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1. Introduction 

Since the 1990s many network utilities are incentive regulated with the aim of 

improving their operating and investment efficiency as well as ensuring that consumers 

benefit from the gains. In many instances, the regulators aim to measure the firms’ relative 

efficiency against those with best practice performance using parametric and non-

parametric techniques (see Haney and Pollitt, 2013). As regulators reward or penalise 

firms using relative efficiency measures, obtaining reliable (and fair) measures of firms’ 

efficiency requires controlling for the different environmental conditions under which 

each utility operates. This is particularly important in the case of incentive regulation and 

benchmarking of electricity, gas, and water networks where the results of efficiency 

analysis have important financial implications for the firms. 

However, there are many characteristics of the utilities sector (e.g. geography, 

climate or network characteristics) that affect production costs but which are unobserved 

(Farsi and Filippini, 2004). Statistical methods have recently been developed to address 

this issue. For instance, the True Fixed/Random Effects models introduced by Greene 

(2005) capture the unobserved heterogeneity through a set of firm-specific intercepts. 

This approach only uses the temporal (i.e. within) variation contained in the data to 

estimate the coefficients of other cost drivers. This is quite problematic in our application 

because many crucial determinants of utility costs such as the energy delivered or number 

of customers, are persistent or slow changing variables (see Greene et al, 2011). On the 

other hand, possible differences among utilities associated with their use of different 

technologies are also often addressed using simple sample selection procedures or by 

using clustering methods. Recently, conventional latent class stochastic frontier models 

account for technology heterogeneity among firms belonging to different groups (Llorca 

et al., 2014). 

In this paper we advocate using a new empirical strategy to account for the 

unobserved differences in environmental conditions among electricity distribution 

networks based on their geographic location. The latter presents an invaluable source of 

information that has been ignored in the literature which up to now was dedicated only to 

estimating network technology or the measurement of their relative inefficiency. Indeed, 

as many unobservable variables are likely to be spatially correlated, an alternative 
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empirical strategy emerges. Our spatial model is prompted from the fact that any 

(relevant) unobservable cost driver should be correlated with firms’ costs, a variable that 

is observable by the researcher/regulator. The underlying idea of our empirical proposal 

is to use (surrounding) firms’ costs as proxies of the unobserved cost drivers that are likely 

to be spatially correlated, such as weather and geographic conditions, population 

structure, electricity demand patterns, input prices, etc. In line with True Fixed/Random 

Effects models, our approach allows for firm-specific technologies. However, our 

empirical strategy does not ignore the cross-sectional nature of the data and the inherent 

information. As with latent class models, the estimated unobserved heterogeneity is 

allowed to change over time. 

The main contribution of this paper is to link efficiency analysis methods 

addressing unobserved heterogeneity with spatial econometrics methods commonly 

employed to examine spatial interactions across regions.1 To the best of our knowledge, 

our paper is among the first to apply spatial econometrics in efficiency analysis using firm 

level data. There are no major systemic economic or technical reasons that the conditional 

cost of a firm (i.e. given its own output and price variables), is affected by those of 

adjacent firms to any significant degree.2 In this context, the estimated spillover effects 

in our model are expected to be spurious, i.e. only caused by omitted variables. This in 

turn implies that our spatial specification introduces constraints on the parameters, instead 

of the traditional spatial model. Moreover, the spatial econometric models are used 

(interpreted) here as a means to control for unobserved heterogeneity in a standard SFA 

model measuring firms’ inefficiency.3 

The next section presents the spatial econometric model that allows us to use data 

from surrounding firms as proxies of the omitted, but spatially correlated, cost drivers. 

Section 3 summarizes the empirical strategy used in this paper to estimate a SFA model 

that includes a generated variable as an additional regressor. Section 4 dwells on the data 

                                                           
1 Since the seminar book by Anselin (1988) introducing the existence of spatial effects in econometric 

models, many authors have developed several spatial econometric models and their estimation methods 

(see, for instance, Kelejian and Prucha, 1998, 2010 and Baltagi and Liu, 2011). For comprehensive reviews 

of this literature, see Arbia (2014) and Elhorst (2014). Regarding our spatial approach, Elhorst (2010) 

provide a detailed discussion of most common spatial econometrics models and highlight the fact that so-

called Spatial Durbin Model (SDM) is a good starting point to contrast the correct specification of the 

potential spatial effects underlying the data generating process. They also point out that a model with spatial 

autocorrelation in not observable variables (the so-called SEM) can be expressed as an SDM with 

constraints, which is the idea behind our proposal. 
2 We are thankful to the NVE staff in charge of network regulation who could confirm this point. 
3 See Glass et al (2016) for a recent application with spatial effects in SFA settings. 
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used in the empirical analysis and its sources. In Section 5 we first estimate a spatial 

econometric model to compute a proxy variable that will stand in for spatially correlated 

omitted variables. We then estimate a standard SFA model to estimate firms’ inefficiency. 

A robustness analysis using available environmental data is also provided. Finally, 

Section 6 presents the conclusions. 

 

2. A cost model with (unobserved) spatially correlated variables 

This section develops a micro-level spatial econometric model that allows us to 

control for unobserved environmental conditions that are likely to be spatially correlated 

when we use a cost function to estimate the firms’ technology. Let us first assume that 

the firms’ cost can be modelled entirely by using the following cost equation: 

𝑙𝑛𝐶𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝑍𝑖𝑡 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡    (1) 

where i stands for firms, t stands for periods, Cit is a measure of firms’ cost, and Xit is a 

vector of k observable cost drivers such as the number of customers, energy delivered, 

network length, and labour and capital prices and Zit represents the unobserved cost 

drivers. This equation includes two error terms, 𝑣𝑖 and 𝑢𝑖. While the former term is a 

symmetric error term measuring pure random shocks, the latter term is a non-negative 

error term measuring firms’ inefficiency. 

As is often the case with observed data,4 some unobserved cost drivers are also 

likely to be spatially correlated. In line with the literature on spatial econometrics, the 

spatial correlation can be modelled as follows: 

𝑍𝑖𝑡 = 𝜆𝑊𝑖𝑍𝑡      (2) 

Here Zt is a vector of Nx1 unobserved cost drivers, Wi is a known 1xN spatial 

weight vector with elements that are equal to zero if a particular firm j is not a neighbour 

of firm i and equal to one if the two firms are neighbours – i.e. the service areas of the 

electricity distribution utilities are adjacent. The term  is a coefficient that measures the 

degree of spatial correlation between the unobserved cost drivers. 

                                                           
4 For illustration purposes, we show several auxiliary regressions in Appendix A where we have used 

equation (2) to examine the degree of spatial correlation for some of our observed cost drivers. As expected, 

we find that all variables are spatially correlated to some extent. Therefore, it is reasonable to expect some 

degree of spatial correlation also in unobserved determinants of firms’ costs. 
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Equation (1) cannot be directly estimated as Zit is an omitted variable that, if 

ignored, will bias our efficiency scores because it will be captured by the noise or 

inefficiency terms. We thus propose using an indirect approach to estimate (1). The 

underlying idea behind our proposal is that we could use the (purged) costs of surrounding 

firms as proxies for Zit if the unobserved cost drivers are spatially correlated. Hence, our 

empirical strategy takes advantage of the spatial proximity of the networks. 

First, we proceed to replace Zit in equation (1) with equation (2). Thus, equation 

(1) can be alternatively rewritten as follows: 

𝑙𝑛𝐶𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝜆𝑊𝑖𝑍𝑡 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡    (3) 

This equation again cannot be estimated as the vector Zt is not observed. However, 

note that, by rearranging equation (1), we can obtain: 

𝑍𝑖𝑡 = 𝑙𝑛𝐶𝑖𝑡 − 𝛽𝑋𝑖𝑡 − 𝑣𝑖𝑡 − 𝑢𝑖𝑡     (4) 

This equation simply indicates that, if 𝛽 and both errors terms were observable, 

Zit should be correlated with a purged cost measure. In this sense, the purged costs can be 

interpreted as an “observable” counterpart of Zit. We then replace Zt in equation (3) with 

its “observable” counterpart, obtaining the following model: 

𝑙𝑛𝐶𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝜆𝑊𝑖𝑙𝑛𝐶𝑡 − 𝜆𝛽𝑊𝑖𝑋𝑡 + 𝜀𝑖𝑡   (5) 

where 

𝜀𝑖𝑡 = ℎ𝑖𝑡 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡     (6) 

and 

ℎ𝑖𝑡 = −𝜆𝑊𝑖(𝑣𝑡 + 𝑢𝑡)     (7) 

𝐶𝑡 = (𝐶1𝑡, 𝐶2𝑡, … , 𝐶𝑁𝑡) is an Nx1 vector of observed costs of firms, 𝑋𝑡 =

(𝑋1𝑡, 𝑋2𝑡, … , 𝑋𝑁𝑡) is an Nx1 vector of firms’ explanatory variables, and vt and ut are again 

Nx1 vectors of the firms’ random terms. 

Several comments are in order with respect to this specification of the firms’ cost.  

First, if we compare the original model in (1) and the new specification in (5)-(7), we 

notice that: 

𝑍𝑖𝑡 = �̂�𝑖𝑡 + ℎ𝑖𝑡     (8) 

where  
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�̂�𝑖𝑡 = 𝜆𝑊𝑖𝑙𝑛𝐶𝑡 − 𝜆𝛽𝑊𝑖𝑋𝑡    (9) 

Equation (8) simply shows that the unobserved cost driver Zit can be decomposed 

into a predictable component �̂�𝑖𝑡 (i.e. the portion of Zit that can be predicted with the data 

of surrounding firms), and an unpredictable component hit. The latter term can in turn be 

interpreted as a measurement error term. As the inefficiency term is non-negative, hit is 

negative on average, and hence our predicted �̂�𝑖𝑡 tends to overestimate the true value of 

the omitted variable Zit. 

Second, in contrast to equation (1), equation (5) is a cost model that now includes 

a set of spatially lagged variables, i.e. 𝑊𝑖𝑙𝑛𝐶𝑡  and 𝑊𝑖𝑋𝑡. Therefore, equation (5) resembles 

a conventional spatial econometric model. However, in our model, only one additional 

coefficient is estimated, and the coefficient of the spatially lagged dependent variable 

should not be interpreted as the effect of neighbours’ costs on the cost of a particular firm. 

Rather,  is measuring the spatial correlation between the unobserved or omitted variables 

in our sample. Our empirical strategy relies on the statistical significance of this 

coefficient as we are unable to use the data of surrounding firms to obtain a proxy for Zit 

if  =0. Therefore, it is important for our empirical strategy to test whether this parameter 

is statistically significant. 

On the other hand, it is worth mentioning that our spatial specification of firms’ 

costs in equation (5) is similar to the Durbin Stochastic Frontier (SDF) model introduced 

recently by Glass et al. (2016) in which they propose estimating the following model: 

𝑙𝑛𝐶𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝜆𝑊𝑖𝑙𝑛𝐶𝑡 + 𝜃𝑊𝑖𝑋𝑡 + 𝜀�̃�𝑡    (10) 

where 𝜀�̃�𝑡 = 𝑣𝑖𝑡 + 𝑢𝑖𝑡. It is easily observable that our spatial model in (5)-(7) and the SDF 

model differ in two important aspects. First, the set of parameters  in the SDF model is 

not restricted to be equal to -. In this sense, our spatial model in (5) is nested in the 

SDF model. However, no spatially correlated omitted (random) variables are explicitly 

modelled in the SDF model. Although Glass et al. (2016) state that their approach can be 

“easily adapted to develop a spatial error stochastic frontier model”, they do not include 

a spatial structure in the error term. In terms of our spatial model, this is equivalent to 

using a zero hit term. The mentioned differences simply indicate that our spatial model 

and the SDF model are non-nested. This is because the spatial spillovers in both models 

are of different nature. While the spatial spillovers in Glass et al. (2016) have an economic 

or causal interpretation, the spatial spillovers in our spatial model are simply associated 
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with the omitted variables. Hence the spatial effects estimated in our model lack an 

economic interpretation as they are completely “spurious”. 

We next discuss how to estimate our spatial SFA model taking into account that 

it includes two spatially correlated error terms (see equations 6 and 7). If the spatial error 

correlation involves a one-sided error term, this does not prove to be an easy task.  In 

order to gain an idea of this, we rewrite again our spatial model in equations (5)-(7) as 

follows: 

𝑙𝑛𝐶𝑖𝑡 = [𝛽𝑋𝑖𝑡 + 𝜆𝑊𝑖𝑙𝑛𝐶𝑡 − 𝜆𝛽𝑊𝑖𝑋𝑡] + ∆𝑣𝑖𝑡 + ∆𝑢𝑖𝑡  (10) 

where 

∆𝑣𝑖𝑡 = 𝑣𝑖𝑡 − 𝜆𝑊𝑖𝑣𝑡 

∆𝑢𝑖𝑡 = 𝑢𝑖𝑡 − 𝜆𝑊𝑖𝑢𝑡 

It should be pointed out that while ∆𝑣𝑖𝑡 follows a multivariate normal distribution, 

the distribution of ∆𝑢𝑖𝑡 (i.e. the difference of, say, two independent one-sided error terms) 

is not known, and this prevents using a ML estimator (see Wang, 2003; and Wang and 

Ho, 2010). As a fully ML specification of the model is not feasible in our case, in the next 

section we propose a procedure that includes �̂�𝑖𝑡 as an additional regressor, and controls 

for hit by using a simple linear function of its determinants. 

 

3. Stochastic frontier model with generated regressor 

Our estimation strategy uses a two-step procedure, advocated for various models 

in Kumbhakar and Lovell (2000). In the first step, equation (5) are estimated ignoring the 

(spatial and frontier) structure of the error term, it. The degree of spatial correlation of 

omitted variables (i.e. parameter ) and other coefficients of the cost frontier are estimated 

using the Generalized Method of Moments (GMM) because the spatially lagged 

dependent variable is endogenous. It is worth noting that, as in previous literature on both 

spatial and SFA models using two-stage procedures, the first-step GMM residuals are not 

used here to estimate the complete structure of the overall term it because its distribution 

is not known. Instead, the first-step estimates aim to obtain a prediction of Zit that is used 

in a second regression as an additional explanatory variable. 
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In the second step, the following specification of firms’ cost in equation (1) is 

estimated: 

𝑙𝑛𝐶𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝛾𝑖𝑡�̂�𝑖𝑡 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡    (11) 

where  

𝛾𝑖𝑡 =
𝑍𝑖𝑡

�̂�𝑖𝑡
=

�̂�𝑖𝑡+ℎ𝑖𝑡

�̂�𝑖𝑡
,     (12) 

In order to obtain (11), we have replaced the original omitted variable in (1) with 

its predicted counterpart using equation (9). The ratio it can be interpreted here as a firm-

specific and time-varying coefficient, that tends to be less than unity because hit is on 

average less than zero. In our empirical application, we will first estimate a common  

value for all firms, so that the final cost model estimated in our paper is: 

𝑙𝑛𝐶𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝛾�̂�𝑖𝑡 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡    (13) 

where the common  coefficient can now be interpreted as the average value of it. The 

fact that hit does not appear in (13) does not imply that we are (completely) ignoring the 

spatial part of the composed error term it in (10) because hit is roughly captured (at least 

its average value) by an estimate of  that will depart from the theoretical value of unity. 

It should be pointed out, however, that it is a function of hit, which on average 

depends on the number of adjacent firms (i.e. Wi) and the inefficiency level of adjacent 

firms (i.e. the magnitude of ut). Therefore, more accurate estimates can be obtained if we 

model it as a linear function of the number of adjacent firms (Ni) and, if the SFA model 

is heteroskedastic, the spatial lags of all determinants of firms’ inefficiency (Wiqi), that 

is: 

𝛾𝑖𝑡 = 𝛾0 + 𝛾1𝑁𝑖 + 𝛾2𝑊𝑖𝑞𝑖     (14) 

Therefore, our preferred specification of the second-step model is: 

𝑙𝑛𝐶𝑖𝑡 = 𝛽𝑋𝑖𝑡 + (𝛾0 + 𝛾1𝑁𝑖 + 𝛾2𝑊𝑖𝑞𝑖)�̂�𝑖𝑡 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡  (15) 

Finally, note that, conditional on �̂�𝑖𝑡, our new specification of firms’ cost has the 

structure of a conventional SFA model, so it can be estimated using MLE techniques once 

the distributional assumptions concerning the noise and inefficiency terms are made. As 

is common in the SFA literature, we will assume that 𝑣𝑖𝑡~𝑁(0, 𝜎𝑣) and the inefficiency 

term are independently distributed across firms and over time, and follows a half-normal 
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distribution, i.e. 𝑢𝑖𝑡~𝑁+(0, 𝜎𝑢).5 As anticipated above, this model can accommodate 

heteroskedastic inefficiency terms simply by making the variance of 𝜎𝑢 functions of some 

exogenous variables (qit). Regardless of whether the model is homoscedastic or not, 

efficiency scores are estimated for each firm using the conditional distribution of uit given 

vit+ uit introduced by Jondrow et al. (1982). 

 

4. Data 

We apply our empirical strategy to a balanced set of panel data for the Norwegian 

distribution utilities over the years 2004 to 2011. The data used in this study was obtained 

from the sector regulator, the Norwegian Water Resources and Power Directorate (NVE). 

We specify a simple cost model that uses, in line with the Norwegian benchmarking 

approach, social costs (SCOST) as the dependent variable. In addition to operating 

expenses (OPEX), capital depreciation and its opportunity cost, the social costs variable 

also includes the cost of network energy losses, and the cost of energy not supplied 

(CENS) to different user groups from service interruptions. The cost of network energy 

losses is obtained by multiplying the units of network energy losses with the average 

system price in NordPool wholesale market in a given year. CENS is calculated by 

multiplying the energy not supplied (KWh) during a specific interruption with a unit cost 

(NOK/KWh) that depends on customer type, duration, and whether the interruption was 

planned or not. 

We follow the previous literature to select the main cost drivers. In particular, all of 

our estimated cost functions include three outputs (CUS=number of customers; 

NL=network length; and DE=delivered energy), and three input prices (PK= capital price, 

regulated return of capital; PE=energy price; PL=labour price).6 We also use the 

percentage share of overhead lines (OH) of the total network length as an additional cost 

driver. This variable is employed to represent the main technical feature in this industry 

as firms’ decisions on, for example, investment and maintenance of overhead and 

underground lines, are different. Regarding firms’ inefficiency, we follow Orea and 

Jamasb (2017) and use the percentage of overhead lines (OH), the network length variable 

(NL) and the number of transformer stations (ST) as inefficiency determinants. We 

                                                           
5 The stochastic frontier model can accommodate heteroskedastic inefficiency terms simply by making the 

variance of 𝜎𝑢 functions of some exogenous variables. 
6 Energy Price is used to impose linear homogeneity. For this reason, it will not explicitly appear in our set 

of parameter estimates. 
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include ST and OH as efficiency determinants to examine whether it is more costly to 

manage firms with more stations and with higher share of overhead lines. These can also 

be viewed as measures of complexity of networks something that some regulatory 

benchmarking models are currently lacking. Finally, NL allows us to know whether larger 

utilities tend to be more efficient than smaller utilities. The monetary variables finally 

used in our application are measured in 1000 NOK and have been deflated using the 

consumer price index to express them in 2004 real terms. 

For robustness analyses, we will extend the above set of cost drivers to include 

several geographic and weather (W&G) variables. In particular, in our extended models 

we include six environmental variables: WIND=average reference wind from measuring 

stations; WINDEX=expected extreme wind exposure; and DIS=average distance to coast; 

FOREST=a measure of forest density in the service areas of networks; 

AVESLOPE=average slope of terrain; and MAXSLOPE=maximum slope of terrain. 

The above geographic and weather variables were obtained from the Norwegian 

regulator. The regulator has access to more than 60 weather and geographic condition 

variables that can potentially affect the performance of networks. However, for practical 

reasons only a few of these variables can be included in parametric efficiency analysis 

models. Most of our selected environmental variables are considered as relevant by the 

Norwegian regulator. For instance, the regulator uses the ratio of squared wind speed over 

distance to coast in order to reflect the effect of coastal climate and corrosion caused by 

a combination of wind and salt water on the networks. Similar comments deserve our 

variables measuring the slope of terrain. Moreover, the regulator considers a range of 

variables in pre-benchmarking analysis to account for the effect of types of forestation in 

the service area, as fast-growing forest may represent a cost disadvantage due to the added 

cost of forest clearing. We use here an aggregate measure of forestation (FOREST) that 

has been computed using principal component analysis as we encountered convergence 

problems in Orea and Jamasb (2017) when we included the whole set of available 

variables to account for forest conditions. 

In our study we follow the common approach in the literature for capturing and 

measuring the spatial interdependence using a physical contiguity matrix, W, whose 

elements are one for two bordering areas, and zero otherwise. As a result, the diagonal 

elements of W are null, while its off diagonal entries take a value of 1 for the areas that 

are adjacent and 0 otherwise. Therefore, WX should be interpreted as the sum of the X 
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variables for the adjacent areas. The same applies for the WY product. In order to include 

the spatial interactions, we consider the map showing the distribution of service areas 

provided by NVE in October, 2015 (see Figure 1). This map is georeferenced using the 

ArcGIS data system. We have used this georeferenced information to identify the adjacent 

distribution areas. 

[Insert Figure 1 here] 

Finally, it is worth mentioning that our observations are the distribution areas of 

distribution utilities. Both the data on firms’ costs and the map provided by the Norwegian 

regulator include the name of the distribution utilities. This information allowed us to 

match the distribution areas with the data of the firms operating in those service areas. 

The data for each distribution area normally coincides with the data of a single firm. 

However, the data for a small number of distribution areas involves more than one firm 

because they were involved in merger processes from 2004 onwards and their individual 

distribution areas are not available due to the map provided by the Norwegian regulator 

only shows the distribution of service areas many years later. We only have data on the 

overall distribution area of these merged firms in 2015. This forced us to aggregate the 

data of merged firms from 2004 onwards.7  

Table 1 provides a descriptive summary of the variables used in this study. As the 

number of distribution areas in 2015 with available data is 129, the total number of 

observations used in our analysis is 1032. 

[Insert Table 1 here] 

 

5. Results 

5.1. First-stage GMM regression and predicted values of the omitted cost drivers 

We first estimate equation (5) using GMM in order to control for the endogeneity 

of the spatial lagged dependent variable. Table 2 shows the estimated coefficient of this 

variable. We do not provide the other coefficients of the model in this table as they are 

                                                           
7 In previous specifications of our models, we included a merger dummy variable to control for possible 

aggregation biases. As expected, the coefficient of this variable was not statistically significant due to the 

small number of observations involved in merger processes during the period analysed in this paper. 
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similar to those obtained in the next section, mainly focused on the technological 

characteristics of firms’ cost frontier. 

[Insert Table 2 here] 

We observe that the coefficient of spatial correlation  is positive and significant. 

Hence, we conclude that the unobserved cost drivers are, at least to some extent, spatially 

correlated. This result also indicates that weather and geographic conditions, and other 

spatially unobserved cost drivers (such as the population structure, electricity demand 

patterns, input prices) matter and that they should be included as cost determinants.8 

The fact that the coefficient of spatial correlation  is statistically different from 

zero implies that we can use equation (9) and the data of surrounding firms to compute a 

proxy variable for the omitted cost drivers. The predicted values of the omitted cost 

drivers are summarized in Figure 2, where we plot kernel density functions of the 

percentage of cost attributable to (unfavourable) environmental conditions, measured in 

relation to the “average” firm. Figure 2 thus suggests the existence of remarkable cost 

differences between utilities attributable to different environmental conditions. This is 

most probably what regulators wish to control for. 

[Insert Figure 2 here] 

The firm with the most unfavourable omitted conditions has 33.5% higher costs 

than the representative firm. On the other hand, the firm with the most favourable omitted 

costs has 22.5% less costs than the representative firm. Orea et al. (2015) have found 

similar results using supervised environmental composite variables. For instance, their 

preferred model predicts up to 35% higher costs for utilities operating in areas with 

unfavourable environmental conditions. For utilities operating in good environmental 

conditions, their preferred model predicts up to 44% lower costs. 

Table 3 shows the between and within standard deviations of the predicted values 

of the omitted variables and the main observed drivers of firms’ costs. It is worth 

mentioning that the within-variation of �̂�𝑖𝑡 is only slightly lower than the between-

variation. Thus, our approach based on a spatial econometric model to capture unobserved 

heterogeneity uses both the between and within-variation contained in the data of 

neighbouring firms. In contrast, a FE-type estimator only uses the within-variation 

                                                           
8 Growitsch et al. (2012) have found a similar conclusion using a different approach to control for 

unobserved and observed environmental conditions. 
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contained in the data to estimate the coefficients of the other cost drivers. If we use one 

of these estimators we will obtain negative and statistically non-significant coefficients 

for delivered energy, number of customers, network length and other crucial determinants 

of utility costs. The low precision of a FE-type estimator in the present application is 

caused by the fact that the within-variations of most of these variables tend to be much 

lower than the between-variation (see Table 3). 

[Insert Table 3 here] 

5.2. Second-stage MLE parameter estimates 

 

Once we have generated a proxy variable for the omitted cost drivers, we proceed 

to estimate the stochastic cost frontier in equation (15) without the W&G variables. The 

results adding environmental variables are discussed later on. 

In Table 4 we show four alternative specifications of the stochastic cost frontier. 

The simple-SFA model does not include the estimated values for Zit, and it is only 

included for comparison purposes. The next three models include the generated variable 

�̂�𝑖𝑡 as a proxy for the omitted variable 𝑍𝑖𝑡. In this sense, they are labelled as “spatial” 

models. The spatial-SFA1 model only includes the generated variable �̂�𝑖𝑡. The subsequent 

model (spatial-SFA2) adds the number of adjacent firms (Ni) to the specification of it. 

Finally, as the inefficiency term is heteroskedastic, the spatial-SFA3 model extends the 

previous one by adding the spatial lags of all determinants of firms’ inefficiency. 

[Insert Table 4 here] 

It should be noted that, compared to the simple-SFA model, the simplest spatial 

model that only adds the estimated values for Zit improves the joint significance 

considerably, based on the likelihood function value. The estimated value of 0 is smaller 

than unity, an expected result as �̂�𝑖𝑡 tends to overestimate the true values of 𝑍𝑖𝑡. The next 

two spatial SFA models allow for firm-specific values of it. In this case, as all variables 

are mean-centred, 0 can be interpreted as the sample mean value of it. It is worth 

mentioning that the new spatial models again improve the likelihood function values. 

Interestingly, the estimated value for 0 in both models is now not statistically different 

from unity. This seems to indicate that only controlling for the number of adjacent firms 

is enough to obtain the unbiased value of it, at least evaluated at the sample mean. This 
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supports our empirical strategy based on a linear specification of it that takes into account 

that hit is the sum of several inefficiency terms, so its expected value depends on the 

number of adjacent firms (and their average inefficiency levels, which in turn depends on 

their efficiency determinants). 

Regarding the parameters of the cost frontiers, generally all the first-order 

coefficients have the expected sign and their magnitudes are also reasonable from a 

theoretical standpoint. The first-order coefficients of all three outputs are positive and 

statistically different from zero. A similar observation can be made with respect to the 

coefficients of input prices, which are also positive and statistically significant. The 

frontier coefficient of OH is negative and statistically significant in all models, indicating 

that the larger the percentage of overhead lines, the smaller is the total cost. This result 

indicates that, although underground cables are probably negatively correlated with 

CENS and reduce OPEX, they are costlier and therefore increase the total costs. 

The sum of the first-order coefficients of customer numbers and energy delivered 

allows us to measure density economies, associated with vertical output, i.e. output 

expansions that do not require additional network in the existing service areas. We find 

that the elasticity of density evaluated at the sample mean is quite similar in all models, 

i.e. 0.48. The estimated coefficients for these two outputs in Table 4 indicate that 

electricity distribution networks have strong natural monopoly characteristics. In contrast, 

scale economies are associated with horizontal output expansions that require enlarging 

the existing network. These economies can be measured by the sum of cost elasticities 

with respect to customer numbers, energy delivered and network length. The elasticity of 

scale evaluated at the sample mean in both models is about 0.94. This value suggests that 

Norwegian electricity distribution networks still exhibit natural monopoly characteristics 

when the network is expanded to meet new demand.9 

In addition to the frontier parameters, Table 4 displays the coefficients of the 

variables that are related to the inefficiency term. The lack of significance of the 

coefficient of OH seems to indicate that managing firms with a relatively large proportion 

of overhead lines (more likely to be serving rural areas), have been managed similarly to 

those firms with more underground lines (more likely to be serving urban areas). 

                                                           
9 These results are in line with the actual features of the Norwegian electricity distribution networks. While 

Norway has one of the highest levels of per capita energy consumption in the world, with the exception of 

a few cities, the number of network utilities is large relative to the population and, on the whole, the 

customer density across the networks is generally low. 
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Following Orea and Jamasb (2017), in addition to the percentage of overhead lines, we 

have included the logs of the network length (NL) in order to capture the size effects on 

firms’ inefficiency, and the number of substations (ST) as a proxy for network 

complexity. As mentioned in our previous paper, we obtain a negative and statistically 

significant coefficient for NL, indicating that larger utilities tend to be more efficient than 

smaller utilities. In contrast, the positive coefficients of ST indicate that it is costlier to 

manage firms with more stations. 

 

5.3. Efficiency Scores 

Table 5 presents the summary statistics of the efficiency scores. Our efficiency 

estimates are high, on average about 92% using our preferred model (Spatial SFA 3). The 

high level of efficiency of this industry is most probably attributable to the maturity of 

Norway as a regulator that has consistently been supervising and incentivizing the 

Norwegian utilities to perform efficiently. Similar figures are obtained in Orea et al. 

(2015) using a SFA approach for the period 2004 to 2011, Miguéis et al. (2012) using a 

DEA method for the period 2004 to 2007, and in Growitsch et al. (2012) using a SFA 

approach for the 2001-2004 period. 

[Insert Table 5 here] 

On the other hand, it should be pointed out that the estimated efficiency levels in 

the models with spatial interactions (about 92.5%), are slightly higher than those obtained 

using the single SFA model (on average 91.6%), indicating that ignoring the omitted 

variables of a spatially correlated nature tends to underestimate the firms’ efficiency 

scores. However, the small difference found between the single and the spatial SFA 

models might be suggesting that this bias is not severe. We observe in the next subsection 

that this is not the case. 

 

5.4. Robustness analysis using weather and geographic data 

One advantage of the present application is that the Norwegian energy regulator 

(NVE) has systematically examined the effects of several environmental factors such as 

geographic and weather conditions on cost and service quality performance of the utilities 

and it has reflected these in the cost efficiency benchmarking models used in incentive 
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regulation of these utilities (see, e.g., Growitsch et al., 2012; Orea et al., 2015). This 

information is often not available in most other countries because collecting all the 

relevant environmental data requires a substantial effort and financial resources as well 

as considerable time. Therefore, our results in previous subsections –that, on purpose, 

ignore any weather and geographic information- are the likely outcomes that one could 

find in another application on electricity distribution networks, or indeed in other network 

utilities such as gas and water, where the regulator does not have access to W&G data. 

However, as some environmental information is available in our application, we 

can carry out a (quasi) natural experimental exercise to examine the robustness of our 

empirical strategy based on spatial econometric techniques to utilise the effect of omitted 

variables on costs of neighbouring utilities. Our natural experiment exercise only attempts 

to compare the estimated spatial SFA models in previous subsections with a simple SFA 

model that now includes a set of W&G variables. This model (hereafter W&G SFA 

model), is used here as a benchmark as it is able to control for both economic and 

environmental cost drivers. As many of the W&G variables are spatially correlated (see 

Appendix A), we expect similar efficiency scores using a (non-spatial) model that 

includes W&G cost drivers and a spatial model that “replace” the W&G data (often not 

available) with data from surrounding firms using spatial econometric techniques. 

The parameter estimates of the W&G SFA model are shown in Appendix B. In 

our W&G SFA model, we extend the previous set of cost drivers with several W&G 

variables. In particular, we include three weather variables (WIND, WINDEX, and 

DIS),10 and three geographical variables (FOREST, AVESLOPE, and MAXSLOPE). 

This appendix also includes the results of an extended version of our previous spatial 

SFA3 model where we have now added W&G variables. This model (hereafter W&G 

spatial-SFA3 model), will allow us to examine whether omitted variables that are 

spatially correlated are still present. 

Overall, our new results indicate that weather is an important factor in determining 

cost efficiency in this industry as the estimated coefficients for the weather variables are 

always significant. For instance, we find that a higher exposure to wind conditions implies 

larger costs for the distribution networks. On the other hand, the coefficient of the distance 

                                                           
10 We use the geographic variable (DIS) in order to capture the effect of coastal climate on the networks. 

In Norway, this effect is related to problems with corrosion on network components normally caused by a 

combination of wind and salt water. 
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to the coast is negative as expected because inland weather conditions are likely to be less 

severe than coastal weather conditions. Our results also indicate that some geographic 

features of the terrain on which the networks are supported (i.e. forestry and maximum 

terrain slope), are also important determinants of cost efficiency. Finally, it is worth 

mentioning that all coefficients associated to �̂�𝑖𝑡, are not statistically significant, except 

for �̂�𝑖𝑡 alone whose coefficient is slightly larger than unity. 

Figure 3 compares the individual efficiency scores that are obtained using the four 

models in Table 4 that do not include any environmental variable (see “dot” 

observations), with the scores that are obtained using the W&G SFA model in Appendix 

B (see “cross” observations), which serves as a benchmark model because it includes 

relevant environmental variables. This figure relates several interesting stories. 

[Insert Figure 3 here] 

First, most observations in Figure 3 are above the bisecting line, indicating that 

the efficiency scores of a simple SFA Model tend to be downward biased if either spatial 

effects or W&G variables are ignored. This result has been partially highlighted in the 

previous subsection. However, Figure 3 now shows that the bias is much larger when the 

efficiency scores are small. This implies that the most inefficient firms in a simple SFA 

specification of firms’ cost would be wrongly penalized in an incentive regulated 

framework. 

The second story has to do with the evolution of firms’ efficiency scores when we 

move from simpler to more comprehensive models. Indeed, it is apparent in Figure 3 that 

we move closer to the benchmark efficiency scores when we add spatially generated 

variables as cost determinants. Moreover, the efficiency scores of the Spatial SFA3 model 

(the yellow dots) are quite close to the efficiency scores of the W&G SFA model (see the 

cross observations). This implies that we have been able to (almost) reproduce the same 

results as a SFA model that includes a set of relevant environmental variables that are not 

available in many cases. This result thus suggests that when W&G data are not available, 

this lack of information can likely be compensated by using data from surrounding firms 

using spatial econometric techniques. 

Finally, in Figure 4 we compare the individual efficiency scores obtained using 

the non-spatial W&G SFA model and the W&G spatial-SFA3 model that extends our 

previous spatial SFA3 model by including W&G variables. We find that both efficiency 
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scores are quite similar. This result indicates that, once we have controlled for W&G 

variables, the remainder of the spatially correlated omitted variables are of little 

importance, In other words, most of the omitted information that is spatially correlated 

has to do with environmental conditions. In summary, we have shown that the spatial 

econometric techniques can offer an effective and efficient possibility to control for this 

issue without recurring to the collection of costly weather and environmental data. 

[Insert Figure 4 here] 

 

6. Conclusions 

This study combines stochastic frontier and spatial econometric techniques to 

evaluate a firm’s efficiency in the Norwegian electricity distribution sector, taking into 

account spatially correlated omitted variables. In doing so, first we propose estimating a 

spatial econometric model to obtain a proxy for this type of variable by means of the 

available data for neighbouring utilities. Next we plug the variable generated into a 

standard SFA model. 

We illustrate our approach using panel data for the Norwegian distribution utilities 

for the years 2004 to 2011. In order to implement our empirical strategy, we have matched 

the information on concession areas of distribution utilities with the data provided by the 

Norwegian regulator on firms’ costs. We are not aware of other studies that have carried 

out a similar spatial matching exercise. 

We find that the coefficient of the spatial correlation is significant in our auxiliary 

regression, indicating that the unobserved cost drivers are correlated. This thereby 

justifies the use of neighbouring firm data in order to control for unobserved cost drivers 

in our application. Next, the estimated stochastic cost frontier that includes our generated 

variable outperforms the model that excludes the omitted cost drivers. In this sense, as 

expected, the firm efficiency scores are larger when we include our proxy for the omitted 

variables, especially for firms that are more inefficient. In an incentive regulation 

framework, the upshot is that the latter types of firms are likely to be more severely 

penalized when the effect of this variable is not taken into account. 

One advantage of the present application is that the Norwegian energy regulator 

has collected data on a set of W&G variables. This information is often not readily 

available in many other countries. As some environmental information is available in our 
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application, we have been able to carry out a quasi-natural experimental exercise to 

examine the robustness of our empirical strategy. We have found that our spatial SFA 

model is able to roughly reproduce the efficiency scores of a more comprehensive model 

that includes the W&G variables that are not available in many applications. That is, we 

find that this lack of information can likely be compensated with data from surrounding 

firms using spatial econometric techniques. Finally, we have detected that most of the 

omitted information that is spatially correlated has to do with environmental conditions. 

As a final point, we have found that combining efficiency analysis and spatial 

econometrics methods always improve the goodness-of-fit of the estimated models and, 

hence, more accurate and fair efficiency scores are obtained. Our approach is particularly 

useful in utilities sectors with a large number of distribution service areas, and where 

collecting and updating environmental data requires substantial amount of investment in 

human or financial resources as well as time. 
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Table 1.  

Descriptive statistics of the data  

 
 

 Mean St.Dev. Min Max 

SCOST 1000 NOK 92899.69 192397.59 793.35 1797173.24 

CUS Number 21118.54 56320.29 14 552342 

DE 1000 MWh 570990.65 1570418.93 3979 17000000 

NL Km 752.47 1290.72 9 8648 

OH % 0.66 0.20 0.00 0.97 

PK % 0.06 0.01 0.05 0.1 

PL Index 163.86 16.89 139 189.5 

PE NOK/MWh 331.01 73.93 234.6 436.3 

ST Number 948.06 1828.73 8 13525 

WIND m/s 25.5 2.48 22 31 

WINDEX m/s 5.28 1.02 2.71 8.13 

DIS km 53455.32 54567.00 191 19637 

FOREST Index 0 2.45 -3.21 22.51 

AveSLOPE % 10.13 3.74 2.86 22.22 

MaxSLOPE % 51.09 11.91 19 75 

 

 

 

Table 2.  

First-stage GMM parameter estimates. 

 Coefficient Robust-t 

Intercept 10.5699 378.74 

Spatial lag of  the dependent variable (W·lnC) 0.1660 5.69 

Cost drivers:  

Output variables Yes 

Input prices  Yes 

Overhead variable Yes 

Hansen Chi-squared test (df) 0.1332 (1) 

Weak instruments F-test (df in parenthesis) 47.21 (24,1007) 

R-squared 0.9870  
Notes:  

(a) For more details about the cost drivers and the functional form of the cost function, see Table 4. 

(b) Instruments= all exogenous explanatory variables plus the spatial lag of lnCUS and lnCUS2. 
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Table 3. Between and within standard deviations of the main cost drivers. 

Variable  Between Within B/W ratio 

�̂�𝒊 0.065 0.045 1.45 

lnCUS 1.454 0.160 9.09 

lnNL 1.162 0.035 32.76 

lnDE 1.404 0.100 13.99 

OH 0.201 0.026 7.83 
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Table 4. Second stage parameter estimates. Cost frontier function. 

  Single SFA   Spatial SFA 1   Spatial SFA 2   Spatial SFA 3   

                  

Parameters Estimates t-ratio Estimates t-ratio Estimates t-ratio Estimates t-ratio 

                  

Intercept 10.511 677.7 10.518 665.1 10.518 636.1 10.517 625.0 

lnCUS 0.291 10.81 0.273 10.72 0.276 10.74 0.271 10.31 

lnNL 0.549 25.53 0.564 28.06 0.560 27.53 0.561 27.54 

lnDE 0.142 6.01 0.146 6.45 0.147 6.51 0.148 6.53 

OH -0.312 -4.83 -0.298 -4.91 -0.294 -4.80 -0.285 -4.69 

0.5·lnCUS2 0.130 6.46 0.124 5.85 0.120 5.75 0.121 5.66 

0.5·lnNL2 -0.007 -0.08 -0.041 -0.50 -0.036 -0.45 -0.049 -0.61 

0.5·lnDE2 0.196 4.99 0.202 5.24 0.199 5.26 0.204 5.36 

0.5·OH2 0.227 0.40 0.349 0.64 0.445 0.81 0.465 0.86 

lnCUS·lnNL -0.007 -0.18 0.003 0.07 0.000 0.00 0.006 0.16 

lnCUS·lnDE -0.109 -4.42 -0.114 -4.48 -0.110 -4.36 -0.113 -4.51 

LnCUS·OH -0.127 -1.07 -0.145 -1.20 -0.113 -0.94 -0.136 -1.10 

lnNL·lnDE -0.056 -1.22 -0.045 -1.00 -0.046 -1.03 -0.045 -1.02 

LnNL·OH -0.390 -1.87 -0.370 -1.82 -0.395 -1.96 -0.391 -1.94 

LnDE·OH 0.483 3.34 0.492 3.37 0.483 3.34 0.505 3.46 

lnPK 0.277 14.19 0.263 13.99 0.264 13.93 0.263 13.81 

lnPL 0.662 16.89 0.664 17.98 0.663 17.88 0.661 17.78 

Z     0.894 11.19 1.034 11.40 1.007 11.18 

Z·N         -0.100 -2.74 -0.151 -3.83 

Z·WlnNL             -0.302 -2.22 

Z·WOH             0.111 0.59 

Z·WlnST             0.230 1.82 

                  

lnv -2.136 -51.02 -2.182 -51.69 -2.184 -49.28 -2.181 -48.56 

                  

lnu -2.376 -11.15 -2.447 -10.79 -2.436 -10.34 -2.462 -10.10 

lnNL -1.623 -3.55 -1.621 -3.56 -1.485 -3.28 -1.504 -3.19 

OH 0.659 1.85 0.064 0.17 -0.004 -0.01 -0.167 -0.44 

lnST 1.012 2.64 1.085 2.84 0.971 2.56 1.014 2.55 

                  

Mean log-likelihood 0.553   0.612   0.616   0.621   

Observations 1032   1032   1032   1032   

LF 570.514   631.716   635.365   640.414   
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Table 5. Efficiency scores 

 

 Mean Std. Dev. Min Max 

Single SFA 0.916 0.064 0.535 0.990 

Spatial SFA 1 0.923 0.058 0.498 0.987 

Spatial SFA 2 0.923 0.057 0.498 0.985 

Spatial SFA 3 0.925 0.055 0.485 0.985 
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Figure 1: Norwegian electricity distribution service areas 

 

Source: Norwegian Water Resources and Power Directorate (NVE) 

 

 

 

 

Figure 2. Histograms and Kernel density plots of estimated environmental cost 

differences. 
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Figure 3. Efficiency scores.  

 

 

 

Note: Efficiency scores of the Simple SFA model in the horizontal axis.   

 

Figure 4. Efficiency scores using W&G data  

 

 

Note: Efficiency scores of the Simple SFA model in the horizontal axis.   
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Appendix A 

Spatial correlations of the main cost drivers. OLS auxiliary regressions. 

  Regression Coef. t-ratio 

Customer numbers     

  Intercept -0.1356*** -2.75 

  Spatial lag 0.0816*** 6.48 

  R2 0.0392   

Network Length     

  Intercept -0.0571 -1.44 

  Spatial lag 0.0443*** 3.41 

  R2 0.0111   

Delivered Energy     

  Intercept -0.0861* -1.89 

  Spatial lag 0.0677*** 5.92 

  R2 0.0329   

Overhead lines (%)     

  Intercept -0.0048 -0.83 

  Spatial lag 0.1482*** 14.43 

  R2 0.1683   

Wind     

  Intercept 26.2482*** 140.30 

  Spatial lag -0.0061*** -4.37 

  R2 0.0183   

Wind Exposure     

  Intercept 5.4931*** 70.78 

  Spatial lag -0.0086*** -3.04 

  R2 0.0089   

Distance to coast (in logs)   

  Intercept 8.3434*** 79.73 

  Spatial lag 0.0328*** 17.60 

  R2 0.2314   

Forest     

  Intercept -0.0367 -0.47 

  Spatial lag 0.0448*** 3.26 

  R2 0.0103  

AveSlope     

  Intercept 6.7957*** 33.00 

  Spatial lag 0.0657*** 18.58 

  R2 0.2512  

MaxSlope   

  Intercept 37.9739*** 50.63 

  Spatial lag 0.0505*** 19.31 

  R2 0.2659  
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Appendix B 

SFA models with W&G variables. 

          

  W&G SFA   Spatial W&G SFA   

Parameters Estimates t-ratio Estimates t-ratio 

Intercept 10.668 101.334 10.595 107.749 

lnCUS 0.295 10.979 0.285 10.954 

lnNL 0.523 22.291 0.539 24.433 

lnDE 0.148 6.143 0.142 6.169 

OH -0.181 -2.923 -0.259 -4.483 

0.5·lnCUS2 0.108 5.117 0.101 4.999 

0.5·lnNL2 -0.108 -1.150 -0.154 -1.730 

0.5·lnDE2 0.193 4.861 0.168 4.659 

0.5·OH2 0.822 1.388 0.548 0.979 

lnCUS·lnNL 0.040 0.980 0.058 1.523 

lnCUS·lnDE -0.123 -4.591 -0.128 -4.902 

LnCUS·OH -0.142 -1.124 -0.194 -1.538 

lnNL·lnDE -0.028 -0.583 -0.002 -0.048 

LnNL·OH -0.365 -1.625 -0.244 -1.163 

LnDE·OH 0.500 3.324 0.449 3.141 

lnPK 0.273 14.427 0.268 14.470 

lnPL 0.667 17.661 0.663 18.500 

Z     1.195 10.512 

Z·N     -0.080 -1.615 

Z·WlnNL     0.050 0.298 

Z·WOH     -0.153 -0.694 

Z·WlnST     -0.051 -0.343 

WIND -0.015 -4.667 -0.014 -4.766 

WINDEX 0.041 4.536 0.045 5.250 

lnDIS -0.017 -4.191 -0.016 -3.965 

Forrest 0.008 2.745 0.008 2.866 

AveSlope 0.002 0.854 0.001 0.224 

MaxSlope 0.003 3.706 0.004 4.493 

          

lnv -2.147 -52.673 -2.235 -52.423 

          

lnu -2.600 -10.736 -2.497 -12.658 

lnNL -2.138 -3.770 -1.847 -3.967 

OH 0.017 0.039 -0.114 -0.300 

lnST 1.602 3.278 1.371 3.383 

          

Mean log-likelihood 0.608   0.668   

Observations 1032   1032   

LF 627.159   689.086   
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