used the classic edgeR approach to make pairwise 



comparisons between treated and control groups. This involves computing an 

exact test for each gene and correcting for multiple testing. EdgeR reported a p-

value for differential expression and a False Discovery Rate (FDR) adjusted for 

multiple testing.  Pathway analysis was undertaken using Ingenuity Pathway 

Analysis (IPA, Qiagen, USA) restricted to significantly altered genes at a p-value 

of <1x10-6. An expression heatmap was produced using Multiple Experiment 

Viewer and plotted by scaling the normalised counts per million (CPM) of each 

gene across biological replicates (37). Sequencing reads are deposited in a public 

database hosted by the National Centre for Biotechnology Information (SRA 

Bioproject Number PRJNA344067). 

 

Statistics 

Data was analysed using Graphpad Prism using standard settings (California, 

USA).  Details of specific analyses are provided in figure legends.    



Results 

 

HBEC-KT cells were sequentially transduced with lentiviral constructs to create a 

series of cell lines with multiple genotypes including TRE-SOX2 (iSOX2) (Figure 

1a).  SOX2 expression was readily induced in the presence of doxycycline in 

those cell lines that expressed both SOX2 and the reverse tetracycline 

transactivator (M2rtTA). Upregulation of SOX2 was apparent after 24 hours in 

standard tissue culture. Further genotypes included a stable knockdown of TP53 

alone (p53lo) and a compound genotype with inducible SOX2 and TP53 

knockdown (iSOX2p53lo) The expression of the key markers associated with 

squamous differentiation – Keratin 5 (K5) and p63 – was retained after SOX2 

induction with doxycycline in cells with iSOX2 alone and iSOX2/p53lo. 

 

We established a three-dimensional organotypic culture system (OTC) in which 

SOX2 expression could be induced after cells were established in a monolayer at 

the air-liquid interface (Figure 2a). Using A549 cells transduced with a lentiviral 

reporter vector, we demonstrated that the addition of doxycycline to the medium 

in the lower chamber was sufficient to induce expression of a red fluorescent 

reporter in the bronchial epithelial monolayer (Figure 2b). The successful 

induction of SOX2 in KTiSOX2/KTiSOXp53lo cells cultured at the air-liquid 

interface in the OTC was demonstrated (Figure 2c). We then demonstrated that 

the genetically manipulated KTiSOX2p53lo cells retain the previously reported 

potential of the parental cells (38) to differentiate into the constituent cells of the 

adult human airway when cultured at the air-liquid interface on collagen coated 

transwell inserts and using bronchial differentiation medium. The KTiSOX2p53lo 



cells differentiated into ciliated cells, mucin-secreting cells and Club cells as well 

as basal cells (Figure 2d-h). Therefore despite multiple rounds of genetic 

manipulation these cells retain the capacity for “normal” differentiation.  

 

The response to SOX2 induction was compared in standard cell population assay 

conditions and the OTC system using cell cycle analysis. SOX2 induction in 

standard conditions did not lead to an increase in cell numbers (Figure 3a) and 

there was no alteration in the cell cycle profile (Figure 3b). However, in the 

organotypic system induction of SOX2 in the confluent bronchial epithelial 

monolayer led to a significant increase in cells in S/G2/M (Figure 3b) and in total 

cell number (Figure 3 c) 

 

Consistent with the cell cycle results, acute deregulation of SOX2 expression led 

to an early phenotypic difference in the organotypic model; using phase contrast 

microscopy, as early as 72 hours after the induction of SOX2 expression there 

were focal “outgrowths” in the confluent monolayer with cells appearing to grow 

on top of each other. Loss of p53 was also sufficient for modest focal outgrowths 

to appear in the monolayer. Stable transduction with the equivalent empty 

lentivirus had no phenotypic impact (Supplementary Figure 1). The combination 

of SOX2 deregulation and p53 knockdown led to a much more dramatic 

phenotype, with diffuse outgrowths (Figure 3 d-i). 

 

Histological analysis corroborated these findings (Figure 3j-o). The ‘outgrowths’ 

were areas in which there was increased thickness of the epithelial layer with 

apparent loss of contact inhibition and cells protruding into the putative 



bronchial lumen. The cells also had a high nuclear to cytoplasmic ratio. These 

outgrowths were focal for the KTiSOX2 genotype and more diffuse for the 

iSOX2p53lo genotype. They were consistent with focal areas of dysplasia arising 

from an epithelial monolayer. 

 

We performed immunofluorescence and immunohistochemistry and 

demonstrated that the dysplastic foci in doxycycline-treated KTiSOX2 and 

KTiSOX2p53lo cultures were positive for SOX2 and that there were no SOX2 

positive cells in the control (untreated) cultures (Figure 4 a-b, Supplementary 

Figure 2).  

 

We next assessed the impact of deregulated SOX2 expression on key 

downstream signaling pathways. In squamous lung cancer there is typically 

upregulation of phosphoAKT (pAKT) and downregulation of phosphoERK 

(pERK) - signaling features that distinguish it from adenocarcinoma (6). SOX2 

expression was associated with upregulated pAKT in dysplastic foci and a 

marked reduction in intensity of cytoplasmic pERK staining, recapitulating the 

signaling patterns reported in more advanced human squamous lung cancer 

(Figure 4 c-j). 

 

We compared the findings in this organotypic model with a series of high-grade 

preinvasive lesions from a tissue microarray. Lesions from 15 patients were 

assessed; 9 of which were from patients with simultaneous invasive squamous 

lung cancer. SOX2 is expressed in normal human bronchial epithelium and in 

basal cell hyperplasia but at steady state Ki67 positive cells are relatively rare 



and tend to be adjacent to the basement membrane (Figure 5 a, b and 

Supplementary Figure 3). SOX2 was expressed in high-grade dysplastic lesions 

from 14 of 15 patients, qualitatively at a higher level than that seen in normal 

bronchial epithelium or basal cell hyperplasia (Figure 5 c, e, Supplementary 

Figure 3), and it was associated with an increased proliferative index (Figure 5 d, 

f). Unfortunately, staining for pAKT was unreliable in these archived specimens 

that had undergone variable processing. However, in one lesion in which a clear 

transition from normal epithelium to high-grade dysplasia was captured pAKT 

expression was restricted to a few cells abutting the basement membrane in the 

pseudostratified epithelium, whereas in the dysplastic lesion there was 

significant upregulation of SOX2, Ki67 and pAKT throughout the epithelium 

(Figure 5 g-i).  

 

SOX2 is a pleiotropic nuclear transcription factor that exerts variable phenotypic 

effects in different cell types and cell culture systems (39-41). Deregulated SOX2 

has been shown to directly regulate CyclinD1 and BCL2 in breast cancer and 

melanoma respectively (39, 40). We performed ChIP-PCR on KTiSOX2p53lo cells 

at the air-liquid interface in the presence and absence of doxycycline. We 

demonstrated that CYCLIND1 and BCL2 promoters were specifically bound by 

SOX2 (Figure 6 a) and that both target oncogenes were upregulated (Figure 6 b-

c). A broader survey of key cell cycle regulatory proteins showed that many were 

upregulated (Figure 6 c) and that CDKN1A, a key negative regulator of the cell 

cycle (p21), was downregulated. 

The results are consistent with SOX2 acting as a mitogenic oncogene  and 

targeting, in this novel organotypic system, key downstream effectors 



anticipated from other experimental systems.  SOX2 is a pleiotropic nuclear 

transcription factor that controls the expression of large gene sets that vary 

depending on the cell type and experimental system (42, 43). We therefore 

undertook RNA-Seq analysis to perform an unbiased transcriptomic analysis of 

the broader impact and potential downstream effectors of deregulated SOX2 in 

this OTC model of bronchial dysplasia. Over two thousand genes were 

significantly deregulated by SOX2 induction (p<0.01) and there was clear 

segregation between the SOX2-induced and non-induced experiments 

(Supplementary Figure 4, SRA Bioproject Number PRJNA344067). Further 

analysis was undertaken using Ingenuity Pathway Analysis with a cut-off of 

significance of p<1x10-6. (Qiagen).  Importantly, and consistent with the 

observed phenotype in the OTC system, the most significantly altered cellular 

functions associated with deregulated SOX2 expression were “Cellular 

movement” and “Cellular growth and proliferation” (Figure 7 a).  The 197 genes 

annotated as “cell migration” show clear segregation between SOX2-deregulated 

and control experiments and include many genes previously implicated in 

carcinogenesis and known direct targets of SOX2 such as ETV4 and DKK1 (44, 

45) (Figure 7 b and Supplementary Table 1). 

Epithelial mesenchymal transition (EMT) is a hallmark of cancer 

implicated in the critical early stages of the disease including cell migration. We 

used QPCR to corroborate RNA-Seq results and analyse an extended panel of 

canonical mediators of EMT (Figure 7 c). The RNA-Seq data also implicated SOX2 

in the upregulation of emerging drivers of EMT and cell migration phenotypes – 

including AGR2, CEMIP (KIAA1199) and SERPINI1 (46-48)- also confirmed using 

QPCR (Figure 7 d). Of these, SERPINI1 is most frequently altered in early lung 



squamous cell carcinoma, often in conjunction with SOX2 (Figure 7 e). We 

confirmed that SERPINI1 upregulation was accompanied by protein 

overexpression (Figure 7 f). We then optimised primer sets around the SERPINI1 

transcriptional start site to demonstrate that it was a direct transcriptional 

target of SOX2 (Figure 7 g). We then corroborated this with clinical samples and 

demonstrated that SERPINI1 is expressed in high-grade SOX2 positive bronchial 

dysplastic lesions but not in basal cell hyperplasia (Figure 7 h). We have 

previously demonstrated that TP53 mutated, SOX2-amplified clonal populations 

expand, migrate and colonise the respiratory epithelium. The current data 

comprehensively links SOX2 mechanistically to this clinically important 

preinvasive migratory phenotype (49),. 

 

Finally, building on the immunohistochemistry (Figure 5) and the published 

literature linking activation of the PI3K/AKT pathway and bronchial 

preneoplasia (50-53), we assessed the impact of a specific inhibitor of Protein 

Kinase-B (Akt) in preventing the development of SOX2-driven bronchial 

dysplasia in this organotypic model system. AZD5363 is a potent and specific 

inhibitor of AKT1-3 that is already in clinical trials (54). AZD5363 had a clear 

impact on reducing the dysplastic phenotype (Figure 8 a-d).  No dysplastic 

outgrowths were seen on phase contrast microscopy in the treated cultures and 

this was confirmed by histology. However the epithelial cells in contact with the 

collagen basement membrane and at the air-liquid interface were apparently 

healthy, entering cell cycle and expressing SOX2 (Figure 8 e-f), indicating that 

there was not general severe cellular toxicity as a result of the AZD5363 

treatment.   



 

Discussion 

 

In this work we provide direct evidence that deregulation of a putative oncogene, 

SOX2 - in the appropriate molecular and cellular context; and with the 

appropriate microenvironmental cues (collagen, fibroblasts, air-liquid interface) 

– is sufficient to drive bronchial dysplasia in a short-term three-dimensional 

culture system.  

 

The cellular, molecular and environmental context in which an oncogene 

becomes deregulated is critical to its impact.  The cells used in this study are 

immortalised human bronchial epithelial cells (HBECs) that have been well 

characterised. They have an almost normal karyotype, intact p53 signalling and 

express markers, K5 and p63, that are associated with airway basal cells - the 

putative cells of origin of squamous lung cancer (SQC) (26). They have 

previously been used in experiments examining the role of mutated KRAS with 

or without the expression of MYC in carcinogenesis (11, 55). KRAS mutations are 

very common in lung adenocarcinoma but very rare in SQC.  In this work we 

model the key events reported in bronchial dysplasia/early squamous 

carcinogenesis. 

 

When cultured using specific medium and at the air-liquid interface the HBECs 

can differentiate into the constituent cells of the bronchial epithelium including 

secretory (Club) and ciliated cells (38). If cultured in matrigel they have the 

capacity to form branching structures and express differentiation markers 



consistent with distal airway differentiation (38).  In this study we show that, 

notwithstanding multiple rounds of defined genetic manipulation to create the 

complex genotype we sought, they retain their capacity to differentiate into 

constituent airway cell types. In contrast, a commonly used SV40 large T antigen 

immortalized bronchial epithelial cell line - BEAS2B – reportedly does not 

differentiate at the air-liquid interface (56). 

 

The limited available molecular epidemiological data from human samples 

suggests that p53 is disrupted early in the pathogenesis of SQC and that 3q 

amplification defines the transition between low and high-grade dysplasia (12, 

16, 57, 58). The HBECs in this study are immortalised by the introduction of two 

specific genes, CDK4 and hTERT. CDK4 overexpression overcomes the cell cycle 

inhibition mediated by the p16INK4A-RB tumour suppressor pathway and 

hTERT (telomerase) facilitates clonal expansion through crisis (59). There are 

limited data on CDKN2A (p16INK4A locus at 9p21) in preinvasive disease but 

Wistuba et al reported loss of heterozygosity at 9p21 in dysplasia and 

carcinoma-in-situ (58), and the CDKN2A locus is disrupted in up to 75% of SQCs 

(14).  Telomerase overexpression increases with dysplastic progression in 

immunohistochemical studies (60). Therefore, the deregulated overexpression of 

SOX2 in the current model is in a rational cellular and molecular context that 

reflects the human disease. 

 

Many groups have previously demonstrated the importance of the physical and 

cellular microenvironment in the phenotypic response to oncogenic stimuli. The 

data we present are consistent with these studies and emphasise the significant 



benefit of using organotypic as opposed to traditional cell culture. The system 

adopted here reflects that used by others studying the pathobiology of bronchial 

epithelial cells. We show that it is possible to genetically manipulate the 

epithelial cells and induce deregulated expression of SOX2 when an intact 

respiratory epithelial monolayer at the air-liquid interface is already established.  

 

SOX2 has previously been implicated as an oncogene in the pathogenesis of SQC.  

In a mouse model of SQC almost 50% of mice develop cancer 9 months after 

inhalation of a virus that contains SOX2 and deletes LKB1. The majority of the 

cancers that developed were of the squamous subtype (6).  SOX2 was also 

sufficient to transform SV40 large T antigen transformed BEAS2B cells (20) but 

was insufficient to transform similarly immortalised small airway epithelial cells 

(AALE) alone (19).  SV40 large T antigen has multiple impacts on key tumour 

suppressor pathways pathways including p53 and RB; and these cell lines have 

not been characterized karyotypically. Therefore, it is difficult to measure the 

impact of SOX2 in these cellular contexts. 

 

Here we provide novel data regarding the impact of SOX2 in an organotypic 

human system with a well-characterised cell line that has been non-virally 

immortalised and has an almost normal karyotype. The data demonstrate that 

SOX2, in the appropriate molecular and physical environmental context, drives 

dysplastic change. Moreover its impact when deregulated is relatively acute – 

outgrowths from the monolayer are readily visible at 72 hours. Further, the 

combination of SOX2 deregulation and p53 knockdown leads to an impressive 

dysplastic phenotype. This is entirely consistent with what has been previously 



demonstrated in studies on human specimens: p53 loss/disruption is likely to be 

a very early event in the pathogenesis of this disease and SOX2 deregulation is 

superimposed on it at the key epidemiological and molecular bottlenecks 

between low and high-grade dysplasia (12, 13, 16). We observed in this model 

similar signaling alterations to those reported in the invasive disease and 

previously reported in preinvasive disease (51, 52). We then used a unique 

tissue microarray of human specimens to demonstrate that the increased 

proliferative index seen in high-grade dysplastic lesion co-exists with an increase 

in SOX2 expression.  

 

SOX2 is a pleiotropic nuclear transcription factor that exerts variable phenotypic 

effects in different cell types and cell culture systems. In driving dysplastic 

change in this model system we show that it directly regulates the expression of 

key proteins implicated in carcinogenesis – CyclinD1 and Bcl2, a negative 

regulator of apoptosis. We further show that overexpression of SOX2 

upregulates multiple kinases involved in cell cycle progression and 

downregulates p21, a potent cyclin-dependent kinase inhibitor. Taken together 

with the presented Ki67 and cell cycle data this shows that SOX2 is driving cell 

proliferation, consistent with the results seen in the TMA staining of human 

specimens.  Further, we demonstrated that the phenotypic changes associated 

with deregulated SOX2 are accompanied by a broad transcriptional programme 

encompassing multiple hallmarks of cancer - cell proliferation, inhibition of 

apoptosis and cell migration, including canonical and emerging genes associated 

with EMT and metastasis. Serine protease inhibitors have diverse functional 

roles but recent data strongly associates SERPINI1 with EMT and lung cancer 



metastatic cerebral invasion.  This is the first study to show that SOX2 is a direct 

transcriptional regulator of SERPINI1 and to demonstrate that it is 

overexpressed at a preinvasive stage in clinical specimens. SOX2 orchestrates a 

complex genetic programme resulting in the dysplastic phenotype. Although 

nuclear transcription factors are notoriously challenging drug targets, emergent 

medicinal chemistry strategies, and these data, strongly support the direct 

therapeutic targeting of SOX2. 

 

EMT is regarded as a key early event in the pathogenesis of epithelial cancers. 

We, and others, have shown previously that cell migration is also a key early 

feature of squamous lung cancer; and that SOX2 amplified/p53 disrupted clonal 

populations in vivo, as reproduced in the OTC, have the capacity to migrate and 

colonise the bronchial epithelium (12, 13). Taken together, these data suggest 

that SOX2-driven cell migration is a mechanism underpinning the so-called field-

change effect.  

 

No model system can recapitulate the in vivo disease perfectly. In previous work 

we have shown that the amplification of SOX2 is likely to be an incremental 

process (13) whereas in this case SOX2 is turned on over a very short time 

period. It is not possible to correlate the SOX2 expression levels in the OTC to 

human preinvasive specimens. However, we have shown that SOX2 is amplified 

and significantly overexpressed in preinvasive lesions (16). Further, there are 

clear data from the TCGA studies that show that the expression of SOX2 is 

grossly elevated in SQC compared to other tumour types (14) (Supplementary 

Figure 5). The in vivo complexity in terms of immunological response and the 



microenvironment cannot yet be recapitulated in vitro. Finally, doxycycline binds 

collagen and data using a fluorescent reporter suggests that it continues to be 

present at levels that maintain transgene expression for at least 3 weeks after 

withdrawal from the medium (not shown). Therefore withdrawal experiments to 

establish the need for continued SOX2 expression in the maintenance of these 

outgrowths were not possible. 

 

The confirmation of the impact of SOX2 overexpression as an early driver of 

bronchial carcinogenesis and the ability to phenocopy the human disease in 

short-term culture are important steps forward that should help to meet a key 

challenge - the development of agents to use for primary and secondary 

chemoprevention (61). We have begun to address this challenge - we 

demonstrated that AZD 5363, a targeted inhibitor of Akt already in early phase 

clinical trials completely abrogated the development of the dysplastic phenotype. 

This is consistent with prior studies suggesting that the PI3K-Akt axis may be an 

appropriate target for intervention in bronchial preneoplasia including a 

landmark clinical trial that showed that this pathway could be targeted in a 

chemoprevention strategy (50-53).  The current study mimics using AZD5363 to 

prevent the emergence of bronchial dysplasia. It has a side effect profile that 

would be likely to preclude its use in primary chemoprevention of at-risk groups 

but there may be patients in whom a trial of this or a similar compound may be 

appropriate in the secondary chemoprevention setting. 

 

This platform will be suitable for adaptation to moderate throughput screening 

of potential chemoprevention compounds and further screens for potential 



complementary genetic lesions that may drive the progression of this 

devastating disease.  

 

  



 

Figure Legends 

 

Figure 1 

 

KT cells were sequentially transduced with lentiviral constructs to create a series 

of cell lines with different genotypes (a). A mean of 49% of cells were positive for 

SOX2 on induction with doxycycline (b).  Western blot with a range of the cell 

lines used with different genotypes (c). The expression of SOX2 was tightly 

controlled and only induced in the presence of M2rtTA and doxycycline. Cells 

were positive for Keratin 5 and p63 in the presence and absence of doxycycline. 

(1b bar=100µm). 

  

Figure 2 

 

Cell lines were established in short-term culture on top of a disc consisting of 

Type I collagen and pulmonary fibroblasts (a). Supplementation of medium in 

the lower chamber with doxycycline induces the expression of red fluorescence 

in A549 cells transduced with an inducible RFP reporter gene that are in 

established confluent culture at the air-liquid interface (ALI) (b). Transduced 

HBECs were established in the organotypic system described in (a); doxycycline 

supplementation in the lower chamber led to induction of SOX2 expression in the 

monolayer (c).  Genetically manipulated KTiSOX2p53lo cells retain the capacity 

to differentiate into constituent cells of the human airway epithelium (d-h). ALI 

transwell cultures using differentiation medium at day 23 show a mixed 



population of cells with clear differentiation into ciliated cells (d,e) with 

acetylated tubulin representing mature cilia in red; (f) mucin-secreting (goblet) 

cells (MUC5AC-green, γ-tubulin/cilia basal bodies–red); (g) club cells (CC10 – 

green; acetylated tubulin-red); (h) and basal cells (KRT5 – green, acetylated 

tubulin-red).  (2b bar=400µm; 2d bar=50µm). 

 

Figure 3 

 

A cell population growth assay was performed in the presence and absence of 

doxycycline (a).  Induction of SOX2 expression did not lead to an increase in the 

number of cells over 120 hours.  Induction of SOX2 expression did not alter cell 

cycle distribution in standard culture conditions  but led to a significant increase 

in the proportion of cells in S-G2/M in the organotypic culture (b, paired student 

t-test, 2-tailed) and in total epithelial cell number (c, paired student t-test, 2-

tailed).  Data presented in (a) represents means (+/- s.d.) of three separate 

experiments in triplicate. Control cell lines (KTM2) were treated with 

doxycycline with no significant alteration in morphology on phase contrast or 

histology (d, e). Loss of p53 was led to modest focal outgrowths in the monolayer 

(h). Induction of SOX2 led to an obvious phenotype with focal (KTiSOX2, f, g) and 

more diffuse changes (KTiSOX2p53lo, h,i) in the epithelial monolayer. 

Histological analysis was consistent with the changes seen using phase contrast 

microscopy (j-o,). There were diffuse outgrowths demonstrated in the 

KTiSOX2p53lo upon induction of SOX2 expression in the confluent monolayer.  

The histological features were typical of high-grade preinvasive lesions – loss of 

contact inhibition, a thickened epithelial layer with dysplasia, absence of 



maturation and a high nuclear to cytoplasmic ratio. (3d-f: bar=400um; 3g-i: 

bar=1000um; 3j-o:  bar=100um). 

 

 

 

 

 
Figure 4 

 

Activation of SOX2 leads to focal dysplastic changes and alterations in key cell 

signalling cascades. Dysplastic lesions in doxycycline-treated cultures were 

strongly positive for SOX2 with no SOX2 staining in the untreated cultures (a, b).  

Serial sections from dysplastic lesions show a downregulation in pERK and an 

upregulation in pAKT in those cells that are SOX2 positive and in cycle (Ki67 

positive) (c-j). (bar=100µm). 

 
 
Figure 5 
 
Representative images from a tissue microarray with high-grade preinvasive 

bronchial lesions. Basal cell hyperplasia has weakly positive staining for SOX2 

and rare Ki67 +ve cells (a, b). High-grade dysplastic lesions exhibit much more 

marked SOX2 and Ki67 staining that extends throughout the epithelial layer (c-f). 

pAKT staining proved challenging on archived TMA specimens; however there 

was a single sample in which the border between normal ciliated 

pseudostratified epithelium and high-grade dysplasia was available that 

provided a robust internal control for the antibody performance. There was a 



clear upregulation in pAKT staining in those dysplastic cells in which SOX2 and 

Ki67 were upregulated. (bar=100µm). 

 

 
Figure 6 

Deregulated SOX2 targets key cancer-related genes in the organotypic culture 

system.  ChIP-PCR was performed using input cross-linked DNA and the same 

DNA incubated with both a SOX2 specific antibody and an IgG control. There was 

enrichment for the BCL2 and CCND1 (CyclinD1) promoters in the SOX2 pulldown 

treated with doxycycline but not the untreated (No Dox) nor the IgG control 

confirming that SOX2 binds both gene promoters and regulates their 

transcription in this system (a).  QPCR experiments confirmed that BCL2 and 

CCND1 were both upregulated transcriptionally on induction of SOX2 (b, c). The 

expression of a series of key cell cycle genes was analysed.  There was 

upregulation of key cyclin-dependent kinases (CCNA2, CCNB1, CCNB2, CCNE2); 

and downregulation of CKN1A (p21), a critical inhibitor of cell cycle progression 

(c). These alterations were seen on treatment with doxycycline compared to the 

untreated control. The following kinases were also tested but were not 

significantly altered:  CCNA1, CCNE1, CCND2, CCND3. The results shown are 

representative of three independent experiments and data is presented as 

the mean (n = 3) ± standard deviation. For the QPCR experiments ΔΔCt values 

were log (base 10) transformed and results for each marker was compared to 

GAPDH. Statistical analysis: a student’s t-test (unpaired) was performed to test 

significance: ns p>0/05, * p≤ 0.05, ** p≤ 0.01, *** p ≤ 0.001 and ****p≤ 0.0001. 

 
  



 
Figure 7 

The most significantly differentially expressed genes (p<1x10-6, n=832) were 

analysed using Ingenuity Pathway Analysis. The most significantly altered 

molecular and cellular functions were cellular movement and cellular 

proliferation (a).  A heatmap of 197 genes associated with cell migration 

illustrating up and downregulation of genes with induction of SOX2 is presented 

(b). The results show 3 paired replicates with (italics) and without (normal font) 

SOX2 induction. A number of genes are highlighted including reported direct 

targets of SOX2 - DLL3 and ETV4; and those directly implicated in EMT (CDH2, 

CEMIP). Further details are in Supplementary Table 1.  QPCR of canonical 

mediators of EMT was performed to corroborate RNA-Seq results and confirmed 

their upregulation by SOX2 (c). In addition a number of the most significantly 

altered genes in differential gene expression analyses  – CEMIP, SERPINI1 and 

AGR2 (all p<1x10-13) are recently implicated in EMT in the literature but not 

annotated in the “cellular movement” group. QPCR experiments confirmed 

significant upregulation in each case (d). Interrogation of the TCGA database 

showed that SERPINI1 was the most commonly altered of these in early 

squamous lung cancer and commonly altered with SOX2 (e). The corresponding 

protein SerpinI1 was also overexpressed on SOX2 induction in the OTC (f) and 

ChIP-PCR confirmed enrichment for SOX2 binding near the SERPINI1 

transcriptional start site (g).   Further sections from the TMA were stained for 

SerpinI1 and showed clear cytoplasmic staining with in high-grade dysplasia 

compared to normal epithelium. This is particularly reinforced by the section 



containing the transition from relatively normal pseudostratified epithelium to 

disorganised high-grade dysplasia. 

 

 

Figure 8 

Representative phase contrast (a-b) and H&E stains (c-d) of doxycycline treated 

(a,c) and doxycycline and AZD5363 treated (b, d) organotypic cultures.  All test 

and control cultures were treated with DMSO. As before induction of SOX2 led to 

a diffuse dysplastic phenotype. Treatment with a pan AKT inhibitor (AZD5363, 

10µM) abrogated the development of the dysplastic lesions (b, d). Cells in the 

treated culture were alive and continued to express SOX2 (e) and Ki67 (f). 

Images are representative of 3 independent experiments. (7a,b: bar=1000µm; c-

f: bar=100µm). 
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