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Abstract: As maintenance has grown to be seen as a prospective tool for production
value generation and business performance improvement, it can no longer be considered as
isolated from other production activities. Studies have shown that the degradation process
of machines is dependent on the operation being performed (e.g., higher workload results
in faster degradation). However, the decision-making in maintenance planning with dynamic
operation/workload adjustment considerations has not been addressed until recently. Moreover,
the existing approaches attempting to tackle this problem have overlooked the fact that
dynamics exist in both external production environment and internal production conditions and
thus prove to be inefficient to react to unexpected situations arising. This paper has explored
the impacts of different workload adjustment strategies on system production performance by a
numerical study using agent-based simulation. A detailed discussion is given on the implication
of the simulation outcome, based on which some insights into potential future work are also
presented.
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1. INTRODUCTION

The concept of maintenance has evolved over time from a
conventional perception where maintenance is considered
as a necessary evil that induces excessive costs to the
current view where it is seen as a prospective tool for
production value generation and business performance im-
provement (Marais and Saleh, 2009). Maintenance cannot
be seen as independent from other production elements as
it plays a vital role in generating value for manufacturers.
Manufacturing is a complex process involving multiple as-
pects and steps starting from raw material procurement all
the way to product quality control and customer service.
These areas used to be treated independently, yielding
separate models for each function. It has been widely
acknowledged that these models are likely to provide sub-
optimal solutions due to the fact that these areas are in-
terrelated (Hadidi et al., 2012). The relationships between
maintenance actions and other production elements, such
as production scheduling, quality control (Colledani and
Tolio, 2012), and human resource management (Bouzidi-
Hassini and Benbouzid-Sitayeb, 2013), have been broadly
studied, intended for integrated decision-making models.

While various interactions between maintenance schedul-
ing and other aspects of manufacturing process have been
introduced into studies seeking system-level performance
improvement, one important factor has been overlooked
until very recently. Each individual unit in manufacturing
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is subject to an inevitable degradation process while con-
ducting production tasks and its degradation rate varies
with the type of task and the amount of workload assigned
to the unit (Celen and Djurdjanovic, 2016). However, most
existing literatures on condition-based maintenance build
their solutions on the assumption that degradation of
machines is a self-evolving process (Hao et al., 2015), over-
looking the potential benefits of intervening in machine
degradation by adjusting the workload or assigning specific
operations. For example, by dynamically controlling the
degradation of assets, it is possible to postpone or bring
forward a trigger for maintenance to a more preferable
time, as opposed to passively waiting for a maintenance
request that can be made by any machine at any random
time.

In section 2 a more detailed review of existing work
on combined maintenance and operation decision-making
will be presented to highlight the research gap, and the
contribution of this paper is emphasised. Section 3 gives a
description on an agent-based simulation model used for
numerical studies on how various workload strategies affect
system-level performance. The results of the preliminary
numerical study are presented in section 4, followed by a
discussion on the simulation outcomes. A conclusion on
the findings of this paper is given in section 6. The paper
is ended with a discussion on potential future work.

2. LITERATURE REVIEW

To the author’s knowledge, one of the earliest attempts
to supplement traditional maintenance activities with op-
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eration alternatives is made by Yang et al. (2007), who
proposed a model for optimising joint scheduling of main-
tenance and throughput adjustment operations. The an-
alytical solution for a single-machine is first given and
then extended and applied to a simple production system
consisting of machines with slow and fast throughput set-
tings, corresponding to a slower and a faster life reduction
rate. Generic Algorithm(GA) based optimisation is used
to find the optimal joint scheduling of maintenance and
throughput adjustment that maximises the expected over-
all production benefit under constant production targets.

An explicit mathematical model to tie maintenance, pro-
duction rate, and product quality within the Partially
Observable Markovian Decision Process (POMDP) is pro-
posed (AlDurgam and Duffuaa, 2012). This model also
takes the basic assumption that higher operation speed
results in higher machine deterioration rate, adding an
extra link that relates a heavier machine deterioration to a
larger likelihood of faulty products. However, the decision-
making model proposed by AlDurgam and Duffuaa (2012)
is targeted at single-machine systems yet in reality it
requires the cooperation of multiple machines to achieve
production goals. Moreover, no constraint is considered
to obtain the optimal solution while constraints such as
production demands are likely to exist in reality.

Another work on maintenance and operation-related ac-
tions is conducted by Zhou et al. (2007) where reconfigu-
ration is considered as a means of mitigating production
loss caused by machine degradation and failure. A frame-
work is proposed for the integrated decision making of
reconfiguration and age-based preventive maintenance for
a general single-product two-stage parallel-serial system
with reconfigurable capabilities to transfer operations be-
tween the two stages, giving guidance on how to couple the
reconfiguration action of operation transfer with an age-
based preventive or a corrective maintenance. However, it
assumes the constraint that the system throughput has to
be put at its maximum at every decision epoch.

Several papers published recently have been motivated by
the use of clustering tools in semiconductor industry able
to perform more than one operations degrading the tools
at various rates. Celen and Djurdjanovic (2012) looked
into the interactions between degradation, operations, and
product quality, and devised a combined operational and
maintenance decision-making policy. One unique feature of
this model is that it acknowledges the fact that preventive
maintenance triggering states are operation-dependent.
The goal is to optimise a customisable objective function
while attempting to meet the production demand where
certain numbers of different products need to be produced
within time T . In a later work Celen and Djurdjanovic
(2016), the model is expanded on the condition that
maintenance conducted at ’less busy shifts’ costs less than
that at normal working shifts. In both papers, it requires
the next task to be assigned to the least degraded machine.

Also targeted at operation-dependent deteriorating sys-
tems, Jin (2015) took an analytical approach to explore the
structural properties of the objective function, aiming to
identify the conditions that can limit the optimal solution
to a set of monotone procedures.

Hao et al. (2015) developed a decision support model
to actively control the residual life of parallel units to
prevent overlapping unit failures by dynamically adjusting
the workload assigned to each unit. Specifically, higher
workloads are assigned to less healthy units so that the
more degraded units can fail even sooner, thus separat-
ing its expected failure time from the other units. It is
assumed that the instantaneous degradation rate is pro-
portional to the workload by a degradation coefficient βm.
A simulation-based numerical example of dynamic work
load adjustment among five identical units is presented
and discussed. However, demands are assumed to be con-
stant in this work, whereas in reality demands can be
constantly changing. Moreover, it is not specified how the
decision-making interval is determined, which has a large
influence on the performance of the model since with a
small decision interval, some constraints can be released
and different solutions might be obtained.

In conclusion, existing research attempts considering the
mutual influence between operation and maintenance ac-
tivities suffer from at least one of the following drawbacks:

(1) targeted at single-component systems and lacks gen-
eralisation for a multi-component system;

(2) targeted at pre-planned preventive maintenance in-
stead of condition-based maintenance;

(3) simplified and case-specific assumptions or constraints
on workload assignment rules.

(4) not focused on the fact that production is a versatile
process with random and sudden changes

Maintenance planning systems with alternative operation
considerations found in the aforementioned literature are
not designed to be able to fast come up with acceptable so-
lutions to react to sudden changes since the solution would
need to be recalculated globally that requires centrally
available and continuously updated knowledge about all
activities and resources (Mes et al., 2007). However, under
certain predefined levels of guidance on perturbations, the
previously obtained globally optimised plan can be refined
in real time according to local constraints to cope the
situation arising (Pach et al., 2014). As a distribution of in-
telligence and decision-making is obvious in this scenario,
centralised decision-making structure is no longer suitable.

This paper is focused on the third gap identified in the
previous paragraphs. A preliminary agent-based simula-
tion model is built to study numerically the impacts of
different workload assignment strategies on production
system performance. The reason for choosing an multi-
agent structure is that MAS has have been applied to
various aspects in asset management (Muller et al., 2008;
Khelifati and Benbouzid-Sitayeb, 2013; Cerrada et al.,
2007), and proved to be feasible and widely accepted in
terms of decentralised decision-making, which is a poten-
tial starting point for addressing the fourth gap mentioned
previously.

3. SIMULATION MODEL

A numerical study using the agent-based modelling and
simulation environment Netlogo (Wilensky, 1999) is con-
ducted to investigate the impact of different workload
assignment strategies on production performance. The ex-



Fig. 1. Agent-based simulation architecture and informa-
tion flow

tension package developed by Sakellariou et al. (2008) to
equip NetLogo with BDI agent is imported to enhance
agent communication capability. The simulation considers
a system consisting of five identical machines working
in parallel to meet constant production demands. This
setting is inspired by the work of Chen (2006) where
the degradation parameters have been obtained through
experiments, and the work of Hao et al. (2015) that also
conducts a numerical study to evaluate the performance of
the workload adjustment strategy proposed in their paper.

3.1 Multi-agent architecture

The model consists of five machine/unit agents (UAs)
and one supervisor agent (SA). The architecture and
information flow of the system is presented in Fig. 1. The
flowchart of the simulation is shown in Fig. 2

• The UAs continously monitor their own degradation
status and at each decision epoch make decisions
on whether a preventive maintenance should be con-
ducted according to the level of degradation. They
are also obliged to inform the SA of any change in
their status.

• The job of the SA is to keep track of the number of
UAs that are operating, idling, or undergoing main-
tenance actions and the current workload assigned to
each unit. It is also due to the SA to calculate and
reassign the workload of each unit at each decision
epoch according to the production demand, number
of units available, and the workload assignment strat-
egy chosen.

3.2 Degradation, failure, and maintenance

The assumptions made in the simulation concerning degra-
dation, failure, and maintenance are listed as follows.

(1) Degradation is inevitable as long as a unit is in oper-
ation. The instantaneous degradation rate is depen-
dent on the work load assigned to the unit at time
t with positive correlation. Degradation signals of a
single unit m are generated using the model proposed
by Chen (2006), written as

dXm(sm) = βmdsm + dWm(sm), (1)

Fig. 2. Flowchart of the agent-based simulation

where Xm(sm) is the amplitude of the degrada-
tion signal of unit m, sm is the age (the time
since its last resetting) of unit m, E[Wm(sm)] = 0,
V ar[Wm(sm)] = σ2

msm, and βm is a known constant
that captures how fast the degradation of unit m
increases with age, which we call the degradation rate
coefficient of unit m. Here we admit the fact that
due to factors like material inhomogeneity, βm varies
from unit to unit but is generated using a known
distribution as shown in equation (2). σm is also a
known constant.

βm ∼ N(κ, τ2) (2)

where τ/κ = cv, and cv is the coefficient of variation.
Following (Chen, 2006), the production time is mea-
sured in terms of the number of products fabricated
dsm(t) = um(t)dt, leading to

dXm(t) = βmum(t)dt+ dWm(t), (3)

where um(t) is the workload assigned to unit m at
time t.

(2) Though there may exist other types of failure modes,
only unit failure due to degradation is taken into
consideration in this work. A unit is considered to
have failed once its degradation level exceeds a pre-
defined threshold H and will be put to maintenance
immediately.

(3) Unmet production is permanently lost.
(4) Maintenance tasks take a constant period of time and

always restore the unit to the as-good-as-new state.
(5) Maintenance resource is infinite, which means multi-

ple machines can undergo repairs simultaneously.
(6) The degradation level of a unit does not affect the

quality of the operation performed by the unit.



3.3 Workload assignment strategies

In order to demonstrate and evaluate the effects of work-
load assignment on system-level production performance,
four different strategies are tested in the simulation.

(1) Workloads are assigned uniformly to all functional
units.

(2) Workloads are assigned randomly to all functional
units. Specifically, all feasible solutions are generated
at each decision epoch and one solution is drawn
randomly from the option pool. In this study, for
simplicity, it is assumed that the workload distributed
to each unit can only be multiples of 80 instead of the
entire integer space.

(3) Workloads are assigned in order to ensure that the
overall system degradation rate at the kth decision
epoch tk, R(tk) as defined in equation (4) is min-
imised. In other words, full workload will be assigned
to the unit with the smallest β among all functional
units until all workloads are distributed.

R(tk) =

M(tk)∑
m=1

βmum(tk) (4)

where M(tk) is the number of functional units at tk.
(4) This strategy assigns the most work to the unit with

the largest β. Workloads are assigned according to the
ratio of degradation rate coefficients of all functional
units as calculated using equation (5). Note that if
the calculated workload of the unit with the largest β
exceeds the single unit capacity, the surplus workload
will be assigned to the unit with the second largest β
and so forth until all workloads are distributed;

um(tk) = D
βm∑M(tk)

i=1 βi
(5)

where D is the production demand.

In all the strategies, if the production demand exceeds the
sum of capacity of all functional units, every unit will be
assigned its full workload Um.

3.4 Simulation procedure and parameter settings

The parameters used in the simulation are given here in
table 1.

Table 1. Parameter settings

Um κ cv H

1440/d 5.97E-8 0.1 0.004

In this study, the percentage loss of production is chosen
as the key performance index (KPI) for performance
evaluation of different strategies. In order to evaluate the
four strategies in various scenarios, two control variables
are used.

(1) Production demand D: the production demand is
assumed to be constant over the simulation period
and takes one of the the two values (5040 and 6480
parts/d) in each scenario. As the unit capacity has
been set to be 1440 parts/d, it requires at least 4 units
to be functional for a 5040 parts/d demand, and all
5 units for a demand of 6480 parts/d.

Fig. 3. Production loss of different strategies for a produc-
tion demand of 5040 parts/d

Fig. 4. Production loss of different strategies for a produc-
tion demand of 6480 parts/d

(2) Preventive maintenance duration pm: the amount of
time required for repair takes one of the two values
(2, and 5 days) in each scenario.

The length of the simulation period is set to be one
year (365 days) and the decision epoch is one day. For
each strategy under each of the 4 conditions, we ran 30
repetitions of simulation.

4. RESULTS

The simulated results for different levels of production
demands are plotted in Fig. 3, and 4, where the error bars
represent the standard deviation.

The following observations can be made out of the plots:

(1) Under the same production demand, all four strate-
gies perform worse in scenarios with a 5-day mainte-
nance duration than they do in those with a 2-day
maintenance duration, since more machine downtime
results in more unmet production. Similarly, under
the same maintenance duration, higher production
loss is observed with higher demand. It can also be
seen that the gap between the same strategy under
different maintenance durations gets larger with in-
creasing production demands, which can be explained
by the fact that a higher production demand is more
sensitive to machine downtime since it requires more
machines to be functional simultaneously.

(2) There is no dominant strategy that yields the best
system performance under all conditions, nor is there
any strategy that always lags behind
• Specifically, strategy (4) gives the least produc-

tion loss in most scenarios, but is out performed
by strategy (1) when the maintenance lasts 5
days and the production demand is set as 6480
parts/d.



• Strategy (3) yields the most production loss in
three out of four settings, except for when the
maintenance duration is 2 days and the produc-
tion demand is set to be 6480 parts/d where it is
the second best strategy.

5. DISCUSSION

From the results presented above, some counterintuitive
facts can be observed. First, strategy (3) is considered to
be the most cost-effective strategy due to the character-
istic of this strategy that overall the production system
degrades at the minimum rate implied by equation (4).
However, it can be noticed that it has never outperformed
the other three strategies in any of the scenarios stud-
ies. Second, strategy (4), which yields the highest overall
degradation rate, has led to the least production loss under
three out of four production settings.

This section gives a detailed discussion on two possible
factors that have contributed to strategy (4) outperform-
ing strategy(3) in most scenarios as shown in Fig. 3 and 4.
Here, the scenario with 6480 parts/d production demand
is taken as an example, since the case where demand is
5040 parts/d can be explained using the same approach.

Table 2. Degradation rate coefficients of units

Unit id 1 2 3 4 5

β(10−8) 5.2523 5.2745 6.2552 5.8443 5.3468

Table 3. Workload distribution (parts/d)

Unit id 1 2 3 4 5

strategy (3) 1440 1440 720 1440 1440

strategy (4) 1217 1222 1440 1363 1238

Table 4. Total production of units (parts)

Unit id 1 2 3 4 5

pm 2d
(3) 508320 508320 288192 505536 508320
(4) 441359 442961 505296 482613 447370

pm 5d
(3) 482400 482400 309696 481104 482400
(4) 432695 433999 475056 462650 438111

Table 5. Times of preventive maintenance

Unit id 1 2 3 4 5

pm 2d
(3) 6.00 6.00 4.00 6.93 6.00
(4) 5.00 5.00 6.97 6.60 5.30

pm 5d
(3) 6.00 6.00 4.00 6.33 5.97
(4) 5.00 5.00 6.97 6.00 5.03

(1) The degradation rate coefficients for unit 1 to 5 are
given in table 2, which shows that unit 1 has the
smallest β, hereto referred to as ’the best unit’, and
that unit 3 has the largest β, here to referred to as
’the worst unit’. Following the rules defined in strate-
gies (3) and (4), while all units are functional, the
workload distribution for a demand of 6480 parts/d
is given in table 3. The simulation results of the
total production of each unit within a one-year period
under the two strategies are presented in table 4.
Ideally, the ratio of the total production rpij of unit
i and unit j should be approximately the same as

that of the workload assigned rwij to these two units,
which is not the case here as it can be calculated that
in strategy (3), rp31(0.5669 for pm = 2d and 0.6420
for pm = 5d) is larger than rw31 = 0.5, indicating
that the best unit is being used less frequently and
the worst unit more frequently than expected. This is
due to the fact that much more workload is assigned
to the best unit, incurring more degradation thus
more failures of the best unit despite of its smaller
degradation rate coefficient, which can also be seen
from the corresponding times of failure unit 1 and
3 where unit 1 have gone through more preventive
maintenance than unit 3 for both pm durations, as
shown in table 5. In the case of strategy (4), opposite
results can be observed.

(2) Compared with strategy (4), strategy (3) tends to
give rise to more overlapping machine failures (more
than one machine undergoing maintenance at the
same time): strategy (3) yields overlapping failures
equivalent to 6.67 and 35.70 days of two simultaneous
machine failures for pm =2d and pm =5d, respec-
tively, while strategy(4) yields overlapping failures
equivalent to 5.73 and 30.20 days of two simulta-
neous machine failures for pm = 2d and pm = 5d,
respectively. When the production demand is 6480
parts/d and the unit capacity is 1440 parts/d, a single
machine failure causes a production loss of 6480 −
1440 × 4 = 720 parts/d whereas two machines failing
simultaneously results in a loss of 6480 − 1440 × 4 =
2160 parts/d, which is more than twice the amount of
production loss caused by as single machine failure.

6. CONCLUSION

The following conclusions can be drawn from the prelimi-
nary numerical study presented above.

(1) The performance of a production system comprised
of identical units working in parallel, measured here
as production loss within a specific time period, is
largely affected by the workload assignment strategy
applied.

(2) Under various production settings (e.g. customer de-
mands, maintenance duration, etc.), different mainte-
nance strategies result in different production yields,
which implies that there is no predefined universal
workload assignment rule that has the optimal per-
formance under any circumstance. Since production is
a versatile process with random and sudden changes,
the workload assignment needs to be adjusted accord-
ingly to prevent system performance from straying
away from the optimal level.

7. FUTURE WORK

(1) The only performance matrix used to evaluate the
workload assignment strategies is the production loss,
as no additional data is needed to calculate its value.
However, other performance matrices, such as total
cost of ownership, system reliability, etc., are also
being widely adopted by the industry. It is worth
exploring the performance of the strategies using
other performance matrices.

(2) It has been assumed in the simulation that mainte-
nance resource is unlimited and that all maintenance



is perfect. This assumption can be released for a closer
representation of the reality.

(3) The numerical study has justified the necessity of a
decision-support system for workload adjustment to
counter varying conditions over the production phase,
which can be further broken down into three subtasks:
• It has been proposed that the multi-agent system

is a feasible solution for the decentralisation of
intelligence and responsibility. Thus further re-
search is needed to develop a multi-agent struc-
ture which is both part of the decision-making
strategy as well as the skeleton that carries for-
ward the decision-making algorithms.

• This paper has discussed a specific case where the
degradation rate is proportional to the workload,
however, a general formulation of the operation-
dependent/workload-dependent degradation pro-
cess is needed;

• The optimisation approach for combined mainte-
nance and dynamic workload adjustment strate-
gies.

(4) In the proposed methodology, maintenance threshold
is assumed to be constant for all units and the inten-
tion is to investigate the role of workload distribution
in shaping maintenance planning and production per-
formance. However, it is worth exploring how main-
tenance threshold settings affect the suitability of dif-
ferent workload adjustment strategies under various
conditions.
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