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Abstract

This paper develops a theoretical framework for the study of war and conquest.

The analysis highlights the role of three factors – the technology of war, resources,

and contiguity network – in shaping the dynamics of appropriation and the formation of

empires. The analysis reveals that the world of many small kingdoms is characterized by

incessant fighting. After an initial phase of uncertain and gradual growth, the expansion

of the winning kingdom speeds up, and it grows rapidly through contiguous expansion.

The size of the empire is limited by the connectivity of the network. These results

provide a parsimonious account of the growth of major empires.
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1 Introduction

The history of the world .... is an imperial history, the history of empires. Empires

were systems of influence or rule where ethnic, cultural or ecological boundaries

were overlapped or ignored. Their ubiquitous presence arose from the fact that

.... the endowments needed to build strong states were very unequally distributed.

Against the cultural attraction, or physical force, of an imperial state, resistance

was hard, unless reinforced by geographical remoteness or unusual cohesion. (Dar-

win [2007]; page 491)

A recurring theme in history is that the presence of small kingdoms is accompanied by

bloody conflict; rulers fight each other incessantly, small parcels of land are exchanged, trea-

sures are plundered, and capture of human beings is common. However, once a ruler acquires

a large advantage relative to his neighbours he then quickly goes on to take them over, one

after the other, and to create an empire.1 This record of war and conquest leads us to ask:

what are the circumstances under which rulers will choose to fight, what is the optimal timing

of attack – now or later, when will the resource advantage of a ruler translate rapidly into

domination over neighbours, and what are the limits to the size of the empire? The goal of

this paper is to develop a theoretical framework to address these questions.

We consider a set of ‘kingdoms’. Every kingdom is endowed with resources and controlled

by a ruler. Rulers desire to expand territory and acquire more resources. The ruler can wage

a war on neighboring kingdoms. The winner of a war takes control of the loser’s resources

and his kingdom; the loser is eliminated. The probability of winning a war depends on the

resources of the combatants and on the technology of war that is defined by a contest success

function.2 As the winning ruler expands his domain, he may be able to access and attack new

kingdoms. The neighborhood structure between kingdoms is reflected in a contiguity network.

We model the interaction between rulers as a dynamic game and study its (Markov Perfect)

equilibria.

We start by establishing that there exists a pure strategy Markov Perfect equilibrium and

the equilibrium payoffs are unique. This sets the stage for a study of how the main parameters

1Classical studies on the formation of empire include Polybius [2010], Tacitus [2009] and Khaldun [1989].
Starting with Gibbon [1776], there is a long tradition of modern work on empires, see e.g., Braudel [1995],
Darwin [2007], Elliott [2006], Lewis [2010], Morris and Scheidel [2009], and Thapar [1997, 2002]. Mathematical
models of the evolution of empire include Levine and Modica [2013] and Turchin [2007].

2Classical writers on war and more recent research both point to the decisive role of the army size and
financial resources in securing victory, see e.g., Lewis [2010], Tzu [2008], Clausewitz [1993] and Howard [2009].
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– resources, the contiguity network, and the contest function – affect the dynamics of war and

peace.

Consider two rulers A and B, with resources rA and rB, and suppose rA > rB. When

they fight, the expected payoff of A is given by (xA + xB)p(xA, xB), where p(xA, xB) is the

contest success function that defines the probability of winning for ruler A. The contest success

function is said to be rich rewarding if fighting is profitable for A (and unprofitable for B),

i.e., (xA + xB)p(xA, xB) > xA. The technology is said to be poor rewarding, otherwise. The

technology shapes the optimal timing and the target of attack. When the technology is rich

rewarding no-waiting is optimal: attacking the two rivals in sequence is preferable to attacking

the merged kingdom. In the poor rewarding setting, waiting is optimal: attacking the larger

kingdom formed after two rivals have fought is best. Moreover, with a rich (poor) rewarding

technology it is optimal for a ruler to attack opponents in increasing (decreasing) order of

resources. Equipped with these results, we turn to the study of equilibrium dynamics.

Our main result, Theorem 1 shows that, with a rich rewarding technology, in any config-

uration with three or more kingdoms, all rulers find it optimal to attack a neighbour. Thus,

we are in a world with incessant warfare, the violence only stops when all opposition is elimi-

nated. When the network is connected, all opposition is eliminated only with the hegemony of

a single ruler.3 The arguments underlying this result are fairly general. We start by defining a

strong ruler: this is a ruler who has a ‘full attacking sequence’ (involving all other opponents),

such that at each point he is stronger than the opponent. Clearly, at any point in time, the

richest ruler is a strong ruler. It follows from the rich rewarding property that, if everyone

else is peaceful, then such a strong ruler has a strict incentive to fight every other ruler. Next

consider the case when other rulers may also wish to attack: does the strong ruler still have an

incentive to implement a fully attacking sequence? Given the no-waiting property identified

above, it then follows that the strong ruler has a dominant strategy: a full attacking sequence.

So, there is always at least one ruler who wishes to fight to the finish. Anticipating this, and

given the no-waiting property, every ruler, no matter how poor, has an incentive to fight a

neighbour. Thus, in a connected network, in equilibrium, eventually there will be only one

ruler left.

Turning to the role of resources and networks in shaping the prospects of individual rulers,

for ease of exposition, in this part, we restrict attention to the well known Tullock Contest

Function: the probability of ruler A winning is p(xA, xB) = xγA/(x
γ
A + xγB), for some γ ∈ R+.

3A network is connected if there is a path between any two kingdoms.
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It can be shown that the function is rich rewarding if γ > 1 and poor rewarding if γ < 1 (and

rulers are indifferent between war and peace if γ = 1). When γ is large, the probability of

a weak ruler becoming a hegemon becomes negligible. Within the set of strong rulers, those

who have ‘exclusive’ access to weak kingdoms that have a significantly greater probability

of becoming the hegemon (relative to their strong rivals). We show that the dynamics of

appropriation have powerful redistribution effects: in particular, they tend to take resources

away from the richest kingdoms and the poorest kingdoms and toward the middle resource

kingdoms.

We next take up poor rewarding contest success functions. A poor ruler gains from fighting

a rich rival; however, waiting is better: so the poorer ruler would prefer to wait and allow for

opponents to become large before engaging in a fight. This creates the possibility of peace. To

make progress we divide the analysis into two parts. To start, consider resource distributions

with a single rich ruler: if this ruler is sufficiently rich then his kingdom becomes an ‘irresistible’

prize; all other rulers have a strict incentive to fight to acquire the rich kingdom. So peace

cannot be sustained and the outcome is hegemony. Next, consider the case where no ruler

is very rich. Here we show that perpetual peace and a phase of war followed by peace may

be sustained in equilibrium. The key to sustaining peace is the threat of imminent war. The

equilibrium has the following structure: no ruler wishes to fight a single fight because, once

this fight is undertaken, all rulers have an incentives to fight till the finish. It is this latter

phase of war that makes war today unattractive. The analysis highlights the role of resource

inequality: across a range of networks and contest success functions, peace is more likely

when resources are more similar. And, we show that the dynamics of appropriation in the

poor rewarding setting are ‘equalizing’: the ex-post distribution of resources is less unequal

as compared to the starting resource distribution.

In the basic model, all the resources are taken over by the winner and the winner can

implement a full attacking sequence (while all other rulers remain passive). Section 5 shows

how our methods of analysis can be applied after we relax these features. The dynamics are

now considerably richer and they yield new insights. The introduction of gradual capture

of parts of an empire leads to dynamics in which conflict among rulers can be protracted

and involves the exchange of small parcels of territories. However, once a ruler succeeds in

expanding his territory, he gets more secure against being fully defeated. This motivates

fighting, and the growing size of a ruler in turn speeds up the emergence of a hegemon. As a

result, in the gradual expansion model, hegemony is the outcome both for rich and for poor

rewarding contest success functions. We then consider an extension of the model in which a
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rulers choose short attack sequences only: this accommodates the idea that rival rulers can

become active once a ruler begins an attack sequence. The incentives to wage war remain

strong in this setting and hegemony is still the norm.4

To summarize, our analysis suggests that starting in a situation with multiple kingdoms,

the dynamics are characterized by incessant fighting. After an initial phase of uncertain and

gradual growth, the pace of expansion of a ‘kingdom’ speeds up, and it grows rapidly through

contiguous expansion. This expansion, and consequently the size of the empire, is limited by

the connectivity of the network.

These predictions are consistent with episodes of imperial expansion in world history, e.g.,

the First Chinese Empire, the growth of the Roman Empire, Cyrus forming the first Persian

Empire, Alexander’s campaigns leading to the Greek Empire in Asia, Chandragupta setting

up the Mauryan Empire in India, and the creation of the first Arab Empire. Section 6 closes

the paper by presenting a case study of the rise of the First Chinese Empire. This discussion

maps the principal theoretical insights on to the Warring States Period, the reforms of Qin

leading to major resource augmentation, the monotonic sequence of attack, and the very rapid

expansion of territory leading to the emergence of the first Chinese Empire.

We now place our paper in the context of the literature and clarify its contributions. Our

paper studies the dynamics of war and peace and the formation of empires; related work

includes Hirshleifer [1995], Jordan [2006], Krainin and Wiseman [2016], Levine and Modica

[2013, 2016], and Piccione and Rubinstein [2007]. A number of aspects of our framework

set it apart from existing work: we develop a non-cooperative and dynamic game with far-

sighted players, we consider general contest functions, and there is a network structure which

shapes the sequence of attack strategies and the scale of empires. Our analysis introduces

new concepts – rich/poor rewarding contest success functions and strong/weak rulers. They

enable us to address a range of very different questions, such as the timing and monotonicity

of optimal attack strategies, and how the prospects of individual rulers depend on the network

and on the nature of the contest success function. Finally, we provide a mapping from our

results onto the history of empire. Along all these dimensions we go beyond the existing work.

The theoretical framework combines elements from the literature on contests, on resource

wars, and on networks. We now discuss the relationship between our paper and these litera-

tures.

4We have also studied a number of other factors: ties in a war, the guns vs butter trade-off, resurrection of
defeated rulers, and asymmetric contest success functions. The details of these extensions are available from
the authors.
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There is a large literature on contests, for surveys see Konrad [2009] and Garfinkel and

Skaperdas [2012]. We consider a general model of multi-player contests inspired by the ax-

iomatic work of Skaperdas [1996].5 In recent work, Konrad and Kovenock [2009], Groh,

Moldovanu, Sela, and Sunde [2012], and Anbarcı, Cingiz, and Ismail [2018] study multi-player

sequential contests. In these papers the contest takes the form of an all-pay auction. The

interest is in how individual heterogeneity and the sequential contest structure determine ag-

gregate efforts and winning probabilities. By contrast, in our model, we abstract away from

effort so that we can study the dynamics of conflict with general contest success functions and

networks. To the best of our knowledge, the results on rich/poor rewarding contest success

functions and strong/weak rulers, and the mapping from these results to imperial history, are

novel in the context of this literature.6

The role of resources in shaping violent conflict is an active field of study, see e.g., Ace-

moglu, Golosov, Tsyvinski, and Yared [2012], Caselli, Morelli, and Rohner [2015], and Novta

[2016]. This literature provides evidence for appropriation of resources as a major motivation

for war. The theoretical work is mostly limited to two players or to symmetric models; for an

overview of the theory, see Baliga and Sjöström [2012]. Our paper contributes to this literature

by studying the cumulative dynamics of appropriation and the expansion of territory within

a contiguity network, and by linking these dynamics to major episodes of world history.

Finally, our paper is a contribution to the recent literature on conflict and networks, see

e.g., Franke and Öztürk [2015], Hiller [2017], Kovenock and Roberson [2012], Huremović [2015],

Jackson and Nei [2015], and König, Rohner, Thoenig, and Zilibotti [2017]. For an overview see

Dziubiński, Goyal, and Vigier [2016]. Our paper advances this literature on two fronts: one,

the dynamics of appropriation in inter-connected conflict and two, how these dynamics are

decisively shaped by the contiguity network, the resources, and the contest success function.

The rest of the paper is organized as follows. Section 2 presents the basic model. Section 3

studies the incentives to fight and the optimal timing of attack. Section 4 presents the results

on equilibrium dynamics. Section 7 concludes. The Appendix contains the proofs of the main

results, while the Online Appendix discusses a number of extensions of the basic model.

5For an early study of optimal strategy of attack in a three player game, see Shubik [1954]. Olszewski and
Siegel [2016] study static contests with a large numbers of players.

6In our model, a rich rewarding contest success function provides a rationale for waging a sequence of wars
due to the compounding of spoils of war. This bears some resemblance to the earlier work of Garfinkel and
Skaperdas [2000] and McBride and Skaperdas [2014] who study incentives for war in settings where rewards
extend through time. In their model, war today is attractive as it facilitates expansion tomorrow.
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2 The Model

We study a dynamic game in which rulers seek to maximize the resources they control by

waging war and capturing new territories. There are three building blocks in our model:

the interconnected ‘kingdoms’, the resource endowment for every kingdom, and the contest

success function.

Let V = {1, 2, . . . , n}, where n ≥ 2 is the set of vertices. Every vertex v ∈ V is endowed

with resources, rv ∈ R++. The vertices are connected in a network, represented by an undi-

rected graph G = 〈V,E〉, where E = {uv : u, v ∈ V, u 6= v} is the set of edges (or links)

in G. A network G is said to be connected if there is a path between any two vertices. For

expositional simplicity, we restrict attention to (undirected) connected networks. Our insights

extend in a natural way to directed networks.

A link between two vertices signifies ‘access’. Access may reflect physical contiguity. But,

in principle, it goes beyond geography: we do not restrict attention to planar graphs.7 So our

model allows for ‘virtual’ links, i.e., links made possible by advances in military and transport

technology.

Every vertex v ∈ V is owned by one ruler. At the beginning, there are N = {1, 2, . . . , n}
rulers. Let o : V → N denote the ownership function. The resources of ruler i ∈ N under o,

are given by

Ri(o) =
∑

v∈o−1(i)

rv (1)

The network together with the ownership configuration induces a neighbor relation between

the rulers: two rulers i, j ∈ N are neighbors in network G = 〈V,E〉 if there exists u ∈ V ,

owned by i, and v ∈ V , owned by j, such that uv ∈ E. Figure 1 illustrates vertices, resource

endowments, and connections; vertices controlled by the same ruler share a common colour.

The light line between vertices represents the interconnections, the dotted lines encircling

vertices owned by the same ruler indicate the ownership configuration, and the thick lines

between vertices reflect the induced neighborhood relation between rulers.

When two rulers fight, the probability of winning is specified by a contest success function.

Following Skaperdas [1996], we consider symmetric contest success functions with no ties.

Given two rulers, A and B, with resources xA ∈ R++ and xB ∈ R++, respectively, p(xA, xB)

is the probability that A wins the conflict and p(xB, xA) is the probability that B wins the

7A graph is planar if it can be embedded in a plane, i.e. drawn in a plane in such a way that the edges
intersect at their endpoints only. An example of a graph that is not planar is a clique with 5 nodes.
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Figure 1: Neighboring Rulers

conflict.

The game takes place in discrete time: rounds are numbered t = 1, 2, 3 . . . . At the start of

a round, each of the rulers is picked with equal probability. The chosen ruler, (say) i, chooses

either to be peaceful or to attack one of his neighbors. If a ruler attacks a rival, he does so

with all his current resources. If he chooses peace, one of the remaining rulers is picked, and

asked to choose between war and peace, and so forth. If no ruler chooses war, the game ends.

If the attacker loses, the round ends. Otherwise, the attacker is allowed to attack neighbors

until he loses, chooses to stop, or there are no neighbors left to attack.8 When two rulers i and

j fight, the winner takes over the entire kingdom of the loser (and also inherits the boundaries,

and hence the connections). This dynamic is illustrated in Figure 1: the orange kingdom wins

the war with the red kingdom and expands. This expansion brings it in contact with new

neighbors, the light and dark green kingdoms. The game ends when all rulers choose to be

8De Jong, Ghiglino, and Goyal [2014] introduced a model of conflict with resources and a network: the
key difference is that conflict is imposed exogenously. Links are picked at random and rulers must fight. By
contrast, in the present paper, the choice of waging a war or being at peace is the central object of study.
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peaceful (the case of a single surviving ruler is a special case, as there is no opponent left to

attack). Observe that, given these rules, the game ends after at most n− 1 rounds. It may of

course end earlier: this happens if all the rulers choose peace at a round.

The configuration of kingdoms and rulers – who is a neighbor of whom – is (potentially)

evolving over time. Given a set of vertices U ⊆ V , G[U ] = 〈U, {vu ∈ E : v, u ∈ U}〉 is the

subgraph of G restricted to vertices in U and links between them. The set of valid ownership

configurations, given graph G, is denoted by

O = {o ∈ NV : for all i ∈ N , G[o−1(i)] is connected}. (2)

As the graph is fixed, for simplicity, we omit it as an argument.

A state is a pair (o, P ), where P ⊆ N , is the set of rulers who were picked prior to i and

chose peace at o. Ruler i, picked at state (o, P ) ∈ O × 2N\{i}, chooses a sequence of rulers

to attack. A sequence σ is feasible at o in graph G if either σ is empty, or if σ = j1, . . . , jk

and for all 1 ≤ l < k, jl /∈ {i, j1, . . . , jl−1} and jl is a neighbor of one of the rulers from

{i, j1, . . . , jl−1} under o in G. A sequence σ is attacking if it is non-empty. Let N∗ denote the

set of all finite sequences over N (including the empty sequence). A strategy of ruler i is a

function si : O× 2N\{i} → N∗ such that for every ownership configuration, o ∈ O, and every

set of rulers, P ⊆ N \ {i}, si(o, P ) is feasible at o in G.9 Given ruler i ∈ N and graph G, the

set of strategies of i is denoted by Si; S =
∏

i∈N Si denotes the set of strategy profiles.

The probability that ruler 1 with resources R1 wins a sequence of conflicts with rulers with

resources R2, . . . , Rm, accumulating the resources of the losing opponents at each step of the

sequence is

pseq(R1, . . . , Rm) =
m∏
k=2

p

(
k−1∑
j=1

Rj, Rk

)
. (3)

Given o, a set of rulers, P , and a strategy profile s = (s1, s2, . . . , sn) ∈ S, the probability

that the game ends at o′, is given by F (o′ | s,o, P ). We shall sometimes refer to a final

ownership configuration as an outcome. The expected payoff to ruler i from strategy profile

s ∈ S at state (o, P ) is:

9Observe that the only feasible sequence for rulers who do not own any vertices, and for the ruler who owns
all vertices, is the empty sequence.
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Πi(s | o, P ) =
∑
o
′∈O

F (o′ | s,o, P )Ri(o
′). (4)

Every ruler seeks to maximize his expected payoff. The goals of rulers have been studied

extensively; for classical discussions see Hobbes [1651], Machiavelli [1992], and for more recent

work see Jackson and Morelli [2007].10

A strategy profile s ∈ S is a Markov perfect equilibrium of the game if and only if, for

every ruler i ∈ N , every strategy s′i ∈ Si, and every state, (o, P ) ∈ O× 2N\{i}, Πi(s | o, P ) ≥
Πi((s

′
i, s−i) | o, P ). Standard arguments can be employed to establish:

Proposition 1. Fix a connected graph G. For any symmetric contest success function, p, and

any resource endowment, r ∈ RV
++, there exists an equilibrium and all equilibria are payoff

equivalent.

The proof is presented in the Appendix.

3 The Incentives to Fight

This section introduces a general class of contest success functions and presents general results

on incentives to fight for the two and three ruler setting. The notions of rich and poor

rewarding contest success functions are introduced and a characterization is presented in

terms of standard properties such as increasing and decreasing returns. The interest then

turns to the timing and order of optimal attacks: conditions on the contest success functions

are obtained under which rulers prefer to wait/not wait to attack.

In general, a contest success function is function q : R2
++ → [0, 1]2. Following Skaperdas

[1996]), we consider three axioms for contest success functions, together with an additional,

fourth axioms, that substitutes independence of irrelevant alternatives axiom for the case of

bilateral contests.11

10We assume that ruler’s utility is linear in resources. Risk-averse and risk-loving preferences can easily
be accommodated. Suppose utility is given by u(x), with u(0) = 0, u′ > 0 and u′′ < 0. This means that
u(x+ y) < u(x) + u(y). Expected payoff to x vs y can be written as:

p(x, y)u(x+ y) = p(x, y)(u(x) + u(y))(1− d(x, y))

where d(x, y) = 1− u(x + y)/(u(x) + u(y)). So 0 < d(x, y) < 1: in other words, risk-aversion creates a ‘cost’
of conflict.

11Skaperdas [1996] proposes five axioms for contest success functions, the first three of them correspond to
axioms A1-3, the fourth, consistency axiom, is always satisfied in the case of two bilateral contests, and the
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A1 For all (x1, x2) ∈ R2
++, q1(x1, x2) + q2(x1, x2) = 1,

A2 For all i ∈ {1, 2} and j ∈ {1, 2} \ {i}, qi(xi, xj) is increasing in xi and decreasing in xj,

A3 For all (x1, x2) ∈ R2
++, q1(x1, x2) = q2(x2, x1),

A4 For all i ∈ {1, 2} and (x1, x2, x3) ∈ R3, qi(x1, x2)qi(x2, x3)qi(x3, x1) = (1− qi(x1, x2))(1−
qi(x2, x3))(1− qi(x3, x1)).

By axiom A3, the contest success function is symmetric and can be represented by function

p : R2
++ → [0, 1], where q1(x1, x2) = p(x1, x2) and q2(x1, x2) = p(x2, x1). Using the additional

axiom, A4, the proof of Skaperdas [1996] extends to show that a bilateral contest success

function satisfying axioms A1-4 necessarily takes the form

p(x, y) =
f(x)

f(x) + f(y)
. (5)

with an increasing, positive, function f : R++ → R++.12 The study of contests remains a very

active field of study; see Fu and Pan [2015] for a a recent contribution and for references to

the literature.

Recall that (x + y)p(x, y) is the expected payoff of a ruler with resources x who fights an

opponent with resources y. We shall say that the contest success function, p, is rich rewarding

if for all x, y ∈ R++ with x > y,

(x+ y)p(x, y) > x (6)

Similarly, we shall say that p is poor rewarding if for all x, y ∈ R++ with x < y,

(x+ y)p(x, y) > x (7)

A rich rewarding contest success function gives the richer side an incentive to fight, while

poor rewarding one gives the poorer side an incentive to fight. We characterize rich and poor

rewarding contest success functions in terms of standard properties of the function f . We also

examine the timing of optimal attack: whether to attack now or to wait and attack later. A

contest success function, p, is said to have the no-waiting property if for all x, y, z ∈ R++,

p(x, y)p(x+ y, z) > p(x, y + z). It is said to have the waiting property if for all x, y, z ∈ R++,

fifth axiom, independence of irrelevant alternatives, applies to contests with at least three participants.
12In addition, f is unique up to positive multiplicative transformations.
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p(x, y)p(x+y, z) < p(x, y+z). With contest success functions having the no-waiting property,

it is profitable for a ruler to attack the other two rulers in a sequence rather than wait to fight

the merged kingdom. The converse is true in the case of contest success functions that exhibit

the waiting property. Rich/poor rewarding and the timing of attacks are intimately related.

Turning to the optimal order of attack, a contest success function has the poor-first property

if the expected payoffs of attacking the poor ruler followed by the rich ruler are larger, i.e., for

all x, y, z ∈ R++, with y < z, p(x, y)p(x+y, z) > p(x, z)p(x+ z, y). A contest success function

has the rich-first property if the converse holds. Define

h(s, t) =
f(t)f(s+ t)

f(s+ t)− f(s)− f(t)
.

Proposition 2. Consider a contest success function, p, that satisfies (5). The function p is

rich rewarding if and only if f exhibits increasing returns to scale; it is poor rewarding if and

only if f exhibits decreasing returns to scale. In addition:

1. Timing of attack: If p is rich rewarding then it has the no-waiting property, while if p

is poor rewarding then it has the waiting property.

2. Order of attack: p has the poor-first (rich-first) property if and only if h(s, t) is strictly

increasing (decreasing) in t ∈ R++, for all s ∈ R++.

The proof is presented in the Appendix. The argument for the first part proceeds as follows.

Suppose that x > y. If f exhibits increasing returns then f(x)/(f(x) + f(y)) > x/(x + y).

Multiplying both sides by x + y now yields the desired implication. On the other hand, if

the stronger side gains in expectation, then it must be that (x + y)f(x)/(f(x) + f(y)) >

x. Rewriting and rearranging this gives us the inequality f(x)/(f(x) + f(y)) > x/(x + y),

which requires that f exhibits increasing returns. A similar line of reasoning applies to the

poor rewarding case. The argument for the second part proceeds as follows. In the case of

timing of attack, we begin by showing that the no-waiting property is equivalent to f being

super-additive. The next step demonstrates that super-additivity is a weaker property than

increasing returns to scale, and that concludes the proof. In the case of order of attack,

rewriting of the poor-first property derives the required expression.

We note that the optimal order of attack result can be generalized to cover n opponents: if

all opponents are neighbours, then the order of attack is monotonically increasing (decreasing)

in the resources of opponents if h(x, y) is increasing (decreasing) in y for all x (this result is
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stated and proved in Appendix).13

We illustrate the scope of these results through a consideration of the widely studied

Tullock contest success function.14

p(x, y) =
xγ

xγ + yγ
,

where γ > 0. Hence, f(x) = xγ. If γ > 1 then f has increasing returns to scale. From

Proposition 2 it follows that the contest success function is rich rewarding and has the no-

waiting property. On the other hand, if γ < 1, then f exhibits diminishing returns to scale.

It is therefore poor rewarding and the ruler would prefer to wait. Finally, observe that

(x + y)p(x, y) = x, for all x, y ∈ R++ if γ = 1. So the contest success function is reward

neutral ; it is also timing neutral (as for all x, y, z ∈ R++, p(x, y)p(x + y, z) = p(x + y, z)).

Lastly, in the case of γ > 1, h(s, t) is increasing in t for all s. Hence in this case the contest

success function has the poor first property. On the other hand, in the case of γ < 1, h(s, t) is

decreasing in t for all s and the contest success function has rich first property. Since h(s, t)

remains constant in t for all s, if γ = 1, so the contest success function is order neutral in this

case. To summarize:

Corollary 1. The Tullock contest success function is rich rewarding, has the no-waiting and

poor first properties if γ > 1; it is poor rewarding, has the waiting and rich first properties if

γ < 1. It is reward, timing, and order neutral if γ = 1.

The condition with regard to order of attack generalizes to larger sequences. Hence, in the

case of the Tullock Contest Function, it yields a clean implication: if γ > 1 then the optimal

attack strategy prescribes attacking rivals in increasing order of resources; the converse holds

if γ < 1. These results set the stage for the study of n ≥ 3 rulers located in a connected

network.15

13The qualification ‘if all opponents are neighbors’ is important. If some opponents are not neighbors then
it may be optimal to attack a richer neighbor in preference to a poor neighbor, so as to reach other poorer
opponents first. Here is an example. Suppose G is a line network with 4 rulers, a, b, c, and d, each controlling
one vertex (in that order). Suppose that resources of ruler a are x ∈ (0, 2). The resources of b, c and d are
respectively 2, 2.01 and 1. Assume Tullock contest success function with f(x) = x2. If x < 1.83 then the
optimal full attacking sequence of ruler b is (a, c, d): so it prescribes attacking the weakest neighbor first. On
the other hand, if x > 1.84 then the optimal full attacking sequence is (c, d, a): it is better to first attack a
stronger neighbor, c, to get access to weak d, and only then attack a.

14The Online Appendix presents a discussion of the Hirshleifer Difference Contest Function.
15The literature has tended to assume γ ≤ 1. This is because of concerns about the existence of an

equilibrium in models where resources are costly. In our setting, the ruler chooses whether to fight or not and
in this setting the existence of equilibrium does not depend on the value of γ.
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We have not been able to locate clear empirical evidence on the nature of contest success

functions. The key of resources has been noted in the context of the formation of the first

Chinese Empire and the expansion of the Roman Empire (Lewis [2010], Polybius [2010]). For

more recent times, Clausewitz [1993], drawing inspiration from the Napoleonic wars in Europe,

argued that superiority in numbers was fundamental: an army twice as large as its opponent

almost never lost the battle (not even against a great general like Bonaparte). Howard [2009]

likewise argues that army size was critical factor in the victory of Germany over France in the

Franco-Prussian Wars. These observations are consistent with a probability of winning that

is responsive to army size and resources. In what follows, we therefore present equilibrium

analysis for both rich and poor rewarding contest success functions.16

4 Conquest and Empire

This section studies equilibrium dynamics of war and peace and the formation of empires.

The analysis for the rich rewarding case is reasonably complete: we show that equilibrium is

characterized by incessant warfare and that the outcome is hegemony. The connectivity of

the network defines the limits of the hegemony. The concepts of strong and weak rulers – that

reflect resources and network architecture – play a key role in this analysis. The analysis of

poor rewarding contest functions is more partial because the dynamics are considerably more

complicated: we show that perpetual peace, perpetual war (and hegemony), and a phase of

war followed by peace can all arise in equilibrium. Greater equality in initial resources makes

peace more likely.

Given ownership configuration o, the set of active rulers at o is

Act(o) = {i ∈ N : ∅ ( o−1(i) ( V }.

An ordering of the elements of the set Act(o) \ {i}, σ, such that the sequence σ is feasible

for i in G under o is called a full attacking sequence (or f.a.s). Figure 2 illustrates such a

sequence(for the orange kingdom).

We are now ready to state our first main result on equilibrium dynamics.

16To get a sense of the numbers, consider the Tullock Contest Function and suppose one army is twice the
size of the other army. With an exponent γ = 2, the probability of winning for the larger army is 0.8, and
with an exponent γ = 4 it is (approx) 0.95. On the other hand, with γ = 0.5 the probability of winning is 0.6,
and with γ = 0 the probability is 0.5.
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Figure 2: Full Attacking Sequence

Theorem 1. Consider a rich rewarding contest success function that satisfies (5). Suppose

G is a connected network and let r ∈ RV
++ be a generic resource profile. In equilibrium, every

active ruler chooses to attack a neighbor if |A(o)| ≥ 3, and at least one of the active rulers

attacks his opponent if |A(o)| = 2. The outcome is hegemony and the probability of becoming

a hegemon is unique for every ruler.

The proof is presented in the Appendix. The result offers an account of the dynamics of

conflict in a rich rewarding setting when rulers are driven by a desire to maximize resources

under their control. It predicts incessant fighting, preemptive attacks, and long attacking

sequences. It is worth drawing attention to the generality of this result: it holds for all rich

rewarding contest functions, for any connected network, and for generic resources.

We discuss the arguments underlying the theorem. A ruler is said to be strong if he has

an attacking sequence σ = i1, . . . , ik, where for all l ∈ {1, . . . , k},

l−1∑
j=0

Rij(o) > Ril(o).

In other words, at every step in the attacking sequence, the ruler has more resources than

the next opponent. The set of strong rulers at ownership configuration o is

S(o) = {i ∈ Act(o) : i has a strong f.a.s. σ at o}.

A ruler who is not strong is said to be weak. Note that (generically) in any state, the ruler

with the most resources is strong, while the ruler with the least resources is weak. Thus both
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sets are non-empty in every network and for (generic) resource profiles.

The first step is to show that, assuming that all other rulers choose peace in all states,

it is optimal for a strong ruler to choose a full attacking sequence. This is true because the

contest success function is rich rewarding and so a strong ruler has a full attacking sequence

that increases his resources in expectation, at every step, along the sequence. The second

step extends the argument to cover opponents who choose war. If opponents are active then

the no-waiting property (from Proposition 2) tells us that it is even more attractive to not

give them an opportunity to move. For a strong ruler it is therefore a dominant strategy to

use an optimal full attacking sequence. The final step in the proof covers non-strong rulers

to establish that with 3 or more active rulers, it is optimal for every ruler to choose a full

attacking sequence. Observe that we have already shown that every non-strong ruler knows

that he will be facing an attack sooner or later. This means that waiting can only mean that

the opposition will become (larger and) richer. The no-waiting property then tells us that

every ruler must attack as soon as possible. If there are only two active rulers then the richer

ruler has a strict incentive to attack the poorer opponent (this follows from the definition of

the rich rewarding contest function).

We now examine the role of the contiguity network and resources more closely. For ex-

positional simplicity, we focus on the Tullock contest success function. Notice that, due to

timing and order neutrality, there are no interesting network effects when γ = 1: equilibrium

expected resources of any ruler remain equal to his initial resources. When γ is large it is

never optimal to attack a richer ruler if other options are available. The optimal strategy for a

strong ruler must involve attacking a poorer ruler at every stage in the attack sequence. Such

a sequence is clearly not available for a weak ruler: the probability of a weak ruler becoming

a hegemon converges to zero, as γ grows.

Given the initial ownership configuration o0, a γ, and resources r, let Probi(r, γ | o0) be

the equilibrium probability of ruler i becoming the hegemon. Define

Prob∗i (r | o0) = Probi(r, lim
γ→+∞

γ | o0).

Proposition 3. Suppose the contest success function is Tullock, the network G is connected,

and the resources r ∈ Rn
++ are generic. The probability of a weak player becoming a hegemon

becomes negligible as γ grows. Specifically,

Prob∗i (r | o0)

{
≥ 1
|Act(o)| , if i ∈ S(o0)

= 0, otherwise.
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The proof is presented in the Appendix.

Whether a ruler is strong or weak depends both on the distribution of resources and on

the position of the ruler in the contiguity network. In Figure 3 we represent strong rulers in

red and weak rulers in yellow. It is helpful to define the boundary of a set of vertices U ⊆ V

in G is

BG(U) = {v ∈ V \ U : there exists u ∈ U s.t. uv ∈ E}

A set of vertices, U , is weak if G[U ] is connected, BG(U) 6= ∅, and for all v ∈ BG(U),

rv >
∑

u∈U ru. A weak set of nodes is surrounded by a boundary, constituted of nodes, each

of whom is endowed with more resources than the sum of resources of vertices within the set.

Weak sets are illustrated in Figure 3. It is easy to see that, for any initial state o, a ruler is

weak if his vertex belongs to a weak set and, otherwise, the ruler is strong.

Figure 3: Weak rulers (surrounded by thick lines) and strong rulers

Proposition 3 covers the case of large γ. We now turn to examples to show that the

distinction between strong and weak rulers is central to the study of dynamics more generally,

across rich rewarding γ. Consider three networks with 10 nodes: the clique network (with 45

links), a connected network with 27 links and a tree network (with 9 links). The resources

endowments at the nodes are 2, 3, 6, 11, 13, 15, 16, 18, 21, and 23, respectively. The strong

rulers are presented in purple, while the weak rulers are presented in yellow. These networks

and resource endowments are presented in Figure 4. Observe that as we delete links from

clique to obtain the network with 27 links, the number of weak rulers increases strictly (from

2 to 3) and the same happens as we go move from network with 27 links to the network with

9 links (the number goes up from 3 to 4).
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We compute the equilibrium payoffs in these examples;17 the results are summarized in

Figure 5.18 The key point to note is that, even for γ = 8, the long run prospects of a ruler are

essentially determined by whether he is strong or weak. Further study of examples that span

a range of different values of γ reveal that this pattern is reinforced when we increase γ.

Figure 4: Examples of Networks

Given the importance of strong and weak rulers, we briefly comment on how changes in

resources and links affect the set of strong and weak rulers. Given a resource profile, observe

that adding links to a network offers all rulers potentially more sequences of attack. This

means that a ruler who was weak may now have a strong sequence. Adding links (weakly)

therefore expands the set of strong rulers. The number of strong rulers is maximized in the

complete network and it is minimized when the strongest ruler is at the center of a star

network. Given a network and a resource configuration, an increase in resources of a ruler

either maintains his status or switches him from weak to strong. Observe that an increase in

resources of a ruler may well lead to another ruler becoming weak. From Proposition 3 we

can infer that additional resources for one ruler can make a big difference to his and others’

long term prospects.

The discussion so far has focused on the difference between strong and weak rulers. We

now argue that the network structure also shapes the relative prospects of different strong

rulers. Consider an example with two strong rulers. Suppose the two rulers are 1 and 2, and

they own vertices v1 and v2, respectively. The set of the remaining vertices, V \ {v1, v2}, can

17We would like to stress that all the computational examples in the paper are obtained by means of
numerical calculations of equilibrium strategies and payoffs and not by simulations. This allows us to obtain
much more accurate results.

18In the figures we present the relation between initial end expected equilibrium resources using scatter
diagrams and we present the distribution of resources using Lorenz curves. For any x ∈ [0, 100], a Lorenz
curve represents the fraction of the total resources owned by poorest x% of the rulers.
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Figure 5: Equilibrium Payoffs and Lorenz Curves: γ = 8.

be partitioned into three sets: the set of nodes reachable from v2 via v1 only, denoted by U1,

the set of nodes reachable from v1 via v2 only, denoted by U2, and the remaining nodes, U12

(c.f. Figure 6).

To see the effects of the networks structure easily, suppose that γ is large and that rv1 +

RU1 > rv2 + RU2 + RU12 . This ensures that ruler 1 remains strong as long as he is active.

Ruler 2, on the other hand, becomes weak if ruler 1 accumulates enough resources from the

set U1. The probability of ruler 1 becoming a hegemon is approximately 1/2 + q, where q is

the probability that ruler 2 is picked to move before ruler 1 is picked to move and he is weak

when that happens. Thus q is the probability that 1 conquers sufficiently many nodes before

ruler 2 is picked to move. To fix ideas, suppose that 1 needs to acquire all the nodes in U1 to

become uniquely strong. Suppose |U1| = k. If G[U1] is a fully disconnected network then q

is approximately equal to k!/(k + 2)! = 1/((k + 1)(k + 2)). If, on the other hand, G[U1] is a

clique with k − 1 strong rulers then q is approximately equal to (k − 1)(k + 1)!/(2(k + 2)!) =

(k−1)/(2(k+2)). As k gets large, the probability that ruler 1 becomes the hegemon converges

to 1/2 in the former case, and to 1 in the latter case.

Figure 6: Partitioning of a Graph with Two Strong Rulers
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4.1 Poor Rewarding Contest Success Functions

We begin by recalling that in the poor rewarding setting, every bilateral conflict is profitable

to the poorer of the two opponents. However, the poor rewarding property also implies that

rulers have a preference to wait before they fight. These two considerations suggest that the

dynamics can be complicated. We are especially interested in the possibility of peace.

We start with noting that in equilibrium, at every ownership configuration, there is either

peace or fight, regardless of the order in which the rulers are picked to move. Formally, given

a strategy profile, s, an ownership configuration o ∈ O is peaceful under s, if for all i ∈ N
and all P ∈ 2N\{i}, si(o, P ) is the empty sequence. An ownership configuration o ∈ O is

conflictual under s if for every sequence i1, . . . , in of rulers from N there exists k ∈ {1, . . . , n}
such that sik(o, {i1, . . . , ik−1}) is not empty. In other words, regardless of the order in which

the rulers are picked to move at o, one of the rulers chooses an attacking sequence.

By the observation above, the possibility of peace means that, in equilibrium, there exist

ownership configurations, with two or more active rulers, at which all the rulers prefer staying

peaceful to choosing fight. To make progress we divide the analysis into two parts: first, we

characterize situations where peace is impossible, and second, we turn to situations where

peace may be sustainable. We say that there is perpetual peace in a given strategy profile, if

the initial state is peaceful. We say that there is war followed by peace in a given strategy

profile if the initial state is not peaceful and no equilibrium outcome is hegemony.

Proposition 4. Consider a generic poor rewarding contest success function that satisfies (5).

1. For any connected network, G, and any generic resource endowment, r ∈ RV
++, every

ownership configuration o ∈ O is either peaceful or conflictual in equilibrium.

2. For any connected network, G, any node v ∈ V , and any resource endowment of the

other nodes, r−v, there exists a resource level r̃v such that for all rv > r̃v, there is fight

till hegemony in equilibrium under resource endowment (rv, r−v).

3. For any n ≥ 4, there exists a network and a generic resource profile such that there is

perpetual peace in equilibrium. Similarly, there exists a network and a generic resource

profile such that there is war followed by peace in equilibrium.

The proof of this result is presented in the Appendix. The result should be seen as a

possibility result: it illustrates the rich range of outcomes possible under the poor rewarding

contest success function. A comparison of Theorem 1 with Proposition 4 reveals contrasting
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optimal strategies (full attacking sequence versus no fighting) and outcomes (hegemony versus

multiple kingdoms) and highlights the key role of the contest success function in shaping

conflict dynamics. The hegemony result relies on quite different arguments than the hegemony

result under rich rewarding contest success function. In the poor rewarding case, the existence

of a sufficiently rich ruler motivates other rulers to fight. However, due to the waiting property,

these rulers may choose to fight only if others do not. This is in contrast to the rich rewarding

case, where each ruler chooses fight whenever he is given a chance. The peace and war followed

by peace outcomes rely on the idea of fear of conflict escalation. We propose a network and a

(generic) resource profile for which, whenever any ruler chooses to fight, there will be fight till

hegemony in the following states and the ruler who started the conflict will be involved in all

the following conflicts. The resource endowments are such that it is never profitable for any

ruler to be involved in fight till hegemony starting from the initial state. The main challenge

is to show that such a resource endowment exists, for general n.

We next examine how networks, resources, and the contest success function affect the

prospects of peace. We consider Tullock contest success function with two values of γ: 0.05

(low) and 0.8 (high) and networks with 10 nodes (as in the rich rewarding case). In addition we

consider eight ranges of resources: [45, 55], [40, 60], [35, 65], [30, 70], [25, 75], [20, 80], [15, 85],

[10, 90]. For each triple of γ, number of links, k, and resource range, [a, b], we pick 1000

random samples of connected networks of k links with resources drawn uniformly from the

set (of 10, 000 evenly spaced values from) [a, b]. Figure 7 presents the frequencies of samples

exhibiting peace in the first round as a function of the resource range. It suggests that peace

is more likely when resources are drawn from a smaller range: this is true for both high and

low values of γ and true also across a wide range of networks. Taking together, Proposition 4

and our examples show that resource equality is conducive for peace.

This section concludes with an observation on equilibrium payoffs. We take up the same

three networks as in the rich rewarding case (from Figure 4) and we fix the Tullock parameter

γ to be equal to 0.05. Figure 8 presents the equilibrium payoffs and the Lorenz curves for the

three networks and the initial resources. It is clear that, when γ is very small, the equilibrium

dynamics are powerfully equalizing. A comparison with Figure 5 also reveals the big difference

between the rich and poor rewarding setting: the poorer kingdoms gain significantly in the

latter setting, and this is reflected at the aggregate level via the Lorenz curves.
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Figure 7: Frequency of Peace: γ = 0.05 (left), γ = 0.8 (right).
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Figure 8: Equilibrium Payoffs and Lorenz Curves: γ = 0.05.

5 Extensions

In the basic model, in a war there is always a winner and a loser, the loser is eliminated, and

all his resources are taken over by the winner. Moreover, the victor can employ his augmented

resources to execute a long sequence of attacks against rivals, while they remain passive. In this

section we relax these features of the model. The dynamics are now richer and this allows us to

develop new insights. A general point that emerges is that the incentives to wage war remain

strong. Allowing for gradual expansion reveals that conflict among rulers with small resources

can be protracted and involves the exchange of small parcels of territories. However, once

a ruler succeeds in expanding his territory, he gets more secure against being fully defeated,

he gets stronger, and he reduces the number of fights needed to become a hegemon. This

can lead rapidly to the emergence of a hegemony. These extensions suggest that the central

results on expansion and hegemony continue to obtain in more realistic models.
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5.1 Gradual Conquest

This section studies a model in which a winning ruler acquires constituent parts of the losing

ruler’s kingdom. As the losing ruler is not eliminated after one defeat, this creates the pos-

sibility that he may retaliate and recover the lost territories. The dynamics are now much

richer: parcels of land may exchange hands for long periods of time. Moreover, as expansion

is gradual, waiting to fight a larger ruler is no longer as attractive as it was in the basic model.

The elimination of a ruler calls for a sequence of defeats that corresponds to the size of the

ruler. We show that dynamics must converge to an absorbing state and that the absorbing

state will exhibit hegemony, for all contest success functions satisfying properties A1-A3.

The model of conquest is modified as follows: A ruler picked to move chooses peace or

chooses war against a neighbour. In case of war, he chooses a link between his own kingdom

and the neighbouring kingdom. This link determines the launching node as well as the attacked

node. The battle involves all the resources of the two rivals. If the attacker wins, he gains

the attacked node and if he looses he looses the node from which the attack is launched. The

picked ruler is allowed to attack neighbours until he looses all his nodes, or he chooses to stop,

or there are no more neighbours left to attack. We now define the game formally.

As in the basic model, the game proceeds in rounds. Within a round, a state is given by

the owner configuration and the set of rulers who have already been picked to fight. Ruler i,

picked to move at state (o, P ) ∈ O× 2N\{i}, chooses a plan of conquest σ : O → E ∪ {ε}. A

plan of conquest is feasible if, for each o ∈ O, either σ(o) = ε (which means that i chooses to

stop attacking) or σ(o) = uv such that uv ∈ E(o), o(u) = i and o(v) = j 6= i (which means

that i attacks vertex v of ruler j launching the attack from his own vertex, u). We call attack

sequence fully attacking if for all o′ ∈ O with |Act(o′)| ≥ 2, σ(o′) 6= ε. A strategy of ruler i is

a function si : O × 2N\{i} → (E ∪ {ε})O such that for every ownership configuration, o ∈ O,

and every set of rulers, P ⊆ N \ {i}, si(o, P ) is a feasible plan of conquest for i at o in G.

Given ruler i and graph G, the set of strategies of i is denoted by Si and S =
∏

i∈N Si denotes

the set of strategy profiles.

It is possible to show that any strategy profile determines an absorbing Markov chain

(this is done in the Online Appendix, Lemma 1). Given a strategy profile, s, the ownership

configurations at the absorbing states are called the outcomes of the game. For any ownership

configuration, o ∈ O, set of rulers, P ⊆ N , a strategy profile s ∈ S, the probability that

the outcome of the game is o′, F (o′ | s,o, P ), is well defined. Starting at state at state
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(o, P ) ∈ O× 2N\{i}, the expected payoff to ruler i ∈ N from strategy profile s ∈ S is

Πi(s | o, P ) =
∑
o
′∈O

F (o′ | s,o, P )Ri(o
′).

Every ruler seeks to maximize his expected payoff. We consider (Markov Perfect) equilibrium

of the game.

We establish the following result.

Proposition 5. Let p be a contest success function satisfying axioms A1–A3.

• Consider any connected network with two active rulers. The equilibrium outcome is

hegemony.

• Consider the complete network with three or more active rulers. The equilibrium outcome

is hegemony.

The proof is presented in the Online Appendix.

If there are only two active rulers then at least one of them has a strictly profitable –

an improving – fully attacking plan of conquest. This is because a fully attacking plan of

conquest for one ruler can be used by the other ruler as well (by replacing the roles of the

attacked node and the node from which the attack is launched). Since a fully attacking plan

of conquest leads to only two outcomes – hegemony of one of rulers – one of the rulers must

find it improving.

Next consider three or more active rulers in the complete network. We establish that,

at every state, at least one active ruler has an improving fully attacking plan of conquest.

The claim is true for 2 rulers, from above. Suppose that the claim is true for k − 1 active

rulers. Consider a configuration with k rulers. In this configuration, we can remove all the

nodes owned by one of the rulers, say i. The remaining network is also complete – a clique –

with territories of other rulers unchanged. From the induction basis it follows that there is a

ruler, say j, in this residual graph who has an improving plan of conquest. Either j finds it

beneficial to continue and fully conquer ruler i, in the original network. In this case we are

done. If this is not true then it must be true that i has an improving fully attacking plan of

conquest. Observe that by assumption it is unprofitable for j to attack i after having captured

all the other k − 2 rulers. So it must be the case that i finds it profitable to attack j, when

there are only two rulers i and j. The final step is to note that the payoffs to i from carrying

out a fully attacking plan of conquest at the original ownership configuration are even larger,
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because he would then face weaker opponents than j. This follows from the assumption that

the probability of winning is falling in the resources of the opponent (implied by assumptions

A1–A3).

5.2 Short Attack Sequences

In the basic model, a ruler is allowed to choose a full attacking sequence of attacks. In

particular, all other rivals remain passive, while this ruler executes this sequence. In this

extension, we allow for rivals to have more opportunity to react and the goal of this section

is to examine if our results are robust to this generalization.

We consider a variant of our model where rulers, when picked to move, can either choose

peace or choose a sequence of attack of length 1 only, and then a new mover is drawn. A

strategy of a ruler i is a function si : O × 2N\{i} → N ∪ {ε} such that for every ownership

configuration, o ∈ O, and every set of rulers, P ⊆ N \ {i}, si(o, P ) is feasible at o in G, that

is either si(o, P ) is empty or si(o, P ) consists of a neighbor of i under o in G. As the problem

is especially relevant under the no-waiting property, in this discussion, we restrict attention

to rich rewarding contest success functions. Notice that the proof of Proposition 1 can be

adjusted in a straightforward way and so Proposition 1 is valid for the short-attack variant

of the model. In particular, equilibrium existence and payoff equivalence of equilibria hold in

this model as well.

First, we take up the setting with a unique strong ruler. This situation arises naturally

if one ruler controls more than half of the resources. But the condition is significantly more

general. Given any network, G, recall that a maximal set of nodes such that any two distinct

nodes in the set are reachable from each other by a path in G is called a component in G.

The set of all components of G is denoted by C(G). In addition, given a set of nodes, U ⊆ V ,

G−U = G[V \U ] denotes the graph obtained by removing the nodes in U and all their links

from G. A connected graph G with resource endowment r has a unique strong node if and

only if there exists a node v ∈ V such that for every component C ∈ C(G− {v}), rv > RC .

Proposition 6. Consider a rich rewarding contest success function that satisfies (5). Suppose

the network G is connected and a (generic) resource profile r ∈ Rn
++ is such that there is exactly

one strong node. In equilibrium, at every ownership configuration, o, at least one ruler attacks

his neighbor. So the outcome is hegemony and the probability of becoming a hegemon is unique

for every ruler.
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The proof is presented in the Online Appendix. The first observation is that if there is a

unique strong ruler under some ownership configuration, then in every ownership configuration

that follows in the course of the game, there is also a unique strong ruler. This is because

no weak ruler can become strong, unless he fights and beats a strong ruler (in which case he

becomes the unique strong ruler). Given this observation, we now show that at any state,

for any strategy profile of the other rulers, the unique strong ruler increases his resources in

expectation using the ‘optimal attacking’ strategy. We proceed by induction. For two rulers,

which is the base step, the claim clearly holds. Assume now that the claim holds for k rulers.

We show that the result holds for k+1 active rulers. This is because, due to the rich-rewarding

contest success function, any fight between the strong ruler and any other ruler increases his

resources in expectation and then, by the induction hypothesis, the expected resources at

the end of the game are even higher. If any other two rulers fight, then the resources of the

strong ruler remain unchanged in any following state and then, by the induction hypothesis,

they increase. Thus, in any equilibrium there cannot be peace, because, at any ownership

configuration, the strong ruler prefers to attack one of his neighbours over remaining peaceful.

We now examine the case of multiple strong rulers, with the help of examples. Consider

the same three networks (with corresponding resources) as in the basic model (c.f. Figure 4)

and assume that γ = 8. Equilibrium payoffs and Lorenz curves for the results are presented

in Figure 9. By way of illustration, the figure contains also the corresponding outcomes for

the basic model. In all the examples every ruler chooses to fight in every state and so the

outcome is hegemony. As in the case of the basic model, the expected resources of the weak

rulers are close to 0. There is, however, much greater variation across the strong rulers.

Their equilibrium payoffs are more affected by the initial resource distribution, as compared

to the basic model. The ‘richest’ ruler gains most from the dynamics and has much higher

expected payoffs. The Lorenz curves confirm this point: the one-step dynamics lead to greater

inequality than the dynamics in the basic model.

Next, we study the frequency of peace. Suppose again that n = 10 nodes. We run

numerical calculations for γ ∈ {2, 4, 8, 16, 32}, number of links, k ∈ {9, 18, 27, 36, 45}, and

resource ranges [45, 55], [40, 60], [35, 65], [30, 70], [25, 75], [20, 80], [15, 85], and [10, 90]. For

each combination of the three parameters we have drawn 1000 random samples, ensuring that

there are at least two strong rulers. In each case we observe that there is fight till hegemony

in equilibrium. Moreover, at every state (on and off the equilibrium path) all rulers chose

fight. Taken together, Proposition 6 and these examples suggest that incessant warfare and

the emergence of hegemony are robust features of the dynamics of appropriation in the rich

25



00 5 10 15 20 25
00

5

10

15

20

25

30

35

40

Initial Resources

E
q
u
il
ib

ri
u
m

P
ay

off
s

Clique 27 links
Tree

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of Rulers (Cumulative)

F
ra

ct
io

n
of

E
q
.

P
ay

off
s

(C
u
m

.)

Clique 27 links
Tree Initial

00 5 10 15 20 25
00

5

10

15

20

25

Initial Resources

E
q
u
il
ib

ri
u
m

P
ay

off
s

Clique 27 links
Tree

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of Rulers (Cumulative)

F
ra

ct
io

n
of

E
q
.

P
ay

off
s

(C
u
m

.)

Clique 27 links
Tree Initial

Figure 9: Equilibrium Outcomes γ = 8: short attacks model (top) and basic model (bottom).

rewarding setting.

6 Theory and History

The analysis suggests that the dynamics will exhibit incessant warfare. Once a ruler becomes

dominant relative to his neighbours – either due to superior resource endowments or due to

institutional or technological innovations – he will more easily expand his territory. Subsequent

wars become decisive, and the speed of the expansion gathers pace. The size of empires is

limited by the connectivity of the network. We now relate these prediction in relation to the

developments leading to the creation of the First Chinese empire.

The First Chinese Empire in 221 BC: The discussion draws heavily on Lewis [2010] and

Overy [2010]. In China, the years between 475 BC and 221 BC were characterized by almost
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uninterrupted warfare between seven major states which is referred to as the Warring States

Period. The seven major kingdoms were Qin (located in the far west) the three Jins (located

in the center on the Shanxi plateau; Han south along the Yellow River, Wei located in the

middle, Zhao the northernmost of the three), Qi (centred on the Shandong Peninsula), Chu

(with its core territory around the valleys of the Han River), and Yan (centered on modern-

day Beijing). Initially, wars led to changes in the power of the different dynasties but all the

kingdoms survived. However, from 320 BC to 221 BC, there was a major consolidation and

by 221 BC, the Qin defeated all the other kingdoms and unified the entire area under one

ruler, Qin Shi Huang. Figure 11 illustrates the dynamics and Figure 12 summarizes it.

We now relate, in some detail, our theoretical model the process of the emergence of this

first empire. The first observation is that over a period stretching several hundred years, there

was incessant warfare. The second observation is that in the first part of this period, from 475

BC to 360 BC, the armies were relatively small and the wars did not lead to the elimination

of the major rulers. The third observation concerns the changes from 360 BC onward. The

period after 360 BC witnessed major reforms of the Qin minister, Shuang Yang. After these

reforms and the accompanying technological developments, the scale and violence in a war

changed dramatically: now elimination of the losing ruler and conquest of his kingdom became

much more likely, especially in a war between the Qin and one of the other warring states.

... the rise of Qin to dominance and its ultimate success in creating a unified empire

depended on two major developments. First, under Shang Yang it achieved the

most systematic version of the reforms that characterized the Warring States.

These reforms entailed the registration and mobilization of all adult males for

military service and the payment of taxes. While all Warring States were organized

for war, Qin was unique in its extension of this pattern to every level of society, and

in the manner in which every aspect of administration was devoted to mobilizing

and provisioning its forces for conquest. (Lewis, 2010; page 38-39).

These reforms meant that the ruler had the resources – both in terms of army size and in

terms of tax revenue – to wage large scale wars. Equipped with such a large army the Qin

ruler was able to implement a long attacking sequence: in 230 BC, Qin conquered Han, the

weakest of the Seven Warring States. In 225 BC, Qin conquered Wei, followed in 223 BC

by the conquest of Chu.19 Qin conquered Zhao and Yan in 222 BC. Finally, in 221 BC, Qin

19The size of the army was crucial in this contest: the first Qin invasion was a failure, when 200,000 Qin
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turned its attention to the last surviving Warring State opponent: the Qi. In the face of the

great threat Qi surrendered.

Our fourth observation concerns the order of attack: in line with the predictions of Propo-

sition 2 for a rich rewarding technology, there was a tendency to attack the weaker states first

before the stronger ones. Han, the weakest of the seven, was the first to fall. Qin’s policy

of attacking the nearby states and befriending the faraway states was partly determined by

proximity and partly driven by the fact that Han and Wei were relatively weak, while Qi and

Chu had the most resources. Yan was also a weak state and was the object of attack by Zhao

and Qi. The table below provides the estimated size of armies during the late Warring States

Period. The data is taken from Zhao and Xie [1988] (pages 18-19).20

Kingdom Size of Army End Year

Qin 800,000 -

Chu 800,000 BC 223

Qi 600,000 BC 221

Zhao 500,000 BC 222

Wei 400,000 BC 225

Han 300,000 BC 230

Yan 300,000 BC 222

Table 1: Chinese Kingdoms: Army Size and End Year

Our final observation concerns the frontiers of the empire: the Qin empire was bounded by

forests in the South, deserts and the Tibetan Plateau on the West, wasteland in the North and

the Pacific Ocean in the East. These physical features, especially in the South, the West and

the East, presented a physical constraint on further expansion. It is then possible to interpret

China as a distinct ‘component’ of the world network, somewhat isolated from other parts of

the world. The first Chinese Empire was a hegemon that was ‘limited’ by the connectivity of

the physical contiguity network.

troops were defeated by a much larger Chu army with around 500,000 troops. The following year, Qin mounted
a second invasion with 600,000 men and they defeated the Chu state. At their peak, the combined armies of
Chu and Qin are estimated to have been in excess of a million soldiers.

20We thank Sng Tuan Hwee for providing us this data on army size in Early China.
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7 Concluding Remarks

This paper develops a theoretical framework for the study of the incentives to wage war to

conquer territory and resources. Our innovation is that we locate the dynamics of appropria-

tion within a contiguity network. The analysis develops a number of results on the interplay

between the technology of war, the resources of rulers, and contiguity, that illuminate the pro-

cess of the formation of empires. In a setting where the contest functions are rich rewarding,

starting from a situation with multiple kingdoms, the dynamics are characterized by incessant

fighting. After an initial phase of uncertain and gradual growth, the pace of expansion of a

‘kingdom’ speeds up, and it grows rapidly through contiguous expansion. This expansion,

and consequently the size of the empire, is limited by the connectivity of the network. These

results provide a parsimonious account of the growth of major empires. We illustrate this

through the case study of the First Chinese Empire.

The paper highlights the importance of network connections and the contest success func-

tions. Rulers can alter both through strategic investments. In future work it would be inter-

esting to incorporate these choices within a general framework. The model examines external
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constraints on the extent of the empire: it is clear that institutional arrangements play a role

in defining the limits of empire.21 This offers another avenue for further work.
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APPENDIX: PROOFS

EQUILIBRIUM EXISTENCE AND PAYOFF UNIQUENESS

Proof of Proposition 1. We start with introducing a natural partial order of precedence on the

set of ownership configurations, O, and on the set of states, O×2N . Given any two ownership

configurations, o ∈ O and o′ ∈ O, o v o′ if and only if for all v ∈ V , either o(v) = o′(v)

or o(v) 6= o′(u), for all u ∈ V . Informally, if o and o′ are ownership configurations such

that o′ is obtained from o by some rulers expanding their territories, then o v o′. Given

any two states, (o, P ) ∈ O× 2N and (o′, P ′) ∈ O× 2N , (o, P ) � (o′, P ′) if and only if either

o v o′ or o = o′ and P ⊆ P ′. Informally, if state (o, P ) precedes state (o′, P ′) in the course

of the game, then (o, P ) � (o′, P ′). We will also use @ and ≺ to denote the strict orders

associated with the respective partial orders, defined above. Given an ownership configuration,

o ∈ O, let Succ(o) = {o′ ∈ O : o @ o′)} be the set of all ownership configurations that o

precedes. Let Succ(o) = Succ(o) ∪ {o}. Similarly, given a state (o, P ) ∈ O × 2N , let
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Succ(o, P ) = {(o′, P ′) ∈ O × 2N : (o, P ) ≺ (o′, P ′)} be the set of all states that (o, P )

precedes, and let Succ(o, P ) = Succ(own, P ) ∪ {(own, P )}.
Since O and O×2N are finite, there exist maximal elements of v and �. Take any strategy

profile, s, defined recursively on O×2N starting from the maximal elements of � as follows. If

(o, P ) is such that o is maximal according to v (i.e. there is only one active ruler at o) then,

for all i ∈ N , si(o, P ) = ε (the unique feasible sequence of i at o). Otherwise, let si(o, P ) be

any sequence that maximises i’s expected payoff given the continuation payoff determined by

s defined on the states in Succ(o, P ). Clearly any such strategy profile is well defined and is a

Markov perfect equilibrium of the game. Moreover, given the Markov perfection requirement

and since at each state there are no simultaneous moves (only one player is picked to make a

choice), every Markov equilibrium is a strategy profile of the form defined above.

We now turn to showing payoff equivalence of equilibria. Take any two Markov perfect

equilibria of the game, s and s′, and suppose that they are not payoff equivalent. Let (o, P ) ∈
O × 2N be a maximal state, according to �, such that there exists a ruler i ∈ N \ P with

Πi(s | o, P ) 6= Πi(s
′ | o, P ). Suppose that Πi(s | o, P ) > Πi(s

′ | o, P ) (the arguments for the

inverse inequality are symmetric and omitted). Then i could strictly improve his payoff under

s′ by choosing a strategy s′′i different to s′i at state (o, P ) only: s′′i (o, P ) = si(o, P ). Since

(o, P ) is a maximal state, according to �, for which Πi(s | o, P ) 6= Πi(s
′ | o, P ), so for all

states in Succ(o, P ), s and s′ yield the same payoff to i and the payoff to i at (o, P ) depends

on his resources at (o, P ) and on his payoff at these states only. Thus Πi((s
′
−i, s

′′
i ) | o, P ) =

Πi(s | o, P ) > Πi(s
′ | o, P ), a contradiction with the assumption that s′ is a Markov perfect

equilibrium of the game. Hence for all i ∈ N and (o, P ) ∈ O× 2N\{i}, s and s′ must yield the

same payoff to i.

INCENTIVES TO FIGHT

Proof of Proposition 2. We start with the rich rewarding case. The proof for the poor reward-

ing case is similar and omitted. Let p be a contest success function satisfying (5). Suppose

that p is rich rewarding and take any x, y ∈ R++ such that x > y. Rewriting (x+y)p(x, y) > x,

it is equivalent to 1

1+
f(y)
f(x)

> 1
1+ y

x
. Further, this is equivalent to f(x)/x > f(y)/y. Hence rich

rewarding property is equivalent to f(x)/x being strictly on R++, that is to f exhibiting

increasing returns to scale.
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We next turn to the timing results and consider the no-waiting case. The proof for the waiting

case is similar and omitted. Let p be a contest success function satisfying (5). Suppose that

p has the no-waiting property. Then, for any x, y, z ∈ R++,

f(x)

f(x) + f(y)

f(x+ y)

f(x+ y) + f(z)
>

f(x)

f(x) + f(y + z)
.

In particular, the inequality holds for z = x so

f(x)

f(x) + f(y)

f(x+ y)

f(x+ y) + f(x)
>

f(x)

f(x) + f(x+ y)
.

holds for any x, y ∈ R++. Dividing both sides by f(x) and multiplying them by the denomi-

nators we get

f(x+ y)(f(x) + f(x+ y)) > (f(x) + f(y))(f(x+ y) + f(x)).

Dividing both sides by f(x) + f(x+ y) yields

f(x+ y) > f(x) + f(y).

Thus f is super-additive.

Next suppose that f is super-additive. Then, for any y, z ∈ R++,

f(y + z) > f(y) + f(z).

Multiplying both sides of the inequality above by f(x+ y), for any x, y, z ∈ R++,

f(x+ y)f(y + z) > f(x+ y)(f(y) + f(z)).

Moreover,

f(x+ y)f(y + z) > f(x+ y)f(y) + f(x+ y)f(z) > f(x+ y)f(y) + (f(x) + f(y))f(z).

Adding f(x)f(x+ y) to both sides we get

f(x+ y) (f(x) + f(y + z)) > (f(x) + f(y)) (f(x+ y) + f(z)) .
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This can be rewritten as

1

f(x) + f(y)

f(x+ y)

f(x+ y) + f(z)
>

1

f(x) + f(y + z)
.

Multiplying both sides by f(x) we get

f(x)

f(x) + f(y)

f(x+ y)

f(x+ y) + f(z)
>

f(x)

f(x) + f(y + z)
.

To complete the argument, we show that increasing returns to scale imply super-additivity

and that decreasing returns to scale imply sub-additivity. Suppose that f has increasing

returns to scale. So f(x)/x is strictly increasing on R++. For any x, y ∈ R++,

xf(x+ y) > (x+ y)f(x) and yf(x+ y) > (x+ y)f(y).

Adding the two inequalities and dividing both sides by x+ y we get f(x+ y) > f(x) + f(y),

that is f is strictly super-additive. The arguments for decreasing returns are similar and

omitted.

By what was shown above, rich rewarding property of p implies that f exhibits increasing

returns to scale which, in turn, implies that f is super-additive and, further, that p has

the no-waiting property. By similar argument, poor rewarding property implies the waiting

property.

Finally we turn to the order of attack result. We provide the proof for the poor-first case.

The arguments for the rich-first case are similar and omitted. Let x, y, z ∈ R++ with y > z

and suppose that p(x, y)p(x+ y, z) > p(x, z)p(x+ z, y). This may be rewritten as:

f(x)

f(x) + f(y)

f(x+ y)

f(x+ y) + f(z)
>

f(x)

f(x) + f(z)

f(x+ z)

f(x+ z) + f(y)

Dividing both sides by f(x) and multiplying them by the denominators, we get

f(x+ y)(f(x) + f(z))(f(x+ z) + f(y)) > f(x+ z)(f(x) + f(y))(f(x+ y) + f(z))
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This is equivalent to

f(y)f(x+ y)(f(x) + f(z)) + f(x)f(x+ z)f(x+ y) + f(z)f(x+ z)f(x+ y) >

f(z)f(x+ z)(f(x) + f(y)) + f(x)f(x+ y)f(x+ z) + f(y)f(x+ y)f(x+ z)

Subtracting f(x)f(x+ z)f(x+ y) + f(z)f(x+ z)f(x+ y) + f(y)f(x+ y)f(x+ z) from both

sides this is equivalent to

f(y)f(x+ y)(f(x) + f(z))− f(y)f(x+ y)f(x+ z) >

f(z)f(x+ z)(f(x) + f(y))− f(z)f(x+ z)f(x+ y)

Reorganizing and multiplying both sides by −1, this is equivalent to

f(z)f(x+ z)(f(x+ y)− (f(x) + f(y))) > f(y)f(x+ y)(f(x+ z)− (f(x) + f(z))).

Dividing both sides by (f(x+ y)− (f(x) + f(y)))(f(x+ z)− (f(x) + f(z))), this is equivalent

to
f(z)f(x+ z)

f(x+ z)− f(x)− f(z)
>

f(y)f(x+ y)

f(x+ y)− f(x)− f(y)
.

This completes the proof.

The timing part of Proposition 2 can be generalized to arbitrary sequences of fights: with

poor-first property attacking opponents in increasing order with respect to their resources is

optimal, while with rich-first property attacking them in the reversed order is optimal. This

is stated in the corollary below.

Corollary 2. Let m ≥ 3 and x0, x1, . . . , xm ∈ R++, be such that x1 < . . . < xm. Then, for

any permutation π : {1, . . . ,m} → {1, . . . ,m},

pseq
(
x0, xπ(1), . . . , xπ(m)

)
≤

{
pseq(x0, x1, . . . , xm), if p has poor-first property,

pseq(x0, xm, . . . , x1), if p has rich-first property.

with equality only if the permutations on both sides are the same.

Proof. We provide the proof for the poor-first property. The proof for the rich-first property is

similar and omitted. Assume p has poor-first property. Let π : {1, . . . ,m} → {1, . . . ,m} be a

permutation of {1, . . . ,m}. A pair of indices (i, j) ∈ {1, . . . ,m} such that i < j and π(i) > π(j)
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is called an inverse of π. We will show that for any permutation π of {1, . . . ,m} with at least

one inverse there exists a permutation π′ of {1, . . . ,m} with less inverses that yields higher

pseq: pseq(x0, xπ(1), . . . , xπ(m)) < pseq(x0, xπ′(1), . . . , xπ′(m)). Since the identity is the unique

permutation of {1, . . . ,m} with no inverses, this implies the proposition. Throughout the

proof, given a permutation π and j ∈ {1, . . . ,m} we will use Xπ(j) to denote
∑j

l=1 xπ(l).

So take any permutation π on {1, . . . ,m} with at least one inverse, (i, j). Then there exists

i ≤ k < j such that (k, k + 1) is also an inverse of π. Let π′ be a permutation of {1, . . . ,m}
obtained from π by exchanging π(k) and π(k + 1), i.e. π′(k) = π(k + 1), π′(k + 1) = π(k),

and π′(l) = π(l) for l ∈ {1, . . . ,m} \ {k, k + 1}. There is at least one inverse less in π′ than

in π. Moreover, pseq
(
x0, xπ′(1), . . . , xπ′(m)

)
= pseq

(
x0, xπ′(1), . . . , xπ′(k−1)

)
· p
(
Xπ′(k−1), xπ′(k)

)
·

p
(
Xπ′(k), xπ′(k+1)

)
·pseq

(
Xπ′(k+1), xπ′(k+2), . . . , xπ′(m)

)
= pseq

(
x0, xπ(1), . . . , xπ(k−1)

)
·p
(
xπ′(k−1), xπ′(k)

)
·

p
(
Xπ′(k), xπ′(k+1)

)
·pseq

(
xπ(k+1), xπ(k+2), . . . , xπ(m)

)
. By poor-first property, this is greater than

pseq
(
x0, xπ(1), . . . , xπ(k−1)

)
·p
(
xπ(k−1), xπ(k)

)
·p
(
Xπ(k), xπ(k+1)

)
·pseq

(
Xπ(k+1), xπ(k+2), . . . , xπ(m)

)
=

pseq
(
x0, xπ(1), . . . , xπ(m)

)
. This completes the proof.

CONQUEST AND EMPIRE

We start by noting that the waiting and no-waiting properties extend to sequences of

arbitrary length. Formally, let m ≥ 3, x1, . . . , xm ∈ R++, and 1 ≤ i < j ≤ m such that i 6= 1

or j 6= m. If p has the no-waiting property, then

pseq(x1, . . . , xi−1, xi, . . . , xj, xj+1, . . . , xm) > pseq

(
x1, . . . , xi−1,

j∑
l=i

xl, xj+1, . . . , xm

)
(8)

Proof of Theorem 1. The proof proceeds in three steps.

Step 1: Fix some state o with |Act(o)| ≥ 2. For a strong ruler i, the optimal full attacking

sequence maximizes his payoffs across all attacking sequences. Moreover, in generic case, it is

a unique maximizer.

Let o be a state with |Act(o)| = m ≥ 2. Take an active ruler j0 ∈ Act(o) with maximal

amount of resources Rj0(o). For generic resource values, such a ruler is unique. Pick a full

attacking sequence j1, . . . , jm−1 consisting of rulers in Act(o) \ {j0} that is feasible for j0 in

G under o (clearly such a sequence exists because G is connected). Since j0 has maximal
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amount of resources so, for all 1 ≤ k ≤ m− 1, we have

k−1∑
l=0

Rjl(o) ≥ Rjk(o). (9)

The expected payoff to ruler j0 from the attacking sequence is

πj0(o | j1, . . . , jm−1) =

(
m−1∑
l=0

Rjl(o)

)
m−1∏
k=1

p

(
k−1∑
l=0

Rjl(o), Rjk(o)

)

= Rj0(o)
m−1∏
k=1

p

(
k−1∑
l=0

Rjl(o), Rjk(o)

)(∑k
l=0Rjl(o)∑k−1
l=0 Rjl(o)

)
. (10)

Since p is rich rewarding, so

p

(
k−1∑
l=0

Rjl(o), Rjk(o)

)(∑k
l=0Rjl(o)∑k−1
l=0 Rjl(o)

)
≥ 1, (11)

with equality only if k = 1 and Rj0(o) = Rj1(o).

At every step in the sequence, the expected resources are growing. So, for generic resource

values, there is a full attacking sequence that dominates any partial attacking sequence. By

definition, the optimal full attacking sequence maximizes payoffs across all attack sequences.

The first step has a powerful implication: in any state with 2 or more active rulers there

is at least one ruler who has a strict incentive to attack, given that other rulers do not attack.

Hence, in equilibrium, there must exist a hegemon.

In the dynamic game, in principle, a strong ruler may prefer to wait and allow others to

move and then attack later. The next step shows that an optimal full attacking sequence

dominates all such waiting strategies.

Step 2: Fix some state o with |Act(o)| ≥ 2 and a set or rulers, P . For any ruler i ∈ N \ P
strong at o, an optimal full attacking sequence is a dominant choice at (o, P ). Moreover, the

choice is strictly dominant if |Act(o)| ≥ 3.

Fix some state o. Let σi(o) be the optimal sequence of ruler i at o, assuming that the

game ends after i executes the sequence (successfully or not). In other words, σi(o) is the

myopic optimal sequence of ruler i at o. Notice that this sequence is independent of the set of

rulers who chose peace prior to i’s move at a round at the state o. Let π̄i(o) = πi(o | σi(o))

denote the optimal myopic payoff ruler i can attain at o.
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Claim. The optimal myopic payoff is the highest that ruler i can hope to attain, i.e., for any

state, o, and any set of rulers, P ⊆ N \ {i}, π̄i(o) ≥ Πi(s | o, P ) for any feasible strategy

profile s. Moreover, if i is strong and there are at least three active rulers, then the inequality

is strict.

The proof is by induction on the number of active rulers. For the induction basis, we show

that the claim holds for 2 active rulers. If i is the richer ruler then, from the rich rewarding

property, his myopic optimal strategy is to attack. It is also clear that attacking yields strictly

higher payoffs if the other ruler does not attack, and weakly higher payoffs if the other ruler

does attack. If i is the poorer ruler then not attacking is the optimal myopic strategy. In case

the richer ruler attacks, the expected payoff to i is less due to the rich rewarding property.

That completes the argument for 2 active rulers.

For the induction step, suppose that the claim holds for all y ≤ X, where X ≥ 2, active

rulers: we will show that it also holds for X + 1 active rulers. Given state o′, set of rulers,

P ′, and strategy profile, s′, we will use Atck(s′,o′, P ′) to denote the set of rulers choosing

attack at (o′, P ′) under s′, i.e. Atck(s′,o′, P ′) = {j ∈ N \ P ′ : s′j(o
′, P ′) 6= ε}.22 Fix some

state o with X + 1 active rulers and a set of rulers, P such that Act(o) \ P 6= ∅. Take an

active ruler i ∈ Act(o) \ P and any strategy profile s. If for all P ′ ⊆ N such that P ⊆ P ′,

Atck(s,o, P ′) = ∅, i.e. all players choose peace following P at o, then the claim follows,

because σi(o) is at least as good as the empty sequence at o:

π̄i(o) ≥ πi (o | σi(o)) ≥ πi (o | ε) = Πi(s | o, P ). (12)

Moreover, by Step 1, the inequality is strict if i is strong.

For the remaining part of the argument assume that there exists P ′ ⊆ N with P ⊆ P ′ such

that Atck(s,o, P ′) 6= ∅. We will establish that π̄i(o) ≥ Πi(s | o, P ). Given a set of rulers P ′

and ruler j0 ∈ N \P ′ such that sj0(o, P
′) 6= ε , let Πi(s | o, P ′, j0) denote the expected payoff

to ruler i from strategy profile s conditional on ruler j0 being selected to move at (o, P ′) and

22Throughout the proofs we use the standard notation, ε, to denote empty sequences.
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q(j0, P
′ | o, s) denote the probability that j0 is picked after P ′ at o under s. Then

Πi(s | o, P ) =
∑

P ′⊆N s.t. P⊆P ′

∑
j0∈Atck(s,o,P ′)

q(j0, P
′ | o, s)Πi (s | o, P ′, j0) +1−

∑
P ′⊆N s.t. P⊆P ′

∑
j0∈Atck(s,o,P ′)

q(j0, P
′ | o, s)

 πi (o | ε) (13)

As we established above, π̄i(o) ≥ πi(o | ε), with strict inequality if i is strong. Thus to show

the claim, it is enough to show that

π̄i(o) ≥ Πi (s | o, P ′, j0) , (14)

for each P ′ ⊆ N with P ⊆ P ′ and each attacking ruler j0 ∈ Atck(s,o, P ′), with strict

inequality for at least one P ′ and j0 ∈ Atck(s,o, P ′) in the case of i being strong.

So take any set of rulers, P ′ ⊆ N with P ⊆ P ′ and any ruler j0 ∈ Atck(s,o, P ′). Three

cases are possible:

(i). j0 6= i and i is not in the attacking sequence sj0(o) of j0,

(ii). j0 6= i and i is in the attacking sequence sj0(o) of j0,

(iii). j0 = i.

Case (i). Ruler j0 is different to i and does not have i in his attacking sequence sj0(o). Let

F (o′ | s,o, P ′, j0) be the probability of reaching ownership state o′ in the next round from

state o under strategy profile s when j0 is selected to move after P ′ (and executes attacking

sequence sj0(o, P
′)). Then

Πi (s | o, P ′, j0) =
∑
o
′∈O

F (o′ | s,o, P ′, j0) Πi(s | o′). (15)

To show (14) it is enough to show that

π̄i(o) ≥ Πi(s | o′) = Πi(s | o′,∅), (16)

for each state o′ that can be reached in the next round with positive probability from o when

j0 plays the attacking sequence sj0(o, P
′) after P ′ at o. We will show that the inequality is

strict when i is strong.
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Ownership state o′ is reached after at least one fight and so has at most X active rulers.

Hence, by the induction hypothesis, π̄i(o
′) ≥ Πi(s | o′,∅), and so to show (16) it is enough

to show that

π̄i(o) ≥ π̄i(o
′). (17)

Take an optimal myopic sequence, σi(o
′), of i at o′. There are two sub-cases to be considered.

(a) Sequence σi(o
′) does not contain the rulers in the sequence of fights that leads to o′.

This means, in particular, that σi(o
′) is not a full attacking sequence. Hence, by Step 1, i is

not strong.

Since σi(o
′) does not contain the rulers in the sequence of fights that leads to o′, it can be

executed at state o. By optimality of σi(o) at o

π̄i(o) = πi (o | σi(o)) ≥ πi (o | σi(o′)) = πi (o
′ | σi(o′)) = π̄i(o

′). (18)

(b) Sequence σi(o
′) contains at least one ruler in the sequence of fights that leads to o′.

This is true, in particular, when i is strong because, by Step 1, σi(o
′) must be a full attacking

sequence then.

Since σi(o
′) contains at least one ruler in the sequence of fights that leads to o′, so σi(o

′) =

σ1
i (o
′), k, σ2

i (o
′), where k is the ruler who won the sequence of fights leading to o′. We can

construct a sequence σ′ = σ1
i τσ

2
i that is feasible for i at o, with τ being a sequence of rulers

involved in the sequence of fights leading to o′. By point 1 of Proposition 2 p has the no-

waiting property. As we observed prior to the proof of the theorem, the no-waiting property

extends to sequences of fights of arbitrary length – (8). Given this observation, σ′ yields a

strictly higher payoff than σi(o
′). By construction, σi(o) is an optimal myopic strategy for i

at o and so payoff dominates σ′ at o. Hence

π̄i(o) = πi (o | σi(o)) ≥ πi(o | σ′) > πi (o
′ | σi(o′)) = π̄i(o

′). (19)

Hence (17) and, consequently, (16) hold with strict inequality.

Case (ii). Ruler j0 is different to i and has i in his attacking sequence sj0(o). Let sj0(o) =

j1, . . . , jm be the sequence selected by j0 at o under strategy sj0 . Then i = jk for some

1 ≤ k ≤ m. Given l ∈ {1, . . . ,m}, let ol be the state reached after j0 looses the l’th fight in

the sequence. The expected payoff to i from s at o given that j0 is selected to move after set
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P ′ or rulers is equal to

Πi (s | o, P ′, j0) =
k−1∑
l=1

F
(
ol | s,o, P ′, j0

)
Πi

(
s | ol

)
+(

1−
k−1∑
l=1

F
(
ol | s,o, P ′, j0

))
p

(
ri(o),

k−1∑
l=0

rjl(o)

)
Πi

(
s | ok

)
, (20)

where j1, . . . , jk−1 are the rulers attacked by j0 prior to attacking i.

Hence to show (14) it is enough to show that (16) holds for all o′ = ol, l ∈ {1, . . . , k− 1},
reachable after a sequence of fights of j0 in which j0 looses before facing i, and that

π̄i(o) ≥ p

(
ri(o),

k−1∑
l=0

rjl(o)

)
Πi

(
s | ok

)
. (21)

holds for ok, reachable by a sequence of fights of j0 in which i is attacked by j0 and wins. (16)

is shown by the same arguments as in point (ii) above. In particular, the inequality in (16)

is strict when i is strong. For (21), let τ be a sequence of rulers {j0, . . . , jk−1} feasible to i

at o (clearly such a sequence exists). Then sequence σ′ = τσi(o
k), consisting of τ and an

optimal myopic sequence of i at ok, is feasible for i at o. By the no-waiting property and its

generalization, (8), τ yields at least the same payoff to i as the sequence of fights that leads

to o′ (the inequality is strict, unless k = 1). Combining this with the induction hypothesis we

get

π̄i(o) ≥ πi(o | τσi(ok)) ≥ p

(
Ri(o),

k−1∑
l=0

Rjl(o)

)
πi
(
ok | σi

(
ok
))

≥ p

(
Ri(o),

k−1∑
l=0

Rjl(o)

)
Πi

(
s | ok

)
, (22)

with strict inequality, unless k = 1.

Case (iii). Ruler i is picked to move at o after P ′. The strategy chosen by i under strategy

profile s at (o, P ′) is si(o, P
′). Let o′ be the state that is reached if i wins all the attacks in

sequence si(o, P
′). Then sequence σ′ = si(o, P

′)σi(o
′), consisting of si(o, P

′) and an optimal

myopic sequence of i at o′, is feasible for i at o. State o′ is reached after at least one fight and

has at most X active rulers. By the induction hypothesis, π̄i(o
′) ≥ Πi(s | o′) and it follows
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that

π̄i(o) ≥ πi (o | si(o)σi(o
′)) ≥ πi (o

′ | σi(o′)) = π̄i(o
′) ≥ Πi(s | o′). (23)

The inequality is strict unless the sequence si(o)σi(o
′) is the same as the optimal myopic

sequence of i at o.

To complete the proof of the claim, we argue that π̄i(o) > Πi(s | o, P ) if i is strong and

there are at least 3 active rulers at o. As we established above, if i is strong then (14) holds

with equality in two cases only: j0 = i and si(o, P ) is the optimal myopic sequence of i at o,

or j0 = j 6= i, j0 attacks i first under sj0(o, P ) and j0 is the first ruler to be attacked by i

under his optimal myopic sequence of attacks. Generically the second case is possible for at

most one ruler other then i. Hence with at least three active rulers there is at least one for

which the inequality in (14) is strict. This completes the proof of the claim.

From Step 1, we know that in any state o, there exists a strong ruler for whom the full

attacking sequence is the optimal stand alone strategy and it is optimal for him to choose it

after any set of rulers P at o. It now follows from the claim above that for this strong ruler

the optimal full attacking sequence dominates all other strategies, and the domination is strict

if there are at least three active rulers at o. The final step in the proof takes up non-strong

rulers. We show that faced with rulers such that at every state at least one of them attacks,

every ruler will find it profitable to choose an optimal full attacking sequence.

Step 3: Let i ∈ N be a ruler, s̃ be a strategy profile such that for every state o and

for every permutation of N , j1, . . . , jn, there exists k ∈ {1, . . . , n} such that jk 6= i and

s̃jk(o, {j1, . . . , jk−1}) 6= ε. Let si be a best response of i to s̃−i. Then for every state o

such that i ∈ Act(o) and |Act(o)| ≥ 3, and for every set of rulers, P ⊆ N \ {i} such that

Atck(s̃,o, P ) \ {i} 6= ∅, si(o, P ) is an optimal full attacking sequence of i at o.

Let i ∈ N be a ruler and let s̃−i be a strategy profile of the other rulers, as stated above.

The assumption means that at every state o, for any draw of rulers, with probability 1 a ruler

other than i would choose attack if i would not. Let si be a strategy such that at every state

o where ruler i is active and there are at least three active rulers, and for every P ⊆ N \ {i}
with Atck(s̃,o, P ) \ {i} 6= ∅, si(o, P ) is an optimal full attacking sequence for i. We show

that for any other strategy, s′i, of ruler i, every state o ∈ O with |Act(o)| ≥ 2, and every set

of rulers P ⊆ N \ {i} such that Atck(s̃,o, P ) \ {i} 6= ∅,

Πi ((si, s̃−i) | o, P ) ≥ Πi((s
′
i, s̃−i) | o, P )), (24)
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with strict inequality when |Act(o)| ≥ 3. Notice that, by Step 2, the claim holds if i is strong

at o. For the remaining part of the proof we will consider rulers who are not strong at the

given states.

The argument is by induction on the number of active rulers. As it proceeds along lines

similar to Step 2, it is omitted.

Proof of Proposition 3. A sequence σ ∈ R∗ is strong if either σ = ε or σ = x0, . . . , xm and for

all k ∈ {1, . . . ,m},
∑k−1

j=0 xj > xk. A sequence σ ∈ R∗ is weak if it is not strong.

Let p(x, y | γ) = xγ

xγ+yγ
. Since

∂p

∂γ
=

(
xγyγ

xγ + yγ

)
(ln(x)− ln(y))

and

lim
γ→+∞

xγ

xγ + yγ
= lim

γ→+∞

1

1 +
(
y
x

)γ =

{
1, if x > y

0, if x < y.

so for x > y, p(x, y | γ) is increasing and converges to 1 when γ → +∞, and for x < y, p(x, y |
γ) is decreasing and converges to 0 when γ → +∞. In addition, for any strong sequence σ,

pseq(σ | γ) is increasing when γ is increasing. This is because for all k ∈ {1, . . . ,m},
∑k−1

j=0 xj >

xk, and so limγ→+∞
∏m

k=1 p
(∑k−1

j=0 xj, xk

∣∣∣ γ) = 1 and
∏m

k=1 p
(∑k−1

j=0 xj, xk

∣∣∣ γ) is increasing

when γ is increasing. On the other hand, for any weak σ = x0, . . . , xm, limγ→+∞ pseq(σ | γ) = 0.

This is because there exists k ∈ {1, . . . ,m} such that
∑k−1

j=0 xj < xk and for any such k,

limγ→+∞ p
(∑k−1

j=0 xj, xk

∣∣∣ γ) = 0. Since for all other k ∈ {1, . . . ,m}, p
(∑k−1

j=0 xj, xk

∣∣∣ γ) ≤ 1

so limγ→+∞
∏m

k=1 p
(∑k−1

j=0 xj, xk

∣∣∣ γ) = 0. Consequently, for any non-empty sequence σ =

x0, . . . , xm,

lim
γ→+∞

pseq(σ | γ) =

{
1, if σ is strong

0, if σ is weak.

The claim on probability of hegemony for strong rulers now follows.
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ONLINE APPENDIX

POOR REWARDING CONTEST SUCCESS FUNCTIONS

Proof of Proposition 4. Part 1: The argument presented here is true for general contest

functions. Take any ownership configuration, o ∈ O, and any active ruler, i ∈ Act(o). Given

a state (o, P ) ∈ O × 2N\{i}, an attacking sequence, σ, is an optimal attacking sequence if

it maximises the payoff of i at (o, P ) across all attacking sequences that are feasible to i at

o and given the continuation payoffs determined by s on the states in Succ(o, P ). Notice

that if a sequence is an optimal attacking sequence for i at (o, P ), then it is an optimal

attacking sequence of i at (o, P ′), for any P ′ ⊆ N . Thus its optimality depends on the

ownership configuration and the expected payoff determined by s on ownership configurations

o′ ∈ Succ(o), only. Clearly, at every state (o, P ) ∈ O× 2N\{i} an expected payoff maximising

ruler chooses between the empty sequence (peace) and an optimal attacking sequence at o.

Given ownership configuration o, let E(s,o) be the set of rulers, active at o, for whom an

optimal attacking sequence at o yields higher payoff than the empty sequence. It is easy to see

that if E(s,o) = ∅ and s is an equilibrium, then si(o, P ) = ε, for all i ∈ N and P ∈ 2N\{i}.

On the other hand, suppose that E(s,o) 6= ∅ and take any sequence i1, . . . , in of rulers from

N . Let ik be the last ruler from E(s,o) in the sequence. Generically, no ruler is indifferent

between peace and an optimal attacking sequence. Hence, if s is an equilibrium then, for

every l > k, sil({i1, . . . , il−1}) is the empty sequence and, consequently, sik({i1, . . . , ik−1}) is

an optimal attacking sequence of ik at o under the continuation of s. Hence if E(s,o) 6= ∅
then o is conflictual under s.

Part 2: Let p be a poor rewarding contest success function satisfying (5). Then p(x, y) =

f(x)/(f(x) + f(y)) and, by Propoistion 2, f(x)/x is decreasing. Since f(x)/x is decreasing

and positive on R++ so limx→+∞ f(x)/x exists and is finite. Let limx→+∞ f(x)/x = L.

Consider a sequence of fights where a ruler with x ∈ R++ resources first fights a ruler with

y ∈ R++ resources and then fights with m ≥ 1 rulers with resources z1, . . . , zm ∈ R++. The

expected payoff to the rulers with x resources from such a sequence of fights is is equal to

π(x, y, z1, . . . , zm) = pseq(x, y, z1, . . . , zm)(x+ y + z1 + . . .+ zm)

= x · f(x)

f(x) + f(y)
· x+ y

x
·
m∏
i=1

 f
(
x+ y +

∑i−1
j=1 zj

)
f
(
x+ y +

∑i−1
j=1 zj

)
+ f(zi)

·
x+ y +

∑i
j=1 zj

x+ y +
∑i−1

j=1 zj

 .
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We will show that for sufficiently large y, π(x, y, z1, . . . , zm) > x. We consider two cases

separately: L > 0 and L = 0.

Suppose first that L > 0. Notice that

lim
y→+∞

f(x)

f(x) + f(y)

x+ y

x
= lim

y→+∞

f(x)
x

f(x)
y

+ f(y)
y

(
x

y
+ 1

)
=

f(x)
x

L
> 1.

Similarly

lim
y→+∞

f
(
x+ y +

∑i−1
j=1 zj

)
f
(
x+ y +

∑i−1
j=1 zj

)
+ f(zi)

·
x+ y +

∑i
j=1 zj

x+ y +
∑i−1

j=1 zj
=
L

L
= 1.

Hence limy→+∞ π(x, y, z1, . . . , zm) = t > x and so for sufficiently large y, π(x, y, z1, . . . , zm) >

x.

Second, suppose that L = 0. After winning the conflict with the ruler with y resources,

in every subsequent conflict in the sequence the starting ruler has higher resources than his

opponent. Hence the probability of winning each of these conflicts is more than 1/2. In the

event of winning all the conflicts in the sequence, the starting ruler owns at least x+y+
∑m

j=1 zj

resources. By these observations π(x, y, z1, . . . , zm) ≥
(

1
2m

) ( f(x)
f(x)+f(y)

)
(x + y). On the other

hand, since L = 0 so, for sufficiently large y,

f(y)

y
+

(
1− 1

2m

)
f(x)

y
<

1

2m
f(x)

x
.

Multiplying both sides by y/f(x) and reorganizing, this is equivalent to

f(y)

f(x)
+ 1 <

1

2m

(
1 +

y

x

)
.

Taking the inverses of both sides and then multiplying both sides by (x + y)/2m, this is

equivalent to (
1

2m

)(
f(x)

f(x) + f(y)

)
(x+ y) > x.

Hence, for sufficiently large y, π(x, y, z1, . . . , zm) > x.

Now, let G be a connected network over the set of nodes, V , and let r ∈ R++ be a resource

endowment. Fix any vertex v ∈ V . Take any ownership configuration o ∈ O. If there is a

ruler who owns all the vertices under o then we are done. Assume otherwise. There are at
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least two active rulers under o, |Act(o)| ≥ 2. Let i be the ruler owning vertex v, o(v) = i, and

let j ∈ Act(o) be any active neighbor of i under o. Let σ be a permutation of Act(o) \ {j}
starting with i. Sequence σ is a full attacking sequence of j at o. By what we have shown

above, if rv is sufficiently large, then Π(j,o;σ) > Rj(o) and so by choosing σ ruler j strictly

increases his expected payoff. Since at every ownership configuration o with at least two

active rulers there exists a ruler who can increase his expected resources by choosing attack,

so every equilibrium outcome is hegemony.

Part 3: Let v ∈ V be a vertex and let G be a star network with centre v. Let p be a Tullock

contest success function with γ ∈ (0, 1). Take any y > 0. Let the resource vector r be such

that ru = y, for each spoke u ∈ V \ {v}, and rv = x, for the centre. We will show that there

exists (a range of values of) x such that there is an equilibrium where each ruler chooses peace

in the initial ownership configuration. Similarly, we will show that there exists (a range of

values of) x such that there is an equilibrium where each ruler at a spoke chooses a sequence

of fights that leads to a ownership configuration with peace (so we have war followed by peace

in equilibrium).

The expected payoff from a full attacking sequence of m fights to a ruler owning a spoke

in a star over at least m + 1 vertices, when each spoke is endowed with y resources and the

centre is endowed with x resources, is

ϕ(x, y,m) = (x+my)p(y, x)
m−1∏
i=1

p(x+ iy, y) = (x+my)

(
yγ

xγ + yγ

)m−1∏
i=1

(
(x+ iy)γ

(x+ iy)γ + yγ

)

The key to the constructions of resource endowments enabling equilibria described above is

the following claim:

Claim. For all m ≥ 2, γ ∈ [0, 1), and y > 0, there exists a unique x∗m = x∗m(y, γ) > y, such

that

ϕ(x, y,m)


< y if x ∈ (y, x∗m),

= y if x = x∗m,

> y if x > x∗m.

(25)

Moreover, x∗m+1(y, γ) > x∗m(y, γ).

Before proving the claim, we provide the construction of resource endowments. Taking

any x ∈ (max(y, x∗n−2 − y), x∗n−1) guarantees that no ruler has incentives to engage in a full

attacking sequence (and the interval is non-empty, as x∗n−2 > y, for n ≥ 4). Moreover, after at
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least one fight, every ruler at a spoke has incentives to fight if no other ruler fights, as a full

attacking sequence yields him expected payoff higher than y. Thus any ruler deviating from

peaceful strategy profile leads to fight till hegemony, which is not profitable for the deviating

ruler. Therefore there is an equilibrium where all rulers choose peace in the initial ownership

configuration. Similarly, taking any x ∈ (max(0, x∗n−3−2y), x∗n−2−y) guarantees that after one

fight by a spoke, an ownership configuration with resources at the centre as described above

is reached. Moreover, at such a state, no ruler has incentives to engage in a full attacking

sequence. Thus there is an equilibrium where (1) in the initial state each ruler owning a spoke

chooses to attack the centre and the ruler owning the centre chooses peace, (2) in the state

with n − 1 vertices every vertex chooses peace, and (3) in any state with at most n − 2 at

least one vertex chooses attack. In this equilibrium there is one conflict followed by peace.

Notice that the two constructions given above are generic: analogous argument could be

conducted if spokes were endowed with resource sufficiently close to each other and the centre

was endowed with resources within a range close to the range given in the construction above.

We now provide the proof of the claim. To this end, we establish four properties of function

ϕ, from which the claim follows. Fix any γ ∈ [0, 1).

First, we show that, for all x, y ∈ R++ and m ≥ 3, ϕ(x, y,m) < ϕ(x, y,m−1). Notice that,

y1−γ ≤ (x+(m−1)y)1−γ. Multiplying both sides by yγ(x+(m−1)y)γ we get y(x+(m−1)y)γ <

yγ(x + (m − 1)y). Reorganizing, we obtain (x + my)(x + (m − 1)y)γ < ((x + (m − 1)y)γ +

yγ)(x+ (m− 1)y). Dividing both sides by the RHS we get
(

x+my
x+(m−1)y

)(
(x+(m−1)y)γ

(x+(m−1)y)γ+yγ

)
< 1.

This, together with the fact that ϕ(x, y,m) = ϕ(x, y,m − 1)
(

(x+(m−1)y)γ
(x+(m−1)y)γ+yγ

)(
(x+my)

(x+(m−1)y)

)
yields ϕ(x, y,m) < ϕ(x, y,m− 1).

Second, we show that ϕ is strictly increasing in x for x > y. First derivative of ϕ with

respect to x is

∂ϕ

∂x
=

(
γyγ

xγ + yγ

)
(x+my)

m−1∏
i=1

(
(x+ iy)γ

(x+ iy)γ + yγ

)
((

1

γ(x+my)

)
−
(

xγ−1

xγ + yγ

)
+

m−1∑
j=1

yγ

(x+ jy)((x+ jy)γ + yγ)

)
. (26)

Since γ ∈ [0, 1) so (1− γ)(x + y) > 0. Reorganizing we get x + y + (m− 1)γy > γ(x + my).

Dividing both sides by γ(x+ y)(x+my) we get 1
γ(x+my)

+ (m−1)y
(x+y)(x+my)

> 1
x+y

Since x > y and
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γ ∈ [0, 1) so (x/y)1−γ > 1 and so 1
x+y

> 1

x+y(xy )
1−γ = xγ−1

xγ+yγ
. Hence

1

γ(x+my)
+

(m− 1)y

(x+ y)(x+my)
>

xγ−1

xγ + yγ
. (27)

Notice that

(m− 1)y

(x+ y)(x+my)
=

(
1

x+ y

)
−
(

1

x+my

)
=

m−1∑
i=1

(
1

x+ iy

)
−

m∑
i=2

(
1

x+ iy

)

=
m−1∑
i=1

((
1

x+ iy

)
−
(

1

x+ (i+ 1)y

))
=

m−1∑
i=1

(
y

(x+ iy)((x+ iy) + y)

)

Moreover, for γ ∈ [0, 1), x > y, and i ≥ 1,

y

(x+ iy)((x+ iy) + y)
=

1

(x+ iy)
((

x
y

+ i
)

+ 1
) < 1

(x+ iy)
((

x
y

+ i
)γ

+ 1
)

=
yγ

(x+ iy)((x+ iy)γ + yγ)

Thus
(m− 1)y

(x+ y)(x+my)
<

m−1∑
i=1

(
yγ

(x+ iy)((x+ iy)γ + yγ)

)
which, together with (27), implies

1

γ(x+my)
+

m−1∑
i=1

(
yγ

(x+ iy)((x+ iy)γ + yγ)

)
>

xγ−1

xγ + yγ
.

Therefore, by that and (26), ∂ϕ/∂x > 0 for all x > y and so ϕ is increasing in x on (y,+∞).

Third, we show that for all y ∈ R++ and m ≥ 3, limx→+∞ ϕ(x, y,m) = +∞. To see that no-

tice that limx→+∞
∏m−1

i=1 p(x+iy, y) = 1 and limx→+∞ p(y, x)(x+my) =

(
yγ

1+( yx)
γ

)(
x1−γ +m

(
y
xγ

))
=

+∞, and so the property follows.

Fourth, we show that ϕ(y, y,m) < y. To see that we start with

ϕ(y, y,m) =

(
1

2

)
(m+ 1)y

m−1∏
i=1

(
(i+ 1)γ

(i+ 1)γ + 1

)
=

(
1

2

)
(m+ 1)y

m∏
i=2

(
iγ

iγ + 1

)
.
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Since iγ

iγ+1
= 1−

(
1

iγ+1

)
, γ ∈ [0, 1), i ≥ 1, so iγ/(iγ + 1) is increasing in γ. Hence ϕ(y, y, n) <(

1
2

)
(m+ 1)y

∏m
i=2

(
i
i+1

)
=
(
1
2

)
y
(
n!
n!

)
2 = y.

By the four properties of ϕ, established above, for all m ≥ 2, γ ∈ [0, 1), and y > 0,

there exists a unique x∗m = x∗m(y, γ) > y, such that (25) holds. Moreover, since for all

x, y ∈ R++ and m ≥ 3, ϕ(x, y,m) < ϕ(x, y,m − 1), and since ϕ is increasing in x for x > y,

x∗m+1(y, γ) > x∗m(y, γ). This completes the proof.

HIRSHLEIFER’S CONTEST SUCCESS FUNCTION

Another widely used contest success function, along the Tullock contest success function,

is the so called difference form proposed by Hirshleifer [1989]:

p(x, y) =
exp(γx)

exp(γx) + exp(γy)
, (28)

where γ > 0. Thus f(x) = exp(γx) and it is easy to check that f(x)/x is increasing on interval

(0, 1/γ) and decreasing on (1/γ,+∞). Thus the function maintains the poor rewarding and,

consequently, the waiting properties on the interval (0, 1/γ) and maintains the rich rewarding

and, consequently, the no-waiting properties on the interval (1/γ,+∞). Hence if the minimal

resources in the network at the initial ownership configuration are greater than 1/γ, all the

results obtained for the rich rewarding case would hold for this contest success function as well

and if the total resources in the network are less than 1/γ, the results for the poor rewarding

case apply.

For the order of fights properties of Hirshleifer’s contest success function, notice that

h(s, t) =
exp(γt) exp(γ(s+ t))

exp(γ(s+ t)− exp(γs)− exp(γt))
=

1

exp(−γt)− exp(−2γt)− exp(−γ(s+ t))
.

Taking the derivative with respect to t and comparing it to 0 we can see that h(s, t) is

decreasing in t when exp(−γt) < 1/2− exp(−γs)/2 and is increasing in t when the inequality

is reversed. The LHS of the inequality is decreasing in t while the RHS is increasing in s.

Moreover, the functions exp(−γx) and 1/2 − exp(−γx)/2 intersect at x = ln(3)/γ > 1/γ.

Thus on the interval (0, 1/γ) the contest success function maintains the poor rewarding and

the rich first properties and on interval (ln(3)/γ,+∞) it maintains the rich rewarding and the

poor first property.
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EXTENSIONS AND ADDITIONAL RESULTS

GRADUAL CONQUEST

We start with defining the Markov chain associated with a given strategy profile s. Given

an ownership configuration, o ∈ O, and two nodes, {u, v} ⊆ V , such that o(u) 6= o(v), we will

use o[u → v] to denote the ownership configuration obtained from o by changing the owner

of v to the owner of u, that is

o[u→ v](w) =

o(u), if w = v,

o(w), otherwise.

LetM(s) be defined as follows. The set of states ofM(s) is Z = {ô}∪ (O×P ×N ×O),

where ô ∈ O is the initial ownership configuration. The states of the form (o, P, i,o′) are the

states at which ruler i is picked to move at ownership configuration o after the set of rulers

P and reaches ownership configuration o′ executing his plan of conquest σi(o, P ).

The transition probabilities, τ : Z × Z → [0, 1] are defined as follows:

(a) For all i ∈ N , τ(ô, (ô,∅, i, ô)) = 1
|N | .

(b) For all o ∈ O, i ∈ N , P ⊆ N \ {i}, and j ∈ N \ (P ∪ {i}) , if σi(o) = ε then

τ((o, P, i,o), (o, P ∪ {i}, j,o)) = 1
|N |−|P |−1 .

(c) For all o ∈ O, i ∈ N , if σi(o) = ε then τ((o, N \ {i}, i,o), (o, N \ {i}, i,o)) = 1.

(d) For all o ∈ O, i ∈ N , P ⊆ N \ {i}, if σi(o) = uv then

τ((o, P, i,o′), (o, P, i,o′′)) =


p(Ro

′(u)(o), Ro
′(v)(o

′)), if o′′ = o′[u→ v],

1− p(Ro
′(u)(o

′), Ro
′(v)(o

′)), if o′′ = o′[v → u],

0, otherwise.

(e) For all o ∈ O, i ∈ N , P ⊆ N \ {i}, o′ ∈ O \ {o}, and j ∈ N , if σi(o) = ε then

τ((o, P, i,o′), (o′,∅, j,o′)) = 1
|N | .

(f) In all the remaining cases of z′, z′′ ∈ Z, τ(z′, z′′) = 0.
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Transition (a) corresponds to the draw of the first ruler to move at the initial state. Transi-

tion (b) corresponds to drawing the next ruler to move after a ruler chooses peace. Transi-

tion (c) corresponds to reaching peace after the last drawn ruler chooses peace. Transition (d)

corresponds to transitions during execution of a plan of conquest by a ruler. Transition (e)

corresponds to drawing the first ruler to move after a ruler finished executing his plan of

conquest.

First, we establish that the Markov chainM(s) is absorbing for any strategy profile s ∈ S.

The absorbing states are the states of the form (o, N \ {i}, i,o) with σi(o) = ε.

Lemma 1. Fix a connected graph G. For any strategy profile s ∈ S, the Markov chain M(s)

is absorbing and the set of absorbing states is

Abss = {(o, N \ {i}, i,o) : o ∈ O, i ∈ N, σi(o, N \ {i}) = ε} .

Proof. To prove the lemma we show, for any state z ∈ Z, that z is either transient or absorbing

and that z is absorbing if and only if z = (o, N \ {i}, i,o) for some o ∈ O and i ∈ N with

σi(o, N \ {i}) = ε. Clearly z = ô is transient.

For the remaining part of the proof we consider states z ∈ Z \ {ô}. Given an ownership

configuration o, let

B(o) = {uv ∈ G : o(u) 6= o(v)}

be the set of links connecting nodes belonging to different rulers under o.

We will show that any z = (o, P, i,o′) is either transient of absorbing and that it is

absorbing if and only if it is an element of Abss. The remaining part of the proof is by

induction on |B(o′)|. For the induction basis, suppose that |B(o′)| = 0. Since G is connected,

this implies that o′ is hegemony. Hence the only valid strategy for every ruler j is such that

σj(o
′) = ε. If o′ = o and P = N \ {i} then z is absorbing, by (c). If o′ = o and |P | < |N | − 1

then, by one or more applications of (b), with probability 1, z reaches an absorbing state

z′ = (o, P ′, j,o) with P ′ = N \ {j}. Lastly, if o′ 6= o then, by (e), z transits to a state

z′ = (o′,∅, j,o′) and z′ is transient by what was shown above. Hence z is transient in this

case as well.

For the induction step, let |B(o′)| = m > 1 and suppose that the induction hypothesis

holds for any state of the form (õ, P̃ , k, õ′) with |B(õ′)| < m. If σi(o
′) = uv (and either

o′ = o or o′ 6= o) then, by (d), z transits to state z′ = (o, P, i,o′[u → v]) with probability

greater than 0 or two a state z′′ = (o, P, i,o′[v → u]) with probability greater than 0. Since
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B(o′[u → v]) = B(o′[v → u]) = B(o′) \ {uv} so, by the induction hypothesis, z′ is either

absorbing or transient and z′′ is either absorbing or transient. Therefore z is transient. If

σi(o
′) = ε, o′ = o, and P = N \ {i}, then z is absorbing, by (c). If σi(o

′) = ε, o′ = o,

and |P | < |N | − 1, then, by one or more applications of (b), with probability 1, z reaches a

state z′ = (o, P ′, j,o) with P ⊆ P ′ and such that either σj(o) 6= ε or P = N \ {j}. As we

just shown, z′ is either absorbing or transient. Hence z is transient. Lastly, if σi(o
′) = ε and

o′ 6= o then, by (e), z transits to a state z′ = (o′,∅, j,o′) and, by what was shown above, z′

is transient. Hence z is transient as well. This completes the proof.

Given two states, z, z′ ∈ Z, let As(z, z
′) be the absorption probability of z′ in M(s)

starting at z. The probability that the game ends at an ownership configuration o′ ∈ O,

F (o′ | s,o, P ), starting at an ownership configuration, o ∈ O and a set of rulers, P ⊆ N ,

under a strategy profile s ∈ S, is defined as follows:

F (o′ | s,o, P ) =
1

|N | − |P |
∑
i∈N\P

∑
(o′,N\{j},j,o′)∈Abss

As((o, P, i,o), (o′, N \ {j}, j,o′)) (29)

Now we state and prove a more general version of Proposition 5 that covers any connected

graphs in the case of three or more active rulers. One can immediately see that the result

implies Proposition 5.

Proposition 7. Let p be a contest success function satisfying axioms A1–A3. For any

equilibrium s and for any state (o, P ) ∈ O× 2N at which all active rulers choose peace under

s, either |Act(o)| = 1 or |Act(o)| ≥ 3 and there exists i ∈ Act(o) such that G[o−1(i)] is not

connected.

Before we provide proof of Proposition 7 we need the following auxiliary lemma. The

following notation will be convenient. Given a set of nodes X ⊆ V let G − X = G[V \ X]

denote the graph obtained from G by removing from it all nodes from X and all the links

ending at nodes in X.

Lemma 2. Let H ∈ G be a connected graph and let o ∈ O(H) be an ownership configuration

such that Act(o) 6= ∅ and for all i ∈ Act(o), H[o−1(i)] is connected. There exists i ∈ Act(o)

such that H − o−1(i) is connected.

Proof. Let Q be the neighbourhood graph over the set of active rulers determined by o and

H as follows: V (Q) = Act(o) and E(Q) = {ij : {i, j} ⊆ Act(o) and there exist uv ∈
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E(H) such that i = o(u) and j = o(v)}. Since H is connected so Q is connected as well.

Hence Q has a spanning tree and for any leaf i of any spanning tree of Q, Q − {i} is con-

nected. Since in addition, for every j ∈ Act(o), H[o−1(j)] is connected so H − o−1(i) is

connected as well.

Now we are ready to prove Proposition 7.

Proof of Proposition 7. Let G(V ) be the set of graphs that can be formed over V and let

Ḡ =
⋃
U⊆V G(V ) be the set of all graphs that can be formed over V or any of its subsets.

Given an ownership configuration, o ∈ O(H), on graph H and a set of nodes U ⊆ V , we

will use o−U = o |V \U to denote the ownership configuration o restricted to the nodes in V \U .

Notice that if o ∈ O(H) then o−U ∈ O(H − U).

The proof proceeds in two steps. In the first step we show, for any connected graph H ∈ G
and any ownership configuration, o ∈ O(H), with at least two active rulers, |Act(o)| ≥ 2, and

such that either |Act(o)| = 2 or for all i ∈ Act(o), H[o−1(i)] is connected, that there exists an

active ruler i ∈ Act(o) who has a fully attacking plan of conquest that increases his resources

in expectation. In the second step we use this fact to conclude that at every such state there

exists an active ruler who prefers fight to peace.

Proof of the first claim is by induction on the number of nodes in H, |V (H)|. Notice

that the minimum number of nodes needed to have at least two active rulers is 2. For

the induction basis, take any connected graph H ∈ G with |V (H)| = 2 nodes and any

ownership configuration, o ∈ O(H) with |Act(o)| = 2 active nodes. Let i and j denote the

two different active rulers under o. Since p(Ri(o), Rj(o)) = 1 − p(Ri(o), Rj(o)) so either

p(Ri(o), Rj(o))(Ri(o) + Rj(o)) ≥ Ri(o) or p(Rj(o), Ri(o))(Ri(o) + Rj(o)) ≥ Rj(o), with

inequality being strict if and only if either Ri(o) = Rj(o) or p(x, y) = x/(x + y). Since both

cases are non-generic, the inequalities are generically strict and attacking the other ruler is an

improving fully attacking plan of conquest for one of the rulers.

For the induction step, take any connected graph H ∈ G with |V (H)| > 2 and any

any ownership configuration , o ∈ O(H), with at least two active rulers, |Act(o)| ≥ 2, and

such that for all i ∈ Act(o), H[o−1(i)] is connected. We consider two cases separately:

(i) |Act(o)| = 2 and (ii) |Act(o)| ≥ 3. For case (i), suppose that |Act(o)| = 2. Let σ be

a fully attacking plan of conquest for a ruler i ∈ Act(o) and let j denote the other ruler

in Act(o). Since σ is fully attacking so starting from a state z = (o, P, i,o), it will lead to

a state (o, P, i,o′) with an ownership configuration o′ such that |Act(o′)| = 1. Since there

is only one ruler at this state, execution of σ ends there and, regardless of the strategy of
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the other ruler, the game will end at an ownership configuration o′. There are two such

ownership configurations: one, i, where i owns all the nodes, and the other one, j, where

j owns all the nodes. Let Qσ(o, j) be the probability of reaching the state (o, P, i, j) from

z and Qσ(o, i) be the probability of reaching the state (o, P, i, i) from z. Then Qσ(o, j) =

1−Qσ(o, i). The expected payoff to ruler i from plan σ at o is Qσ(o, i)(Ri(o) + Rj(o)) and

the expected payoff to ruler j from plan σ at o is (1−Qσ(o, i))(Ri(o) +Rj(o)). Hence either

Qσ(o, i)(Ri(o) +Rj(o)) ≥ Ri(o) or (1−Qσ(o, i))(Ri(o) +Rj(o)) ≥ Rj(o). Generically these

inequalities are strict. Let σ′ be a plan of conquest such that, for o′ ∈ O(H),

σ′(o′) =

σ(o′), if Act(o′) = {i, j},

ε, otherwise.

Notice that σ′ is a valid plan of conquest for ruler j. Intuitively, at every ownership configura-

tion o′ ∈ O(H), if σ(o′) prescribes i attacking a node v of j from node u then σ′(o′) prescribes

j attacking node u of i from v.

Notice that the sets of ownership configurations reachable from o in under σ and under

σ′ are the same and that the transition probabilities are the for these reachable states under

the two plans of conquest. Hence Qσ′(o, i) = Qσ(o, i) and Qσ′(o, j) = Qσ(o, j). Thus either

σ results in i increasing his resources in expectation at o, or σ′ results in j increasing his

resources in expectation at o. Therefore there exists a player who has an improving fully

attacking plan of conquest.

For case (ii), suppose that |Act(o)| ≥ 3 and suppose that the induction hypothesis holds

for any connected graph H ′ ∈ G with |V (H ′)| < |V (H)| nodes. By Lemma 2, there exists

an active ruler i ∈ Act(o) such that H−i = H − o−1(i) is connected. Let o−i = o−o−1(i) be

the ownership configuration o restricted to the nodes owned by rulers other than i. By the

induction hypothesis, there exists a ruler j ∈ Act(o−i) with an improving fully attacking plan

of conquest, σ−i, at o−i on H−i. Let õ be an ownership configuration on H such that, for

u ∈ V (H),

õ(u) =

i, if o(u) = i

j, otherwise,

so all the nodes owned by i under o are owned by i under õ and all the remaining nodes

are owned by j under õ. By point (i), either i or j has an improving fully attacking plan of

conquest at õ on H. Suppose that j is such a ruler and let σ̃ be an improving fully attacking
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plan of conquest of j at õ on H. Define plan of conquest, σ′, as follows (for o′ ∈ O(H)):

σ′(o′) =

σ−i(o′), if o′−1(i) = o−1(i) and o′ 6= õ,

σ̃(o′), otherwise.

Informally, following plan σ′, ruler j first conquers all the nodes owned by rulers other than

i, following plan σ−i, and then fights with i, following plan σ̃. We will show that σ′ is an

improving fully attacking plan of conquest at o′. By its definition, it is a fully attacking plan

of conquest at o. Since σ′ is fully attacking, it stops either at an ownership configuration

j, where j owns all the nodes, or at an ownership configuration where j owns no nodes. In

addition, before reaching j from o, σ′ must first lead to õ from o and then to j from õ. The

probability of σ′ leading to j is Qσ′(o, j) = Qσ−i(o−i, õ−i)Qσ̃(õ, j). The expected payoff to j

from σ′ at o is

Qσ′(o, j)Rj(j) = Qσ−i(o−i, õ−i)Qσ̃(õ, j)Rj(j)

= Rj(o)Qσ−i(o−i, õ−i)
Rj(õ−i)

Rj(o−i)
Qσ̃(õ, j)

Rj(j)

Rj(õ)
> Rj(o),

because Rj(o) = Rj(o−i), Qσ−i(o−i, õ−i)Rj(õ−i) > Rj(o−i) (as σ−i is improving at o−i) and

Qσ̃(õ, j)Rj(j) > Rj(õ) (as σ̃ is improving at õ). Thus σ′ is improving at o.

Suppose now that i has an improving fully attacking plan of conquest at õ on H. Take

any such a plan and denote it by σ̃. Given an ownership configuration, o′, let do′ be the

ownership configuration where each owner of a node other than i is replaced by j, that is

do′(v) =

o′(v), if o′(v) = i

j, otherwise.

Define a plan of conquest, σ′, at o as follows (for o′ ∈ O(H)): σ′(o′) = σ̃(do′). Following σ′,

i chooses links over which the subsequent attacks are launched according to the set of nodes

he owns only and makes this decision according to σ̃. Since σ̃ is fully attacking, σ′ is fully

attacking as well. The probability of winning each conflict is higher under σ′, starting at o,

than under σ̃, starting at õ. This is because at every link at which an attack is performed

the resources of i are the same but the resources of the opponent are the same or smaller, for

i faces an opponent who owns at most all the nodes that i does not own under σ′ starting at

o, while he faces an opponent j who owns all the nodes that i does not own under σ̃ at õ. By
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axioms A1–A3, the probability of winning a bilateral conquest is increasing when resources

of the opponent are decreasing. Hence the probability of reaching an ownership configuration

i, where i owns all the nodes, is at least as high under σ′ starting at o as under σ̃ starting at

õ. Since σ̃ is improving at õ for i so is σ′ at o. This concludes proof of the first step.

For the second step, let s be an equilibrium strategy profile and let (o, P ) be a state

with Act(o) ≥ 2 and, in the case of Act(o) ≥ 3, with G[o−1(i)] being connected for every

i ∈ Act(o). By the first step, there exists i ∈ Act(o) who has an improving fully attacking

plan of conquest at o. Let I ⊆ Act(o) be the set of all such rulers. Then ruler i ∈ I, at

every state (o, P ) such that I \ {i} ⊆ P , prefers to choose his improving fully attacking plan

of conquest to choosing ε.

SHORT ATTACK SEQUENCES

Proof of Proposition 6. Throughout the proof we use the precedence relations on ownership

configurations and states, as well as the sets Succ and Succ introduced in proof of Proposi-

tion 1.

Notice that if i ∈ Act(o) is the unique strong ruler at o, then for all o′ ∈ Succ(o) there

is exactly one strong ruler in Act(o′) and if i ∈ Act(o′) then i is strong. This is because no

weak ruler has a strong full attacking sequence and therefore no such ruler can become strong,

unless he wins a conflict with a strong ruler (in which case he replaces the unique strong ruler

in the subsequent state).

Given a ruler i ∈ N and an ownership configuration, o, a strategy si of i is an attacking

strategy at o if, for every ownership configuration o′ ∈ Succ(o) such that i ∈ Act(o) and

|Act(o)| ≥ 2, and every set of rulers P ∈ 2N\{i}, si(o
′, P ) 6= ε. Thus, at state o and at any

state following o in the course of the game, i never chooses to stay peaceful under si, unless

he is not active or is the unique active ruler.

Given a ruler i ∈ N , an ownership configuration, o, and a strategy profile of the other

ruler, s−i, we define an attacking strategy si that is a best attacking response of i to s−i at o.

The strategy is defined recursively on the set of states Succ(o,∅), starting from the maximal

elements under �. If (o′, P ) is such that o′ is maximal according to v in Succ(o) then, for

all i ∈ N , si(o
′, P ) = ε (the unique feasible choice of i at o). Otherwise, let si(o, P ) be any

neighboring ruler attacking whom maximises i’s expected payoff across all neighbors of i at

o, given the continuation payoff determined by s = (si, s−i) defined on states in Succ(o, P ).

59



Notice that if j is such a ruler at (o, P ) then, for any P ∈ 2N\{i}, attacking j maximises i’s

expected payoff across all neighbors of i. Moreover, generically, such a neighbor is unique.

Now we are ready to give main part of the proof. First we show, for any strategy profile,

s, any ownership configuration, o ∈ O, any ruler i ∈ N , and any set of rulers P ⊆ N \ {i},
that if i is the unique strong ruler at o then any best attacking response, s∗i , of i to s−i at o

yields i an expected payoff greater than Ri(o).

The proof is by induction on the number of active rulers at o. For the induction basis,

suppose that |Act(o)| = 2 and that i is the single strong ruler at o. Let j be the other active

ruler. Since p is rich rewarding and i is strong, the other active ruler is weak and attacking

him increases i’s payoff in expectation. Thus the claim holds.

For the induction step, take any 2 < m ≤ n suppose that the claim holds for any ownership

configuration o with |Act(o)| < m active rulers. Take any ownership configuration, o ∈ O,

with a unique strong ruler, i ∈ Act(o). Notice that since s∗i is an attacking strategy, so

s∗i (o, P ) 6= ε, for all P ∈ 2N\{i}. Hence, with probability 1, a ruler choosing attack will be

selected at o. Thus the strategy profile s̃ = (s∗i , s) determines a probability distribution

Q(· | s̃,o) on the set A(o) = {(j, k) ∈ Act(o) × Act(o) : j 6= k} where, given (j, k) ∈ A(o),

Q(j, k | s̃,o) is the probability that ruler j attacks ruler k at o. Given two rulers, j, k ∈ Act(o),

active at o let o[j → k] denote the ownership configuration resulting from j wining a conflict

with k. The expected payoff to i at o, Πi(s̃ | o), is equal to

Πi(s̃ | o) =
∑

(j,k)∈A(o)
j 6=i,k 6=i

Q(j, k | s̃,o)
(
p(Rj(o), Rk(o))Πi(s̃ | o[j → k]) +

p(Rk(o), Rj(o))Πi(s̃ | o[k → j])
)

+∑
(j,i)∈A(o)

Q(j, i | s̃,o)p(Ri(o), Rj(o))Πi(s̃ | o[i→ j]) +

Q(i, s∗i (o, P ) | s̃,o)p(Ri(o), Rs∗i (o,P )(o))Πi(s̃ | o[i→ s∗i (o, P )])

By the observation at the beginning of the proof, i remains a unique strong ruler at each

ownership configuration o[j, k] with (j, k) ∈ A(o) such that j 6= i and k 6= i. Similarly, i

remains a unique strong ruler at each ownership configuration o[i, j] with j ∈ A(o). Thus, by

the induction hypothesis, for all (j, k) ∈ A(o), Πi(s̃ | o[j → k]) > Ri(o[j → k]). In the case of

j 6= i and k 6= i, Ri(o[j → k]) = Ri(o). In the case of k = i, p(Ri(o), Rj(o))Πi(s̃ | o[i→ j]) >
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p(Ri(o), Rj(o))Ri(o[j → k]) = p(Ri(o), Rj(o))(Ri(o) + Rj(o)) > Ri(o), as Ri(o) > Rj(o)

and i is rich rewarding. Hence Πi(s̃ | o) > Ri(o).

Now, suppose that there is a unique strong node in G under resource endowment r. Then

there is a unique strong ruler at the ownership configuration. Take any equilibrium s of the

game. By the observation above, there is a unique strong ruler at every ownership configura-

tion o ∈ O. In addition, point 1 of Proposition 4 extends immediately to the short sequence of

attack (the proof does not make any assumptions about the sequences that the rulers choose).

Hence in the short sequence model, like in the basic model, every ownership configuration is

either peaceful or conflictful under s. Take any peaceful ownership configuration o. It must

be that there is a unique active ruler at o as otherwise, by what was shown above, if no

other active ruler attacks his neighbor, the unique strong ruler attacks one of his neighbors.

Hence there is fight till hegemony under s. By generic uniqueness of equilibrium payoffs, the

probability of becoming a hegemon is generically unique.
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