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Abstract 34 

Comparative studies of gene expression are often designed with the aim of identifying 35 

regulatory changes associated with phenotypic variation. In recent years large-scale 36 

transcriptome sequencing methods have increasingly been applied to non-model 37 

organisms to ask important ecological or evolutionary questions. Although 38 

experimental design varies, many of these studies have been based on RNA libraries 39 

obtained from heterogeneous tissue samples, for example homogenised whole bodies. 40 

Comparisons between groups of samples that vary in tissue composition can introduce 41 

sufficient variation in RNA abundance to produce patterns of differential expression 42 

that are mistakenly interpreted as evidence of regulatory differences. Here we present 43 

a simple model that demonstrates this effect. The model describes the relationship 44 

between transcript abundance and tissue composition in a two-tissue system, and how 45 

this relationship varies under different scaling relationships. Using a range of 46 

biologically realistic variables, including real biological examples, to parameterise the 47 

model we highlight the potentially severe influence of tissue scaling on relative 48 

transcript abundance. We use these results to identify key aspects of experimental 49 

design and analysis that can help to limit the influence of tissue scaling on the 50 

inference of regulatory difference from comparative studies of gene expression. 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 



 3 

Introduction 65 

A substantial amount of intra- and inter-specific diversity results from regulatory 66 

variation. Within species, a single genome can encode multiple distinct phenotypes by 67 

varying expression levels for the underlying loci. Examples of regulatory-based 68 

phenotypes include social insect castes (Toth et al. 2008), some instances of plastic 69 

alternative morphs such as dominant and subordinate turkeys (Pointer et al. 2013) or 70 

territorial, satellite and sneaker males in wrasses (Alonzo et al. 2000; Stiver et al. 71 

2015), caring and non-caring in beetles (Parker et al. 2015), and a substantial 72 

proportion of differences between males and females (Moczek & Rose 2009; Khila et 73 

al. 2012). Similarly, across species or divergent populations, gene regulation provides 74 

an important route for the evolution of diversity (Carroll 2008; Stern & Orgogozo 75 

2008) with many adaptive phenotypic changes linked to regulatory evolution (e.g. 76 

Shapiro et al. 2004; Steiner et al. 2007). 77 

Given the importance of regulatory variation in shaping phenotypic diversity, 78 

transcriptome analyses based on RNA-Seq methods are increasingly used in 79 

evolutionary and ecological studies with the explicit aim of identifying genes that 80 

underlie phenotypic variation. These studies assume that differential gene expression 81 

is the result of altered transcriptional regulation which lead to phenotypic differences 82 

between groups of individuals. In many cases functional validation experiments have 83 

demonstrated causative relationships between variation in gene expression and 84 

variation in phenotypic development (e.g Abzhanov et al. 2006; Khila et al. 2012). 85 

However, functional validation is often inhibited by the polygenic nature of many 86 

traits, or a lack of functional genetics tools for the study species. For the moment at 87 

least, interpretation of the results of such studies are largely dependent on the 88 

assumption that expression differences have functional importance to the phenotypic 89 

variation observed across samples. 90 

  However, regulatory differences are not the only source of variation in gene 91 

expression in heterogeneous tissue samples. The composition of the tissue sampled 92 

for RNA extraction, and subsequent quantification of expression level, is a major 93 

source of variation that may undermine the validity of any inferred relationship 94 

between differential gene expression and phenotypic variation, but is yet to be 95 

scrutinised in any detail.  96 
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The design of published expression studies varies substantially. Although 97 

recent studies have demonstrated the potential to study gene expression in single cells 98 

(Sandberg 2014), these remain limited and most studies are based on larger samples, 99 

ranging from comparisons between organs (e.g. Enard et al. 2002; Khaitovich et al. 100 

2004; Ghalambor et al. 2007; Brawand et al. 2011; Chen et al. 2015; Harrison et al. 101 

2015),  body parts composed of many constituent tissues such as heads (e.g. Parker et 102 

al. 2015; Standage et al. 2016), or whole body samples  (e.g. Kvist et al. 2013; 103 

Feldmeyer et al. 2014; Hollis et al. 2014; Immonen et al. 2014; Stuglik et al. 2014). 104 

In all these cases, tissue samples are homogenized before mRNA extraction, 105 

purification and sequencing, with the resulting expression levels forming the primary 106 

data for comparison.   107 

The homogenization of heterogeneous tissue samples provides one source of 108 

non-regulatory variation in estimated expression levels. The composition of these 109 

heterogeneous tissues depends on the nature of their constituent parts, the scaling 110 

relationships between these constituent parts, and the overall size of the tissue or 111 

individual. When comparing expression levels between groups of samples, for 112 

example groups of biological replicates of different sexes or different phenotypic 113 

morphs, the assumed connection between expression level and gene regulation is only 114 

valid if we also assume subcomponents of the tissue sample scale isometrically with 115 

total size, and do not vary between the groups under comparison. Numerous 116 

biological examples suggest isometry between traits is not the norm (Voje 2016), 117 

strongly questioning the validity of how we interpret comparative studies of gene 118 

expression.  119 

Under isometric scaling the relationship between two component traits is one-120 

to-one. Any individual, regardless of its total size, will have an equal percentage of its 121 

mass given over to its constituent parts. Deviation from isometry means this one-to-122 

one relationship is no longer true (Figure 1, rows 1 to 3). As total size varies, an 123 

allometric relationship results in the size of component parts of a tissue sample 124 

varying to a greater or lesser degree and, as a result, the proportional size of each 125 

tissue component can vary. For example, the effects of both scaling patterns can be 126 

illustrated in fiddler crabs with asymmetric claw sizes. The smaller ‘minor’ claw 127 

scales isometrically with body size, whereas the larger ‘major’ claw scales with 128 

positive allometry, or hyper-allometry (Rosenberg 2002). Hence, as body size 129 
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increases the size of the minor claw as a proportion of body mass is constant, whereas 130 

the size of the major claw becomes disproportionately larger.  131 

When sampling heterogeneous tissue, different forms of scaling relationships 132 

will affect comparative studies of gene expression in different ways. Isometry does 133 

not present a problem for studies of gene expression because the proportion of the 134 

RNA library attributable to a given tissue is constant (Figure 1, panels A3, A4). Any 135 

robust and repeatable change in expression level is therefore likely to be attributed to 136 

regulatory variation between the groups under comparison. However, under non-137 

isometric scaling this is no longer the case. If we consider the allometric equation (y = 138 

αxβ), isometry assumes the scaling coefficient, β, is one (Figure 1A1, A2 and A3). 139 

Under hyper-allometry, or positive allometry, β is greater than one. In this case, as 140 

trait x increases in size, trait y increases in size more rapidly (Figure 1B1). As a result, 141 

the size of y as a proportion of the total size increases in larger individuals (Figure 142 

1B2 and B3). In contrast, under hypo-allometry, or negative allometry, β is less than 143 

one and as trait x increases in size trait y increases more slowly and accounts for a 144 

smaller proportion of total size in larger individuals (Figure 1C1, C2 and C3). As the 145 

proportions of each sub-tissue in a sample change, expression levels of some genes in 146 

RNA-Seq datasets could vary in a way that looks like regulatory variation, but is in 147 

fact a sampling artefact. 148 

A further confounding effect arises when groups of samples differ in their 149 

scaling coefficient, β, or the scaling constant α (Figure 1D1, E1). For example, 150 

variation in α results in ‘ grade-shifts’ between groups of individuals under 151 

comparison, for example the two sexes, two phenotypic morphs or two populations or 152 

species (Figure 1D1). This is often observed between morphs within species, for 153 

example in testis mass between male morphs (e.g. Tomkins & Simmons 2002), or 154 

between species, such as in the size of testes under different reproductive ecologies 155 

(Harcourt et al. 1981) or of different brain components (Barton & Harvey 2000; 156 

Barton & Venditti 2014). Grade-shifts are also commonly observed in experimental 157 

selection lines and appear to be a major axis of evolvability (e.g. Wilkinson 1993; 158 

Emlen 1996; Egset et al. 2012; Kotrschal et al. 2013).  Where these grade-shifts 159 

occur, individuals will differ in the proportions of their constituent parts regardless of 160 

total size (Figure 1D2 and D3).  161 
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Shifts in β are perhaps more rare in nature, possibly due to stronger 162 

developmental or functional constraint (e.g. Egset et al. 2012), but they do occur 163 

between cell or tissue types within tissues and across species (Simmons & Tomkins 164 

1996; Herculano-Houzel et al. 2015). The main result of βdifferences between 165 

groups is that the similarity of tissue composition between those groups will vary with 166 

total size (Figure 1E1, E2 and E3). This will likely increase variance within a group as 167 

well as predictably altering mean transcript abundance between groups. As a result of 168 

non-isometric scaling relationships, groups of individuals - be they species, morphs, 169 

castes, or sexes - can vary substantially in body or tissue composition. In the case of 170 

hyper- and hypo-allometry this can occur in the absence of any functional or 171 

developmental reorganization, and is a mere consequence of variation in total size. 172 

The proportion, or percentage size, of different tissue components is important for 173 

studies of gene expression because RNA-Seq is always a proportional rather than 174 

absolute measure of expression level, regardless of sequencing depth. RNA 175 

abundance within a sample is therefore directly related to the proportion of cells in 176 

the sample expressing a gene at a certain level. As a result of this, variation among 177 

samples in the proportion of different cell types will alter the proportion of mRNA 178 

transcripts in the homogenized tissue pool, and therefore expression level estimates. 179 

Expression levels are therefore related to variation in proportions of tissue 180 

components (Figure 1, rows 3 and 4) rather than the variation around scaling 181 

relationships between those tissues, i.e. ‘relative’ size (as indicated in Figure 1, row 182 

1). As a result, comparing variation in expression level between samples of 183 

homogenized, heterogeneous tissue may partly reflect differences in regulation, but 184 

could also reflect differences in composition. Unfortunately, these alternatives are not 185 

mutually exclusive, further complicating analysis of expression variation. 186 

Differences in tissue scaling are not problematic to studies of RNA-Seq if the 187 

sole aim is to simply identify expressed genes.  However, if the aim is to identify loci 188 

with altered regulation that underpins phenotypic variation, and then to subsequently 189 

study the evolutionary characteristics of those loci, tissue scaling becomes a key 190 

concern. This is perhaps more apparent in RNA-Seq analyses based on whole-body or 191 

amalgamated body parts because of the obvious potential for variation in the 192 

proportion of constituent tissues. However, scaling relationships between cell types 193 

within organs can also deviate from isometry and can differ between groups of 194 
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individuals or species (e.g. Herculano-Houzel et al. 2015). As such, finer-scale 195 

preparations may also be affected.  196 

If allometric scaling contributes to large differences in gene expression, the 197 

central assumption of comparative studies of gene expression, that divergence in 198 

expression level reflects divergence in gene regulation, would be difficult to support. 199 

However, it is not clear what magnitude of differences we might expect under 200 

different scaling scenarios, or how this may vary across different expression levels. 201 

Without this knowledge, it is difficult to know when a shift in gene expression is 202 

more likely explained by regulatory variation than an effect of scaling, or vice versa. 203 

Our goal here is to explore the ways that tissue scaling can influence RNA-Seq 204 

studies using a modelling approach, and to offer some suggested guidelines that may 205 

facilitate improved interpretation of RNA-Seq studies that aim to study the 206 

phenotypic effects of variation in gene regulation. 207 

 208 

Materials and methods 209 

A tissue-scaling model of gene expression differences 210 

To explore the effects of allometric scaling on patterns of gene expression we 211 

developed a simple model. In this model, a sample is comprised of two tissues, x and 212 

y, which scale with each other according to the allometric equation y = αxβ where β 213 

is the scaling coefficient and αis the scaling constant. The total size of the sample (S) 214 

is therefore the sum of tissue y and tissue x: 215 

   𝑆 =  𝑦 + 𝑥 =α𝑥! + 𝑥               [eq. 1] 216 

 217 

Within each tissue, we assume the total expression level of an individual gene (C) is 218 

constant for a given unit of size (e.g. mass or cell number). To reflect the independent 219 

regulation of expression level for different genes in tissue types we allow this constant 220 

to vary between tissues, and between genes. The number of transcripts for a gene in 221 

tissues x and y are therefore:  222 

   𝑇𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑔𝑒𝑛𝑒 𝑎 𝑖𝑛  𝑡𝑖𝑠𝑠𝑢𝑒 𝑥 =  𝐶!,!  × 𝑥          [eq. 2] 223 

   𝑇𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑔𝑒𝑛𝑒 𝑎 𝑖𝑛  𝑡𝑖𝑠𝑠𝑢𝑒 𝑦 =  𝐶!,!  × α𝑥!         [eq. 3] 224 

 225 

In a homogenised sample, the total expression will be the sum of eq. 2 and eq 3. 226 

However, with current methods, the observed value will be a proportion of the total 227 
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transcript count (Ctotal). This is modelled as the average expression of a gene across 228 

both tissues (Cm) multiplied total sample size (S) and the number of expressed genes 229 

(G): 230 

   𝐶!"!#$ =  𝐶! × α𝑥! + 𝑥  × 𝐺                 [eq. 4] 231 

 232 

The relative expression of an individual gene (REa) will therefore equal the sum of its 233 

abundance in tissues x and y (eq. 2 and eq. 3) divided by the total transcript count 234 

(Ctotal; eq. 4): 235 

   𝑅𝐸! =  [!!,!  × !]!  [!!,!  × !!!]
!!!!!  × ! × !!

             [eq. 5] 236 

 237 

REa is easily converted to be equivalent to commonly used measures of relative gene 238 

expression such as ‘counts per million’ (CPM), by simple multiplication: 239 

   𝐶𝑃𝑀 =  𝑅𝐸! × 10!              [eq.  6] 240 

 241 

CPM is used to compare the expression level of a gene between groups of samples, 242 

for example between sexes, morphs, populations or species. Significant shifts in log-243 

transformed CPM can be identified using traditional statistics such as t-tests or a 244 

Mann-Whitney U test. The log2-fold change (FC) between two groups is calculated 245 

as: 246 

   𝐹𝐶 = 𝑙𝑜𝑔!(𝐶𝑃𝑀!"#$% !)− 𝑙𝑜𝑔!(𝐶𝑃𝑀!"#$% !)           [eq. 7] 247 

 248 

Using this model we can estimate FC between two samples which do not differ in the 249 

expression level of gene a but that can vary for x (and therefore y and S), α or β, as 250 

indicated by the subscript numbers: 251 

𝐹𝐶 = 𝑙𝑜𝑔!(
[!!,!  × !!]!  [!!,!  × !!!!!!]

!!!!!!!!!  × ! × !!
 × 10!)− 𝑙𝑜𝑔!(

[!!,!  × !!] !  [!!,!  × !!!!!!]
!!!!!!!!!  × ! × !!

 × 10!)  252 

 253 

This model was used to investigate the expected effect on FC under three scenarios: i) 254 

effects of size differences under conserved allometric scaling by varying S between 255 

two groups while α and β remain constant, ii) effects of varying the allometric 256 

constant (α) between two groups while S and β remain constant, iii) effects of varying 257 

the allometric coefficient (β) between two groups while S and α remain constant. In 258 

each analysis, β was set according to the range of values (0.1-3.0) observed in over 259 
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3,200 datasets recently reviewed by Voje (2016). S was varied by setting different 260 

values of x. Across real datasets, values of x and α will vary greatly and depend on the 261 

units of measurements used. Generally, however, α is small relative to x. Unless 262 

otherwise stated we therefore set x to 10 units and α to 0.1. We also examined how 263 

the size of these effects varies with variable levels of tissue-biased expression 264 

(measured as log2(Ca,x)-log2(Ca,y)). In all comparisons we fixed G and Cm, to 10,000 265 

and 5,000 respectively, to reflect raw values of read counts obtained in a recent RNA-266 

Seq dataset (Harrison et al. 2015). Ca,y was set to 5,000 so that results obtained reflect 267 

an ‘average gene’. Ca,x varied between 0 and 50,000. It is important to note that results 268 

obtained for genes limited to, or biased towards, x will be similar, but inverted relative 269 

to y-biased genes with a relationship defined by the rearranging the allometric 270 

equation for x.  271 

To further explore the practical relevance of these effects we also used our 272 

model to simulate expected results using published scaling parameters from real 273 

biological data. We chose two examples to reflect the sorts of studies being conducted 274 

with real data: i) scaling relationships between soma and testis tissue in different male 275 

morphs from four species of insects; ii) scaling relationships between cell types in 276 

mammalian brains.  277 

 278 

Results 279 

 280 

i. Model effects 281 

Effects of size differences under conserved allometric scaling 282 

We modelled the effect of allometric scaling by varying S between two 283 

hypothetical groups, keeping α and β constant in order to identify the influence of 284 

simple size differences on the relative proportions of sub-tissues on comparative 285 

studies of gene expression (Figure 2A). Specifically, we used our model to compare 286 

gene expression levels between two groups, where x = 10 for group one, and 0.1 < x < 287 

100 in group two, a ten-fold change in size in both directions. β was fixed at either 288 

0.1, 0.5, 1.0, 1.5 and 2.0 in both groups. As expected, under isometric scaling (β = 1) 289 

FC is consistently zero regardless of the magnitude of size differences between the 290 

two groups, or the extent of tissue-biased expression. Turning to allometric scaling, 291 

we first consider tissue-specific expression (Ca,y = 5,000; Ca,x = 0) as we anticipated 292 
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this would reflect the worst case scenario. The model predicts consistent differences 293 

in CPM between groups that increase with greater size differences, or greater 294 

deviation from isometry. The effects of negative and positive allometry generally 295 

mirror one another, except where extreme positive allometry results in y comprising 296 

nearly all of S, minimizing the influence of tissue-biased expression. The opposite 297 

will occur for x-specific genes. Large fold-changes (FC ≥1 or <-1) are expected to 298 

require relatively large size differences. For example, under strong negative allometry 299 

(β = 0.1) if x = 10 for group one, group two requires x<4.5 or >22 (a log10(S ratio) of 300 

<0.45 or > 2.19; in Figure 2 the log10(S ratio) is plotted to compress the variance for 301 

visual clarity) to produce a two-fold expression difference (FC ≥1 or <-1). Under 302 

strong positive allometry (β = 2) this occurs only when x <3.25 for group two. When 303 

the degree of tissue-bias in expression is varied (Ca,y = 5,000; Ca,x = 0-50,000), 304 

increasing tissue-bias in either direction results in larger FC (Figure 2B, C). This 305 

effect is amplified according to the degree to which β deviates from one. In summary, 306 

our model predicts that where the sample differs in mean size between groups under 307 

comparison any deviation from isometric scaling could produce difference in 308 

transcript abundance. 309 

 310 

Effects of varying the allometric constant between groups 311 

We next used our model to assess the impact that differences in the allometric 312 

constant between groups have on relative transcript abundance, modelling the 313 

expected effects of ‘grade-shifts’ between groups. This was done by varying α 314 

between two groups while S and β remained constant (Figure 3, panel A). With x set 315 

to 10 in both groups and an α of 0.1 in group one, we varied α in group two 316 

between 0.1 and 1 (a ten fold range). First considering tissue-specific genes (Ca,x = 317 

5,000; Ca,y = 0), the model predicts absolute FC will increase linearly with the log-318 

ratio of α values. When β <1, the magnitude of the effect is largely unaffected by 319 

variation in β. Where β >1, the effect is dampened as β increases because the 320 

contribution of expression in tissue y quickly overwhelms that of tissue x. The 321 

opposite will occur for x-specific genes. Large fold-changes (≥1 or <-1) occur from 322 

relatively small shifts in α. Under negative allometry (β <1), if α is 0.1 in group two, 323 

the FC is ≥1 or <-1when 0.05>α>0.2 in group two (an α ratio <0.5 or >2). Under 324 

positive allometry the necessary magnitude of shift in α to produce this size of effect 325 
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increases, but the opposite will occur for x-specific genes. Finally, when the degree of 326 

tissue bias in expression is varied (Ca,y = 5,000; Ca,x = 0-50,000), tissue-specificity is 327 

again always the worst-case scenario. Increasing tissue-bias in either direction 328 

produces larger FC, an effect amplified by increased variance in α between groups 329 

(Figure 4B, C). In summary, our model predicts that differences in allometric 330 

constants between groups under comparison can have a large impact on transcript 331 

abundance, regardless of the similarity in total size of the tissue sampled. 332 

 333 

Effects of varying the allometric coefficient between groups 334 

Finally, we used our model to predict how this will affect patterns of 335 

differential expression in scenarios where the total size across two groups is constant 336 

but the scaling relationships between their constituent parts differ. We first varied β 337 

while S and α remain constant setting β = 0.5 (Figure 4A) or 1.5 (Figure 4B) in 338 

group one, and 0.1 < β < 3 in group two. We repeated this analysis using different 339 

values of x to explore how variation in β interacts with variation in size (Figure 340 

4C,D). First, considering tissue-specific genes (Ca,y =5,000; Ca,x = 0), the model 341 

predicts FC will increase linearly with β until the contribution of expression in tissue 342 

y overwhelms that of tissue x. The opposite will occur for x-specific genes. We find 343 

that modest differences in β can produce large FC (≥1 or <-1). For example, when x = 344 

10 in both groups and β = 0.5 in group one, -1>FC>1 when 0.2> β >0.9 in group two 345 

(a β ratio of <0.4 or >1.8; Figure 4A). As x increases the shift in β necessary to 346 

produce this scale of difference decreases; when x = 100 it will occur when 0.3> β 347 

>0.7 (a β ratio of <0.6 or >0.78), when x = 1,000 it will occur when 0.4> β >0.6 (a β 348 

ratio of <0.8 or >1.2). Similar results are found regardless of the value set for β in 349 

group one. Again, when the degree of tissue-bias in expression is varied (Ca,y = 5,000; 350 

Ca,x = 0-50,000), genes with tissue-specific expression are always most affected. 351 

Increasing tissue-bias in either direction produces larger FC, an effect amplified by 352 

increased variance in β between groups (Figure 4C,D). In summary, any deviation 353 

between the scaling exponents governing the scaling relationships between tissue 354 

types in two groups will again lead to predictable differences in transcript abundance. 355 

 356 

Tissue scaling can produce false negatives 357 
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 The previous results focus on false-positives, however it is likely that the same 358 

scaling effects will obscure real patterns of group differences in gene expression. To 359 

illustrate this effect we used our model to vary Ca,x between two groups. In group one 360 

Ca,x and Ca,y were both set to 5,000. In group two Ca,y was again set to 5,000 but Ca,x 361 

was set to either 20,000, 10,000, 5,000, 2,500 or 1,250. This simulates the gain of 362 

tissue-biased expression in group two with an inter-group log2-fold change (FC) for 363 

Ca,x of 2, 1, 0, -1 and -2 respectively. We first examined the effects of varying the 364 

average size of the sample (as described above with x = 10 for group one, and 0.1 < x 365 

< 100 in group two) whilst keeping α and β constant. We set the scaling parameters to 366 

reflect moderately hyper-allometric scaling. As expected, as the size difference 367 

between groups increases, the estimated FC rapidly declines (Figure 5A). Turning 368 

next to inter-group differences in α, we set α to 0.1 in group one and varied α in 369 

group two between 0.1 and 1, whilst keeping x at 10 and β at 1.5. Again, as the 370 

discrepancy between α1 and α2 increases, the measured FC decreases exponentially, 371 

with even large FC differences in Ca,x dropping below and FC of ±0.5 (Figure 5B). 372 

Finally, we examined the effects of varying β by keeping β at 1.5 in group 1, and 373 

varying βbetween 0.1 and 3 in group 2.  α was set to 0.1 and x was set to 10 in both 374 

groups. Again an effect of reduced detected FC is found with increase inter-group 375 

differences in scaling parameters. Here, the effect is sigmoidal with an accelerated 376 

decline in FC as the β ratio exceeds ~2.5 (Figure 5C). Similar results are obtained 377 

with alternative values for the scaling parameters. Together the model demonstrates 378 

that with increasing deviation from isometry, or increasing inter-group differences in 379 

scaling, the detection of true shifts in gene expression becomes increasingly 380 

inaccurate, potentially leading to substantial numbers of false negatives. 381 

 382 

ii. Biological examples 383 

 384 

Testes size in male morphs 385 

Relative testes size can vary dramatically across species, often in association with 386 

reproductive competition imposed by multiple-mating in females (Harcourt et al. 387 

1981; Hosken & Ward 2001). In many species multiple male morphs have evolved to 388 

exploit alternative reproductive strategies (Gross 1996; Sinervo & Lively 1996). 389 

These morphs typically reflect trade-offs in pre and post-copulatory male-male 390 
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competition, and by extension, investment in sperm production and testes size. Many 391 

studies of gene expression in smaller organisms, such as insects, utilise whole-body 392 

samples in order to avoid laborious dissections and/or to obtain sufficient RNA for 393 

sequencing. However, as whole-body samples are particularly prone to tissue scaling 394 

problems, we explored how differences in testes size might affect results using 395 

published scaling parameters from log10-log10 regressions between soma and testis 396 

mass for two species of dung beetle, (Onthophagus taurus and O. binodis), a 397 

burrowing bee (Amegilla dawsoni), and an earwig (Forficula auricularia) (Tomkins 398 

& Simmons 2002). Each of these species has two male morphs, one that guards 399 

females and one that adopts a ‘sneaky’ male strategy.  We are not aware of any 400 

whole-body RNA-Seq analyses based on these particular species, but rather use them 401 

as an example of how the composition of the tissue sampled may affect perceived 402 

levels of differential expression between groups of individuals without the need to 403 

invoke morph-specific regulation of gene expression. 404 

 For each pair of morphs, we used the estimated morph-specific values of β and 405 

α to parameterise the model (Table S1), and varied the degree of tissue-bias (here, 406 

towards the testis) in expression for an average gene by setting Ca,y to 5,000 and Ca,x  407 

to range incrementally between 0 and 50,000, with S set to an realistic body mass. We 408 

also extended this range to include increases in Ca,y up to 50,000 whilst Ca,x  was set to 409 

0 (i.e. soma-specific gene expression). We then plotted the estimated log2-fold change 410 

in expression (FC) between the morphs against the degree of tissue-bias (log2(Ca,x)-411 

log2(Ca,y)). With the exception of O. taurus, the difference in gonad-soma scaling 412 

between morphs was sufficient to produce FC ≥0.5 for genes modelled as testis-413 

specific, with FC increasing with testis-specificity in expression (Figure 6A). 414 

We further explored how this effect might influence the kind of statistical 415 

methods used in real analyses by simulating a modest dataset of 1,000 genes for 5 416 

individuals of each morph using the scaling relationships as described above. Here, 417 

Ca,x and Ca,y  for each gene were set as equal, random numbers between 1 and 50,000 418 

with 100 testis-specific genes and 100 soma-specific genes. Across individuals Ca,x 419 

and Ca,y were constrained to be within 10% of expression level of the corresponding 420 

gene in the first simulated individual. Under these conditions we would not expect 421 

any evidence of significant expression differences between groups because there is no 422 

contribution of regulatory variation, as such, all gene expression differences are solely 423 

caused by scaling effects. When we plotted expression in both morphs against one 424 



 14 

another, the correlations are significant, but show a range of FC. Importantly, a 425 

proportion of genes is identified as ‘significantly differentially expressed’ between 426 

morphs using standard t-tests with no fold-change threshold (Table 1). We next used 427 

these data in two multivariate analyses, often utilised in RNA-Seq studies. First we 428 

used a Principal Component Analysis (PCA) to compress the variation in the dataset 429 

into PCs, we then asked if these PCs are significantly different between morphs using 430 

a t-test. Second we used hierarchical clustering to test if the simulated data can 431 

separate each morph. In three of the four cases the clustering grouped morphs by gene 432 

expression and had one PC significantly associated with morph, accounting for 10-433 

16% of variance (Figure 6B-E). Note, these values will depend on the permitted 434 

degree of variation in expression of a gene between simulations. However,  in each of 435 

these analyses the influence of allometry directly reflects differences in the estimated 436 

ratio of percentage testis volumes between morphs (Table 1). 437 

 438 

Cellular scaling in mammalian brains 439 

Many comparative studies have been conducted across species with the aim of 440 

identifying species-specific shifts in gene expression. These may focus on specific 441 

organs or tissues, but the scaling relationships among cell types could potentially 442 

drive some of the observed patterns. Recently interspecific datasets on the cellular 443 

composition of mammalian brain regions have revealed variation in the scaling 444 

relationship between neurons and non-neuronal cells between brain regions, and for 445 

individual structures across mammalian orders (Herculano-Houzel et al. 2015). We 446 

used these data to explore how allometric relationships between cell types might 447 

affect estimates of relative levels of gene expression across species. Using published 448 

data we re-estimated the scaling relationship between neurons and non-neuronal cells 449 

for two brain structures, the cerebral cortex and cerebellum, across two mammalian 450 

orders, glires and primates, using Phylogenetic Generalised Least Square Regressions 451 

(Pagel 1999) (Table S2). We used these scaling parameters to explore how variation 452 

in cellular scaling might affect comparative studies of gene expression on brain tissue. 453 

 We first examined the effects of varying S assuming a conserved allometric 454 

relationship between neuron and non-neuronal cell number within each order. By 455 

setting x1 to the minimum and x2 maximum values of non-neuronal cell number 456 

observed in each dataset we asked what size of log2-fold change (FC) in gene 457 

expression might be observed when comparing gene expression across species within 458 
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each order, at varying levels of cell-bias in gene expression. The results demonstrate 459 

moderate FC are expected, but their range varies across structures and orders (Figure 460 

7). For the cerebral cortex (Figure 7, panel A), variation in S in primates produces 461 

more modest FC than observed in glires with the largest FC (1.49) predicted for genes 462 

expressed exclusively in neurons. In contrast, for the cerebellum the pattern is 463 

reversed. Primates are predicted to show a greater range of FC as S varies, with the 464 

largest FC (-2.8) predicted for genes expressed exclusively in non-neuronal cells 465 

(Figure 7, panel B). This difference in pattern between cerebral cortex and cerebellum 466 

is most likely related to the pattern of variation in β, which is higher in primates for 467 

the cerebral cortex, and higher in glires for the cerebellum.  468 

 We next explored how the difference in allometric parameters would affect 469 

comparisons of individuals (with constant S, set to the approximated midpoint in the 470 

overlap in ranges of x between groups) in different orders (i.e. under different β and 471 

α). For the cerebral cortex the model predicts modest FC between the two orders (-472 

0.1<FC<0.3) (Figure 7, panel C), whereas for the cerebellum we predict a larger 473 

range in FC, with FC increasing as gene expression becomes increasingly biased 474 

towards non-neuronal cells (-0.97<FC<0.15) (Figure 7, panel D). The analyses above 475 

assume gene expression is related to cell number, independently of cell size, in the 476 

Supplementary Information we explore the effects of considering cell type mass, 477 

rather than number, which leads to broadly similar conclusions. 478 

   479 

Discussion 480 

Our results illustrate that non-isometric scaling relationships between tissue or cell 481 

types within groups of samples, and heterogeneity in scaling relationships across 482 

groups of samples, may influence inferred patterns of differential expression. This 483 

will occur at multiple biological levels, be it organ types within whole body samples, 484 

or cell type abundance when specific tissues are targeted for RNA extraction. We 485 

illustrated the effects of our model using simulated expression data, which we 486 

generated due to the absence of real RNA-Seq data from samples with accompanying 487 

morphometric-scaling information. Although a simplification of a complex problem, 488 

our model illustrates how the scaling relationships between sub-components of a 489 

heterogeneous tissue sample can result in apparent differences in expression without 490 
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changes in the regulatory control of a gene. In particular, we highlight the following 491 

conclusions: 492 

• Scaling will always affect estimates of relative expression except when all 493 

components of a sample scale isometrically. 494 

• Even where groups have common allometric scaling relationships, large 495 

differences in mean size between groups can lead to the appearance of 496 

differential expression. The effect increases with increasing deviation from 497 

isometry. 498 

• Small differences in the allometric coefficient (β) or allometric constant (α) 499 

between groups can produce large fold-changes in gene expression. The effect 500 

is greater with increased deviation in scaling parameters between groups. 501 

• In all cases the effect increases with tissue-bias in expression, and is most 502 

pronounced for genes expressed only in one tissue. 503 

• Tissue scaling effects can produce both false positive and false negative 504 

detection of differential gene expression between groups. 505 

 506 

Recommendations on how to minimise the influence of tissue scaling when inferring 507 

regulatory variation 508 

Differences in relative expression level between groups or across species will reflect a 509 

combination of measurement error, drift, selection and variation in tissue 510 

composition. We have presented a simple model that suggests variation in tissue 511 

composition caused by non-isometric tissue scaling between groups may have strong 512 

implications for identifying genes with altered regulation. The size of the effect is 513 

dependent on the variability in tissue composition, variability in tissue size, and the 514 

properties of scaling relationships between sub-components of the sampled tissue. 515 

Although the effect size varies, any consistent effect between groups that is greater 516 

than intra-group variation could produce signatures of significant differential gene 517 

expression without any underlying regulatory variation. In real datasets the effects are 518 

likely to be more complex than presented above, as variation in tissue size will 519 

interact with scaling parameters across multiple classes of cell or tissue types.  520 

Recent bioinformatic approaches have been developed to parse expression 521 

differences from heterogeneous samples (Gong & Szustakowski 2013; Li & Xie 522 

2013). These approaches can be useful if the goal is to identify heterogeneity in cell 523 

type abundance across samples. However, they may have limited scope for ecological 524 
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and evolutionary studies. First, they are based on the assumption of conserved 525 

regulatory architecture within similar cell types across samples, and may therefore 526 

struggle to identify regulatory variation in constituent cells. Second, they require 527 

information about transcriptional abundance in ‘pure’ samples of at least one sub-528 

tissue, and/or data on the proportions of constituent tissue types. This data is unlikely 529 

to be available for the majority of ecological studies, and if it were, it would often be 530 

a preferable source of the primary sequence data for analysis. In the absence of 531 

readily applicable bioinformatics tools we recommend the influence of tissue scaling 532 

should be considered in the design and analysis of comparative studies of gene 533 

expression. In particular we recommend the following approaches: 534 

 535 

1) Use fold-change thresholds: Small but consistent effects of tissue scaling may 536 

produce significant differences in gene expression when analyzed with standard 537 

pairwise statistical tests. Introducing fold-change thresholds when identifying 538 

differentially expressed genes will go a long way to reducing the false-positive 539 

effects of tissue scaling on downstream analyses. Based on the results described 540 

above, a log2-fold change of 1, as previously used in several studies (e.g. Pointer 541 

et al. 2013; Harrison et al. 2015), would provide an adequate threshold in a range 542 

of scenarios. We would recommend higher thresholds when comparing tissues or 543 

groups/species with increasingly different phenotypic sizes or compositions. It 544 

may also be necessary to consider higher thresholds for tissue-specific genes. Of 545 

course, fold-change thresholds do not avoid false negatives, and to combat the 546 

false positive inflation it may be necessary to accept an increase in false-negative 547 

rate. However, we note that many studies of gene expression have identified genes 548 

with considerably higher fold-changes between comparisons than we suggest as a 549 

minimal threshold. This is true both for candidate genes (e.g. Palmer et al. 2016) 550 

and transcriptome-wide analyses (e.g. Brawand et al. 2011 see Figure 3). 551 

Although sometimes controversial, adopting fold-change thresholds is therefore 552 

unlikely to be prohibitive to the inference of altered regulation in sufficiently well 553 

powered and well-designed studies. 554 

  555 

2) Know your phenotype: Many RNA-Seq experiments are conducted with the aim 556 

of understanding the molecular basis of divergent phenotypes, be they specific 557 

differences in the development of a trait or broad differences in individuals with 558 
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different behavioral or ecological strategies. At least a modest understanding of 559 

the phenotype in question is necessary to design informative studies of divergence 560 

in gene expression. Where possible, more precise tissue sampling will likely 561 

produce estimates of relative gene expression that more accurately reflect real 562 

variation in gene regulation. In addition to manual dissections, in ‘ideal’ 563 

conditions laser capture micro-dissection may provide a route to more accurate 564 

tissue sampling (Espina et al. 2006).  In the many situations where such an 565 

approach is currently infeasible, quantifying variation in the size or composition 566 

of tissue to be analyzed may still help improve both experimental design and the 567 

interpretation of results. Estimates of scaling parameters between major tissues in 568 

the sample, either measured directly from samples for RNA-Seq, or approximated 569 

from comparable phenotypic studies, can be used to estimate the fold-change 570 

thresholds needed to minimize the effects of tissue scaling and maximize power to 571 

detect true signals of regulatory divergence. Technical difficulties in performing 572 

dissections while maintaining RNA integrity, small organism size, or simply time 573 

and expense required for additional samples, may still prevent collecting data on 574 

scaling parameters. In cases such as these, ruling out the contribution of tissue 575 

scaling is more difficult, but steps can still be taken to minimize the effect, for 576 

example by implementing more conservative fold-change thresholds. 577 

 578 

3) Be wary of tissue-specific genes: Our model suggests genes with strong tissue- 579 

or cell-biased expression will be particularly prone to large changes in expression 580 

level caused by tissue scaling, and the most susceptible genes are tissue- or cell-581 

specific. Where possible, genes identified as being differentially expressed in 582 

heterogeneous tissue samples should be examined for over-representation of 583 

tissue-specific genes in detailed expression databases, such as Flybase (Attrill et 584 

al. 2015) or the Mouse Atlas (Richardson et al. 2014). Of course, this is only 585 

possible in model species and their close relatives. It is also worth noting that 586 

tissue-biased genes may be more amenable to the action of selection, and/or may 587 

have biologically important roles in the phenotype of interest. It may therefore be 588 

reasonable to expect tissue-biased genes to be among the most differentially 589 

expressed genes in a comparative study using RNA-Seq for multiple reasons.  590 

 591 
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4) Be wary of divergence along single principal components: Multivariate 592 

analyses have frequently been applied to gene expression studies to show that 593 

different groups of individual samples can be distinguished based on their patterns 594 

of gene expression (e.g. Brawand et al. 2011; Ghalambor et al. 2015). Our 595 

analyses suggest this result can be produced solely by differences in tissue 596 

composition. The variance accounted for by this effect will depend on the relative 597 

balance between within group variation and the effect size of any scaling 598 

differences between groups. We expect that in many cases the scaling effects will 599 

primarily load on one single Principal Component (see Figure 6). To demonstrate 600 

that groups of samples are genuinely distinct in their transcription patterns we 601 

recommend requiring isolation across at least two dimensions in any multivariate 602 

analysis. We also note that where phenotypic data can be collected, it may be 603 

possible to include this in a multivariate analysis of gene expression to control for 604 

major differences in tissue composition between groups. 605 

 606 

5) Introduce phenotypic data into neutral models of gene expression: Although 607 

we have focused on pairwise comparisons of groups, the effects of tissue scaling 608 

will also affect phylogenetic analysis of gene expression. For example, an 609 

Ornstein-Uhlenbeck (OU) model has been proposed as a potential model of 610 

expression divergence, facilitating the identification of shifts in expression that 611 

were putatively caused be selection (Brawand et al. 2011; Rohlfs et al. 2014). OU 612 

models simulate adaptive optima across a phylogeny with stabilizing selection 613 

constraining divergence around these optima (Martins 1994; Beaulieu et al. 2012). 614 

The presence of multiple optima is interpreted as evidence of variation in 615 

selection pressure across species. We suspect that tissue scaling could also 616 

produce a pattern of divergence across species which is similar to that predicted 617 

under an OU model. Where species in a phylogenetic dataset vary extensively by 618 

size, or differ in their scaling relationships, patterns of expression linked to tissue 619 

composition may not fit an OU model with a single optimum, giving the 620 

appearance of adaptive changes in expression level. Similar effects could be 621 

imagined under alternative comparative models which may prove useful for 622 

studying gene expression if large enough datasets can be assembled, such as 623 

incorporating heterogeneity in evolutionary rate across branches of a phylogeny 624 

(Venditti et al. 2011). We suggest further exploration of how the effects of tissue 625 
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scaling may affect these methods is necessary. If found to be prohibitive, one 626 

solution may be to incorporate phenotypic variation in the null model as an 627 

explicit error term, as has been done in studies of intraspecific variation (Rohlfs et 628 

al. 2014), or as a co-factor in the analysis.  629 

 630 

6) Single-cell transcriptome analysis: Analysis of gene expression within single 631 

cells is becoming an increasingly feasible option (Sandberg 2014). Single-cell 632 

transcriptomics is free from the complicating effects of scaling between 633 

components of a heterogeneous tissue sample making the inference of regulatory 634 

change more direct. However, these analyses remain technically difficult partly 635 

because they require either cell culture or dissociation of cell aggregates from 636 

live-caught samples, and partly because they require many replicates of many cell 637 

types to uncover the full regulatory diversity of any single organ. Due to the need 638 

for increased amplification steps, single-cell analyses may also require substantial 639 

replication to overcome inaccuracy in measuring all but the highest expression 640 

ranges. The combination of technical difficulty, cell culture or disaggregation and 641 

expense from extra replication may discourage many labs from adopting single-642 

cell analysis for evolutionary or ecological questions, particularly in non-model 643 

species. However, as with all next-generation technologies, improvements may 644 

soon remove some of these technical barriers leaving sample availability and 645 

collection as the primary limiting step. 646 

 647 

Conclusion 648 

Comparative analysis of gene expression provides a potentially powerful tool in the 649 

evolutionary biologist’s toolkit. In an ecological or evolutionary context, most studies 650 

utilizing this tool aim to understand the relationship between variation in the 651 

regulation of gene expression and phenotypic variation. We have argued that our 652 

ability to infer this relationship can be affected by the scaling relationships between 653 

sub-tissues of the sample used to obtain RNA. In some scenarios the effect can 654 

produce the appearance large fold changes in gene expression. We have presented a 655 

simple model to explore whether, and under what scenarios, tissue scaling can 656 

produce perceptions of large expression differences without altered gene regulation. 657 

Our results suggest that under non-isometric scaling, or when comparing individuals 658 

with different scaling relationships, the effects can be moderate to severe. Based on 659 



 21 

these analyses, we have suggested a number of experimental and analytical 660 

approaches that may go some way to minimising the effects of tissue scaling on down 661 

stream analyses of genes with divergent gene expression. The absence of datasets 662 

with both gene expression datasets and information on tissue scaling relationships has 663 

prevented a full exploration of these effects in real data. The addition these kinds of 664 

datasets, potentially derived from experimental mixing of cell cultures, would permit 665 

a useful test of our results and may potential provide further improvements on how to 666 

analyse expression data derived from heterogeneous tissues. However, we note many 667 

of the effects we describe are observable in published work and are most notable 668 

where direct comparisons can be made between whole-body and tissue-specific 669 

expression datasets. For example, Perry et al. (2014) showed that tissue specific 670 

sequencing of gonad transcriptomes produce greater numbers of sex-biased genes, 671 

consistent with the effects of somatic tissue diluting this signal in whole-body RNA 672 

libraries. Although we fully expect comparative studies of gene expression to 673 

continue to illuminate the gene-phenotype relationship, we caution against the naïve 674 

assumption that all differences in expression level are the result of altered gene 675 

regulation. 676 
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Tables 844 

Table 1. Results of the simulated data sets based on scaling parameters between male morphs of multiple insects 845 

 846 

 
Pearson correlation log2-fold change (N) differentially expressed1 

Species r p mean minimum maximum p < 0.05 p < 0.001 
Onthophagus binodis 0.995 <0.001 -0.233 -2.239 0.007 121 (111) 106 (103) 
Onthophagus taurus 0.999 <0.001 0.003 -0.001 0.026 1 (0) 0 (0) 
Forficula auriculaira 0.998 <0.001 -0.104 -0.866 0.014 166 (126) 119 (96) 
Amegilla dawsoni 0.999 <0.001 -0.05 -0.473 0.002 107 (101) 79 (31) 

 847 
1 numbers in parentheses are after Bonferoni correction for multiple tests. 848 

 849 

 850 

 851 

 852 

 853 

 854 

 855 

 856 

 857 

 858 

 859 
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Figure legends 860 

 861 

Figure 1. Types of scaling relationships and how they shape proportional size.  862 

Here we show a hypothetical comparison between two groups of individuals which 863 

may differ in size and which are comprised of two tissues. In each scenario, row 1 864 

shows the relationship between tissue A and total size for individuals from two groups 865 

(red and blue). The scaling relationships are determined by the allometric equation y = 866 

αxβ, whereβ is the scaling coefficient and αis the scaling constant. Row 2 shows 867 

illustrative examples of individuals from each group imagining tissue A as gonad size. 868 

Note, this is only an example and components tissues can be any aspect of 869 

morphology. Row 3 shows an illustration of how the proportion of tissue A (coloured) 870 

varies between groups as a result of the scaling relationship and differences in mean 871 

size. Row 4 shows the effects these proportional differences might have on relative 872 

gene expression, illustrated with box whisker plots.  873 

 874 

Figure 2. Effects of size differences under conserved allometric scaling. A) Effects 875 

of comparing two groups with different total sizes under alternative scaling 876 

coefficients, β. The log2-fold change is plotted against the ratio of the total size of two 877 

groups. In this comparison x = 10 in group one and varied x in group two between 0.1 878 

and 100. Effects of comparing two groups with different levels of tissue-biased 879 

expression B) under hyper-allometry (β = 2) and C) under hypo-allometry (β = 880 

0.1). In B and C coloured lines indicate comparisons where expression of gene a is set 881 

to 5,000 in component y and it’s expression in component x is varied as indicated in 882 

the colour key. The black dashed line indicates a comparison where expression of 883 

gene a is set to 0 in component y and 5,000 in component x. Dashed grey lines 884 

indicated a FC of ±1, often used as a threshold of significant difference in expression. 885 

 886 

Figure 3. Effects of varying the allometric constant between groups. A) Effects of 887 

comparing two groups with different scaling constants, α, across different shared 888 

scaling coefficients (β), with α in group one set to 0.1 and varying α in group two 889 

between 0.1 and 10. The effects of comparing two groups with different α across 890 

different levels of tissue-biased expression B) under hyper-allometry (β = 1.5) and C) 891 

under hypo-allometry (β = 0.5). In B and C coloured lines indicate comparisons where 892 
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expression of gene a is set to 5,000 in component y and it’s expression in component 893 

x is varied as indicated in the colour key. The black dashed line indicates a 894 

comparison where expression of gene a is set to 0 in component y and 5,000 in 895 

component x. The log2-fold change is plotted against the ratio of the α of each group. 896 

Dashed grey lines indicated a FC of ±1. 897 

 898 

Figure 4. Effects of varying the allometric coefficient between groups. Effects of 899 

comparing two groups with different scaling coefficients, β, across different units of 900 

size (x) with A) β in group one set to 0.5 and varying β in group two between 0.1 and 901 

3, and B) β in group one set to 1.5 and varying β in group two between 0.1 and 3.  902 

Effects of comparing two groups with different levels of tissue-biased expression with 903 

C) β in group one set to 0.5 and varying β in group two between 0.1 and 3 and D) β in 904 

group one set to 1.5 and varying β in group two between 0.1 and 3. In C and D 905 

coloured lines indicate comparisons where expression of gene a is set to 5,000 in 906 

component y and it’s expression in component x is varied as indicated in the colour 907 

key. The black dashed line indicates a comparison where expression of gene a is set 908 

to 0 in component y and 5,000 in component x. The log2-fold change is plotted against 909 

the ratio of the β of each group. Dashed grey lines indicated a FC of ±1, often used as 910 

a threshold of significant difference in expression. 911 

 912 

Figure 5. Tissue scaling effects can mask true positives. A) Effects of non-isometric 913 

but conserved scaling on the detection of a differentially expressed gene. Two groups 914 

were modelled with conserved scaling constant, α (0.1), and scaling coefficient, β 915 

(1.5), values but different total sizes. The estimated log2-fold change is plotted against 916 

the mass ratio, setting x in group one to be 10, and varying x in group two between 0.1 917 

and 100. B) Effects of ‘grade-shifts’, or group differences in α, on the detection of a 918 

differentially expressed gene. Two groups were modelled with conserved sizes (x = 919 

10) and β (1.5) values but different α values. The estimated log2-fold change is plotted 920 

against the mass ratio, setting α in group one to be 0.1, and varying x in group two 921 

between 0.1 and 10. C) Effects of group differences in β on the detection of a 922 

differentially expressed gene. Two groups were modelled with conserved sizes (x = 923 

10) and α (0.1) values but different α values. The estimated log2-fold change is plotted 924 

against the mass ratio, setting β in group one to be 1.5, and varying β in group two 925 

between 0.1 and 3. In each case expression of gene a in subcomponent y is 5,000. In 926 
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group one expression of a in x is 5,000 but expression of a in x varies in group two 927 

taking values of either 20,000, 10,000, 5,000, 2,500 or 1,250 (representing log2-fold 928 

change values of 2, 1, 0, -1 and -2 respectively).  929 

 930 

Figure 6. Predicted differences in relative expression level between male morphs 931 

of multiple species of insect based on testis~soma scaling. A) Predicted fold-change 932 

in expression across different levels of tissue-biased expression (Ca,x = gonad 933 

expression, Ca,y = soma expression). B-E) Results of Principal Component Analyses 934 

(B1-E1) and hierarchical clustering (B2-E2) using simulated datasets from the model 935 

paramterised using testis~soma scaling relationships for O. taurus (B), A. dawsoni 936 

(C), F. auricularia (D) and O. binodis (E). In the PCAs, we plot the PC significantly 937 

associated with morph type (indicated by *) against PC1. Colours indicate different 938 

categories of male morph. 939 

 940 

Figure 7. Predicted differences in relative expression level between or within 941 

primates and glires based on scaling relationships between neuron number and 942 

non-neuronal cell number in the cerebral cortex and cerebellum. A-B) Predicted 943 

fold-change between two groups representing the smallest and largest individuals 944 

within primates (blue) and glires (red) assuming conserved, order-specific scaling 945 

relationships and varying levels of tissue-biased expression. A) Results for cerebral 946 

cortex and B) results for cerebellum. C-D) Predicted differences in gene expression 947 

between two group of individuals, one with glire-scaling relationships and one with 948 

primate-scaling relationships, but which have an equal, constant size. Results show 949 

the predicted fold-change across different levels of tissue bias for C) the cerebral 950 

cortex, and D) the cerebellum.  951 

 952 
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