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Abstract7

A parameterization is proposed for the effects of symmetric instability (SI) on a resolved front. The parame-8

terization is dependent on external forcing by surface buoyancy loss and/or down-front winds, which reduce9

potential vorticity (PV) and lead to conditions favorable for SI. The parameterization consists of three parts.10

The first part is a specification for the vertical eddy viscosity, which is derived from a specified ageostrophic11

circulation resulting from the balance of the Coriolis force and a Reynolds momentum flux (a turbulent Ek-12

man balance), with a previously proposed vertical structure function for the geostrophic shear production.13

The vertical structure of the eddy viscosity is constructed to extract the mean kinetic energy of the front at a14

rate consistent with resolved SI. The second part of the parameterization represents a near-surface convective15

layer whose depth is determined by a previously proposed polynomial equation. The third part of the pa-16

rameterization represents diffusive tracer mixing through small-scale shear instabilities and SI. The diabatic,17

vertical component of this diffusivity is set to be proportional to the eddy viscosity using a turbulent Prandtl18

number, and the along-isopycnal tracer mixing is represented by an anisotropic diffusivity tensor.19

Preliminary testing of the parameterization using a set of idealized models shows that the extraction of20

total energy of the front is consistent with that from SI-resolving LES, while yielding mixed layer stratifi-21

cation, momentum, and potential vorticity profiles that compare favorably to those from an extant boundary22

layer parameterization (Large et al., 1994). The new parameterization is also shown to improve the vertical23

mixing of a passive tracer in the LES.24

Keywords: symmetric instability, front, submesoscale, geostrophic shear production, parameterization,25

mixed layer26

1. Introduction27

The oceanic surface mixed layer is the contact point between the atmosphere and the ocean, and is28

responsible for communicating atmospheric fluxes into the ocean interior, including fluxes associated with29

heat, momentum, carbon, oxygen, and other tracers. In addition to influencing transport into the ocean30

interior, atmospheric fluxes strongly influence the dynamics within the mixed layer itself and drive vertical31

mixing. At the same time, lateral density gradients tend to increase the vertical stratification within the mixed32
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layer (Tandon and Garrett, 1994, 1995; Hosegood et al., 2006). Submesoscale turbulence is the byproduct of33

the dynamical interplay between lateral density gradients and atmospheric forcing, and has been the focus34

of many recent studies (e.g. Boccaletti et al., 2007; Capet et al., 2008b,c,d; Thomas et al., 2008; Thomas and35

Ferrari, 2008; Mahadevan et al., 2010; McWilliams, 2010; Hamlington et al., 2014; Callies et al., 2015).36

The oceanic submesoscale is typically defined as occupying a range of horizontal scales between 100 m37

and 10 km. Models with an O(1) km horizontal grid permit many of the important dynamical processes at38

these scales (e.g., Oschlies, 2002), especially the largest fronts and baroclinic instabilities. A more precise39

definition of submesoscales are those which are marginally constrained by rotation and stratification (the40

Rossby and Richardson numbers are both O(1) (Thomas et al., 2008)) and thus feature both geostrophic and41

ageostrophic components. Submesoscale dynamics are typically considered to be hydrostatic, which places42

a lower bound on the range of horizontal scales near the mixed layer depth, or O(100) m, as the aspect ratio43

approaches unity. Because the Rossby number is near one, the characteristic timescale is 1/ f ' O(1) day,44

which is much faster than the mesoscale and results in submesoscales playing a leading role in the evolution45

of the mixed layer in response to atmospheric forcing. Finally, submesoscale eddies frequently arise as a46

result of straining by mesoscale eddies, and their own strain fields in turn beget submesoscale frontogenesis47

(Shakespeare and Taylor, 2013, 2014) and a wide variety of small-scale instabilities that cascade energy48

down to dissipative scales (Capet et al., 2008b; Molemaker and McWilliams, 2010).49

It is the fast evolution of the submesoscale in conjunction with atmospheric forcing that is of principal50

dynamical interest here. The submesoscale features lateral density gradients that arise via eddy straining,51

preconditioning the flow to convective instabilities driven by both the wind and surface buoyancy forcing.52

In particular, when the wind blows in a down-front direction the Ekman transport of dense fluid over light53

can destabilize the mixed layer. Buoyancy forcing can either exacerbate this destabilization in the case of a54

positive flux (where the positive z direction is taken to be out of the ocean) or mitigate it for a negative flux.55

Which among the “zoo” of possible submesoscale instabilities that may arise depends heavily on the local56

relative vorticity (Haine and Marshall, 1998; Thomas et al., 2013; Shcherbina et al., 2013).57

Of the many types of submesoscale instability that arise in the mixed layer, baroclinic instability has58

thus far received the most attention (e.g. Boccaletti et al., 2007; Fox-Kemper et al., 2008). From a modelling59

perspective, the dynamics of baroclinic instability are fairly well-understood and have led to an extensive60

body of research about how it should be parameterized in eddy-free general circulation models (GCMs).61

The success of the most well-known of these parameterizations, the Gent and McWilliams (1990) parame-62

terization for mesoscale baroclinic instability, has led to several subsequent papers regarding the nature of63

tracer transport by subgridscale motions in a variety of dynamical regimes (Gent et al., 1995; Tandon and64

Garrett, 1996; Dukowicz and Smith, 1997; Killworth, 1997; Treguier et al., 1997; Griffies, 1998; Griffies65

et al., 1998; Greatbatch, 1998; Smith and Gent, 2004, and more). A similar conceptualization to that of Gent66

and McWilliams (1990) underlies the parameterization of mixed-layer, ageostrophic baroclinic instability at67

submesoscales (Fox-Kemper et al., 2008; Fox-Kemper and Ferrari, 2008; Fox-Kemper et al., 2011).68

A new modelling challenge arises when the resolution of an ocean model permits partial resolution of69

the eddy field. At this point parameterizations must be carefully constructed and previous parameterizations70

carefully recast so that they do not either outcompete the resolved eddies for energy (e.g. Henning and71

Vallis, 2004) or double-count the effects of the eddies (Delworth et al., 2012). Unlike Gent and McWilliams72

(1990), the parameterization of Fox-Kemper et al. (2011) explicitly depends on the model grid scale and thus73

exemplifies how physical scalings may allow parameterizations to be recast to adapt to increasing model74

resolution. Fox-Kemper et al. (2011) can be used even when large mixed layer eddies (hereafter MLE) are75

resolved. The parameterization for oceanic symmetric instability (hereafter SI) put forth here is intended to76

be used in models where some fronts and large-scale frontal instabilities (e.g., baroclinic instabilities) are77

resolved or handled with scale-adaptive parameterizations, but the smaller frontal instabilities, in particular78
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symmetric instabilities, are not resolved. Many high-resolution nested and regional models fall into this79

category (e.g., Capet et al., 2008a,b; Lévy et al., 2010; Sutherland et al., 2011; Mensa et al., 2013; Zhong80

and Bracco, 2013; Molemaker et al., 2015; Rosso et al., 2015; Siedlecki et al., 2015; Gula et al., 2016).81

In addition to parameterizations for mesoscale and submesoscale baroclinic instability, many param-82

eterizations exist for small-scale turbulence and mixing. Shear and convective instability are commonly83

parameterized (for example by Kraus and Turner, 1967; Mellor and Yamada, 1982; Large et al., 1994) and,84

more recently, Langmuir turbulence (e.g., McWilliams and Sullivan, 2000; Smyth et al., 2002; Grant and85

Belcher, 2009; Van Roekel et al., 2012; Harcourt, 2013; Li et al., 2015). Recent work has shown that the86

mixed layer stratification, energy dissipation, and resolved eddy behavior can be highly sensitive to the de-87

tails of such parameterizations (e.g. Mukherjee et al., 2016). To date, however, no parameterization exists88

for SI despite observations of its effects on the shear, stratification, and dissipation of kinetic energy in the89

surface mixed layer (D’Asaro et al., 2011; Thomas et al., 2016).90

Numerical simulations with an O(1) km grid that resolve submesoscale fronts and larger MLE typically91

do not resolve smaller SI. Thus, it is desirable to have a parameterization for the O(100) m SI so that92

submesoscale simulations of an active field of fronts do not require the added cost of resolving the SI (e.g.,93

Fox-Kemper and Ferrari, 2008), just as KPP or other turbulence parameterizations are used to avoid the94

cost of resolving O(1) m features (e.g., Hamlington et al., 2014). The goal of this paper is to propose95

a framework for a parameterization that approximates the restratification and tracer mixing by SI in the96

case where SI modes are unresolved, but the front that undergoes SI is resolved. The performance of this97

parameterization under different forcing scenarios is evaluated against the results of SI-resolving Large Eddy98

Simulations (hereafter LES, e.g. Taylor and Ferrari, 2010; Thomas et al., 2013; Hamlington et al., 2014) in99

some representative cases.100

2. Basics of Symmetric Instability101

The principal focus here, SI, arises in baroclinic flows featuring a lateral density gradient and an associ-102

ated vertically sheared geostrophic flow. SI is typified by overturning circulations about an axis aligned with103

the geostrophic flow, typically with the flow along density surfaces (Eliassen, 1949). Assuming a geostrophi-104

cally balanced flow with buoyancy gradients N2 = ∂b/∂z and ∇hb = (∂b/∂x, ∂b/∂y), the SI growth timescale105

T and horizontal lengthscale L may be estimated for constant shear and stratification (Stone, 1966) as106

min(T ) =
H
U

√
Rib

√
1 − Rib

, max(L) = 2
U
f

√
1 − Rib, (1)

where Rib is the balanced Richardson number,107

Rib =
N2 f 2

|∇hb|2
. (2)

For typical ocean mixed layer parameters in conditions favorable for SI, 0.01 ≤ U ≤ 0.1 m s−1, 25 ≤108

H ≤ 100 m, and 0.25 ≤ Rib ≤ 0.95, which imply SI timescales ranging from one minute to an hour and109

lengthscales of 50 to 2500 m. These are much smaller than the timescale of 14 to 18 hours and lengthscale110

of 600 m to 8 km for MLE (e.g. Fox-Kemper et al., 2008, equations 2 and 3), highlighting the potential111

importance of SI to the evolution of the mixed layer on fast time scales. The corresponding SI mixing112

rates can be estimated using in situ measurements of density, wind, and surface heat flux, and are compared113

against those of MLE in Appendix A.114
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SI occurs when the sign of the Ertel potential vorticity115

q =
(

f k̂ + ∇ × u
)
· ∇b (3)

is anticylonic–i.e., where q is opposite in sign to the Coriolis parameter f , so that f q < 0 (Hoskins, 1974).116

Here u is the velocity, k̂ is a unit vector in the vertical, and b = −g (ρ − ρ0) /ρ0 is the buoyancy, which117

is defined in terms of the gravitational acceleration g, density ρ, and constant background density ρ0. The118

condition f q < 0 is most straightforwardly satisfied in convective conditions
(
N2 < 0

)
which can give rise to119

gravitational instability, or inertial instability when N2 > 0 and ζa < 0, where ζa = ωωωa · k̂ = f −∂u/∂y+∂v/∂x120

is the vertical component of the absolute vorticityωωωa. These types of instability are not the focus of this study121

and will not be mentioned further.122

In the presence of a lateral density gradient, it is possible that f q < 0 even when N2 > 0 and ζa > 0. This123

is most readily seen by assuming that to leading order the flow is in thermal wind balance so that124

f k̂ ×
∂ug

∂z
= −∇hb, (4)

by which125

f q = f ζaN2 − |∇hb|2 . (5)

This expression makes clear how lateral buoyancy gradients can “precondition” a flow to instability. When126

surface forcing reduces the vertical stratification, the destabilizing baroclinic term, − |∇hb|2, becomes rela-127

tively more important and can eventually cause f q to fall below zero.128

A parallel condition to f q < 0 can be written in terms of the stratification as well as the vorticity,129

when the flow and vorticity are relatively uniform and Ekman shear and surface wave effects are negligible130

(McWilliams and Fox-Kemper, 2013; Hamlington et al., 2014; Haney, 2015; Haney et al., 2015). In terms131

of the Richardson number, it can be shown that f q < 0 corresponds to Rib < f /ζa (Haine and Marshall,132

1998). If the geostrophic flow features negligible vertical relative vorticity then f q = f 2N2 − |∇hb|2 and133

Rib < 1 becomes the sufficient condition for SI to develop (Taylor and Ferrari, 2009, 2010). It should134

be emphasized, however, that f q < 0 is a more general and stringent criterion. SI-resolving simulations135

when shear and stratification vary substantially show that the potential vorticity criterion holds even when136

no relevant Richardson number criteria exist (Haney, 2015; Haney et al., 2015). The test cases examined137

here fall into the simple category where the Richardson number and potential vorticity criterion are identical.138

Extension to other scenarios where this is not the case (e.g., Hamlington et al., 2014; Haney, 2015; Haney139

et al., 2015) will be tested in future work.140

In the surface mixed layer, the anticyclonic PV criterion can be created by surface forcing of PV that is141

destabilizing (Thomas, 2005). When f q < 0 SI is the most unstable mode for 0.25 < Rib < 0.95 (Stone,142

1966, 1970), and will act to restore the fluid to a marginally stable state (Thorpe and Rotunno, 1989) by143

mixing in fluid of higher PV from either the thermocline or the surface (Taylor and Ferrari, 2009). The mixed144

layer is restratified in density as part of this process, achieving a buoyancy frequency of N2 = |∇hb|2 / f ζa145

upon becoming marginally stable to SI when f q = 0. The SI-neutral state may still be unstable to other,146

generally slower, forms of instability such as mixed layer baroclinic instability (MLI).147

As noted in Fox-Kemper et al. (2008), restratification by SI typically exceeds the frontal restratification148

rate of MLI (see also Appendix A). MLI is unlike SI in that it is nearly in thermal wind balance in all149
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directions and occurs at larger, more easily resolved, scales. In a freely decaying front, SI first restratifies150

the front until the front is no longer unstable to SI, which usually coincides with a Richardson number based151

on the thermal wind shear Rib = N2 f 2/ |∇hb|2 > f /ζa. For f q > 0, SI are stabilized, but MLI continues to152

extract potential energy from the front and restratify. However, when the ocean is forced by convection or153

downfront winds, f q may be kept below zero for some time, producing forced SI (Taylor and Ferrari, 2010).154

Due to their scale separation, SI and MLI may form simultaneously with SI developing along sharp fronts155

and filaments generated by straining associated with mixed layer eddies. Smaller, nonhydrostatic convective156

or Langmuir instabilities may also co-exist with SI (Hamlington et al., 2014).157

SI predominately grows by extracting mean kinetic energy from the geostrophic shear. The rate of this158

growth in the turbulent kinetic energy (TKE) budget is given by the geostrophic shear production159

GS P = −u′w′ ·
∂ug

∂z
, (6)

where the overbar denotes an average over the SI scale. Although for a flow with arbitrary rotation, strat-160

ification, and forcing, mixed modes (a combination of baroclinic, symmetric, gravitational, and inertial161

instabilities, and Langmuir circulations) may develop which derive energy from other sources in the turbu-162

lent kinetic energy budget as well (Li et al., 2012; Thomas et al., 2013), the geostrophic shear production163

is identified as the principle energy source for SI (Bennetts and Hoskins, 1979; Thomas and Taylor, 2010;164

Thomas et al., 2013).165

SI also acts as a downscale energy pathway for geostrophic flows. As energy is extracted from the166

geostrophic shear and the front is weakened, geostrophic adjustment can be expected to lead to a subsequent167

slumping of isopycnals and a release of mean potential energy. Taylor and Ferrari (2009) show that SI168

motions undergo a secondary Kelvin-Helmholtz shear instability, which eventually leads to enhanced small-169

scale dissipation and mixing. SI thus facilitates a conversion of available potential energy associated with170

the sloping isopycnals and geostrophic flow into TKE. SI can be sustained in the presence of surface forcing171

which continually contributes to the destruction of PV. The PV evolves according to172

∂q
∂t

= −∇ · J, (7)

where, usingωωωa = f k̂ + ∇ × u,173

J = uq︸︷︷︸
1

+∇b × F︸  ︷︷  ︸
2

−ωωωa
Db
Dt︸ ︷︷ ︸

3

(8)

is a PV flux consisting of 1 advective, 2 frictional, and 3 diabatic components. Here F is a frictional174

or non-conservative body force and Db/Dt is the Lagrangian rate of change of buoyancy. At the surface175

boundary the frictional and diabatic forcing can supply negative anticyclonic potential vorticity and sustain176

SI if177

f k̂ ·
(
∇hb × F −ωωωa

Db
Dt

)
> 0. (9)
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B0 > 0 τ w

EBF > 0

Figure 1: Schematic of conditions favorable to the development of mixed layer SI. Down-front winds (thick arrow) drive an Ekman
transport perpendicular to the wind vector and across the front (horizontal arrows), carrying dense water over light water. The associated
Ekman buoyancy flux (EBF > 0), in conjunction with atmospheric cooling (B0 > 0), reduces the stratification near the surface, destroys
PV, and drives the fluid toward an S I-unstable state. The instability extracts energy from the geostrophic shear, and leads to enhanced
turbulence and vigorous mixing along isopycnals (colored planes). The resulting circulation consists of overturning cells of alternating
orientation (ellipses, with arrows indicating flow direction) and acts to bring light water over dense water in opposition to the EBF,
restratifying the mixed layer.

This combination of frictional and diabatic forcing drives PV toward anticyclonic values (Figure 1).178

Thomas (2005) showed that (9) can be related to the surface forcing via an effective buoyancy flux, namely179

that PV is destroyed if180

FS I =

(
τw × k̂
ρ0 f

)
· ∇hb

∣∣∣∣∣∣
z=0︸                 ︷︷                 ︸

EBF

+B0 > 0. (10)

Here
(
τw × k̂

)
/ρ0 f is the Ekman transport and B0 is the surface buoyancy flux driven by atmospheric181

cooling or evaporation (positive values of either term decrease the buoyancy). FS I is used throughout the182

rest of this paper as a “forcing” term for SI; although this is not a forcing in the usual sense that it results183

directly in the formation of SI, it does act as part of the forcing of the PV equation (7) and thus tends to drive184

the flow toward a SI-unstable state. The term involving the wind stress is referred to as the Ekman buoyancy185

flux (Thomas, 2005; Thomas and Taylor, 2010; D’Asaro et al., 2011, hereafter EBF), which characterizes the186

horizontal transport of fluid across the buoyancy gradient in response to wind forcing. A positive EBF occurs187

during down-front winds, so that the Ekman transport advects fluid down the surface buoyancy gradient, or188

from the dense side of a front to the less dense.189

The relation (10) is fundamental to the parameterization proposed here. The subtitle of the work, “The-190

ory for Resolved Fronts” derives from the need to accurately estimate the covariance of wind components191

and horizontal buoyancy gradient in the first term of (10). The parameterization proposed here does not192

require sufficient model resolution to permit SI, but it does require sufficient resolution to accurately capture193

the surface PV flux. Fox-Kemper et al. (2011) statistically correct for coarse-resolution models’ tendency to194

underestimate buoyancy gradient magnitudes, but the SI parameterization requires both direction and mag-195

nitude estimates of the buoyancy gradient. In this work, it will be assumed that the resolved estimate of (10)196
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is adequate. The case of partially-resolved SI is discussed by Bachman and Taylor (2014).197

As previously noted, if the PV is low prior to a forcing event, then FS I > 0 will quickly lead to f q < 0.198

If the initial PV is large and positive, then FS I > 0 will tend to trigger small-scale convective and shear199

instabilities that will rapidly mix the near surface until nearly neutral (Rib ∼ 0.25) stratification and shear200

results along with geostrophic adjustment (Tandon and Garrett, 1994). Thus, regardless of the initial PV,201

FS I > 0 will soon result in conditions ripe for SI that may be sustained under continued forcing, or act to202

accelerate restratification so long as f q < 0. Alongside SI, mixed layer eddies will also act to restratify,203

but are generally slower to do so than SI whilst f q < 0, but they will persist even after f q > 0 or Rib >204

f /ζa. Under sustained FS I > 0, SI may remain the dominant restratifying instability, continually combining205

anticyclonic near-surface PV with subsurface cyclonic PV.206

Based on results from LES of forced SI, Taylor and Ferrari (2010) subdivided the low PV layer into two207

regions. Near the surface, in a ‘convective’ layer, turbulent mixing driven by surface cooling and down-208

front winds are able to maintain weak or even unstable stratification. The interior of the convective layer is209

associated with a positive vertical buoyancy flux, indicating a transfer of potential energy to kinetic energy.210

The magnitude of this buoyancy flux is predominantly set by the surface buoyancy flux even in the presence211

of a down-front wind stress (e.g. Thomas et al., 2013). Beneath the convective layer but still within the region212

of low PV, SI motions dominate the energy budget. In this ‘SI layer’ the buoyancy flux is generally small213

but negative, while SI extracts energy from the front through the GSP. The SI layer is also characterized by214

a stable stratification with Rib = O(1) and vigorous isoneutral mixing, i.e., mixing tracers along the neutral215

surfaces of density.216

The proposed parameterization in the following section will be developed by considering the basic form217

of the subgridscale terms in the primitive equations. In particular the variable Reynolds stresses will be218

parameterized so that the total reduction of resolved energy matches that from LES (e.g. Taylor and Ferrari,219

2010; Thomas and Taylor, 2010; Thomas et al., 2013). The parameterization must also capture the sensitivity220

of SI to surface forcing, and be able to distinguish the boundary between the convectively-dominated and SI-221

dominated sublayers. Finally, the parameterization will also specify a variable isoneutral diffusivity, which222

mixes resolved tracer gradients in the SI layer and produces the desired profile of the vertical buoyancy flux223

w′b′ in the convective layer, ensuring proper restratification and mixing of active and passive tracers.224

3. The SI Parameterization225

3.1. The Basic Constituents226

The goals of the parameterization are to represent the following processes:227

228

(1) Appropriate mixing of momentum, buoyancy, and tracers during destabilization by FS I > 0.229

(2) Extraction of energy from the resolved flow by SI.230

(3) Along-isopycnal dispersion of tracers by SI.231

232

A successful parameterization should also meet the following conditions:233

234

(4) No effect when FS I ≤ 0 or ∇hb̄ = 0 or f q > 0.235

(5) Act only in the SI-unstable part of the surface boundary layer.236

(6) Maintain energetically consistent boundary conditions on momentum, buoyancy, and PV.237

238

The discussion at the beginning of Section 5 will return to each of these items in turn to summarize how the239
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parameterization meets each of these goals. The performance of the proposed parameterization is tested in240

Section 4 by comparing against SI-resolving large-eddy simulations.241

Consider first the Reynolds-averaged hydrostatic Boussinesq equations of motion for a fluid containing242

a tracer ξ, which may be written243

Du
Dt
− f v̄ = −

∂φ

∂x
− ∇ · u′u′ + Fu, (11)

Dv
Dt

+ f ū = −
∂φ

∂y
− ∇ · u′v′ + Fv, (12)

∂φ

∂z
= b̄, (13)

∇ · u = 0, (14)

Db
Dt

= −∇ · u′b′ +Db, (15)

Dξ
Dt

= −∇ · u′ξ′ +Dξ. (16)

Here D/Dt = ∂/∂t + ū · ∇ is the material derivative operator, φ is the Boussinesq pressure potential, b is244

the buoyancy, and F(u,v) and D(b,ξ) are generic, spatially-variable mixing terms appropriate for each scalar.245

The overlines denote a spatial coarse-graining over SI scales, but it is assumed that the submesoscale or246

mesoscale fronts and frontogenetic strain are resolved. The primed quantities refer to deviations from the247

resolved scales, typified by the SI scales.248

Taylor and Ferrari (2010) quantify the effects of SI in numerical simulations for forced fronts underneath249

convective buoyancy fluxes. On subinertial timescales they show that the momentum balance that arises in250

the SI-unstable layer is251

f ua = −
∂v′w′

∂z
+ ν

∂2va

∂z2 (17)

− f va = −
∂u′w′

∂z
+ ν

∂2ua

∂z2 , (18)

where ua = u − ug is the horizontal ageostrophic velocity and the viscous terms ν ∂
2ūa
∂z2 are important only in252

a thin sublayer near z = 0.253

An expression for the Reynolds stresses in this balance will be used as the foundation for the SI pa-254

rameterization. In general, one could use this parameterization independently and choose to turn off all255

other boundary layer parameterizations (e.g. Mellor and Yamada, 1982; Kantha and Clayson, 1994; Large256

et al., 1994) and physics packages when the SI parameterization is on, or to use them to modify an exist-257

ing parameterization. There are numerical and computational advantages to the latter approach, as the SI258

parameterization could be designed to use existing procedures (such as the calculation of boundary layer259

depth).260

However, because many boundary layer parameterizations are constructed in a self-consistent manner261

and may involve specialized algorithms to ensure numerical stability, the details of how to incorporate the SI262

parameterization into each different scheme would have to be considered on a case-by-case basis. Therefore,263
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the SI parameterization will be presented in a way that will work in a standalone manner. The SI parame-264

terization will be compared against the popular K-Profile parameterization (Large et al., 1994) to show how265

the SI parameterization improves the parameterized mixing and dissipation in SI-unstable conditions.266

3.2. Parameterization of the SI fluxes and numerical implementation267

Surface forcing, through a combination of down-front winds and surface buoyancy loss, reduces PV268

(Eq. 10) and is the principal driver of mixed-layer SI. Stratification in the mixed layer is then set by a269

competition between eddy-induced restratification, either by SI or mixed-layer baroclinic instability (e.g.270

Boccaletti et al., 2007), and vertical mixing resulting from the atmospheric forcing. As described in Section271

2, Taylor and Ferrari (2010) found that the competition between restratifying SI and surface forcing results272

in the formation of two dynamically distinct sublayers within the surface boundary layer - a convective layer273

of depth h where the surface forcing is sufficient to keep the density unstratified and where the convective274

buoyancy flux w′b′ > 0, and a deeper SI-dominated layer of total depth H where the restratifying effect of275

SI overcomes that of the surface forcing but where PV is still homogenized.276

Because of this partitioning of the surface boundary layer, the vertical profiles of the GSP and w′b′ are277

governed by convective forcing due to surface fluxes and EBF, and also by the difference between h and H.278

LES simulation results from Taylor and Ferrari (2010) and Thomas et al. (2013) show that the convective279

layer (0 to −h) features a positive vertical buoyancy flux, w′b′, which is approximately linear in z (see also280

Large et al., 1994) and whose magnitude is predominantly set by the surface buoyancy flux, suggesting that281

it can be parameterized as1
282

w′b′conv =


0 z = 0
B0

(
z+h

h

)
0 > z > −h

0 z < −h
. (19)

Taylor and Ferrari (2010) further argue that when lateral density gradients are present, the sum of the283

GSP and w′b′ can be approximated as a linear function of z through the entire surface boundary layer (0 to284

−H). This sum is related to the surface forcing by285

GS P + w′b′ ' FS I

( z + H
H

)
= (EBF + B0)

( z + H
H

)
, (20)

where FS I is the sum of the Ekman and surface buoyancy fluxes as written in (10). By substituting w′b′conv286

for w′b′ in (20) and changing the approximation to an equality, Thomas et al. (2013) formed a parameteri-287

zation for the GSP288

GS PS I =


0 z = 0
(EBF + B0)

(
(z+H)

H

)
− B0

(
z+h

h

)
0 > z > −h

(EBF + B0)
(

(z+H)
H

)
−H < z < −h

0 z < −H

for B0 ≥ 0, EBF ≥ 0. (21)

1Note that all parameterizations presented in this section assume that the relevant surface fluxes (of momentum, buoyancy, etc.) are
applied to the uppermost vertical layer of the model. The parameterizations are intended to distribute these tracers through the rest of
the boundary layer, but not act as sources of tracer themselves. Therefore, the parameterizations must vanish at the surface to prevent
double-counting (see also Appendix D).
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The GSP (−u′hw′ · ∂ūg

∂z ) involves Reynolds stresses that tend to reduce the thermal wind shear by fluxing289

momentum down-gradient. These momentum fluxes are needed in the SI parameterization and will be de-290

veloped consistently following (21). Assuming the stresses in the cross-front direction are not meaningfully291

correlated with the SI and manipulating the trigonometry (Appendix B), the Reynolds stresses consistent292

with SI extracting energy from GS PS I in (21) are293

u′hw′S I =
f ∇hb̄ × k̂∣∣∣∇hb̄

∣∣∣2 GS PS I . (22)

The expressions above can be used to obtain two of the three core components of the SI parameterization:294

the parameterization of the convective layer vertical buoyancy flux is given by (19), and the SI vertical295

viscosity can be derived using (21). An eddy viscosity is obtained by assuming a flux-gradient relationship296

between the Reynolds stresses and the resolved geostrophic shear,297

u′hw′S I = −νS I
∂ūg

∂z
, (23)

and after substituting (22) into (23),298

νS I =
f 2∣∣∣∇hb̄

∣∣∣2 GS PS I . (24)

The above expressions for w′b′conv and νS I require suitable definitions of h and H, which should be299

specified in a way that is consistent with the phenomenology of symmetric instability. Here the SI layer300

depth is defined according to the phenomenology that the flow is SI-unstable when q is of the opposite sign301

as f ; therefore, H will be the shallowest depth where a bulk measure of the potential vorticity satisfies the302

criterion that303

f qbulk = f
(

f ∆b + ∆u
〈
∂b
∂y

〉
− ∆v

〈
∂b
∂x

〉)
> 0. (25)

Here ∆ refers to the change in the quantity from the surface to z = −H, and the angle brackets indicate304

a vertical average over the same depth range. Requiring the criterion on potential vorticity in (25) to use305

bulk quantities is more numerically stable than using local values of the shear and buoyancy gradient, which306

would be more prone to noise and the degree to which the model conserves PV.307

Once H is known, a quartic equation (e.g. Thomas et al., 2013) can be used to to solve for the convective308

layer depth h,309

(
h
H

)4

− c3
(
1 −

h
H

)3
 w3

∗∣∣∣∆ug

∣∣∣3 +
u2
∗∣∣∣∆ug

∣∣∣2 cos θw

2

= 0, (26)

where w∗ = (B0H)1/3 is the convective velocity, u∗ =
√
|τw| /ρ0 is the friction velocity, θw is the angle310

between the wind vector and the geostrophic shear, and c = 14 is an empirical constant. When h/H � 1311
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much of the surface boundary layer is dominated by SI restratification, whereas for h/H ' 1 the layer is312

dominated by convective mixing and SI is not expected to be important. These two cases are distinguished313

by the square-bracketed term, which is large for strong surface forcing (h/H ' 1) and small for strong lateral314

gradients and fronts (h/H � 1). Equation (26) always has two complex and two real solutions for h/H, and315

only one real solution falls between 0 and 1 (see Appendix C). Furthermore, h is positive and no greater than316

H, so there is no risk of unexpected consequences in the numerical solution of (26).317

The respective forms for w′b′conv and GS PS I shown above are informed by LES simulations which318

studied the evolution of forced SI in the presence of destabilizing surface forcing (e.g. Taylor and Ferrari,319

2010; Thomas and Taylor, 2010; Thomas et al., 2013). A notable limitation of these LES is that, in each320

case, both EBF ≥ 0 and B0 ≥ 0, so that it is unclear how (19) and (21) generalize to cases where the Ekman321

buoyancy flux and surface buoyancy flux are of opposite sign, or when the wind is predominantly in the322

cross-front direction. Care must be taken when considering cases such as these; for example, if a strong323

wind blows in the cross-front direction the resulting EBF would be small, and GS PS I as predicted by (21)324

would likely underestimate the true energy dissipation by the resulting turbulence. Therefore, for now it may325

be preferable to use the SI parameterization only when the wind is dominantly downfront and when B0 ≥ 0.326

This caveat is included in the equation for the GS P parameterization, (21). Further research is needed to327

determine appropriate forms for w′b′conv and GS PS I that span a broader range of surface forcing scenarios,328

at which point the potential uses for the SI parameterization can be expanded accordingly.329

Many ocean models integrate equations for potential temperature, θ, and salinity, s, rather than integrat-330

ing the buoyancy equation directly, requiring an adaptation of the convective buoyancy flux parameterization331

in (19). The LES simulations informing the approximation for w′b′conv use buoyancy as a state variable rather332

than θ and s, so details of how the linear structure function in (19) relates to the profiles of the convective333

heat and salt fluxes are unclear. Provisionally, one may use a linear equation of state to write (19) in terms of334

θ and s individually. For typical mixed layer values away from polar waters of θ and s the seawater equation335

of state can be approximated as336

b = −g (1 − αθ (θ − θ0) + βs (s − s0)) , (27)

for a thermal expansion coefficient αθ, saline contraction coefficient βs, and reference temperature and salin-337

ity values θ0 and s0. By the linearity of (D.10), it follows that338

w′b′ = g
(
αθw′θ′ − βsw′s′

)
. (28)

Defining the surface potential temperature flux as w′θ′0 and the surface salinity flux as w′s0, if it is339

assumed that the same linear vertical structure in (19) applies to θ and s, so that340

w′θ′conv =


0 z = 0
w′θ′0

(
z+h

h

)
0 > z > −h

0 z < −h
w′s′conv =


0 z = 0
w′s′0

(
z+h

h

)
0 > z > −h

0 z < −h
,

(29)

one recovers the parameterization for w′b′conv by substitution of (29) into (D.11). A similar approach can be341

made for the convective layer fluxes of other passive tracers which have a nonzero surface flux. Implemen-342

tation of the SI parameterization then amounts to substituting the appropriate expressions for the convective343

11



layer fluxes, as well as those for νS I and the vertical and along-isopycnal diffusivities (Section 3.3), into the344

momentum and tracer equations. The full equation set with the SI parameterization included is summarized345

in Section 3.4.346

3.3. Isoneutral and vertical tracer mixing347

Taylor and Ferrari (2011) compared large-eddy simulations that were unstable to upright convection348

and symmetric instability, and found that the vertical mixing rate of passive tracers was greatly reduced in349

symmetric instability compared to upright convection under the same forcing conditions. Their simulations350

also included a simple model for light-limited phytoplankton growth, and they found that the reduction in351

vertical mixing in conditions favorable to symmetric instability resulted in significantly higher phytoplankton352

concentrations compared with upright convection. These findings suggest that capturing the influence of353

symmetric instability on the scalar mixing rate is important to accurately model biogeochemical processes354

at density fronts.355

The structures that arise from SI are generally strongly horizontally anisotropic, aligning themselves356

with isopycnals, and therefore one must be careful in utilizing an isotropic viscosity or diffusivity to pa-357

rameterize them. We are particularly concerned with transport across density surfaces and transport along358

density surfaces but across the front. When SI is present, it will greatly enhance the latter. To most simply359

approximate this cross-front, along-isopycnal transport, it is appropriate to diagnose a scalar vertical dif-360

fusivity for the diabatic mixing, and to separately obtain the larger associated cross-front, along-isopycnal361

mixing coefficients via a tensor rotation.362

Previous LES results (e.g. Taylor and Ferrari, 2010; Thomas and Taylor, 2010; Thomas et al., 2013)363

indicate a negative vertical buoyancy flux is present in in the SI layer, consistent with mixing by small-scale364

turbulence driven by shear associated with along-isopycnal SI cells (e.g. Taylor and Ferrari, 2009). The365

vertical diffusivity associated with this mixing, κS I,v, can be related to νS I by defining a turbulent Prandtl366

number such that367

PrT =
νS I

κS I,v
. (30)

Note that νS I , which was defined in equation (23), is a vertical viscosity.368

Results from atmospheric boundary layer studies (e.g. Grachev et al., 2007; Anderson, 2009; Kitamura369

et al., 2013) suggest that in a weakly stratified flow PrT is an increasing function of the local gradient370

Richardson number, Rig = N2/ |∂ū/∂z|2, and tends to be O(1) for the range of Rig ' Rib < 1 in a SI-unstable371

flow. Although properties of turbulence in the atmospheric boundary layer are likely to be very different from372

SI, after evaluating a number of possibilities, a functional form and coefficients informed by the regression373

analysis of Anderson (2009) is adequate,374

PrT =
1 + (10 Rib)0.8

2
, (31)

which is dependent on the local value of Rib.375

Figure 2 shows that diagnostics from previous LES (the details of which are described in Section 4)376

support this scaling for PrT . In this figure, values of PrT are saved from the LES by calculating377

PrT =
−u′w′

(
∂ūG
∂z

)−1

−w′b′
(
∂b̄
∂z

)−1 , (32)
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Figure 2: Scatter plot of (Rib, PrT ) pairs extracted from the LES described in Section 4. The median value of PrT for each Rib bin is
indicated by the blue dashed line, and the scaling in (31) by the red line. The samples from each simulation are bootstrapped so that all
three simulations are evenly weighted in the calculation of the median.

where the overbar indicates a horizontal average over the entire model domain. These values of PrT are378

saved along with the corresponding value of Rib at every depth and at regular intervals in time. The full set379

of values is then filtered to only include pairs of (Rib, PrT ) after one day of model time has elapsed (to allow380

SI time to spin up) and in the depth range −1.2h > z > −H m, where an extra twenty percent is added to the381

convective layer depth to avoid very weakly stratified regions where entrainment is occurring immediately382

below the convective layer. Values of Rib are then binned at intervals of 0.05 and the median value of PrT383

is calculated for each bin (blue dashed line), and are compared against the scaling from (31) (red line). The384

median PrT values generally follow the trend of the scaling, though there is a wide scatter in the range of385

(Rib, PrT ) pairs.386

It is unclear whether this relationship between PrT and Rib holds in the convective layer, where turbulent387

transport is largely nonlocal and the destabilizing surface forcing can lead to negative values of Rib. For388

now we choose to employ (31) in both the convective and SI layers, which is modified slightly to exclude389

negative values of Rib so that390

κS I,v =
2 νS I

1 + (10 max(0,Rib))0.8 . (33)

Further study is required to clarify whether this scaling for PrT holds in the convective layer, at which time391

the expression (33) can be modified accordingly.2392

2The simulations in Section 4 were also run using constant values of PrT = 1 and PrT = 5 to test the sensitivity of changing
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A principal feature of SI is the formation of individual overturning cells, oriented along tilted isopycnals.393

To complete the SI parameterization the along-isopycnal mixing associated with these cells should also be394

represented. Here it is emphasized that this part of the SI parameterization, and the diffusion tensor KS I395

which is to be defined, is separate from the mixing represented by κS I,v. For simplicity, it is assumed that SI396

motions lead to equal diffusivities in the along-front and cross-front directions.397

One may parameterize the eddy flux of a passive tracer ξ in the form of a flux-gradient relationship,398

u′ξ′ = −KS I · ∇ξ, (34)

where KS I is an eddy diffusion tensor that ensures the proper anisotropy in the horizontal versus vertical399

directions (e.g. Redi, 1982). If it is assumed that the flux is directed along isopycnal surfaces with no400

diabatic component, in z-coordinates such a tensor can be written401

KS I =
κS I,I

b2
x + b2

y + b2
z

 b2
y + b2

z −bxby −bxbz

−bxby b2
x + b2

z −bybz

−bxbz −bybz b2
x + b2

y

 (35)

where (bx, by, bz) = ∇b represent the directional buoyancy gradients, and κS I,I is an isotropic, along-isopycnal402

scalar diffusivity.403

The eddy diffusion tensor can be simplified if it is assumed that the isopycnal slopes, S = −∇hb/N2, are404

small (e.g. Cox, 1987; Griffies, 1998; Griffies et al., 1998), which occurs when |∇hb| << bz. If restratification405

by SI is able to maintain Rib ' 1 then the isopycnal slopes scale as |S| ' f 2/ |∇hb|. The isopycnal slopes406

are therefore small unless the front is weak, in which case it is likely that SI plays only a minor role in407

boundary-layer turbulence. However, it is unclear whether mixing is predominantly along-isopycnal in the408

convective layer where stratification is weak and isopycnal slopes can be large even for weak fronts, and409

provisionally this part of parameterization will be developed assuming that KS I can be used in both the410

convective layer and SI layer. Then because the convective layer isopycnal slopes may be large, and because411

in small-slope regions the extra terms only add higher-order corrections in any case, it is recommended that412

the full diffusion tensor be used through the whole boundary layer.413

The tensorial structure of KS I specifies that the principal axes of diffusion should be in the along-414

isopycnal plane, but the magnitude of κS I,I must be scaled appropriately for a symmetrically unstable mixed415

layer flow. To this end, suppose such a flow has overturning cells that are nominally tilted along isopyc-416

nals. For this purpose, let x denote the along-front direction and y the cross-front direction, and define a417

horizontal diffusivity associated with lateral fluid parcel displacements within these cells, κS I,h ∝ v′l′, for418

a cross-front velocity perturbation v′ and displacement l′ (Taylor, 1921). By (22), one may scale for the419

along-front Reynolds stress associated with the SI cells,420

∣∣∣u′w′S I

∣∣∣ =
GS PS I | f |∣∣∣b̄y

∣∣∣ . (36)

An appropriate scaling for the along-front velocity perturbation is421

the value of PrT . Switching between these choices led to small changes in diagnostics such as the boundary layer depth, PV, and
stratification profiles (not shown), but overall the parameterization and its key features remained robust to the specific choice of PrT .
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u′ ∝

∣∣∣b̄y

∣∣∣ H

| f |
, (37)

since the vertical displacement associated with the SI cells is of order H. Combining (36) and (37) yields a422

scaling for the vertical velocity perturbation,423

w′ ∝
GS PS I f 2

H b̄2
y

. (38)

Since the SI overturning cells are slantwise along isopycnals, a scaling for the cross-front velocity per-424

turbation therefore is425

v′ ∝
w′

|S|
=

GS PS I

H
∣∣∣b̄y

∣∣∣ Rib, (39)

where |S| =
∣∣∣b̄y

∣∣∣ /N2 is the isopycnal slope. Assuming the displacement is along isopycnals, l′ ∝426

N2H/
∣∣∣b̄y

∣∣∣, and the scalings for l′ and v′ may be combined to obtain an estimate for the horizontal diffu-427

sivity,428

κS I,h ∝ v′l′ ∝
GS PS I Ri2b

f 2 . (40)

Here it is understood that this scaling is unique up to multiplication by a dimensionless constant C, which429

by the Buckingham Pi Theorem (Buckingham, 1915) can be written as a function of only two nondimen-430

sional parameters, C = C
(
Rib,

∣∣∣b̄y

∣∣∣ / f 2
)
. For the simulations examined here (Section 4), a simple constant431

coefficient, C = 1.0, provides a good empirical fit to the LES. This will be the form used throughout the rest432

of this paper.3433

The preceding scaling relations can now be combined with the structure of KS I to obtain the full SI434

along-isopycnal diffusion tensor. The horizontal diffusivity can be incorporated by noting that in the SI layer435

where it is expected that bz >> bx, by, the dominant horizontal terms lie on the diagonal of the tensor, so that436

to leading order κS I,I ' κS I,h. The full diffusion tensor then becomes437

KS I =
GS PS I min (1,Ri2b)

f 2
(
b2

x + b2
y + b2

z

)
 b2

y + b2
z −bxby −bxbz

−bxby b2
x + b2

z −bybz

−bxbz −bybz b2
x + b2

y

 , (41)

where the minimum operator has been added to ensure that the diffusivity remains bounded even where438

the local value of Rib is large, such as might be found at the boundary between the SI layer and pycnocline.439

3A proper determination of C and its dependence on Rib and
∣∣∣∇hb̄

∣∣∣ / f 2 would require a more sophisticated diagnosis than is available
in the models at present, which are limited in the range of the Coriolis parameter. A suitable method would be to employ an ensemble
of passive tracers in a suite of SI-resolving LES, in order to diagnose the full structure and magnitude of the SI transport tensor (e.g.
Bachman and Fox-Kemper, 2013; Bachman et al., 2015).
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As KS I takes the same form as the Redi (1982) tensor for subgridscale baroclinic instability (see Griffies,440

1998), adding the SI parameterization to an existing tracer transport package should be straightforward.441

Since the parameterization here presumes that the fronts are resolved, it is unlikely that this parameteri-442

zation would be used simultaneously with the mesoscale forms of Gent and McWilliams (1990) and Redi443

(1982), but the numerical methods should be similar. It might be used simultaneously with a submesoscale444

baroclinic instability parameterization (e.g., Fox-Kemper et al., 2011). In doing so the reader is reminded445

that the criteria for the SI parameterization to be switched on ( f qbulk < 0) is independent from that for the446

baroclinic instability parameterization, and that these criteria should be evaluated separately even if their447

respective transport tensors are combined. Lastly, because of weak stratification and small vertical grid448

spacing, the modelled surface boundary layer is very sensitive to spurious mixing induced by the discretiza-449

tion of KS I , and thus it is important to ensure numerically that KS I ·∇b̄ = 0 as closely as possible. Suggested450

discretization techniques for this tensor are presented in Griffies et al. (1998) and Beckers et al. (2000).451

3.4. Summary and implementation of the SI parameterization452

The SI parameterization has been constructed to simulate the restratification and mixing by SI in a model453

where it is unresolved, in a way that satisfies the energetics of fully-resolved SI and satisfies the dominant454

force balance (17) and (18) for a convectively forced, SI-unstable mixed layer. As many different concepts455

and elements of the parameterization have been introduced piecemeal in the preceding sections, it is useful456

to now summarize the parameterization and its algorithm.457

The SI parameterization represents the downscale transfer of kinetic energy via geostrophic shear pro-458

duction, and the along-isopycnal mixing by SI. With all parts of the parameterization added in and assuming459

all other SGS parameterizations are included in the forcing and mixing terms, F = (Fu,Fv) and D, the460

momentum and tracer equations now take the form461

Duh

Dt
+ f k̂ × uh = −∇φ +

∂

∂z
νS I

∂uh

∂z
+ F , (42)

Dχ
Dt

=
∂

∂z
κS I,v

∂χ

∂z
+ ∇ · (KS I · ∇χ̄) −

∂w′χ′conv

∂z
+Dχ, (43)

for a tracer χ = (b, θ, s, ξ), where462
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νS I =
f 2∣∣∣∇hb̄

∣∣∣2 GS PS I , (44)

κS I,v =
2 νS I

1 + (10 max(0,Rib))0.8 , (45)

KS I =
GS PS I Ri2b

f 2
(
b2

x + b2
y + b2

z

)
 b2

y + b2
z −bxby −bxbz

−bxby b2
x + b2

z −bybz

−bxbz −bybz b2
x + b2

y

 , (46)

GS PS I =


0 z = 0
FS I

(
(z+H)

H

)
− B0

(
(z+h)

h

)
−h < z < 0

FS I

(
(z+H)

H

)
−H < z < −h

0 z < −H

for B0 ≥ 0, EBF ≥ 0, (47)

w′χ′conv =


0 z = 0
w′χ′0

(
z+h

h

)
0 > z > −h

0 z < −h
, (48)

FS I =

(
τw × k̂
ρ0 f

)
· ∇hb

∣∣∣∣∣∣
z=0︸                 ︷︷                 ︸

EBF

+B0 > 0. (49)

The vertical momentum and continuity equations remain unchanged.463

The numerical implementation of the SI parameterization proceeds as follows. The depth of the surface464

boundary layer, H, is found in each vertical column by finding the shallowest point where f qbulk > 0. The465

depth of the convective sublayer, h, is then found by solving the quartic equation466

(
h
H

)4

− c3
(
1 −

h
H

)3
 w3

∗∣∣∣∆ug

∣∣∣3 +
u2
∗∣∣∣∆ug

∣∣∣2 cos θ

2

= 0, (50)

whose solution is a simple algebraic expression given in equation (C.12). Given the surface wind stress,467

tracer flux, and local buoyancy gradients, νS I , κS I,v, w′χ′conv, and KS I can now be calculated at each depth,468

which are then substituted into the momentum and tracer equations. At depths below z = −H, all fluxes and469

mixing coefficients from the SI parameterization are set to zero, so that any interior mixing is handled by470

other parameterizations of the modeler’s choice.471

Because the SI parameterization represents a form of boundary layer turbulence which is present only472

under certain forcing conditions (EBF, B0 ≥ 0) and only when f qbulk < 0, it is straightforward to implement473
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it alongside another boundary layer package such as KPP. For example, a standard implementation of KPP474

would calculate momentum and tracer fluxes in each vertical column of the model domain; the SI parame-475

terization routine would be called after KPP, and in locations where (EBF, B0 ≥ 0) and f qbulk < 0, the KPP476

fluxes would be replaced by those from the SI parameterization shown in (42) - (49).477

Coding the SI parameterization in this way ensures that each vertical column features some sort of478

boundary layer mixing in the presence of destabilizing forcing. It also allows KPP (or another boundary layer479

parameterization of choice) to act as the default scheme when the SI parameterization is inactive. Because it480

is not clear how boundary layer turbulence behaves when the wind has a large cross-front component or the481

forcing is destabilizing but of opposite sign (EBF × B0 < 0 and EBF + B0 > 0), we provisionally suggest482

turning the SI parameterization off when the wind is not dominantly downfront or B0 < 0. Further research is483

needed to understand the dynamics and energetics of boundary layer turbulence in these scenarios, at which484

point the SI parameterization can be expanded accordingly.485

Finally, based on the definition of qbulk in (25), it is possible that the SI parameterization can become486

active when N2 ' 0 and the lateral buoyancy gradient is extremely weak. In this case the isopycnal slope487

becomes nearly vertical and the turbulence would become more akin to classical upright convection, in488

which case KPP is the more appropriate choice. These weak-front cases are detected through the calculation489

for h in (50), in which case h/H ' 1. Therefore, for both numerical stability and physical reasons, it is490

recommended to turn the SI parameterization off when h/H exceeds some threshold value (here chosen491

to be 0.9). The specific choice of this threshold value required to ensure numerical stability has not been492

exhaustively tested.493

4. Simulations494

A new set of routines have been written for the MIT General Circulation Model (Marshall et al., 1997)495

which adds the SI parameterization given by (42) - (49). To test the effects of the parameterization, a series496

of 2D channel models has been created using the MITgcm and are compared against matching turbulence-497

resolving LES. The LES are run using a fully nonhydrostatic, spectral flow solver, the details of which can498

be found in Taylor (2008) and Bewley (2010).499

The three LES test cases used here have been chosen from prior literature (e.g Taylor and Ferrari, 2010;500

Thomas and Taylor, 2010; Thomas et al., 2013) to evaluate the skill of the SI parameterization at reproducing501

the vertical profiles of the GSP, buoyancy flux, and state variables from eddy-resolving LES under a range of502

surface forcing conditions. They are chosen specifically to test the parameterization in cases of surface heat503

loss and no wind stress (Taylor and Ferrari, 2010, simulation 3D2), wind stress with no heat loss (Thomas and504

Taylor, 2010), and a case where both types of forcing are large (Thomas et al., 2013). The fixed parameters505

from each simulation are listed in Table 1. In these LES the horizontal viscosity and resolution are small506

enough that all SI modes are resolved, and so that the flow would fully restratify to a state where f q > 0 if507

the surface forcing were to cease.508

The MITgcm channel models are initialized with lateral and vertical density gradients to match each LES509

test case, whose stratification parameters are described in the original papers. The linear equation of state510

in (27) is used with βs = 0 for simplicity, so that the density is only a function of the potential temperature.511

The along-front velocity is initialized to be locally in thermal wind balance with the lateral density gradient.512

The presence of the lateral gradient preconditions the system to SI, and along with a destratifying surface513

forcing is sufficient to spur the growth of SI in the LES, or activate the SI parameterization in the models514

which do not resolve SI.515

Three versions of each LES are run using the MITgcm, all using coarsened grids in comparison to the516

LES. One version is run with the SI parameterization active, yet that reverts to KPP in regions that are SI517
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LES Taylor and Ferrari (2010) Thomas and Taylor (2010) Thomas et al. (2013)
M2 4.24 × 10−7 s−2 6.3 × 10−7 s−2 1.3 × 10−7 s−2

f 1.0 × 10−4 s−1 1.4 × 10−4 s−1 9.33 × 10−5 s−1

B0 4.24 × 10−8 m2 s−3 0 5.3 × 10−7 m2 s−3

EBF 0 6.3 × 10−7 m2 s−3 6.5 × 10−7 m2 s−3

Domain size (LX , LY , LZ) (1000, 250, 50) (3000, 500, 100) (4000, 500, 200)
(in meters)

Grid size (NX ,NY ,NZ) (256, 64, 50) (512, 96, 64) (768, 96, 50)

Table 1: Fixed parameters for LES runs.

Δy / LY

Averaging window �y/LY

Figure 3: Basic setup of the MITgcm simulations, where both the lateral density gradient (dashed black line) and surface density (solid
black line) are normalized by their maximum value. The lateral density gradient is constant in two sections of the domain, which are
separated by regions where the gradient linearly transitions from one extreme to the other. The lateral gradient in the first of these two
regions is set to match that from the corrsponding LES simulation (given in Table 1), and comparison between the MITgcm and LES
simulations is done by averaging over the interior of this region.

stable. The other two are run with KPP only, where the KPP critical Richardson number in all simulations518

is set to be 0.3. The two KPP runs are distinguished by whether the optional KPP shear instability parame-519

terization is enabled (see Appendix D.1), which can have a significant effect on the shear and stratification520

over time (e.g. Figure 8).521

The domain in the MITgcm simulations contains (NX ,NY ,NZ) = (3, 400, 100) gridpoints with rigid lids522

at the vertical boundaries, where the vertical resolution is set according to the depths in Table 1 and the523

horizontal resolution is set to ∆x = ∆y = 5000 m. The simulations are meant to be approximately 2D, where524

a small number of gridpoints are added in the along-front dimension to avoid computational issues related to525

running the MITgcm in true 2D mode. The domain is set in a “double-front” configuration (Figure 3), where526

db̄
dy = M2 is constant between points 1-150 and reversed in sign (= −M2) between points 200-350, and is527

smoothly transitioned over fifty points separating these regions. This setup allows the domain to be periodic528

in y so that there is no influence from lateral boundaries, and there is sufficient separation between the two529

fronts that they do not interact over the course of each simulation. The density gradient over the first 150530

points matches the values from the LES (Table 1), and represents the area of interest for the comparisons in531

this study. When referring to the model output mathematically in all figures and equations in this section, an532

overbar represents a horizontal average over this region of the domain and over one inertial period in time,533

and primes indicate deviations from this average.534
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Each model contains a mixed layer overlying a “thermocline” where the stratification is high enough to535

be stable to SI throughout the duration of the simulation. The depth of the mixed layer varies in each model.536

In the Thomas and Taylor (2010) and Thomas et al. (2013) models the initial mixed layer PV is low enough537

that the SI parameterization activates immediately. In the Taylor and Ferrari (2010) model, the mixed layer is538

initially stable to SI, but becomes destabilized over time due to the surface forcing. The horizontal viscosity539

in all MITgcm simulations is set to νh = 10 m2 s−1, and the background vertical viscosity is νv = 10−4 m2
540

s−1. Together these parameter settings do not permit SI modes to be resolved in the domain (Bachman and541

Taylor, 2014), so that the performance of KPP and the SI parameterization can be measured via comparison542

with the LES.543

Thomas et al. (2016) show that even when the instantaneous momentum budget has a nonzero accel-544

eration due to inertial motions, the turbulent Ekman balance in (17) and (18) may still hold as long as the545

averaging period is longer than the inertial timescale. Because these equations form the basis for the SI546

parameterization, we opt to compare the models using output averaged over two inertial periods. In this547

comparison it is assumed that super-inertial, high-frequency variability does not significantly contribute to548

either the momentum or buoyancy budgets.549

4.1. Boundary Layer Depths550

Because the wind is downfront in the averaging region of the channel models, the EBF and/or surface551

heat loss jointly begin destratifying the flow here, starting at the surface and progressing into the interior.552

The convective and boundary layer depths progressively deepen as the dense, low-PV surface water is mixed553

downwards. Figure 4 shows time series of h and H diagnosed in both the LES and MITgcm. In the LES and554

SI parameterization simulations H is determined using the criterion on qbulk in (25). The convective layer555

depth, h, is found in the LES by finding the deepest point where w′b′ > 0, and in the SI parameterization556

simulations by solving the quartic equation (26) using the value of H at the corresponding time. The KPP557

boundary layer depths, hKPP, which are diagnosed in the “KPP” simulations are plotted for reference as558

well. These plots are meant to compare the depth to which the parameterizations mix versus an approximate559

depth to which the resolved SI mix in the LES, indicating the skill of the parameterizations at predicting the560

appropriate boundary layer depth.561

In the SI parameterization simulations, the criteria for determining H given in (25) and h given in (26)562

show skill at matching the depth from the LES. The diagnosed KPP boundary layer depth is usually signifi-563

cantly deeper than the LES convective layer depth and tends to be more similar to H. As a result, the tendency564

is for KPP to parameterize the convective turbulence too deeply. However, hKPP is not well-matched to H565

either, and overall KPP tends to mix too shallowly in the Taylor and Ferrari (2010) and Thomas and Taylor566

(2010) simulations and too deeply in the Thomas et al. (2013) simulation.4 In the Taylor and Ferrari (2010)567

case hKPP is strongly controlled by whether the shear instability component is enabled. When it is enabled,568

the KPP boundary layer depth remains at a constant value of hKPP = 10 m through most of the simula-569

tion, implying that mixing below this depth is controlled largely by enhanced diffusivity (see Appendix D.1)570

rather than the KPP boundary layer scheme. When it is disabled, the KPP boundary layer depth deepens571

with time throughout the course of the simulation, although it is shallower than the LES boundary layer572

depth at all times. This behavior of the shear instability component is not seen in the other two simulations,573

4Cases such as the Thomas and Taylor (2010) simulation where hKPP remains similar to the LES boundary layer depth may tempt
the modeler to use the KPP algorithm for calculating H in the SI parameterization rather than the criterion on qbulk . However, because
SI dynamics are governed largely by the mixed layer PV, the criterion on qbulk remains more physically relevant than one based on a
critical Richardson number, and is more appropriate than simply using KPP to determine H.
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possibly due either to the shorter integration time or to the lack of wind forcing in the Taylor and Ferrari574

(2010) simulations.575

4.2. Energetics576

Of primary concern in boundary layer parameterizations is whether the parameterization faithfully repli-577

cates the energetics of the subgridscale turbulence. A main focus of the SI parameterization is to represent578

the extraction of mean kinetic energy via the GSP, and the reduction of available potential energy by the579

convective layer buoyancy flux. To facilitate comparison with KPP, it is necessary to define the effective580

GS P and w′b′ that is parameterized by KPP. A more detailed description of the KPP parameterization can581

be found in Appendix D.1, but for now a brief summary will suffice. In KPP, the vertical flux of momentum582

by KPP is parameterized as583

u′w′KPP = −νKPP

(
∂u
∂z

)
, (51)

where νKPP is the KPP vertical viscosity. Assuming that the resolved velocity is approximately in geostrophic584

balance so that ū ' ūg, the effective GSP introduced by the KPP momentum flux can be expressed as585

GS PKPP = −u′w′KPP ·
∂ūg

∂z
= νKPP

∣∣∣∣∣∣∂ūg

∂z

∣∣∣∣∣∣2 . (52)

Likewise, assuming the linear equation of state shown in (27), the KPP buoyancy flux will be defined as586

w′b′KPP = −gαθκθ

∂θ
∂z
− γθ

 + gβsκs

(
∂s
∂z
− γs

)
, (53)

where κ and γ are the vertical diffusivity and nonlocal transport terms specific to each tracer. The KPP GSP587

and buoyancy flux can contribute significantly to the reduction of mean kinetic and available potential energy588

in the surface boundary layer, and may reduce the energy at rates inconsistent with fully-developed SI. It is589

anticipated that the SI parameterization, which is designed specifically to reproduce the energy extraction590

by resolved SI, will outperform KPP in this regard.591

The figures in this section show comparisons between both parameterizations and the LES; in all plots592

the vertical profiles from the LES will be indicated by black lines, the SI parameterization by blue lines, and593

the KPP simulations by red lines. Figure 5 shows a comparison of the vertical structures of w′b′ and GSP594

from each simulation, where the profile of w′b′ from KPP is calculated using (53) and the profile from the595

SI parameterization is calculated as596

w′b′S I = −κS I,vN2 + w′b′conv. (54)

In each simulation the SI parameterization represents the structure of w′b′ well, inducing a positive597

buoyancy flux in the convective layer via w′b′conv and a negative buoyancy flux beneath due to κS I,v. The598

convective buoyancy flux is absent in the Thomas and Taylor (2010) simulations, where B0 = 0 and destabi-599

lization only occurs through the downfront wind stress. Nonetheless, outside of the near-surface layer above600
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Figure 4: Convective layer depth, h (dashed lines) and SI layer depth, H (solid lines), diagnosed in the LES and SI parameterization
simulations. The LES results are indicated by black lines and the SI parameterization results are indicated by blue lines. The KPP
boundary layer depths, which are calculated using a bulk Richardson number criterion (see Large et al. (1994)), are also plotted for
reference (red circles and crosses). The KPP boundary layer depth in the Taylor and Ferrari (2010) simulation is strongly affected by
the presence of the shear instability component, but this sensitivity is not seen in the other two simulations. This may imply that the
extra mixing by the shear instability component plays a strong role in the evolution of the flow below z = −10 m at longer integration
times.
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z = −20 m where there is a positive buoyancy flux in the LES, the structure and magnitude of w′b′ are well-601

approximated by the SI parameterization. The parameterization is also able to approximate the structure of602

the GSP reasonably well in the Taylor and Ferrari (2010) and Thomas and Taylor (2010) simulations. It does603

not match the GSP as well in the Thomas et al. (2013) simulation, largely because the profiles of w′b′ and604

GSP from the LES deviate slightly from being linear near the bottom of the convective layer (for reference,605

one may also inspect Figure 9 from Thomas et al. (2013)).606

The performance of KPP generally compares unfavorably to that of the SI parameterization, particularly607

in terms of its mixing coefficients, νKPP and κθ. The large GSP and large negative values of w′b′KPP are608

indicative that the KPP diffusivity and viscosity are too strong. The profiles also can be sensitive to whether609

the shear instability component is enabled. There is a significant difference in the mixing parameters and610

fluxes in the Taylor and Ferrari (2010) simulation, where the KPP boundary layer mixing coefficients tend611

to be much weaker when the component is enabled. This implies that the shear instability component can612

be effective at mixing fluid from the interior up into the KPP boundary layer. The result is a shallower KPP613

boundary layer depth, and since the mixing coefficients are proportional to the boundary layer depth, these614

become smaller as well. The shear instability component has less of an effect in the Thomas and Taylor615

(2010) and Thomas et al. (2013) simulations. This may be because of the significantly shorter run time (2.5616

and 2 days, respectively, versus the 15 days for the Taylor and Ferrari (2010) simulation), or the strength617

of the surface forcing, which is over an order of magnitude larger than in Taylor and Ferrari (2010). The618

correspondingly larger boundary layer mixing may exert more influence in these simulations relative to the619

shear instability component.620

Figure 6 shows comparisons of the time-integrated GSP and w′b′ from the Taylor and Ferrari (2010)621

LES against the same parameterized quantities from the MITgcm simulations.In the LES the cumulative622

dissipation of TKE, εS I , (green line, right panel) nearly balances the sum of the GSP and w′b′, reflecting the623

role these terms play as a bridge leading to the removal of energy from the mean flow. The parameterizations624

mimic this process by taking the energy from resolved to unresolved scales; that is, because the GSP and625

w′b′ associated with SI are not directly resolved in the models, the mean energy is removed directly from the626

resolved flow instead of being converted into TKE first. The total energy removed by the SI parameterization627

agrees well with the LES in comparison to KPP, which greatly overestimates the energy lost through the GSP.628

The GSP acts to reduce the thermal wind shear, which after geostrophic adjustment is expected to reduce629

the lateral buoyancy gradient, M2, and the isopycnal slope, -M2/N2.5 Therefore, a potential consequence630

of removing too much energy via the GSP is excessive shallowing of the isopycnal slope; for water being631

subducted adiabatically along isopycnals, this may reduce net water mass and tracer exchange by the re-632

solved flow between the mixed layer and ocean interior. Furthermore, excessive reduction of M2 may lead633

to erroneous transport by other mixed layer parameterizations whose induced fluxes depend on the lateral634

buoyancy gradient (e.g. Fox-Kemper et al., 2011).635

The depth-integrated GSP and w′b′ are shown in Figure 7. At each time the KPP diffusivity and vis-636

cosity are too large, resulting in buoyancy fluxes (top panel) and GSP (middle panel) which are larger in637

magnitude than the LES and the SI parameterization. In the KPP simulation with shear instability (dashed638

red line), the sum of both terms offset each other so that the total energy loss is fairly consistent with the639

LES (bottom panel), even though each term individually is a poor match. The KPP simulation without shear640

instability is dominated by the GSP, and the total energy loss is significantly too large. This simulation also641

5In the models presented here a reduction in the average M2 does not occur because of the frontal zone configuration of the LES,
and because of the lateral homogeneity within the averaging region in the MITgcm models. A reduction in the average M2 does occur
in the MITgcm models if the averaging region is widened to include the areas of the domain where M2 varies laterally. However,
inclusion of these regions is less meaningful in the context of comparing against the LES, and so they are neglected in this analysis.
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Figure 5: Vertical structure comparison of w′b′ and GSP from simulations with surface buoyancy loss and wind stress matching the
LES in Taylor and Ferrari (2010, top row), Thomas and Taylor (2010, middle row), and Thomas et al. (2013, bottom row). The plots
compare profiles extracted from the LES (black lines) against those from the MITgcm when run with the SI parameterization (blue
lines) and KPP, which is run with the shear instability component enabled (dashed red lines) and disabled (solid red lines). Results in
the plots are time-averaged over two inertial periods and are shown after the same amount of simulation time has elapsed in each model,
which is approximately 15 days for the Taylor and Ferrari (2010) simulations, 2.5 days for the Thomas and Taylor (2010) simulations,
and 2 days for the Thomas et al. (2013) simulations. The upper dotted line in each plot is the convective layer depth, z = −h, when
these diagnosics are measured; the lower dotted line is the SI layer depth, z = −H.
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Figure 6: Comparison of time-integrated w′b′ (left panel), GSP (middle panel), and their sum (right panel) from the Taylor and Ferrari
(2010) simuations. The green line (right panel) represents the dissipation in the LES, which nearly balances the sum of the GSP and
w′b′. Black lines: LES, blue lines: MITgcm with SI parameterization, red lines: MITgcm with KPP (with shear instability - dashed
line, without shear instability - solid line).

exhibits a large, spurious oscillation at subinertial timescales which we cannot explain, but may be linked to642

the calculation of the boundary later depth (Figure 4, crosses). It is also clear in the plots that the LES expe-643

riences interial oscillations, whose effect on the time-integrated plots (Figures 5, 6 and 8 - 10) is minimized644

by averaging over two inertial periods.645

4.3. Vertical Structure of the Mean Fields646

To evaluate the ability of the SI parameterization to reproduce b̄, N2, and q̄ in each layer, it is useful to647

compare their vertical profiles for each test simulation. Figures 8 through 10 show vertical profiles of the648

cross-front (meridional) velocity, along-front (zonal) velocity, buoyancy, Rib, PV, and GS P + w′b′ from the649

LES and MITgcm simulations. The profiles are taken after the same amount of simulation time has elapsed650

in each model, which is approximately 15 days for the Taylor and Ferrari (2010) simulations, 2.5 days for651

the Thomas and Taylor (2010) simulations, and 2 days for the Thomas et al. (2013) simulations.652

Both velocity components (top row) show improvement in the SI parameterization relative to KPP. In653

particular, the magnitude of the cross-front velocity in the SI parameterization is a better match to the LES654

than KPP is able to achieve, although neither is able to reproduce the vertical structure in the Thomas655

and Taylor (2010) simulation. This occurs because the cross-front velocity in these simulations is largely656

Ekman driven, and therefore sensitive to the vertical variations in the viscosity, which are more skillfully657

reproduced by the SI parameterization. The along-front velocity, which is dominated by the geostrophic658

shear, is reasonably well-approximated by both parameterizations.659

Neither parameterization is able to capture local variations in the buoyancy and stratification profiles at660

all depths. The potential vorticity profiles between the two parameterizations tend to be similar through most661

of the boundary layer. In all cases the PV from the LES has a negative spike at the surface due to negative N2.662

KPP is able to reproduce this feature in the Thomas and Taylor (2010) and Thomas et al. (2013) simulations.663

The SI parameterization misses this surface PV signature because κS I,v reaches its full value in the layer664

immediately below the surface, nearly completely mixing away regions of negative N2. This mixing also is665

associated with N2 being too weak in comparison to the LES in the Thomas and Taylor (2010) and Thomas666

et al. (2013) simulations.667

Finally, the bottom right panel shows the sum of w′b′ and GSP, representing the total energy extraction668

from the mean flow. In this figure a critical point is that the sum of w′b′ and the GSP in the LES has an669

approximately linear vertical profile, which is nearly matched in the SI parameterization models by design.670
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Figure 7: Comparison of depth-integrated w′b′ (left panel), GSP (middle panel), and their sum (right panel) from the Taylor and Ferrari
(2010) simuations. Black lines: LES, blue lines: MITgcm with SI parameterization, red lines: MITgcm with KPP (with shear instability
- dashed line, without shear instability - solid line).
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In comparison, the profiles in the KPP simuations do not match the LES as well, reducing the energy of the671

front slightly too much in the Thomas et al. (2013) simulation and more severely in the Taylor and Ferrari672

(2010) and Thomas and Taylor (2010) simulations. This is largely due to the magnitude of the KPP viscosity,673

which induces a GS P that is significantly larger than is observed in the LES (Figure 5).674

4.4. Passive Tracers675

A proper evaluation of the diffusive component of the SI parameterization, KS I , and in particular the676

lateral dispersion of tracers, is limited by the horizontal homogeneity of the frontal zone models. A full677

assessment of this component should be completed using more realistic test cases, and is left to future work.678

For now, a preliminary evaluation of the diffusive component is tested using three additional simulations679

seeded from the end state of each of the LES. In these tests, the vertical profiles of buoyancy and velocity680

from the LES are used as the initial conditions for each simulation in the new set, so that each simulation681

starts from an identical flow that is SI-unstable. A passive tracer ξ is initialized with concentration682

ξ(z) =
z + LZ

LZ
, (55)

where LZ is the domain depth (in meters). The tracer concentration is uniform in both horizontal directions,683

so that only the vertical tracer gradient is nonzero. Therefore, the tracer mixing by the SI parameterization684

will be affected by κS I,v and the vertical part of KS I (note that there is no surface flux of ξ, so that there is no685

nonlocal parameterization of convective turbulence and w′ξ′conv = 0).686

It is expected that turbulent mixing in the LES will be intensified near the surface due to convective687

instabilities, homogenizing the tracer concentration more quickly than at depth. The dependence of κS I,I688

on the GSP, which is larger near to the surface and decays with depth, implies that the mixing by the689

SI parameterization will also be surface intensified. KPP diagnoses the vertical structure of its mixing690

coefficients using a third-order polynomial, which also tends to be skewed stronger toward the surface. The691

vertical structure and magnitude of the mixing are not matched to SI, however, and are expected to mix the692

tracer locally at rates that are inconsistent with the LES. In these tests all simulations using KPP have the693

shear instability component enabled.694

Each simulation is run for 48 hours of simulated time after initialization. The vertical profiles of the695

tracer concentration after one, two, and four hours are shown in Figure 11, and the profiles after 12, 24, and696

48 hours are shown in Figure 12. In these figures, the black lines represent the tracer concentration in the697

LES, the blue lines represents the full SI parameterization, the red lines represent KPP, and the green lines698

represent the SI parameterization without the along-isopycnal diffusion active (KS I = 0).699

The rate of tracer mixing is matched to the LES more closely by the SI parameterization than by KPP700

at nearly every depth. In the Taylor and Ferrari (2010) simulation KPP mixes too quickly down to 20 m701

over the first four hours, until the tracer concentration is nearly completely homogenized by 12 hours. The702

KPP mixing depth also becomes too shallow by this time, and this shallow bias persists through the end703

of the simulation. The full SI parameterization performs reasonably well in matching both the vertical704

structure and mixing depth at all times. In the Thomas and Taylor (2010) simulation both parameterizations705

match the LES well out to 24 hours, after which both mix too shallowly. The final profiles at 48 hours are706

very similar, though the SI parameterization profile is a slightly better match to the LES. In the Thomas707

et al. (2013) simulation the SI parameterization performs markedly better than KPP out to four hours, after708

which both diverge away from the LES. The LES mixing deepens rapidly in this simulation, which neither709

parameterization represents well. In all plots the SI parameterization without KS I (green lines) mixes far too710

slowly, suggesting the presence of additional mixing processes on top of what is parameterized by κS I,v.711
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Figure 8: Vertical structure comparison from simulations with surface buoyancy loss and wind stress matching the LES in Taylor and
Ferrari (2010). Shown here are the along-front velocity, cross-front velocity, buoyancy, Rib, potential vorticity, and the EKE production
terms (GS P + w′b′). All results are colocated in simulation time, and are taken after 15 days. Results shown in the plots are time-
averaged over two inertial periods. Black lines: LES, blue lines: MITgcm with SI parameterization, red lines: MITgcm with KPP (with
shear instability - dashed line, without shear instability - solid line). The upper dotted line in each plot is the convective layer depth,
z = −h, when these diagnosics are measured; the lower dotted line is the SI layer depth, z = −H.
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Figure 9: Vertical structure comparison from simulations with surface buoyancy loss and wind stress matching the LES in Thomas and
Taylor (2010). Shown here are the along-front velocity, cross-front velocity, buoyancy, Rib, potential vorticity, and the EKE production
terms (GS P + w′b′). All results are colocated in simulation time, and are taken after 2.5 days. Results shown in the plots are time-
averaged over two inertial periods. Black lines: LES, blue lines: MITgcm with SI parameterization, red lines: MITgcm with KPP (with
shear instability - dashed line, without shear instability - solid line). The upper dotted line in each plot is the convective layer depth,
z = −h; the lower dotted line is the SI layer depth, z = −H.
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Figure 10: Vertical structure comparison from simulations with surface buoyancy loss and wind stress matching the LES in Thomas
et al. (2013). Shown here are the along-front velocity, cross-front velocity, buoyancy, Rib, potential vorticity, and the EKE production
terms (GS P+w′b′). All results are colocated in simulation time, and are taken after 2 days. Results shown in the plots are time-averaged
over two inertial periods. Black lines: LES, blue lines: MITgcm with SI parameterization, red lines: MITgcm with KPP (with shear
instability - dashed line, without shear instability - solid line). The upper dotted line in each plot is the convective layer depth, z = −h;
the lower dotted line is the SI layer depth, z = −H.
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Figure 11: Vertical structure comparison of passive tracer profiles between the LES and MITgcm, taken after 1 hour (left column), 2
hours (middle column), and 4 hours (right column). The full SI parameterization (blue lines) is able to better match the LES (black
lines) than KPP (red lines) at nearly all times and depths. The SI parameterization run with KS I = 0 (green lines) mixes far too weakly,
indicating the importance of the along-isopycnal diffusion component.

Overall the SI parameterization seems to capture the vertical structure of the tracer profiles, but has712

difficulty reproducing the correct concentrations due to a shallow mixing bias. Future work is needed to713

understand an appropriate way to rectify this bias. It is worth mentioning again that the implementation of714

an along-isopycnal mixing tensor in this parameterization framework is based on the phenomenology of SI,715

which results in the formation of overturning cells which are nominally tilted along isopycnals. Here the716

mixing is envisioned to be adiabatic, though more work is needed clarify the precise direction and magnitude717

of mixing and the contribution of adiabatic and diabatic components.718

This simple test is shown here to motivate further evaluation of the along-isopycnal diffusivity com-719

ponent. Further evaluation of all components is necessary, and could include more complicated forcing720

scenarios such as variable wind direction and amplitude, unbalanced fronts, or realistic domain boundaries.721

These are beyond the scope of this initial endeavor.722
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Figure 12: Vertical structure comparison of passive tracer profiles between the LES and MITgcm, taken after 12 hours (left column),
24 hours (middle column), and 48 hours (right column). The color scheme is the same as for Figure 11.
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5. Conclusions723

In this paper a framework for a parameterization for unresolved symmetric instability (SI) has been pro-724

posed that is based on the known phenomenology of SI in the presence of destabilizing surface forcing. The725

parameterization is designed to be sensitive to this surface forcing and adjusts the transport of momentum,726

buoyancy, and tracer accordingly. The vertical structure of this transport is based on the relative strength of727

the surface and Ekman buoyancy fluxes, and is set to be consistent with the results of SI-resolving LES.728

The SI parameterization is designed for use primarily in regional studies and models such as ROMS729

(Shchepetkin and McWilliams, 2005) where submesoscale fronts are resolved. Only a handful of prototype730

global models attempt to resolve the submesoscale frontal structures and strain fields pertinent for the growth731

of SI, and only for very limited duration simulations, although this situation is likely to change as computing732

power and modelling techniques improve. One principle advantage of the way the SI parameterization is733

constructed is that it is likely to avoid the problem of competing against resolved SI (e.g. Henning and734

Vallis, 2004) - since both the parameterization and resolved SI “shut off” when the PV becomes positive or735

f qbulk > 0, the combined effect of the parameterization and partially resolved SI will both drive the flow736

toward an SI-neutral state. Implementing the SI parameterization is therefore likely to help models avoid the737

issue of arrested restratification when not all SI modes are fully resolved (e.g. Bachman and Taylor, 2014).738

The SI parameterization consists of three separate components. The first is a specification of the vertical739

mixing coefficients based on a subinertial turbulent Ekman balance. This part of the parameterization ex-740

tracts energy from the geostrophic flow at a rate that is consistent with the geostrophic shear production, and741

thus approximates the net effect of resolved SI. The second component represents a convective vertical buoy-742

ancy flux, which is isolated to a near-surface convective layer whose depth is determined by a previously743

proposed polynomial equation. Finally, the third component is a turbulent diffusivity tensor that represents744

along-isopycnal mixing by SI. A scaling is derived for the along-isopycnal scalar diffusivity, which is then745

rotated back into z-coordinates by a tensor transformation (Redi, 1982). Scalings for the mixing coefficients746

in each component are developed assuming steady forcing and subinertial flow.747

At the start of Section 3, several design goals were described. We revisit these below and comment on748

the performance of the parameterization with respect to each objective.749

750

Appropriate mixing of momentum, buoyancy, and tracers during destabilization by FS I > 0.751

The vertical mixing component of the parameterization has been developed using the subinertial momentum752

balance (17) and (18) which arises due to destabilizing surface forcing. The dissipation of the mean kinetic753

energy by the vertical viscosity, νS I , is expected to reduce the lateral buoyancy gradient via geostrophic754

adjustment and thereby increase Rib. A corresponding vertical diffusivity, κS I,v, is introduced, represent-755

ing the diabatic mixing effects of small-scale shear instabilities. The magnitude and vertical structure of756

the mixing depend on the relative contributions of the Ekman and surface buoyancy fluxes to FS I . Finally,757

along-isopycnal transport by individual SI overturning cells is parameterized using a diffusivity tensor, KS I .758

759

Extraction of energy from the resolved flow by SI.760

The parameterization extracts mean kinetic energy via the vertical viscosity, at a rate which matches the761

GSP. In the convective layer a positive buoyancy flux, w′b′conv, is induced which lowers the center of mass762

of the fluid, reducing the available potential energy.763

764

Along-isopycnal dispersion of tracers.765

Along-isopycnal tracer mixing is parameterized by introducing the symmetric tensor KS I . The magnitude766

of the mixing scales with the GSP, reflecting the ability of stronger surface forcing to generate more efficient767

mixing.768
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769

No effect when FS I ≤ 0 or ∇hb̄ = 0 or f q > 0.770

The parameterization is sensitive to the surface forcing and is inactive if FS I = EBF + B0 ≤ 0. The activa-771

tion condition for the parameterization is dependent on a bulk PV criterion which determines H. When ∇hb̄772

approaches zero it is likely that h/H → 1, so the parameterization becomes inactive.773

774

Act only in the SI-unstable part of the surface boundary layer.775

The parameterization defines the surface boundary layer depth H as the shallowest depth where f qbulk > 0776

and sets all mixing coefficients and w′b′conv to zero below z = −H. If the entire fluid column is SI-stable and777

f qbulk > 0 at all depths then the parameterization will be completely inactive in that column. The dynamics778

of the parameterization are designed to match those from SI-resolving LES (Thomas et al., 2013; Hamling-779

ton et al., 2014; Haney, 2015; Haney et al., 2015) and thus are different in the convective and SI-dominated780

sublayers. The depth of the convective sublayer h is determined via the solution of (26), which is shown in781

Appendix C.782

783

Maintain consistent boundary conditions on momentum, buoyancy, and PV.784

The functional form of GS PS I and w′χ′conv shown in (47) and (48), respectively, yield zero flux of momen-785

tum and tracer through the surface boundary (u′w′ = 0 and w′χ′ = 0). It is also shown in Appendix D that786

the parameterization avoids double-counting resolved and parameterized variables.787

788

789

A set of idealized, frontal zone models has been employed to demonstrate that the parameterized vertical790

fluxes are consistent with eddy-resolving LES. It has been shown that in the idealized test cases presented791

here, the SI parameterization compares favorably to KPP at matching the LES vertical profiles of momentum,792

buoyancy, stratification, PV, GSP, and w′b′. The profiles obtained using KPP are also shown to be sensitive to793

whether the KPP shear instability component is active, highlighting the complex interactions and feedbacks794

that can occur even within the same subgridscale turbulence parameterization.795

There are some uncertainties in the formulation of the SI parameterization which cannot be conclusively796

answered with the current LES test cases, and thus are left to future work. Implementing the along-isopycnal797

mixing tensor KS I appears to capture the behavior of the LES, but it is presently unclear whether a better,798

yet still parsimonious, representation in the convective layer exists. Furthermore, the passive tracer mixing799

tests (Figures 11 and 12) indicate strong entrainment at the base of the SI layer which is not captured by800

the parameterization. It is also unclear how the parameterization should behave when the surface forcing801

is destabilizing overall (EBF + B0 > 0), but one of its individual components is stabilizing (i.e. downfront802

winds and surface heating, or upfront winds and surface cooling). Currently it is recommended that the803

parameterization only be active when both EBF and B0 > 0, and further research is needed to understand804

the dynamical behavior of SI in these cases. Finally, further work is needed to clarify the vertical mixing805

rate in the convective layer. Currently, the vertical diffusivity κS I,v is determined as a function of the local806

value of Rib using (33), which is applied in both the convective and SI layers. Previous LES results support807

this scaling in the SI layer, but whether the same scaling applies in the convective layer remains obscure. It808

may be possible to incorporate other parameterizations into the SI parameterization which are more skillful809

at simulating the physics of the turbulence in the convective layer.810

In addition to the use of along-isopycnal anisotropic diffusivity (Section 3.3) to represent the transport of811

tracers by symmetric instability, an anisotropic viscosity may be used in place of the purely vertical viscosity812

in (24) to correctly account for the geostrophic shear production. Rotating the SI eddy viscosity effect into813

this direction would more closely resemble the parcel switching analysis of SI (e.g. Haine and Marshall,814
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1998). However, in the simulations considered here, where there is little horizontal shear across the front,815

such a change would have almost no impact on the results. Furthermore, unlike tracers, vertical momentum816

redistribution can be carried out non-advectively through pressure (e.g. Harcourt, 2015). This effect is of817

primary importance in Langmuir turbulence, which is dynamically similar to symmetric instability in many818

ways (Haney et al., 2015). Therefore, at this time we choose to retain only a vertical viscosity which can819

effect the energy budget desired, and leave anisotropic viscosity concerns to await a comparison against LES820

of SI in a more complex flow.821

It should also be noted that the turbulent Ekman balance, (17) and (18), may be modified by the pres-822

ence of other dynamics within the surface mixed layer. Other sources of turbulent kinetic energy, such823

as ageostrophic shear production, can play a significant role in the energetics of the boundary layer (e.g.824

Thomas and Taylor, 2010), but are not accounted for by the SI parameterization. Other physical effects,825

such as the interaction of SI with Langmuir circulations (Li et al., 2012; Hamlington et al., 2014; Haney826

et al., 2015) or frontogenetic strain (e.g. Thomas, 2012), could be taken into account in future improve-827

ments of the parameterization presented here. Strong curvature of the front could also modify the dominant828

balance, although this effect has been neglected here.829

Further experiments are ongoing to evaluate the performance of the parameterization against LES in830

more realistic and diverse settings. A key challenge in performing these model comparisons is the computa-831

tional expense of running LES - the multiscale nature of SI dynamics requires that the model domain must be832

large enough to simultaneously resolve the SI modes while resolving down to the O(1) m scale of convective833

overturning. Of particular interest in these experiments is exploration of the weak-front limit when
∣∣∣∇hb̄

∣∣∣ is834

small, and in extending the parameterization to include cases where either the EBF or B0 are negative.835

More comprehensive evaluation and testing of the SI parameterization should include simulations where836

the surface buoyancy flux, wind direction and magnitude, time-dependence of the wind forcing (in both837

direction and magnitude), and degree of balance associated with the initial front are varied. As in this pa-838

per, the effects of the parameterization on the mixed layer stratification and tracer mixing in each of these839

scenarios should be compared against a series of SI-resolving LES run with the same domain geometry and840

initial conditions. It would be interesting to see the effects of the parameterization in simulations such as841

those used in Rosso et al. (2014) and Hamlington et al. (2014). Future plans include studying the interaction842

and joint effect of the SI parameterization with other mixed layer parameterizations (e.g. Large et al., 1994;843

Fox-Kemper et al., 2011) in coarse-resolution reproductions of scenarios such as these, as well as in realistic,844

submesoscale eddy-permitting simulations of the Subantarctic Front.845

846
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Appendix A. Estimates of SI Length, Time and Diffusivity Scales from In Situ Measurements1075

The analysis of Stone (1966) yielded approximate length and time scales for SI, which are shown in (1).1076

Likewise, the expression for νS I given in (24) allows one to estimate an SI vertical viscosity scale given1077

observations of the wind stress, net surface heat flux, and lateral buoyancy gradient.1078

Beginning with the expression1079

νS I =
f 2∣∣∣∇hb̄

∣∣∣2 GS PS I , (A.1)

one may use the parameterization for GS PS I in (21) to write1080

νS I ∝
f 2∣∣∣∇hb̄

∣∣∣2 (EBF + B0) (A.2)

=
f 2∣∣∣∇hb̄

∣∣∣2
[(
τw × k̂
ρ0 f

)
· ∇hb + B0

]
, (A.3)

where the lateral buoyancy gradient is assumed to be measured as near to the surface as possible. The1081

buoyancy flux can be expressed in terms of readily observable quantities (Steele et al., 2009),1082

B0 =
−gαθQ0

ρcp
+ gβs (E − P) s0, (A.4)

where g is gravity, ρ is the in situ density, αθ = ρ−1 ∂ρ
∂θ

is the effective thermal expansion coefficient,1083

βs = ρ−1 ∂ρ
∂s is the effective haline contraction coefficient, s0 is the surface salinity, cp is the specific heat1084

of seawater, Q0 is the net surface heat flux (in W m−2), and E and P are the rates of evaporation and precipi-1085

tation (in m s−1).1086

One may also use (21) to estimate the SI horizontal diffusivity. Recalling the expression for κS I,h ' κS I,I1087

in (40),1088

κS I,I =
C GS PS I

f 2 , (A.5)

one may again substitute for the GS P to obtain1089

κS I,h ∝
C (EBF + B0)

f 2 (A.6)

=
C
f 2

[(
τw × k̂
ρ0 f

)
· ∇hb + B0

]
, (A.7)

where provisionally C = 0.02 (Section 3.3). These scales can be compared against the same quantities1090

as estimated for MLE. For example, consider a wind-driven mixed layer of 50 m depth experiencing a1091

downfront wind stress of τw = 0.1 N m−2. The stratification parameters are N2 = 1.25×10−5 s−2 and
∣∣∣∇hb̄

∣∣∣ =1092
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L T κ ν

MLE 12000 m 40000 s 12.5 m2 s−1 –
SI (Q0 = 100 W m−2) 3500 m 200 s 1.1 m2 s−1 0.09 m2 s−1

SI (Q0 = 200 W m−2) 3500 m 200 s 1.2 m2 s−1 0.10 m2 s−1

SI (Q0 = 500 W m−2) 3500 m 200 s 1.5 m2 s−1 0.12 m2 s−1

SI (Q0 = 1000 W m−2) 3500 m 200 s 2.0 m2 s−1 0.16 m2 s−1

Table A.2: Estimated length (L), time (T ), along-isopycnal diffusivity (κ), and vertical viscosity (ν) scales for MLE and SI, for different
values of the net surface heat flux, Q0.

5 × 10−7 s−2, and the Coriolis frequency is given a standard mid-latitude value of f = 1 × 10−4 s−1. With1093

these parameters, the surface friction velocity is u∗ =
√
τw/ρ0 = 0.01 m s−1 and the balanced Richardson1094

number is Rib = 0.5, which for a predominantly balanced flow corresponds to negative PV and instability to1095

SI. The horizontal velocity scale can be estimated from the thermal wind relation as U ∝
∣∣∣∇hb̄

∣∣∣ H/ f = 0.251096

m s−1.1097

Assuming wintertime, non-stormy conditions (E − P ' 0), the MLE and SI scales may be compared for1098

different values of Q0. The other parameters needed to calculate B0 in (A.4) will be taken as αθ = 2 × 10−4
1099

◦C−1, ρ0 = 1035 kg m−3, and cp = 4 × 103 J kg−1 ◦C−1. The approximate scales are shown in Table1100

A.2. For reference, the along-isopycnal diffusivity scale for MLE is calculated as κMLE ∝
|∇hb̄|H2

f , and the1101

characteristic MLE lengthscale and timescale are calculated using equations 2 and 3 from Fox-Kemper et al.1102

(2008).1103

Appendix B. Tranformation of Coordinates by Counter-Clockwise Rotation1104

Consider the counterclockwise rotation of an orthogonal (horizontal) coordinate system by an angle θ.1105

Let the original coordinate system be (x, y), and the new coordinate system be denoted by a tilde: (x̃, ỹ). The1106

forward and reverse transformation of a vector uh = (u, v) is1107

ũ = u cos θ − v sin θ (B.1)
ṽ = u sin θ + v cos θ (B.2)

u = ũ cos θ + ṽ sin θ (B.3)
v = −ũ sin θ + ṽ cos θ. (B.4)

Tranformations of the horizontal derivatives (for a scalar field A) are1108
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∂A
∂x̃

=
∂A
∂x

cos θ −
∂A
∂y

sin θ (B.5)

∂A
∂ỹ

=
∂A
∂x

sin θ +
∂A
∂y

cos θ (B.6)

∂A
∂x

=
∂A
∂x̃

cos θ +
∂A
∂ỹ

sin θ (B.7)

∂A
∂y

=
∂A
∂ỹ

cos θ −
∂A
∂x̃

sin θ. (B.8)

Appendix B.1. Transforming the Geostrophic Shear Production1109

The geostrophic shear production (GSP) is given by1110

GS P = −u′hw′ ·
∂ūg

∂z
(B.9)

=
u′w′

f
∂b̄
∂y
−

v′w′

f
∂b̄
∂x
. (B.10)

Assume that the rotation is applied based on ∇b̄, so that the rotation matrix is uniform across the window1111

where Reynolds averaging is performed. Then the rotation commutes with the Reynolds averaging, and1112

substitution of (B.3) - (B.4) and (B.7) - (B.8) into (B.10) yields the system1113

u′w′
∂b̄
∂y

= ũ′w′
(
∂b̄
∂ỹ

cos2 θ −
∂b̄
∂x̃

cos θ sin θ
)

+ ṽ′w′
(
∂b̄
∂ỹ

cos θ sin θ −
∂b̄
∂x̃

sin2 θ

)
(B.11)

v′w′
∂b̄
∂x

= ũ′w′
(
∂b̄
∂ỹ

sin2 θ +
∂b̄
∂x̃

cos θ sin θ
)
− ṽ′w′

(
∂b̄
∂ỹ

cos θ sin θ +
∂b̄
∂x̃

cos2 θ

)
, (B.12)

from which one can solve for ũ′hw′:1114
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ũ′w′ =

(
1

AD + CB

) (
D u′w′

∂b̄
∂y

+ B v′w′
∂b̄
∂x

)
(B.13)

ṽ′w′ =

(
1

AD + CB

) (
C u′w′

∂b̄
∂y
− A v′w′

∂b̄
∂x

)
(B.14)

A =
∂b̄
∂ỹ

cos2 θ −
∂b̄
∂x̃

cos θ sin θ (B.15)

B =
∂b̄
∂ỹ

cos θ sin θ −
∂b̄
∂x̃

sin2 θ (B.16)

C =
∂b̄
∂ỹ

sin2 θ +
∂b̄
∂x̃

cos θ sin θ (B.17)

D =
∂b̄
∂ỹ

cos θ sin θ +
∂b̄
∂x̃

cos2 θ. (B.18)

If the original coordinate frame is aligned with the front so that ∂b̄/∂x = 0 then1115

cos θ =
∂b̄
∂ỹ

∣∣∣∇̃hb̄
∣∣∣−1

(B.19)

sin θ = −
∂b̄
∂x̃

∣∣∣∇̃hb̄
∣∣∣−1

, (B.20)

and the Reynolds stresses in the rotated frame are given by (22).1116

Appendix C. Solution for the Convective Layer Depth1117

The quartic equation for the ratio of the convective layer depth, h, and SI layer depth, H, is(
h
H

)4

− c3
(
1 −

h
H

)3
 w3

∗∣∣∣∆ug

∣∣∣3 +
u2
∗∣∣∣∆ug

∣∣∣2 cos θ

2

= 0. (C.1)

Solving this equation numerically (for example using a packaged Fortran solver for quartic equations) is1118

computationally expensive, as it must be performed at every spatial location and at every time where the1119

SI parameterization is active. As the quartic equation also has up to four unique solutions, it would require1120

a sorting algorithm to determine which of the four is the correct one to use for the parameterization. It is1121

shown below that (C.1) is guaranteed to feature two real and two complex solutions, and of the real solutions1122

one is shown here numerically to give 0 ≤ h/H ≤ 1. A recipe for calculating this solution is also given so1123

that no polynomial solver or sorting algorithm is necessary.1124

Making the substitution x = h/H, (C.1) is1125

x4 + αx3 − 3αx2 + 3αx − α = 0, (C.2)
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where1126

α = c3

 w3
∗∣∣∣∆ug

∣∣∣3 +
u2
∗∣∣∣∆ug

∣∣∣2 cos θ

2

> 0. (C.3)

For the quartic equation above, the roots are given by1127

x1,2 = −
α

4
− S ±

1
2

√
−4S 2 − 2p +

q
S

(C.4)

x3,4 = −
α

4
− S ±

1
2

√
−4S 2 − 2p −

q
S
, (C.5)

Applying these formulas to (C.1), they are1128

p = −
3
8
α2 − 3α (C.6)

q =
1
8
α
(
(α − 2)2 + 20

)
(C.7)

S =
1
2

√
2α +

1
4
α2 +

1
3

(
Q −

12α
Q

)
(C.8)

Q =
3

√
27α2 +

√
729α4 + 6912α3

2
. (C.9)

Since the SI parameterization only uses the two real roots of (C.1), the sign of ξ = −4S 2 + 2p ± q
S is1129

sufficient to determine which pair of roots to take. Consider the term q/S , whose sign is the only difference1130

between (C.4) and (C.5). Because the real roots will result when ξ ≥ 0, if q/S is positive then ξ is increased1131

in (C.4) and decreased in (C.5), from which one can conclude (C.4) gives the real roots. Conversely, if q/S1132

is negative then ξ is increased in (C.5) and decreased in (C.4), and (C.5) must thereby give the real roots.1133

Begin by considering q and S separately. The expression for q is guaranteed to be positive for α > 0.1134

S is real or imaginary depending on the expression Q − 12α/Q. Since Q > 0, to show Q − 12α/Q > 0 is1135

equivalent to showing Q2 > 12α. To do so, note that1136

Q =
3

√
27α2 +

√
729α4 + 6912α3

2
>

3

√
√

6912α3

2
= 17281/6α1/2. (C.10)

Then1137

Q2 >
(
17281/6α1/2

)2
= 12α, (C.11)

which implies that S ≥ 0 as well. Then because both q and S are positive the real roots of (C.1) are given by1138

(C.4). Furthermore, noting that the first two terms in all four roots (C.4)-(C.5) are negative, the only possible1139

positive root (i.e. the one that must be used in the parameterization) is1140
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Figure C.13: Numerical solution for the root x1 of the quartic equation (C.1) for the ratio of the convective layer depth to surface
boundary layer depth, h/H. The solution is plotted as a function of α, which ranges here from 10−10 to 1010.

x1 = −
α

4
− S +

1
2

√
−4S 2 − 2p +

q
S
. (C.12)

Rigorously establishing bounds on this root is difficult and beyond the scope of this paper. For the1141

purposes of the parameterization, however, it suffices to show that 0 ≤ x1 ≤ 1 for all choices of α, which1142

confirms that h diagnosed with this formula is guaranteed to be positive and to not exceed H. This is1143

important for numerical reasons, both so that the parameterization activates the correct mixing scheme within1144

each sublayer and so that calculating x1 does not require extra “fail-safes” against unexpected behavior.1145

Figure C.13 shows x1 evaluated as a function of α, where α ranges from 10−10 to 1010. The evidence from1146

the numerical solution (Figure C.13) suggests that x1 is bounded between 0 and 1 for all possible values of1147

α.1148

The asymptotic behavior in these two limits is easily derived. For 0 < x � 1, (C.2) is approximately1149

α =
x4

(1 − x)3 ' x4. (C.13)

Thus, the limit is x ∼ α1/4 for (x, α) → 0. As x approaches 1 from below, we may introduce a small1150

parameter ε, so that x = 1 − ε. For ε � 1, (C.2) is approximately1151

α =
(1 − ε)4

ε3 ' ε−3. (C.14)

Thus, ε ∼ α−1/3, so that x ∼ 1 − α−1/3 as (x→ 1, α→ ∞).1152

In practice, the value of x1 can be calculated simply by using the algebraic formula in (C.12). The authors1153

have noted that numerical solvers may have trouble with this procedure when α is either very large or very1154

small, and may be unable to find a solution. Therefore, it may suffice to simply set x1 = 1 − α−1/3 when1155

α > 106 and x1 = α1/4 when α < 10−6, where a numerical examination has shown the asymptotic limits to1156

be excellent approximations (less than 1% relative error).1157
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Appendix D. Prevention of double-counting1158

The transport of momentum and buoyancy across density surfaces can play a major role in setting the1159

shear and stratification in the mixed layer, which in turn can affect air-sea exchange and the mixing and1160

subduction of tracers. Subgridscale parameterizations run the risk of interfering with a model’s resolved1161

transport characteristics, and must therefore be carefully constructed so as not to incur problems related to1162

“double-counting” (e.g. Henning and Vallis, 2004; Delworth et al., 2012). In the case of the SI parameteri-1163

zation, it is important to ensure that the parameterization does not act as a spurious source of momentum or1164

buoyancy.1165

SI acts to redistribute momentum in the vertical direction, but does not accelerate or decelerate the depth-1166

integrated flow. Appropriate boundary conditions on the SI parameterization must be enforced to reflect this.1167

To see this, consider the Reynolds-averaged momentum equations, (11) - (12), with the SI parameterization1168

included. These will be written here as1169

Dūh

Dt
+ f k̂ × ū = −∇φ̄ −

∂u′hw′S I

∂z
+ F , (D.1)

where for notational simplicity all other frictional and subgridscale forcing terms in the momentum equation1170

are wrapped into a new variable F. Removing the balanced part of the flow and assuming that the turbulent1171

stresses at the bottom of the SI-unstable layer go to zero, integrating in the vertical yields1172

∫ 0

−H

(Dūh

Dt
+ f k̂ × ūa

)
dz = − u′hw′S I

∣∣∣∣
z=0

+

∫ 0

−H

(
F − ∇φ̄

)
dz. (D.2)

In order for the SI parameterization to not act as a spurious source of momentum requires that the parame-1173

terized Reynolds stress term vanish at the surface. This is achieved automatically in (21) since GS PS I = 01174

at z = 0, and is consistent with the kinematic boundary condition that w′ = 0 at the surface.1175

Another point to consider in the construction of the SI parameterization is its effect on the vertical budget1176

of an arbitrary tracer, ξ. Begin by writing the tracer equation (16) as1177

Dξ
Dt

= −
∂w′ξ′S I

∂z
+D, (D.3)

where w′ξ′S I is the total parameterized vertical flux of ξ associated with the SI parameterization,1178

w′ξ′S I = −κS I,v
∂ξ̄

∂z
+ w′ξ′conv − k̂ ·KS I · ∇ξ̄, (D.4)

and for notational simplicity all other mixing and subgridscale forcing terms are written asDξ.1179

Integrating over the depth of the SI-unstable layer, H, and making use of the fact that each term in (D.4)1180

vanishes at z = −H,1181

∫ 0

−H

Dξ
Dt

dz = − w′ξ′S I

∣∣∣
z=0 +

∫ 0

−H
D dz. (D.5)
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For the SI parameterization to not act as a spurious source of tracer requires w′ξ′S I to vanish at the1182

surface. This condition is satisfied for κS I,v and KS I since both are proportional to GS PS I , which is zero at1183

the surface. The convective layer flux w′ξ′conv vanishes according to (48), so that all three terms comprising1184

w′ξ′S I vanish at the surface. Note that if one sets ξ = b, this derivation also shows that the SI parameterization1185

does not affect the mixed layer buoyancy budget.1186

It has thus been shown that the SI parameterization satisfies the requirement that it should not act as a net1187

source of momentum or buoyancy, and avoids the problem of ”double-counting” resolved and parameterized1188

variables.1189

Appendix D.1. The K-Profile Parameterization (KPP)1190

In hydrostatic models parameterizations such as the popular KPP scheme (Large et al., 1994) are needed1191

to represent vertical fluxes driven by convectively unstable and wind shear conditions. Here a brief overview1192

of KPP is warranted in order to motivate comparison with the SI parameterization. In models where KPP is1193

enabled, the vertical fluxes for a generic tracer χ are parameterized as1194

w′χ′KPP = −κχ

(
∂χ

∂z
− γχ

)
(D.6)

for z > −hKPP, where hKPP is the surface boundary layer depth diagnosed by KPP, κχ is a depth-dependent1195

vertical diffusivity, and γχ is a nonlocal transport term which is nonzero only in convectively unstable con-1196

ditions.6 The generic form of the KPP diffusivity coefficients is1197

κχ = hKPPw∗χ(z)G(z), (D.7)

where the vertical dependences of the velocity scales, w∗, and nondimensional structure functions, G, are1198

designed to smoothly taper the mixing coefficients to zero at the surface and to match the interior mixing1199

coefficients at the bottom of the planetary boundary layer. Note that the velocity scale is unique to each1200

scalar, while the structure function is not. The nonlocal terms have the generic form1201

γχ = Cs
w′χ′0

hKPPw∗χ
, (D.8)

where Cs is a nondimensional scale factor and w′χ′0 indicates the flux of χ through the ocean surface. Note1202

that the respective forms of κχ and γχ allow (D.6) to be rewritten in the form1203

w′χ′KPP = −κχ
∂χ

∂z
+ CsG(z)w′χ′0, (D.9)

emphasizing that the nonlocal term for each scalar is only unique based on its surface flux.1204

Of particular importance are the expressions for the KPP vertical fluxes of salt, s, and potential tem-1205

perature, θ. For typical mixed layer values of θ and s the seawater equation of state can be approximated1206

as1207

6For a detailed description of how these variables are determined, the reader is advised to consult Large et al. (1994).
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b = −g (1 − αθ (θ − θ0) + βs (s − s0)) , (D.10)

for a thermal expansion coefficient αθ, saline contraction coefficient βs, and reference temperature and salin-1208

ity values θ0 and s0. By the linearity of (D.10), it follows that1209

w′b′ = g
(
αθw′θ′ − βsw′s′

)
, (D.11)

so that, given the general form for each vertical flux in (D.6), the KPP buoyancy flux can be written1210

w′b′KPP = −gαθκθ

∂θ
∂z
− γθ

 + gβsκs

(
∂s
∂z
− γs

)
= −gαθκθ

∂θ

∂z
+ gαθCsG(z)w′θ′0 + gβsκs

∂s
∂z
− gβsCsG(z)w′s′0 (D.12)

= −gαθκθ
∂θ

∂z
+ gβsκs

∂s
∂z

+ CsG(z)B0,

where w′b′0 = B0 as defined in Section 2. Likewise, the vertical flux of momentum by KPP is parameterized1211

as1212

u′w′KPP = −νKPP

(
∂u
∂z

)
, (D.13)

with no contribution from a nonlocal term. In KPP the viscous coefficient νKPP has a vertical structure that1213

can be distinct from those of κs and κθ, and is tapered to match the value and first derivative of the model1214

viscosity for the ocean interior. Assuming that the resolved velocity is approximately in geostrophic balance1215

so that ū ' ūg, the effective GSP introduced by the KPP momentum flux can be expressed as1216

GS PKPP = −u′w′KPP ·
∂ūg

∂z
= νKPP

∣∣∣∣∣∣∂ūg

∂z

∣∣∣∣∣∣2 . (D.14)

The KPP GSP and buoyancy flux can contribute significantly to the reduction of mean kinetic and avail-1217

able potential energy in the surface boundary layer, and may reduce the energy at rates inconsistent with1218

fully-developed SI.1219

Finally, KPP includes an optional parameterization for unresolved mixing due to shear instabilities,1220

which becomes active when the local gradient Richardson number1221

Rig =
N2(

∂ū
∂z

)2
+

(
∂v̄
∂z

)2 < Ri0, (D.15)

where Ri0 is a critical value typically defined to be 0.7. When this condition is met, the vertical diffusivity for1222

all scalars (including momentum) is increased by an amount dependent on the value of Rig. For an arbitrary1223

scalar χ, the additional diffusivity κs is1224
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κs = κ0 Rig < 0 (D.16)

κs = κ0

1 − (
Rig
Ri0

)23

0 < Rig < Ri0 (D.17)

κs = 0 Ri0 < Rig, (D.18)

where the value κ0 = 5 × 10−3 m2 s−1 is chosen to fall within the range of maximum observed diffusivities1225

reported for the seasonal thermocline (Peters et al., 1988). This additional diffusivity is calculated where nec-1226

essary before the KPP boundary layer scheme is called, and is overridden by the boundary layer diffusivities1227

for z > −hKPP.1228

The inclusion or exclusion of this shear instability component can have a significant effect on the mixed1229

layer momentum and tracer profiles over time. Results from simulations using KPP with and without the1230

shear instability component are shown in Section 4 to demonstrate these effects.1231
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