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ABSTRACT 

 

Predicting the displacement and force response of flexible rocking structures to ground 

motion is important for their assessment and design. Insofar as practical, it is desirable to 

use simple mechanical models to make these predictions. However, the complex coupling 

between rocking and vibration makes accurate predictions with simple models difficult. In 

this paper, the use of semi-coupled equivalent models to approximate the dynamic response 

of multi-mass structures rocking on rigid ground is evaluated. These equivalent models 

feature a two-degree of freedom coupled rocking oscillator to describe the interaction of 

rocking and the first mode of vibration, and uncoupled linear elastic oscillators to describe 

higher mode vibration response. To evaluate these equivalent models, the modal 

components of the dynamic response of multi-mass structures are first determined. These 

components highlight the critical influence of the excitation of vibration modes at impact. 

Then, further investigations are carried out by comparing equivalent model simulations to 

recent shake table tests and multi-mass analytical model simulations. These comparisons 

reveal that the equivalent models can capture the rocking response accurately for a realistic 

range of displacements, if a new ground acceleration scaling term is adopted. However, the 

uncoupled linear elastic oscillators do not consider excitation at impact and consequently, 

the equivalent models do not capture the acceleration response adequately. Therefore, on the 

basis of the analytically identified modal components, a further modification that improves 

the equivalent model acceleration predictions is proposed and validated. 
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1 INTRODUCTION 

There is a growing interest in using rocking mechanisms for the earthquake resistant design 

of structures (Mander and Cheng 1997; Priestley et al. 1999; Palermo et al. 2005; Toranzo et 

al. 2009; Pollino and Bruneau 2010; Marriott et al. 2011; Wiebe et al. 2012a; Wiebe et al. 

2012b). In particular, base rocking mechanisms have been implemented in several building 

(Kelly and Tsztoo 1977; Huckelbridge and Clough 1978; Sharpe and Skinner 1983) and 

bridge systems (Beck and Skinner 1973; Cheng 2007). Predicting the displacement and 

force response of these structures to strong ground motions is essential for their assessment 

and design.  

In earthquake engineering analysis and design, single degree of freedom (SDOF) 

linear elastic oscillators are extensively used for determining the earthquake response of 

multi-mass and multi-degree of freedom elastic structures which are fixed to the ground 

(Chopra 2001). In this method, the earthquake response is described as the superposition of 

uncoupled SDOF oscillators. This simplification facilitates analysis and design by reducing 

the complexity of the investigated mechanical systems, thereby focussing on the critical 

response parameters.  In an analogous fashion, the objective of this paper is to improve 

simple mechanical models that describe the rocking and acceleration response of complex 

systems, and to evaluate the effectiveness of these models by comparison to the results of 

physical experiments and computational simulations which employ multi-mass flexible 

rocking models.  

Pioneering studies on the dynamics of flexible rocking systems investigated 

idealized models with one or two lumped masses (Meek 1975; Chopra and Yim 1985; 

Psycharis 1991). These studies describe structures which are allowed to vibrate and rock 

freely on a rigid surface. They clearly demonstrate that vibrations and rocking action are 

coupled; once rocking initiates, vibration frequencies and excitation mechanisms change. In 

return, vibrations cause oscillatory rocking action. Due to this prominent coupling, the 

equations of motion describing vibration and rocking response need to be solved 

simultaneously. Therefore, reducing the system to a superposition of uncoupled single 

degree of freedom systems is challenging. Later studies quantified the significant effects of 

this coupling on salient response characteristics, such as maximum base shear and 

overturning stability (Oliveto et al. 2003; Acikgoz and DeJong 2012; Acikgoz and DeJong 

2013b; Acikgoz and DeJong 2013c; Vassiliou et al. 2015). 

Analytical investigations of more complex flexible rocking structures with many 

degrees of freedom (Meek 1978; Psycharis 1983; Yim and Chopra 1985) similarly showed 

that the lowest vibration mode interacts strongly with rocking action. In contrast, for the 

higher vibration modes, the coupling was deemed negligible. On the basis of this 

assumption, simpler ‘equivalent models’ which describe the earthquake response of multi-

mass structures were proposed (Yim and Chopra 1985). These superpose the response of a 

coupled two degree of freedom model and uncoupled SDOF oscillators. The coupled two 

degree of freedom model describes the combined response of the first vibration mode and 

rocking action. The uncoupled SDOF oscillators superpose the higher vibration mode 

responses which are assumed not to interact with rocking.   

The proposed equivalent models can considerably simplify the analysis and design 

of multi-mass flexible rocking structures. However, these models need further investigation 

and validation with experiments. Therefore, the modal components of the dynamic response 

of multi-mass structures are first examined in Section 2. This new information allows a 

critical evaluation of the derivation of equivalent models, which follows the assumptions set 

out in earlier work (Yim and Chopra 1985) (see Section 3). Then, the proposed models’ 

equivalence to complex multi-mass flexible rocking models is investigated with 



comparisons to multi-mass analytical model simulations and recent shake table tests. Here, 

the accuracy of the equivalent models in predicting the rocking and acceleration response is 

quantified. On the basis of these results, modified equivalent models are proposed to better 

capture the overturning moments due to ground accelerations and the excitation of higher 

vibration modes at impact.  Finally, Section 5 summarizes the conclusions from this study.  

 

2 MODAL COMPONENTS OF FLEXIBLE ROCKING RESPONSE 

In this study, equivalent models will be derived to approximate the dynamic behaviour of 

complex flexible rocking structures. Therefore, a general analytical model of a multi-mass 

flexible rocking structure with many degrees of freedom (Acikgoz and DeJong 2016) will 

first be examined. Also in this section, the modal components of this model are analytically 

determined to identify salient dynamic characteristics.  

 

2.1 Review of the multi-mass analytical model  

The multi-mass flexible rocking model can describe a wide range of structures, including 

elastic building frames (Acikgoz and DeJong 2013a) and tower structures (Acikgoz et al. 

2014). The linearized equations of motion of this model are reviewed in this section. The 

model is illustrated in Figure 1 during the full contact (left) and rocking phases (right). It 

features 1N   nodes, where masses are lumped. At node N  (situated at height NH ), the mass 

is denoted by Nm . Node 0 is located at 0 0H  , with lumped mass 0m and rotational inertia 0J . 

This node is restrained from participating in elastic motion. For nodes 1 to N, the 1N   

vector H describes nodal heights and N N  diagonal mass matrix M describes the nodal 

masses. The two degrees of freedom (DOF) associated with the small elastic lateral 

translation and rotation are illustrated by Nu and N for node N in Figure 1. For nodes 1 

to N , these DOFs can be described in vector notation as u  and  . For the examined 

structures, the elastic rotation degree of freedom can be statically condensed. Therefore, the 

stiffness of this structure during full contact can be described by the N N condensed 

stiffness matrix K . Using the mass and stiffness matrices, a N N proportional damping 

matrix C can also be defined.  

 

 
Figure 1 - Schematic of the multi-mass analytical model during the full contact (top left) and rocking 

(top right) phases  

 



During the full contact phase, the following equation of motion describes the 

dynamic force equilibrium in the direction of u :   

 1 0gu u u u   M C K M  (1) 

where a dot above the variables indicates differentiation with respect to time t  and 1  

specifies an 1N  vector of ones.  

Once conditions required for uplift are met, the system progresses to the rocking 

phase. During the rocking phase, the structure rotates about pivot points located at the edges 

of the foundation (see Figure 1, right). These pivot points are a distance of 2B  apart from 

one another and lie at radial distances of 0R  from nodes. Rocking occurs at the interface of 

the rigid foundation beam and rigid ground while maintaining contact with the current pivot 

point P . The parameter describes the rocking action. Two sets of equations describe the 

dynamic equilibrium. N equations describe dynamic force equilibrium in the direction of u  

for nodes 1 to N and one equation describes dynamic moment equilibrium about the current 

pivot point P. Linearization of these equations about the static at rest configuration 

( 0  , 0  , 0u   and 0u  ) yields:  

 1 1 0gu H u u g u      M M C K M M  (2) 

  p 1 1 0
T T T

t cg g tH u J g u H m H u m gB       M M M  (3) 

where g denotes gravitational acceleration, 
tm denotes the total mass of the structure, cgH is 

the height of centre of gravity, and the system mass moment of inertia about the pivot point 

P is denoted by 2

P 0 0 0 0

T
J R R m B J  M . In these equations, the upper sign refers to rocking 

about the right pivot point and the lower sign refers to rocking about the left pivot point. A 

similar notation will be used throughout this paper to describe the piecewise defined 

equations of motion.  

Equations 2-3 are a set of second order differential equations with constant 

coefficients. Therefore, they may be expressed in the following format:  

 Lz z z F   L L LM C K  (4) 

where the state vector [ , ]z u   encompasses all the variables in the system. The global 

mass, damping and stiffness matrices are defined respectively as
LM ,

LC and 
LK . LF is the 

forcing vector.  

 

 
Figure 2 - Schematic description of the modal components of the multi-mass analytical model  

response during the full contact phase 

 



2.2 Modal components of response 

Full contact phase 

When the damping matrix C  is proportional, it is possible to decouple Equation 1 into its 

modal components (see Figure 2). To do this, the state vector, u  can be expressed using 

Rayleigh’s method as:  

 nu q nυ  (5) 

where 1 2, ,...,n n nN   
 nυ is the matrix of eigenvectors, where the j

th 
column of 

nυ describes 

the j
th

 eigenvector of the system and is denoted by nj , and the generalized coordinate vector 

nq describes the modal solutions as follows:  

    1 2

1 2 1 2, ,...., , ,....,n n nN
TT t t t

n n n nN n n nNq q q q e e e    
   (6) 

where 
nj is a scale factor describing the time-varying response of the j

th
 mode, and 

nj denotes the eigenvalue of the j
th

 normal mode of the system. Using this notation, the 

homogenous form of Equation 1 becomes:   

  2 0njt

nj nj nje 


 K M  (7)  

The eigenvectors and eigenvalues can be obtained by solving Equation (7). Here, the 

vibration mode j  is uncoupled from other vibration modes due to modal orthogonality. This 

suggests that for two arbitrary vibration modes j and k, where j k and
nj nk   , the 

following mass and stiffness orthogonality relationships are applicable:  

 0
T

nj nk  M , 0
T

nj nk  K  (8) 

The j
th

 modal component of response during full contact stage can be expressed as:  

 1 0
T T T T

nj nj nj nj nj nj nj nj nj nj gq q q u         M C K M  (9) 

Equation 9 can be simplified by expressing it in terms of modal vibration frequency and 

damping. These components are respectively described as follows:  

                     2 ,  2

T T

nj nj nj nj

nj nj njT T

nj nj nj nj

   
  

   
 

K C

M M
                 (10) 

In addition, the effective modal mass and effective modal height are also defined here for 

reference:  

 
 

2

1
,  

1

T T

nj nj

nj njT T

nj nj nj

H
M H

 

  
 

M M

M M
 (11) 

Note that all of the modal parameters in Equations (10-11) are independent of the arbitrary 

scaling of the eigenvector. To simplify the resulting equations, the eigenvectors can be 

scaled such that
1

1

T

nj

T

nj nj



 


M

M
. Equation 9 then simply becomes the equation of a single 

degree of freedom system:  



                                           22 0nj nj nj nj nj nj gq q q u           (12) 

After determining njq for 1,...,j N , the total response of the coupled system during full 

contact phase may be calculated by using Equation (5).  

 

 
Figure 3 - Schematic description of the modal components of the multi-mass analytical model 

response during the rocking phase 

 

Rocking phase 

Using a similar approach, the eigen-parameters of Equations 2 and 3 can be found to 

decompose the response into modal components (see Figure 3). Assuming a proportional 

damping matrix
LC , the state vector may be expressed as follows:  

 uz q uυ  (13) 

where 1 2 ( 1), ,...,u u u N   
 
 uυ is the    1 1N N   matrix of rocking phase eigenvectors. 

The j
th 

column of 
uυ describes the j

th
 eigenvector of the system, denoted by uj and is 

composed of (i) ujt , the elastic eigenvector component in the direction of u and (ii) 
ujr , the 

rocking component which describes the rigid body rotation of the structure as a whole: 

  ,
T

T

uj ujt ujr    (14) 

 The generalized coordinate vector uq is given by:  

    1 2 1

1 2 1 1 2 1, ,...., , , ,...., ,u u uN uN
TT t t t t

u u u uN uN u u uN uNq q q q q e e e e       

    (15) 

where 
ujq denotes the generalized coordinate for mode 1,..., 1j N  . This coordinate is 

characterized by the eigenvalue 
uj  and the scaling factor

uj . Assuming a solution of the 

form ujt

uj ujz e 


  and substituting this into the homogenous form of Equation (4), yields:  

  2 0ujt

uj uj uje 


 L LK M  (16) 

Since the mass and stiffness matrices 
LM and 

LK are real-valued and symmetric, each mode 

is expressed by a complex conjugate eigenvalue couple. When these eigenvalues are 

distinct, the modes are orthogonal. From Equation (16), the unscaled real eigenvectors 

uj corresponding to normal modes may be determined to derive modal equations.  



Alternatively, an analytical estimation of the modal equations can be achieved when 

corresponding eigenvectors can be estimated. Accumulating experimental and analytical 

evidence (Acikgoz and DeJong 2013a; Acikgoz and DeJong 2013b; Acikgoz et al. 2014; 

Acikgoz et al. 2016; Acikgoz and DeJong 2016) suggest that the dynamic response of a 

flexible rocking structure is composed of: (i) one weakly coupled rocking mode and (ii) N 

coupled vibration modes (see Figure 3 for an illustration of these modes which feature both 

vibration and rocking components), where the degree of coupling varies. Within this 

context, strong and weak coupling refer to the degree of influence of superstructure 

vibrations on the characteristics of rocking response (such as frequency) and vice versa. For 

instance, the rocking mode describes the rigid body rotation of the structure as a whole with 

negligibly small elastic motion. Therefore the coupling is weak and a rocking mode 

eigenvector ur  (denoted by mode subscript r ) can be reliably defined where the elastic 

component 0urt   and rocking component 1urr  .  Assuming modal orthogonality, 

premultiplying Equation 4 by this eigenvector yields:   

 2 2 2 tan( ) 0
g

ur l ur l l cg

u
q p q p p

g
     (17) 

where the generalized coordinate vector urq  describes the rocking mode solution. The 

eigenvalue 
lp  is the well-known frequency parameter, which provides a linear 

approximation of the pendulum frequency of the structure as if it were suspended from its 

pivot point. It is given by:  

 
P

1
T

l

Hg
p

J


M
 (18) 

It is noteworthy that the Equation (17) is identical to the dynamic moment equilibrium 

equation of a rigid block, linearized about 0  .  

The equations for the remaining N coupled vibration modes can be determined in a 

similar manner. However, it is difficult to determine the mode shapes a priori. Recent work 

by the authors (Acikgoz and DeJong 2016) suggests that the eigenvectors for the coupled 

vibration modes could be distinct from the eigenvectors during full contact stage due to 

coupling. Therefore, an alternative approach is adopted here. For the arbitrary vibration 

mode k of the structure during rocking, the rocking component of the eigenvector 
ukr  is 

estimated in terms of the elastic component of the same vibration mode ukt . Considering 

Equations (3) and (17), and neglecting geometric stiffness due to small elastic deformations, 

it is postulated that all orthogonal modes which involve coupled rocking and vibration 

action need to satisfy dynamic moment equilibrium around the pivot point. This implies 

that, for any vibration mode k, where 1,...,k N : 

 
P

T

ukt

ukr

H

J







M
 (19) 



Then, by premultiplying Equation 4 by the eigenvector of mode k, 
P

,

T
T

uktT

uk ukt

H

J


 

 
  
 
 

M
, 

the equations for the coupled vibration modes can be obtained. For convenience, uk is 

scaled such that
1

1
ukt

T

uk uk



 


L

M

M
, to yield:  

 

                                           
22 0uk uk uk uk uk uk ukq q q f           (20) 

where modal frequency
uk , modal damping

uk and modal forcing 
ukf  of the k vibration 

modes are introduced. It is noteworthy that Equation (20) is a SDOF oscillator equation, 

similar to full contact phase modal components in Equation (12). However, the modal 

characteristics of the system in Equation (20) are distinct. The effective modal masses and 

the effective height of the vibration modes during rocking can be introduced in analogy with 

Equation (11): 

 
 

2

1
,  

1

T T

ukt ukt

uk ukT T

ukt ukt ukt

H
M H

 

  
 

M M

M M
 (21) 

The premultiplying operation which yields Equation (20) results in the following modal 

frequency equation:  

 

2

2

1

T

ukt ukt

l ukT

ukt ukt

uk

uk

p
 


 









K

M
 (22) 

where 
2

uk uk
uk

p

M H

J
   is the modal mass participation factor. Equation (22) expresses the 

modal frequency in terms of the full contact phase mass and stiffness matrices and provides 

insight into the behaviour of coupled vibration modes, even without prior knowledge of the 

eigenvector uk . Earlier studies (Psycharis 1983; Yim and Chopra 1985) suggested that the 

classical eigenvalues and eigenvectors identified from Equation (7) for the full contact phase 

would be valid during the rocking phase for all vibration modes except the lowest. This 

would imply that ukt nk   for 2,...,k N . However, Equation (22) suggests that, despite the 

assumption of identical eigenvectors, rocking phase eigenvalues would be distinct from full 

contact phase eigenvalues when 0uk  . In these cases, as indicated by Equation (22), a 

change in vibration frequencies is expected with the initiation of rocking.  

Similarly, a closed-form modal forcing function ukf can be obtained with the premultiplying 

operation which yields Equation (20). It is given by: 

    1 tan( )uk uk g uk cgf u g     (23) 

where the new force modification parameter uk is introduced:  

 
2

l uk
uk

p H

g
      (24) 



Equations (23) and (24) highlight further aspects concerning the coupled vibration modes. 

Alongside changes in the vibration frequency (see Equation (22)), the coupling of vibrations 

and rocking result in potential changes in the modal excitation mechanisms once uplift 

occurs. Contrasting the modal forcing terms during full contact and rocking phases in 

Equations (12) and (23), two aspects can be highlighted. The first is the apparent reduction 

of the ground acceleration forcing by the force modification parameter 
uk  in Equation (23). 

This suggests that for vibration modes with large effective height
ukH , and therefore large 

values of 
uk , superstructure vibrations will be partially isolated from the effects of ground 

motion. The second aspect is the introduction of a gravity forcing term tan( )cgg  , which is 

negative for positive rocking angles and positive for negative rocking angles. This term is 

responsible for the strong excitation of vibrations at impact due to gravity force reversal and 

strongly depends on the force modification parameter
uk . For vibration modes with large 

values of 
uk , gravity forcing will be significant. This counteracts the simultaneous isolation 

effect and needs to be accounted for while evaluating the force demands on the system.  

In brief, the Equations (17) and (20) describe the independent modal components of rocking 

response and provide new insight into response. After determining urq  from Equation (17) 

and 
ukq  from Equation (20) for 1,...,k N , the total response of the coupled system during 

rocking may be calculated by using Equation (13). However, the equations of motion 

describing rocking motion are piecewise defined and terminate when the rocking structure 

impacts with the ground at 0  . Therefore, in order to accurately determine the time of 

impact, these modal equations need to be solved simultaneously. This shows that further 

simplifications are necessary to arrive at equivalent models.  

 

3 DERIVATION OF EQUIVALENT MODELS 

3.1 Simplification of response 

In order to describe the complex multi-mass structures with the use of simple equivalent 

models, the assumptions proposed by Yim and Chopra (1985) are adopted in this section. 

This paper considers a structure rocking on a rigid base instead of the two-spring foundation 

considered in the original Yim and Chopra paper, and therefore the resulting equations are 

different. However, unless explicitly stated, the derivation approach is identical to the earlier 

work (Yim and Chopra 1985). 

Yim and Chopra’s (1985) approach relies on two major assumptions: (i) the classical 

vibration mode shapes identified during the full contact phase for the 2
nd

 and higher 

vibration modes are valid during rocking phase and (ii) the effective modal height of the 2
nd

 

and higher vibration modes is zero. Therefore, as a first step, Equations (2) and (3) are 

expressed using the classical eigen-parameters identified using Equation (7). After 

neglecting geometric stiffness terms, the following equations are obtained:  

 1 0n n n gq H q q u    n n nMυ M Cυ Kυ M  (25) 

 
p 0

T

n t cg g tH q J m H u m gB   nMυ  (26) 

Pre-multiplying Equation (25) by the classical vibration mode shape 
T

nj  and utilizing 

modal orthogonality relations in Equation (8) yields:  

 1 0
T T T T T

nj nj nj nj nj nj nj nj nj nj nj gq H q q u            M M C K M  (27) 



If the eigenvectors are scaled such that
1

1

T

nj

T

nj nj



 


M

M
, Equation (27) becomes 

 22 0nj nj nj nj nj nj nj gq H q q u         (28) 

Using the classical modal descriptions, Equation (26) becomes:  

 
p

1

0
N

nj nj nj t cg g t

j

M H q J m H u m gB


     (29) 

Equation (28) is similar to the equation of a SDOF oscillator with frequency 
nj and 

damping 
nj . However, due to the presence of the mass coupling term njH  , this equation is 

not decoupled from Equation (29). Similarly, Equation (29) also demonstrates mass 

coupling, indicating that these equations need to be solved simultaneously for an exact 

solution. However, using the aforementioned assumptions, these equations can be further 

simplified. After assuming that the effective modal height njH  of 2
nd

 and higher vibration 

modes is zero just like Yim and Chopra (1985), Equation (28) and (29) effectively become 

the combination of a two-degree of freedom coupled system:   

 2

1 1 1 1 1 1 12 0n n n n n n n gq H q q u         (30) 

 1 1 1 p 0n n n t cg g tM H q J m H u m gB     (31) 

and the vibration equations of the higher modes, 2,...,k N , which are uncoupled:  

 22 0nk nk nk nk nk nk gq q q u       (32) 

The resulting Equation (32) is distinct from the coupled vibration mode equilibrium 

Equation (20). Equation (20) suggested that higher mode vibrations may also be excited by 

gravity forcing, and this external forcing is notably absent in Equation (32).   

              
Figure 4 - Schematic description of the equivalent model, with the coupled rocking and first 

vibration mode components during full contact and rocking phase (left and middle)  and the 

uncoupled vibration mode components (right) 

3.2 Input parameters  

The simplified Equations (30) and (31) describe a two degree of freedom coupled 

system. Combined with Equation (32), which describes the uncoupled higher vibration 

modes, this system of equations represents the multi-mass system. It is desirable to describe 

the coupled two degree of freedom component of the equivalent model with the physical 

parameters of a simple flexible rocking structure model with two lumped masses, such as 



the one presented in Figure 4 (left and middle). Therefore, in this section, parameters are 

defined to approximate Equations (30) and (31) with the physical two lumped mass model 

that is illustrated in Figure 4.   

To do this, it is useful to compare Equations (30) and (31) to the actual equations of 

motion of a flexible rocking structure model with two lumped masses, as presented in 

Figure 4 (left and middle). The equations of motion for this two lumped mass model can be 

determined by plugging in the relative parameters to the general equations of motion, 

Equations (2) and (3). According to Figure 4, the parameters for the lumped top mass are 

mass 
1nMM  at height

1nH H , vibration frequency 
1n  and damping factor

1n . These 

parameters are identical to the first vibration mode characteristics of the multi-mass model, 

and they are utilized as the superstructure characteristics of the two lumped mass model. 

The model in Figure 4 also has a bottom mass 0nM  and an additional mass moment of 

inertia
0J . Using these parameters and neglecting the geometric stiffness terms in Equations 

(2) and (3), the equations of motion for the model in Figure 4 is obtained as follows: 

 2

1 1 1 1 1 1 12 0n n n n n n n gq H q q u         (33) 

      2 2 *

1 1 1 1 1 0 1 0 0 1 0 1 0n n n n n n n n n cg g n nM H q M H M M B J M M H u M M gB          (34) 

where the height of centre of gravity of the model in Figure 4 is represented as *

cgH . 

Equations (33) and (34) are similar to Equations (30) and (31). In fact, Equation (33) is 

identical to Equation (30). To make sure Equation (34) and (31) match, the values of bottom 

mass 0nM  and additional mass moment of inertia 0J  need to be calibrated. The last term of 

Equation (31) describes the restraining moments provided by gravity as tm gB , whereas 

Equation (34) describes these moments as  0 1n nM M gB . Therefore the bottom mass 0nM  

may be determined as follows:  

 0 1n t nM m M   (35) 

Recall that, 
tm  was described earlier as the total mass of the multi-mass model. Similarly, 

the second term of Equations (31) and (34) describe the mass moment of inertia of the 

system about the pivot point. The multi-mass system has a total inertia of pJ . Therefore, 

0J may be determined as follows: 

 2 2

0 p 0 1 1 1( )n n n nJ J M M B M H     (36) 

Finally, in order to have a perfect match between Equations (32) and (34), the height 

of centre of gravity *

cgH of the model in Figure 4 (left and middle) needs to match the height 

of the centre of gravity of the multi-mass or equivalent model, defined by cgH . However, 

this is not guaranteed. As a result, the third term in Equations (31) and (34) may not match.  

As will be discussed in Section 4, the centre of gravity of the equivalent models are 

generally lower. Therefore in this paper, different from Yim and Chopra (1985), a new 

scaling factor is proposed: 

  
*

1 1

cg t cg

cg n n

H m H

H M H
    (37)  

This factor   accounts for the difference in the height of centre of gravity of the multi mass 

and equivalent models, and is applied during both the full contact and rocking phases. 



 

3.3 Equivalence of equations of motion  

It is useful now to summarize the linearized equilibrium equations of the equivalent model, 

which is shown in Figure 4 with the parameters identified in Section 3.2. This is only done 

for the equations which describe the coupled response of first vibration mode and rocking 

(see Figure 4, left and middle). Equation (32) already described the equations which are 

used to estimate the higher mode vibration response of multi-mass structures (see Figure 4, 

right) and these were compared to Equation (20) in Section 3.1.  

 During the full contact phase, the response of the equivalent model is described by:  

 2

1 1 1 1 1 12 0n n n n n n gq q q u        (38)  

Note that this equation is similar to the exact modal component identified in Equation (12). 

However, the ground motion forcing term in Equation (38) is scaled by an additional 

parameter .  This parameter is the only conceptual difference between Yim and Chopra’s 

(1985) equivalent model and the equivalent model proposed in this paper. The 

parameter may result in an overestimation of accelerations due to the first vibration mode. 

However, as discussed earlier, this conservative approach is necessary to achieve an 

accurate estimation of the overturning demands due to inertial accelerations in the 

equivalent model. Without this scaling parameter, it was not possible to achieve good 

comparison with experimental results, particularly for stocky structures (see Section 4). 

Once uplift occurs, the equivalent model simulates combined rocking and vibration 

action for the first vibration and rocking modes. The linearized equilibrium equations of the 

equivalent model during the rocking phase can be found by substituting the identified model 

parameters in Section 3.2 into the general Equations (2) and (3). After neglecting the 

geometric stiffness terms, this yields:  

 2

1 1 1 1 1 1 12 0n n n n n n n gq H q q u          (39) 

 1 1 1 p 0n n n t cg g tM H q J m H u m gB     (40) 

The resulting equations are very similar to Equations (30) and (31), which were derived by 

simplifying the multi-mass model equilibrium equations. This suggests that an approximate 

equivalence was established between the identified double lumped mass model and the more 

complex multi-mass model. This equivalence is expected to be valid as long as the 

underlying assumptions concerning the modal characteristics of higher modes are valid. 

These assumptions are evaluated by comparing equivalent model simulations with 

experimental results and multi-mass simulation results in Section 4. However, a description 

of the simulation of the equations of motion for the equivalent and multi-mass systems is 

described first.  

 

3.4 Numerical simulation 

The equivalent model approximates the multi-mass system as the superposition of a coupled 

component representing the rocking and first vibration modes (a flexible rocking structure 

with two lumped masses) and an uncoupled component representing higher vibration modes 

(SDOF uncoupled oscillators), as schematically illustrated in Figure 4. To determine the 

equivalent model parameters, Equation (7) is first used to identify the classical modal 

components of the multi-mass model during full contact phase. These are sufficient for 

simulating the response of the 2
nd

 and higher vibration modes of the equivalent model. The 

classical modal characteristics determined from Equation (7) are also used to identify the 



input parameters of the coupled component of the equivalent model using the equations 

provided in Section 3.2.  

Having identified the parameters of the equivalent model, its earthquake response is then 

determined by numerically solving the nonlinear equations of motion which govern its 

behaviour. It is noteworthy that the coupled component of the equivalent model is a special 

case of the general multi mass model. Therefore to determine its earthquake response, the 

general equations of motion of the multi-mass system can be used (Acikgoz and DeJong 

2016). The transition between different phases of motion and the simulation of impact 

forces using a Dirac-Delta model is adopted for the equivalent model. The optimal 

parameters identified for the multi-mass models for phase transitions are also utilized for the 

coupled components of the equivalent model (Acikgoz and DeJong 2016). The uncoupled 

higher mode responses of the equivalent model are evaluated numerically using Equation 

(32). These are then superposed on the coupled first vibration and rocking mode response to 

determine the total response of the equivalent model. 

 

 
 

Figure 5 - A photo (left) and elevation drawings (right) of the experimental model illustrating the 

location of the accelerometers A1-A4 and the mass arrangements S1, S2 and S3. 

 

4 EVALUATION OF THE EQUIVALENT MODEL 

In this section, experimental tests which are used to evaluate the analytical models are first 

introduced. Then, multi-mass and equivalent analytical models of the experimental 

specimens, created using the formulations in Section 2 and 3, are presented. The modal 

components identified from the multi-mass model are investigated to evaluate the 

fundamental assumptions concerning the derivation of equivalent models. Then, the 

equivalent models are used to simulate rocking and acceleration response for free vibration, 

pulse and earthquake excitation tests.    

 

 

 

 

 

 

 

 



Table 1 – Parameters for the multi-mass and equivalent models of the experimental specimens.  

Specimen # 1 1 2 2 3 3 

Model type Multi-mass Equivalent Multi-mass Equivalent Multi-mass Equivalent 

Geometric characteristics 

(m)B  0.305 0.305 0.305 0.305 0.305 0.305 

(m)H  
0.06 1.53 0.06 1.85 0.06 1.76 

0.49 0.49 0.49 

0.93 0.93 0.93 

1.43 1.43 1.43 

1.93 1.89 1.93 

(m)cgH
 

0.84  1.18  1.02  

* (m)cgH   0.75  1.14  0.95 

(rad)cg
 

0.35 0.39 0.25 0.26 0.29 0.31 

Mass characteristics 

(kg)M  77.3 111 77.3 139.5 77.3 122.1 

6.2 6.2 6.2 

88.2 7.7 48.1 

8.2 7.9 8.2 

46.2 123.1 86.2 

0 (kg)m  0 115 0 86.5 0 103.9 
2

0 (kgm )J  
10 17.5 10 11.9 10 15.7 

2(kgm )pJ
 

298 298 509 509 413 413 

Vibration characteristics 

1(Hz)n  7.6 7.5 5.2 5.2 6.0 6.0 

1(%)n  0.005 0.005 0.0025 0.0025 0.005 0.005 

2(Hz)n  41.4 41.4 - - 50.9 50.9 

2 (%)n  0.015 0.015 - - 0.015 0.015 

(rad/s)lp  
2.51 2.37 2.26 2.23 2.35 2.26 

,er elr r  0.93, 0.87 0.93,0.87 0.98,0.93 0.98,0.93 0.94,0.91 0.94,0.91 

r  0.025 0.025 0.0175 0.0175 0.025 0.025 

 

4.1 Equivalent models of experimental specimens 

The experimental model is a steel column connected to a foundation plate which 

rests on a shake table through four ‘rocking feet’ (see Figure 5). Masses were attached along 

the height of the column to simulate structures with different geometry and vibration 

characteristics. The three mass arrangements/specimens that were tested are denoted by S1, 

S2 and S3. The experimental model was instrumented with displacement sensors and 

accelerometers which measured the rocking angle and accelerations along the height of the 

structure respectively. In this paper, only rocking rotation, measured by LVDTs at the base, 

and mid-height acceleration, measured by accelerometer A2 (see Figure 5), will be 

discussed. Free vibration, pulse and earthquake tests were carried out on each specimen. 

Further details regarding the experiments can be found in (Acikgoz et al. 2016) .  

A multi-mass structural model was created for each specimen in an earlier study 

(Acikgoz and DeJong 2016). Table 1 lists the important properties of the structural models 

for these specimens. Using the multi-mass model characteristics, the input parameters for 

the equivalent models were derived. The first and second mode vibration frequency and 

damping (
1n ,

2n ,
1n and

2n ), and foundation half-width B from the multi-mass models 

were utilized. The remaining structural parameters were defined to achieve the same mass 

moment of inertia and inertial accelerations due to ground accelerations, in accordance with 

Section 3.2. For example, for equivalent model 1, the mass matrix M and height vector 

H describe the top mass 
1nM and its height

1nH . These were calculated using Equation (11), 



where the known mass, height and classical first mode vibration shape parameters from the 

multi-mass model were used. Then, by using Equations (35-36), the parameters for the 

bottom mass 
0nM and 

0J were determined.  

It is informative to investigate the resulting dynamic characteristics of the equivalent 

models and contrast them with the multi-mass models. For instance, by contrasting the 

multi-mass and equivalent models of specimen S1, it can be observed that the resulting 

equivalent model has a lower centre of gravity *

cgH than the corresponding multi-mass 

model which has a centre of gravity
cgH  . This leads to the equivalent model having a lower 

value for the frequency parameter
lp . However, in the proposed equivalent model 

formulation, the significant influence on the lower centre of gravity is counteracted by the 

ground motion scaling term , which was introduced in Equation 37. For specimen S1, this 

parameter is calculated as */ 1.12cg cgH H    

 

 
Figure 6 – Modal parameters (frequencies and mode shapes) calculated for the multi-mass and 

equivalent analytical models of model S1.   

 

4.2 Modal components of response 

In order to derive equivalent models, important assumptions were made concerning the 

characteristics of higher vibration modes during rocking. This section assesses the validity 

of these assumptions, by comparing modal estimations of equivalent models with the modal 

components of the corresponding multi-mass model. The modal components for the multi-

mass model were determined numerically using Equation (16).  

Figure 6 shows the important modal components of response for the analytical 

models of S1. The sub-figures show the eigenvector estimates for the first, second and 



rocking vibration modes estimated by multi-mass and equivalent models during full contact 

and rocking phases. The designated values for the ‘full contact phase eigenvector’ nj  are 

scaled to Euclidean norm of unity and are shown in the first row. Unsurprisingly, these 

modal components are the same for the multi-mass and equivalent models during the full 

contact phase. Under each eigenvector, the associated modal frequencies of multi-mass and 

equivalent models are presented as    ,k kmulti mass equivalent
 


 
 

 for vibration modes and 

   ,l lmulti mass equivalent
p p


 
 

 for the rocking mode. 

With the initiation of rocking, the eigen-parameters change. In the second row of 

Figure 6, the elastic component of the eigenvectors during rocking phase 
ujt  are shown 

for 1,2,j r . Similarly, these are scaled to Euclidean norm of unity and the associated 

frequencies are listed underneath. The elastic component of the vibration mode shape for the 

first vibration mode does not change significantly upon the initiation of rocking, and both 

models compare well. The increase in vibration frequency with the initiation of rocking 

(listed at the bottom of the third row) is significant, but again the models compare well. On 

the contrary, for the 2
nd

 vibration mode the modal eigenvector component 
2u t predicted by 

the two models is significantly different. Furthermore, the multi-mass model predicts a 

minor increase in the frequency of the second vibration mode, which is not captured by the 

equivalent model. The third column demonstrates the elastic component of the rocking 

mode eigenvector. As expected, both the multi-mass and equivalent models estimate 

negligible elastic component for this mode, confirming that the rocking mode is weakly 

coupled with elastic response. The identified eigen-parameters, which correspond well to 

the modified rocking frequency parameter, demonstrate discrepancies due to the different 

values of lp .  

The third row of Figure 6 shows the compound mode shapes during rocking. This 

mode shape takes into account the modal rotation and therefore is critical for determining 

the force demands on the system. The compound shape is defined by ujc ujt ujrH     where 

the rocking component of the mode ujr  is added on to the elastic component of the same 

mode shape 
ujt . Figure 6 shows that when the effect of this oscillatory rocking component 

is considered, a drastically different compound shape 1u c  is obtained for the first mode. A 

nodal point is observed at 1.3mH  , where eigenvector ordinates change polarity. As both 

the multi-mass and equivalent models consider the coupling of this mode with rocking 

action, both models capture the compound shape with good accuracy. Surprisingly, when 

the effect of the oscillatory rocking component is considered for the second mode, 2u c  

becomes similar to the full contact phase eigenvector 2n . Therefore, by assuming that the 

full contact mode shape remains the same during the rocking phase, the equivalent model 

appears to capture the compound response mode shape. However, this is deceiving. It is 

important to note that the compound shape of the multi-mass model indicates that there is a 

rocking component 2u r , which is assumed to be negligible in the equivalent model. Finally, 

the third column of the third row shows the rocking mode compound shape, which is 

identical for the multi-mass and equivalent models.  

 

 

 

 



Table 2 – Important modal characteristics for the multi-mass and equivalent analytical models 

Model 
1u (Hz) 

1uH (m) 1u (-) 
1u (-) 

2u (Hz) 
2uH (m) 2u (-) 

2u (-) 

Multi-mass 20.7 1.56 0.86 1.00 46.8 1.21 0.72 0.78 

Equivalent     22.3 1.53 0.919 1.00 41.4 0.44 0 0 

 

Broadly, Figure 6 demonstrates that the equivalent model captures the coupling of 

the first vibration mode and rocking successfully. More importantly, this figure shows that 

the fundamental assumption of higher vibration mode uncoupling may not be valid for all 

higher modes. For the examined structure, significant changes are observed in the second 

vibration mode shape. These findings are further supported by Table 2, where important 

modal parameters for the first two vibration modes for the multi-mass and equivalent 

models are compared. These parameters are effective modal height ukH  (Equation 11), 

modal mass participation factor uk (see Equation 22) and force modification 

parameter uk (Equation 24). In particular, comparing the effective modal height values 2uH is 

informative. As a result of the change in the mode shape of the 2
nd

 vibration mode, a high 

effective modal height of 1.44 m is observed for the multi-mass model. The equivalent 

model makes a poor estimate for this modal height by assuming the classical 2
nd

 mode 

vibration shape during rocking (given by 2nH ) which results in a modal height of 0.44 m. 

Nonetheless, it is important that this modal height is not zero as assumed for the 

computation of parameters 2u  and 2u  for the equivalent model. Furthermore, the force 

modification parameter 2u  suggests that neglecting this modal height and coupling could 

lead to significant consequences. Force modification parameter 2u  values close to unity 

indicate a strong isolation of this vibration mode from ground motion, but suggest that the 

mode will be excited at impacts due to the gravity forcing. The significance of these changes 

in excitation mechanisms will be discussed in the next section.   

 

 
Figure 7 –Comparison of experimental rocking (left) and mid-height acceleration traces (right) with 

analytical simulations of multi-mass and equivalent models. Specimens S1 (top row) and S2 (bottom 

row) subjected to free vibration tests are examined.  

 

4.3 Time history response  

The previous section highlighted that the simplifications adopted in the equivalent models 

may cause erroneous estimation of rocking and acceleration response. By comparing free 



vibration, pulse and earthquake response simulations of equivalent models with 

experimental results and multi-mass model simulations, this section quantifies these errors 

and discusses their significance.  

 In the free vibration tests, the experimental models were displaced to a large rocking 

angle and then released with zero initial velocity. For example, Figure 7 shows rocking 

angle and mid-height acceleration results from large amplitude free vibration tests on S1 and 

S2. In these tests, the structure is released from a large initial angle of magnitude 0.11 rad, 

which corresponds to approximately 10% drift. Due to the self-centering provided by the 

mass, the structure moves towards 0  , and impacts with the ground. At each impact, a 

proportion of energy is lost, and a new rocking phase is initiated about the opposite pivot 

point. In Figure 7 (left), the simulation of rocking traces by equivalent models can hardly be 

differentiated from the simulation of multi-mass models and experiments. Therefore, the 

equivalent model is as successful as the multi-mass model in capturing the overall reduction 

in rocking amplitude and rocking period with time, for both specimens.  

The accelerations recorded at mid-height of the structure 
A2a  (see Figure 7, right) 

reveal the clear influence of vibration modes which are excited at impact. When the 

structure is released from an initial rocking angle in the first rocking half-cycle, only a step 

acceleration trace is observed. This acceleration step is due to rotational accelerations, 

which arise as a result of the rigid body motion of the structure. Once impact occurs, the 

structure starts to rock about the other pivot point, the direction of the step acceleration 

changes. At the same time, significant vibrations occur. For specimen S1, two components 

of vibrations with frequencies of approximately 20 Hz and 40 Hz form the acceleration 

signal, particularly just after impact. It is noteworthy that these vibrations are excited 

without external forcing due to ground motion, and are entirely due to gravity force reversal 

at impact.  For S2, only a single vibration component with a frequency of 20 Hz is observed. 

For a detailed examination of these acceleration signals in the frequency domain, see 

(Acikgoz et al. 2016) 

 

 
Figure 8 - Comparison of experimental rocking (left) and mid-height acceleration traces (right) with 

analytical simulations of multi-mass and equivalent models, considering different values of ground 

motion scaling factor . Specimen S1 subjected to pulse excitation tests is examined.  

In general, the characteristics of the acceleration response are simulated well with 

the multi-mass models, which capture the step profiles as well as the excitation of the first 

and second vibration modes. The simulations do not capture the large transient acceleration 



spikes which appear for a short duration during impact, but this is not considered significant. 

These acceleration spikes are related to experimentally observed sliding, bouncing and free-

flight effects, and the measurements may have been amplified due to lack of analogue anti-

aliasing filtering of acceleration signals (Acikgoz et al. 2016). Therefore, the following 

comparisons between experiments and simulations focus on the induced rocking and 

vibration mode accelerations which have a more obvious structural significance. These 

comparisons suggest good agreement, which can be further improved by calibrating 

parameters of the Dirac-delta impact model (Acikgoz and DeJong 2016). 

Similarly, the equivalent models capture the step profile and the excitation of the 

first vibration mode at impacts well. This is evident from the equivalent model simulation of 

S2, which is as accurate as the multi-mass analytical model during the half-cycle after the 

first impact. However, for S1, the equivalent model cannot capture the significant second 

vibration mode excitation at impact due to the lack of coupling of higher vibration modes 

and rocking action. This contributes to the significant underestimation of the acceleration 

demands by the equivalent model and emphasizes an important limitation.    

The free vibration response is useful for evaluating the coupling of vibration modes 

and rocking. However, it is necessary to further evaluate the ability of equivalent models to 

recognize uplift conditions and to capture the ensuing rocking and acceleration response 

under pulse and earthquake excitations. In the experimental campaign (Acikgoz et al. 2016), 

a phased and vertically translated cosine pulse was utilized in all pulse excitation tests. In 

Figure 8, the experimental rocking and mid-height acceleration response of S1 to this pulse 

(defined by 15 rad/s, 0.4A g   ) is compared to the simulations of multi-mass and various 

equivalent analytical models. The multi-mass model captures the rocking trace well (see 

Figure 8, top row), while the rocking predictions depend heavily on the scaling factor  (see 

Figure 8, bottom row). When a scaling factor is not used (i.e. 1  ), a poor agreement is 

observed. On the contrary, when the scaling factor  is utilized, the model predictions for 

rocking action are as accurate as multi-mass models. Therefore, the ground motion scaling 

factor  specified by Equation (37) will be used for the rest of the equivalent model 

simulations in this paper. Despite the improvement in rocking angle prediction provided by 

the scaling factor, the equivalent model underestimates the accelerations for S1 as it cannot 

capture the higher vibration mode excitation at impact.  

 



 
  

Figure 9 - Comparison of the experimental rocking response spectra to the corresponding spectra 

simulated by equivalent models. Specimens S1 (left) and S2 (right) subjected to pulse excitation 

tests of varying frequency (top row) and amplitude (bottom row) are examined. 

 

To generalize the results, it is useful to evaluate the analytical modelling predictions 

for the maximum rocking max  for a range of pulse excitations. In Figure 9, rocking response 

spectra compare pulse experiments on S1 and S2 to equivalent model simulations. The first 

row shows the rocking response spectra of pulses with varying frequency and fixed 

amplitude. In the second row, the same structure is subjected to pulses with a fixed 

frequency and varying amplitudes. Each test and simulation was repeated a minimum of two 

times and the variance of maximum rocking angles in repeated tests was small. The markers 

in Figure 9 represent individual tests, while the lines represent mean values from the 

repeated tests.  Generally, the equivalent model provides a good prediction of maximum 

rotation. For both S1 and S2, the predictions lie within 10% of the experimental 

observations.  

 



 
 

Figure 10 - Comparison of the experimental rocking and mid-height acceleration traces from two 

earthquake excitation tests with analytical simulations of multi-mass and equivalent models, 

considering different values of coefficient of restitution r . Specimen S1, subjected to repeated 

earthquake excitation tests (EC Test 1 in first two rows and EC Test 2 in last two rows), is examined.  

 

A similar approach was adopted to investigate the earthquake response 

experimentally. A single non-pulse type earthquake excitation, scaled to multiple amplitude 

levels, was considered. The earthquake response to near-identical ground motion excitations 

resulted in a variable rocking response. The experimental results suggested that the 



variability in response stems from the variability in energy dissipation at impact (Acikgoz et 

al. 2016). Therefore, the ability of equivalent models to capture the experimentally observed 

rocking and acceleration response can be evaluated by varying the parameters that define 

the energy dissipation at impact. For this purpose, the coefficient of restitution r is varied in 

the simulations. Empirically determined average values for this coefficient (Acikgoz et al. 

2016) are shown  in Table 1 as 
err  and elr  for impact of the right and left feet of the 

structure.   

Figure 10 shows the rocking and mid-height acceleration response to two amplitude 

scaled (ground motion scaling factor, 1.1scA  ) El Centro record tests on S1. These tests (EC 

Test1 and EC Test2) resulted in drastically different response despite nearly identical table 

motions (see Figure 10, top row). To simulate EC Test 1 and EC Test 2, multi-mass and 

equivalent models were first used with coefficients of restitution of    , 0.93,0.87er elr r  . 

Both models predict a similar response which is in good agreement with the EC Test2 

results. By changing the coefficient of restitution to    , 0.97,0.91r lr r  , both analytical 

models predict EC Test 1 response also with good accuracy (Figure 10, second row). 

However, for EC Test 1, the response is underdamped after realization of larger amplitudes. 

Thus, the comparisons indicate that the equivalent model is as good as the multi-mass model 

in predicting the earthquake response. The major challenge for both models is capturing the 

variations in energy dissipation.  

 

 
Figure 11 - Comparison of the experimental rocking response spectra to the corresponding spectra 

simulated by equivalent models. Specimens S1 (top left), S2 (top right) and S3 (bottom) subjected to 

earthquake excitation tests of varying amplitude scale scA  are examined. 



 

The acceleration predictions follow similar trends discussed earlier. For clarity, only 

the equivalent model results are presented in Figure 9. The second vibration mode frequency 

in the experiments is approximately 40 Hz, and the input ground motion excitation 

frequencies are insignificant at this level. Therefore, the second and higher vibration mode 

excitations that are observed in the experimental acceleration traces are primarily caused by 

impacts. Even if the equivalent model sufficiently captures the overall acceleration trace 

characteristics and the coupling of the first vibration mode with rocking action, it does not 

capture the second mode excitation at impact. However, it is noteworthy that this limitation 

does not affect rocking response predictions, where equivalent model predictions are as 

good as multi-mass model predictions.  

To generalize the results further, more earthquake tests are simulated. To estimate 

the variability in energy dissipation [25], and therefore better capture the variability of 

earthquake response, the mean coefficient of restitution  ,er elr r and standard deviation
r  

values listed in Table 1were used to assign a random coefficient of restitution for each 

impact. In Figure 11, the rocking spectral response of all three experimental specimens to 

the scaled El Centro earthquakes is evaluated. Equivalent models were used with randomly 

generated coefficients of restitution. Each simulation was repeated a minimum of three 

times for each amplitude scale using the table motion from each single test. The results for 

individual experimental tests and equivalent model simulations are presented in the figure. 

From the individual simulation results for each amplitude scale, a mean spectrum was 

computed by averaging the rocking response. The mean spectrum is presented for 

experimental results and equivalent model simulations. In general, the variability in 

experimental and simulation results is similar, and the trend of increased rocking response 

with an increase in Asc is captured. It is essential to reiterate that, the equivalent model 

predictions for rocking are as good as multi-mass models (compare Figure 11 of this paper 

with Figure 12 of (Acikgoz and DeJong 2016)), and the major modelling limitation concerns 

the overestimation of energy dissipation during small rocking motion.  

 



 
Figure 12 – Improved estimations for modal forcing (top row) and generalized coordinate (2

nd
 row) 

of the second vibration mode and their effect on prediction of acceleration response of S1 in Figure 7 

with a modified equivalent model. The legend refers to the data in the bottom row.  

4.4 Improvement of acceleration response predictions 

With the ground motion scaling factor modification proposed in Section 3.2, the original 

equivalent model, which is conceptually similar to Yim and Chopra’s equivalent model 

(1985) was improved. As demonstrated in Figure 8, and all the figures thereafter, the use of 

this term enables the equivalent models to adequately capture the rocking response during 

pulse and earthquake excitations.  

However, the assumption of uncoupling of higher vibration modes is not accurate for all 

vibration modes and resulted in the under-prediction of acceleration demands. To improve 

the equivalent model predictions of acceleration traces, a new approach to include higher 

mode coupling effects is briefly proposed in this section. The approach uses acceleration 

estimates due to the coupled component from the two degree of freedom model as before, 

but now uses the novel modal equations proposed in this paper (section 2) to estimate the 

additional contribution from the uncoupled higher vibration modes. In other words, instead 

of describing higher mode vibration response with linear elastic oscillator responses of 

classical vibration modes using Equation (32), the behaviour is described using the more 

accurate Equation (20). This way, the critical excitation of higher vibration modes at impact 

is considered. More specifically, after identifying the vibration mode parameters during 



rocking from Equation (16), Equation (20) is used to determine acceleration demands due to 

(i) the ground acceleration, considering isolation and (ii) gravity forcing for a particular 

mode. To summarise, the only difference between the equivalent model simulations up until 

this section, and the modified models herein, concern the simulation of higher modes.  

 For simplicity, it will be assumed that the gravity force reversal at impact occurs 

instantaneously. This will result in the most conservative estimation of induced 

accelerations. More realistic results could be achieved by exploring the gradual transition 

between rocking cycles, but this is not necessary for this illustration. The suggested 

modification is illustrated in Figure 12, where the recorded accelerations for the free 

vibration test on S1 (presented earlier in Figure 7) are compared to simulation results using 

the proposed approach. When simulating the accelerations for the earlier Figure 7 with the 

equivalent model, the uncoupled and SDOF Equation (32) was used. Since there is no 

ground motion in a free vibration test, this model did not consider any forcing, and the 

second vibration mode did not contribute to the acceleration response during rocking. In the 

proposed modification, the modal characteristics during the rocking phase are first 

computed and are utilized to define the modal forcing defined in Equation (23). This results 

in a new modal forcing function ukf , which is a step function that alternates sign with each 

rocking half-cycle (see Figure 12, first row). This forcing excites the second vibration mode, 

whose response is shown in the second row. When this modified response is also included to 

approximate the total vibration response, a much improved estimation is made for the total 

acceleration trace, as demonstrated in the final row of Figure 12. However, in some cases, 

the accelerations are still under-predicted due to the approximate nature of the parameters 

used to idealize and model impact (Acikgoz and DeJong 2016). Nonetheless the proposed 

improvement quantifies the significance of the coupling of vibration and rocking and 

presents a method which could be used for assessment and design to more realistically 

predict acceleration demands during rocking. It is noteworthy that closed-form solutions 

(Ayre 1988) may be used to estimate the effect of this simple step forcing on higher 

vibration modes for design.  

  

5 CONCLUSIONS 

This paper evaluated and improved simplified equivalent analytical models to 

describe multi-mass structures rocking on rigid ground. To do this, new equations which 

describe the modal components of the multi-mass rocking response were derived in Section 

2 and the equivalent model simulations were compared to experimental results and multi-

mass model simulations in Section 4.  

The findings from the new modal equations provided new insight into the interaction 

of vibration modes and rocking action and were used to improve the equivalent models. The 

modal equations quantified the potential changes in the vibration frequencies, shapes and 

excitation mechanisms once rocking initiates. The changes in the characteristics for the 

second vibration mode of the experimental specimens, which was neglected by the original 

equivalent models proposed by Yim and Chopra (1985), was identified as the main reason 

for the poor modelling of the accelerations by the equivalent model during free vibration 

tests. In particular, the comparisons demonstrate that it was essential to consider the critical 

influence of the excitation of higher vibration modes at impact for accurate modelling of 

acceleration demands, and a method to achieve this is proposed. Similar results would be 

expected for pulse and earthquake response based on the figures herein and the proposed 

method also considers the influence of these excitations on acceleration demands. 

Furthermore, the accuracy of equivalent models in capturing the rocking response was 

evaluated comprehensively using the results from recent free vibration, pulse and 



earthquake tests. The comparisons reveal that the equivalent models provided excellent 

estimations of rocking response for a large range of displacements, when a new ground 

motion amplitude scaling factor was used. This new factor was necessary to compensate for 

the lower centre of gravity of the equivalent models. With the proposed modifications, the 

resulting equivalent models provided a simple method to accurately estimate rocking and 

acceleration response of a complex multi-mass flexible structure rocking on stiff (ideally 

rigid) ground. 

Despite the aforementioned improvements, further research on modelling the 

complex phenomena at impact and its influence on structural behaviour, is still necessary. In 

particular, derivation of comprehensive (as well as simplified) analytical models for 

describing the dynamic response of structures rocking on flexible foundations would be 

desirable for specific applications.  
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