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Numerical relativity has proven to be a successful and robust tool for non-perturbative studies of 
gravitational phenomena in the highly dynamical and/or non-linear regime. Perhaps the most 
prominent achievement in the field is the breakthrough success in simulating the merger of binary 
black hole systems. Gravitational waveforms resulting from these simulations serve as precise 
theoretical predictions of general relativity, which can be tested against observational data, such as 
those recently made by the LIGO experiment. 

This dissertation explores applications of numerical relativity which lie beyond the realm of 
astrophysics. One motivation for this comes from the AdS/CFT correspondence, which allows us to 
study strongly coupled quantum field theories by considering classical gravity with a negative 
cosmological constant. More concretely, we construct stationary asymptotically anti-de Sitter 
spacetimes by numerically solving the Einstein equations in a strongly elliptic form, subject to 
various boundary conditions corresponding to the physical setting of interest. Three applications of 
this technique are presented here. 1) A toroidal “black ring” in global AdS5, which provides a more 
complete phase diagram for AdS5 black holes. 2) A black hole on an AdS soliton background, 
which is dual to a localised ball of deconfined plasma surrounded by confined matter. 3) A rotating 
horizon extending to the AdS boundary, which allows us to the study the behaviour of the CFT in 
the presence of a rotating black hole. 

Outside of AdS/CFT, time-dependent numerical relativity in higher dimensions can also inform 
inquiries into the mathematical properties of general relativity as a theory of gravity. In particular, 
long, thin black hole horizons are known to be subject to the Gregory–Laflamme instability, and 
this is expected to result in an eventual violation of the weak cosmic censorship conjecture. A 
landmark simulation of the black string confirmed this in the Kaluza–Klein setting, however the 
generalisation of this setup to asymptotically flat black rings poses new challenges for numerical 
relativity. Even after a successful simulation, the resulting apparent horizons possess nontrivial 
geometries which are problematic for existing horizon finding methods. This dissertation also 
covers aspects of technical development in the GRChombo adaptive mesh refinement code which 
were necessary for the successful evolution and analysis of a black ring instability.
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Chapter 1

Preliminaries

1.1 Introduction

General relativity (GR) has been an extremely successful theory of gravitation. Although the

geometric nature of the Einstein equation provides an elegant and simple description of gravity, its

nonlinearity means that numerical methods are often required to investigate physical phenomena in

the strong-field regime. One early result of numerical relativity (NR) was Choptuik’s discovery of

critical phenomena in the gravitational collapse of a massless scalar field [1]. The most noteworthy

application of numerical relativity, however, is probably the simulation of black hole binaries. Initial

progress in simulating black holes occurred as part of the Binary Black Hole Grand Challenge

[2], and was spurred by the anticipated need for theoretical waveform predictions in a successful

detection of gravitational waves at the then-upcoming Laser Interferometer Gravitational Wave

Observatory (LIGO). A full ‘inspiral-merger-ringdown’ simulation of a binary black hole system

only became possible after over a decade of theoretical work on formulations of the Einstein

equation, gauge conditions, and initial conditions, along with advances in simulation code and

computing power. Remarkably, the eventual success in long-term stable evolution of such a system

was achieved through two distinct numerical schemes by three independent groups [3, 4, 5]. Indeed,

when gravitational waves were finally detected earlier this year at LIGO [6, 7], the events were

found to be consistent with waveforms generated via numerical simulations of binary black hole

mergers.

The maturation of numerical techniques in general relativity has led to their wider application in
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other areas of gravitational research, beyond the usual astrophysical setting. One important area is

the study of the mathematical properties of GR itself. In the non-dynamical regime, black holes

are the most fundamental stationary objects in the theory. Through the celebrated uniqueness

theorems [8, 9, 10, 11], we know that asymptotically flat black holes in 4 dimensions are described

by the Kerr metric [12]. In higher dimensions, the Kerr solution generalises into the Myers–Perry

black holes [13], however they are no longer unique. The discovery of the five-dimensional black

ring [14] shows that there can be multiple black hole solutions of different horizon topologies

at a given mass and angular momentum. Following this work, many other ‘black objects’ have

been found analytically in five dimensions [15, 16, 17, 18, 19, 20]. However, in six or more

dimensions, even the black rings are only known numerically [21, 22]. While constraints exist on a

black hole horizon’s topology [23], the complete classification of black holes in higher dimensions

remains an open problem. Another major motivation to construct novel stationary solutions comes

from the AdS/CFT correspondence [24], which allows us to study properties of certain strongly

coupled quantum conformal field theories (CFT) by constructing asymptotically anti-de Sitter

(AdS) solutions to classical gravity, subject to appropriate boundary conditions. Analytic methods

have successfully been used to construct new solutions, but they are subject to limitations. Exact

solution generating techniques (e.g. inverse scattering transform [25, 26], algebraically special

solutions [27]) are limited to geometries with a high degree of symmetry, while approximate

techniques (e.g. blackfolds [28], large D expansion [29]) are limited to certain corners of the

parameter space. Numerical methods therefore provide an invaluable complementary framework

in which to investigate stationary solutions which remain inaccessible via traditional analytic

methods.

The programme to construct new black hole solutions goes hand in hand with the investigation

of their dynamical stability. In astrophysics, the role of the Kerr black holes as the generic end

state of gravitational collapses is dependent on them being nonlinearly stable. While a rigorous

mathematical proof of this remains a major open problem in mathematical relativity, there is good

evidence that Kerr black holes should indeed be stable. In higher dimensions, however, the situation

is less clear, especially since the pioneering work of Gregory and Laflamme [30] showed that black

strings and black branes are linearly unstable to gravitational perturbation. In this context, NR has

proven to be a useful tool for studying the nonlinear evolution of perturbed, higher dimensional

black holes. The landmark simulation of the black string [31] revealed the self-similar dynamics
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of the Gregory–Laflamme (GL) instability. The formation of a fractal-like structure on the black

string’s horizon provided strong evidence for a violation of the weak cosmic censorship conjecture

[32] in asymptotically Kaluza–Klein spacetimes. In the asymptotically flat setting, simulations of

the Myers–Perry black hole in D D 6 uncovered a new type of instability which causes the black

hole to lose angular momentum and settle into a state of slower rotation [33]. Furthermore, thin

black rings and ultraspinning Myers–Perry black holes are also expected to be subject to the GL

instability. The application of numerical relativity to these systems would allow us to study the

nonlinear interaction between these instabilities and follow them to the end state.

In this dissertation, we explore a number of different applications of numerical methods to the study

of general relativity, beyond the realm of astrophysical simulations. The dissertation is divided

into two main parts. The first part, consisting of Chapters 2,3,4 and 5, concerns the construction of

various stationary black hole solutions in AdS. Through AdS/CFT, the solutions that we construct

are dual to a CFT in the background of rotating black holes, a localised ball of deconfined plasma

surrounded by a confining vacuum, and a new CFT equilibrium phase. The second part, consisting

of Chapters 6,7 and 8, concerns the dynamical simulation of higher-dimensional spacetimes.

Through simulations of black rings, we found a new type of instability, and evidence for a possible

violation of the weak cosmic censorship conjecture in the asymptotically flat setting in D D 5.

While these two problem areas pose different challenges from a practical viewpoint, they both

require the Einstein equation to be cast in a form which is suitable for numerical computations.

The methods that we use throughout this dissertation are based on the same basic covariant

modification of the Einstein equation, which removes the pure diffeomorphism terms from the

principle part of the PDE. We devote the rest of this introductory chapter to providing a high-level

overview of this general idea, while deferring more specific remarks and details to later chapters.

1.2 Gauge freedom in the Einstein equation

General relativity is most naturally phrased in its covariant, tensorial form. InD dimensions, in the

presence of a cosmological constant ƒ and matter with energy-momentum tensor Tab , spacetime
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is curved according to the Einstein field equation

Rab �
2

D � 2
ƒgab D 8�

�
Tab �

1

D � 2
T ccgab

�
; (1.1)

where gab is the metric on the spacetime manifold M, and Rab is its Ricci tensor. Given a

coordinate chart x� D
�
x0; : : : ; xD�1

�
on M, the components of the Ricci tensor are given by

R�� D @��
�
�� � @��

�
�� C �

�
���

�
�� � �

�
���

�
�� ; (1.2)

���� D
1

2
g��

�
@�g�� C @�g�� � @�g��

�
: (1.3)

Since both gab and Rab are symmetric tensors, (1.2) defines a system of 1
2
D .D C 1/ nonlinear

PDEs for 1
2
D .D C 1/ metric components g�� , which can be regarded as unknown functions to

be solved for. However, the Ricci tensor satisfies the contracted Bianchi identity, which serves to

constrain its components via

rbR
b
a �

1

2
raR D 0: (1.4)

The presence of D constraints implies that the Ricci tensor possesses D fewer independent com-

ponents than the metric, and the PDE system is therefore underdetermined. This should not be

surprising given the coordinate invariance arising from the geometric nature of Einstein’s equation.

Given a spacetime .M; gab/, there are uncountably many systems of coordinates by which it can

be covered. Therefore, given a set of metric components g�� , one can perform an arbitrary coor-

dinate transformation Ox˛ WD Ox˛.x�/ to obtain a different set of metric components Og˛ˇ describing

a physically identical spacetime. In other words, while (1.1) is sufficient to determine the geom-

etry, it does not uniquely determine the values of the metric components. To fix these, we must

additionally enforce some conditions on the coordinates. The D additional coordinate conditions

would then supplement theD degrees of freedom that were rendered redundant through (1.4).

More precisely, the tensorial form of the Einstein equation, as a system of PDE, is not manifestly

strongly hyperbolic. Therefore, the resulting initial value problem is not necessarily well-posed.

We can analyse the character of the PDE system (1.2) by first recasting the Ricci tensor components
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(1.2) into the so-called de Donder form [34]

R�� D �
1

2
g��@�@�g�� C @.���/

C g��g
�������

�
�� � ���

�
�� � �

�
��g�.�@�/g

��

(1.5)

where we define �� WD g���
�
�� and �� WD g���

� . The principal part of R�� is contained in

the first two terms of (1.5). The first term can be recognised as the standard wave operator on the

Lorentzian manifold, which is manifestly symmetric hyperbolic. It is therefore the second term

that is problematic for the hyperbolicity of the system. By treating each coordinate x� as a function

on the spacetime, we obtain

�x� D g��r�r�x� D g��r�ı�� D ��
�: (1.6)

Therefore, the term @.���/ in the principal part of the Einstein equation is only associated with

properties of the coordinate system and not the geometry of spacetime.

This dissertation concerns the construction of both stationary and dynamical solutions to the

Einstein equation. In both cases, the numerical methods used follow the same basic principle to

fix the ‘pure gauge’ degrees of freedom by modifying the Einstein equation itself. More precisely,

we consider solving the following equation instead of (1.1):

Rab CraZb CrbZa �
2

D � 2
ƒgab D 8�

�
Tab �

1

D � 2
T ccgab

�
: (1.7)

The idea is to choose the vectorZ such that the subspace of solutions to (1.7) withZ � 0 coincide

exactly with the space of solutions to (1.1). In the context of stationary solutions, this leads to

the Einstein–DeTurck method, as reviewed in Section 2.2. The dynamical analogue of this is the

generalised harmonic coordinates (GHC) evolution scheme, which was successfully used in the

first breakthrough binary black hole simulation [3]. However, current GHC codes require black

holes to be excised from the computational domain, which is a difficult procedure to implement in

practice. An alternative is perform a ‘dC1 decomposition’ (where d denotes the number of spatial

dimensions) of (1.7) and use the moving puncture gauge. A conformally-decomposed version of

this, known as CCZ4, is reviewed in Section 6.2.
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Chapter 2

Numerical Construction of
Stationary Black Holes in AdS

2.1 The AdS/CFT correspondence

The AdS/CFT correspondence is one of the most influential developments in theoretical physics

in recent decades. Formulated by Maldacena in 1997 [24], AdS/CFT is a conjectured duality

between certain conformal field theories (CFTs) in D dimensions and string theory—a theory of

quantum gravity—on D C 1-dimensional asymptotically anti-de Sitter (AdS) spacetimes. While

the complete equivalence of these two theories still holds the status of a conjecture, research over

the years has shown that the correspondence holds up to many nontrivial tests. From a purely

theoretical perspective, given that a precise definition of quantum gravity itself is an open problem,

one intriguing possibility arising from this duality is that it would allow us to define quantum gravity

in terms of a gauge theory, which is far better understood. From a more practical viewpoint, since

classical general relativity corresponds to the strong coupling regime on the CFT side, the duality

allows us to probe the behaviour of quantum field theories where perturbative techniques do not

apply. In this section, we only provide a brief, high-level overview of the topic, so as to motivate

our interest in constructing stationary black hole solutions in AdS numerically. Many excellent

review articles exist which provide a more detailed theoretical treatment of the subject.

The original derivation of AdS/CFT [24] considers a stack of N coincident D3-branes in 10-

dimensional type IIB string theory. In the weak coupling regime gsN � 1, where gs is the string

coupling constant, the spacetime curvature induced by the D-branes is negligible. In the low-energy
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limit ls ! 0, where ls is the string length, the string excitation modes on the branes decouple from

those in the bulk. The effective action on the branes is that of the N D 4 super Yang–Mills (SYM)

conformal field theory with an SU.N/ gauge group in 4D flat space, while the bulk action is that

of supergravity in 10D flat space. On the other hand, at strong coupling gsN � 1, the D-branes

backreact strongly on the spacetime. In this regime, the system is described by the extremal black

3-brane solution of supergravity [35]

ds2 D f .r/�1=2 �ij dxi dxj C f .r/1=2
�
dr2 C r2d�25

�
f .r/ WD 1C

4� gs N l4s
r4

; (2.1)

where the �; � indices range over the 4 coordinates on the brane, and d�25 is the standard round

metric on S5. Like any other extremal black hole solution, the horizon at r D 0 lies at the end of

an infinite ‘throat’. Defining the characteristic length scale ` WD .4 � gs N/1=4 ls , we can consider

the near horizon geometry of the black brane, in the limit of r � `. This is given by the metric

ds2 D
r2

`2
�ij dxi dxj C

`2

r2
dr2 C `2 d�25: (2.2)

Defining a new coordinate z WD `2=r , this can be recognised as the metric on the Poincaré patch

of AdS5 � S5

ds2 D
`2

z2

�
�ij dxi dxj C dz2

�
C `2 d�25: (2.3)

The length scale ` is usually referred to as the AdS radius. In the low-energy limit ls ! 0

(equivalently, ˛0 WD l2s ! 0), the excitation modes approaching the horizon decouple from those

propagating in the asymptotic region away from the throat. The former sector is described by

supergravity on AdS5 � S5, while the latter is again described by supergravity in 10D flat space.

Although these two low-energy descriptions of the D3-branes system apply to two distinct regimes

of gsN , in principle the N D 4 SYM gauge theory is well-defined at any coupling. This leads

to the remarkable conclusion that the N D 4 SU.N/ SYM, which is a non-gravitational system,

is equivalent to supergravity on AdS5 � S5. Maldacena went further to conjecture that this

correspondence extends beyond the supergravity limit into one between N D 4 SYM and the full

IIB string theory on AdS5 � S5. Amongst the arguments in support of this conjecture, the most

immediate is perhaps the fact that the two theories share the same symmetries. The isometry group
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of AdS5 is SO.4; 2/ while the isometry group of S5 is SO.6/. From the CFT perspective, the

former appears as the conformal group in four dimensions, while the latter appears as the group of

R-symmetry between the scalars and the fermions. The radial coordinate r in (2.2) can be identified

with the energy scale E of the CFT. Specifically, the conformal boundary z D 0 corresponds to

the high energy, short wavelength ‘UV’ end. The CFT may be regarded as living on the transverse

directions x�, whose geometry belongs to the same conformal class as the AdS boundary. It is

therefore common parlance to refer to the CFT as living on the boundary of AdS.

The correspondence also provides a relationship between the parameters of the two theories

involved. On the ‘AdS’ side of the correspondence, we have the string coupling gs , the string

length ls , and the AdS radius `, while on the ‘CFT’ side we have the Yang–Mills coupling gYM

and the rank N of the gauge group SU.N/. Through AdS/CFT, these parameters are related via

4� gs D g
2
YM

`4

l4s
D 4� gs N D g

2
YMN WD �;

(2.4)

where � WD g2YMN is the t’Hooft coupling. The SU.N/ gauge theory has a smooth t’Hooft limit

[36] N !1 at fixed �, with a perturbative expansion in 1=N . On the AdS side, this corresponds

to taking the gs ! 0 limit, which gives us classical gravity with a perturbative expansion in gs .

The correspondence therefore allows us to study the behaviour of a strongly coupled quantum CFT,

at least to leading order in 1=N , by performing calculations in classical gravity. It should also be

noted that the duality between N D 4 SYM in D D 4 and supergravity in AdS5 � S5 is only

one example of the AdS/CFT correspondence. More generally, the correspondence applies in any

number of dimensionsD, and it is in this more general context that we continue our discussion.

In order to utilise this correspondence to perform calculations, we must be able to relate CFT ob-

servables to quantities in the AdS bulk: the so-called AdS/CFT dictionary. This was first proposed

in [37, 38], where the value of the supergravity action on AdS was equated with the generating

functional of CFT operators. The results relate IR-divergent quantities on the supergravity side

with UV-divergent quantities on the CFT side. Noting that this should be regarded as a relation-

ship between bare quantities, the authors of [39] provided a systematic means to renormalise the

theories in order to obtain a relationship between finite quantities on both sides; a prescription
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usually referred to as holographic renormalisation. Of particular interest to us is their formula for

the expectation value of the stress-energy tensor of a CFT that admits a gravitational dual. In the

neighbourhood of the conformal boundary z D 0, any given asymptotically AdSDC1 spacetime

may be expressed in Fefferman–Graham coordinates

ds2 D
`2

z2

�
dz2 C gij .x; z/ dxidxj

�
; (2.5)

where crucially g�� admits an expansion in terms of z in the form

g.x; z/ D g.0/.x/Cg.2/.x/ z
2
C : : :Cg.D/.x/ z

D
C1D�0 .mod2/ h.D/.x/ z

D log z2CO.zDC1/;

(2.6)

where the logarithmic term only exists when D is even. By inserting the metric (2.5) into the

Einstein equation (1.1) and solving it at each order in z, we can immediately show that all the g.n/

are fully determined for n < D. However, the Einstein equation only fixes the divergence and trace

of g.D/, and the dual CFT data is required to determine it fully. In terms of the FG expansion, the

expectation value of the dual CFT stress-energy tensor is given by

˝
Tij
˛
D
D `D�1

16� GN
g.D/ij CXij Œg.D/�; (2.7)

whereGN D g
2
s l
D�2
s is Newton’s constant, andXij is an expression which depends on the number

of dimensions D. For odd D, we have Xij D 0 and tr g.D/ D 0, consistent with the absence of

conformal anomalies. For evenD, [40] provides expressions forD D 2; 4; 6.

In chapters 3, 4 and 5, we apply AdS/CFT to investigate certain properties of CFTs in the strongly

coupled regime. Through AdS/CFT, this is reduced to the problem of constructing stationary

solutions to the Einstein equation, subject to boundary conditions defined by the CFT physics of

interest. Chapter 3 considers the behaviour of CFTs when placed in the background of a rotating

black hole, which is relevant to the study of Hawking radiation of strongly coupled field theories.

Chapter 4 builds upon the programme of [41] to study the deconfinement phase transition through

AdS/CFT, by constructing a solution which is dual to a localised ball of deconfined CFT plasma

surrounded by a confining vacuum. This can be viewed as a natural extension of the domain wall

solution previously constructed in [42]. Chapter 5 concerns the construction of an AdS analogue

to the well-known Emparan–Reall black ring solution [14]. Since these can be taken to have the
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same temperature as the rotating AdS black hole solutions [43], they can be regarded as the dual

of a new CFT phase.

The remainder of this chapter is devoted to a formulation of the Einstein equation suitable for

numerically constructing stationary spacetimes, as well as to themethods used to solve the resulting

PDE system.

2.2 The Einstein–DeTurck method

In many cases, stationary solutions to the Einstein equation can be regarded as the end point of

some dynamical gravitational process. In principle, then, one could simply construct such solutions

by preparing some appropriate initial configuration and evolving it until a steady state is reached.

Clearly, this will not allow us to control the final solution directly. Instead, we must find an initial

condition which dynamically evolves into the desired solution. Generally speaking, this is in itself

a non-trivial problem. Another major limitation is that many stationary solutions of interest are

dynamically unstable, and therefore we will not be able to reach these solutions through time

evolution. The black ring is a good example of such an unstable solution.

In this dissertation, we use the Einstein–DeTurck method which recasts the Einstein equation into

a strongly elliptic form, thus allowing us to construct stationary solutions directly by solving a

boundary value problem. This chapter provides an overview of this method, and a much more

extensive review can be found in [44]. We begin by specifying some fixed background metric Ngab

on the spacetime, with connection components N����. This will amount to specifying a particular

choice of coordinates for our solution. We then define the Ricci-DeTurck tensor

RHab WD Rab � r.a�b/;

and the components of �a are given by �� WD g��
�
���� �

N����
�
:

(2.8)

The superscript H here stands for harmonic. Note that �a is a bona fide vector field, as it is a

difference of two connections. Replacing Rab in the Einstein equation (1.1) with RH
ab

yields the
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harmonic Einstein equation

Rab � r.a�b/ �
2

D � 2
ƒgab D 8�

�
Tab �

1

D � 2
T ccgab

�
: (2.9)

Solutions to (2.9) also satisfy (1.1) provided that �a � 0. This in turn imposes the generalised

harmonic condition �x� D � N�� on the coordinates. This modification directly subtracts the

@.���/ term off (1.5), making the principal part of the harmonic Einstein equation identical to

that of the Laplacian. We will now argue that the harmonic Einstein operator can be consistently

restricted to the space of stationary metrics, and that by doing so, it becomes an elliptic operator

which is suitable for the numerical construction of stationary spacetimes.

The DeTurck method was first proposed in [45] as a robust way to solve static problems. In that

case, the metric trivially extends to a Riemannian signature, and the wave operator in the principal

part of RH
ab

is manifestly elliptic. It was later shown in [46] that the strong ellipticity of the

harmonic Einstein equation applies beyond the static regime to a much larger class of stationary

solutions. We will only present the argument in its most general form here, which is valid for

stationary black holes whose Killing vector field of stationarity is not necessarily globally timelike.

These include, for example, rotating black hole solutions with an ergoregion. The argument is

motivated by the rigidity property of stationary black holes [47]. Let .M; gab/ be a stationary

analytic, asymptotically flat/AdS vacuum black hole spacetime. Let T be the Killing vector field

of stationarity, i.e. one which is asymptotically timelike, then T can either be a horizon generator

or not. In the latter case, the rigidity theorem states that there exist at least one Killing vector

fields R.˛/ (˛ D 1; : : : ; N ), each having a closed orbit of period 2� , such that fT;R.˛/g are

mutually commuting. Furthermore, there exist some constants �.˛/ such that the Killing vector

field K WD T C
P
˛�

.˛/R.˛/ is a horizon generator. Physically, this implies that the black hole

rotates rigidly with angular velocities �.˛/ on each rotational plane, with respect to the static

observer in the asymptotic region. We can then define an isometry-adapted coordinate system

yA WD ft; y˛g such that T D @=@t and R.˛/ D @=@y˛. In these coordinates, the general stationary

metric takes the form

ds2 D GAB.x/
�
dyA C AAi .x/ dx

i
� �

dyB C ABj .x/ dx
j
�
C hij .x/ dxidxj ; (2.10)

where we use uppercase Latin indicesA;B to range over isometry-adapted coordinates, and lower-
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case Latin indices i; j to range over the remaining spatial directions. To make progress, we make

an additional assumption that hij are components of a smooth metric with Riemannian signature,

i.e. det hij � 0, eveywhere in the exterior of the horizon. Since detgab D detGAB det hij , this

implies that detGAB � 0, and therefore that there exists some linear combination of fT;R.˛/g

which is timelike. Inserting this into the Ricci-DeTurck tensor, we find

R
H (principal)
AB ' �

1

2
hkl@k@lGAB.x/ (2.11)

R
H (principal)
Ai ' �

1

2
hkl@k@l

�
GAB.x/A

B
i .x/

�
(2.12)

R
H (principal)
ij ' �

1

2
hkl@k@l

�
hij .x/CGAB.x/A

A
i .x/A

B
j .x/

�
: (2.13)

Most importantly, the principal part of the harmonic Einstein equation is now the Laplacian on a

Riemannian manifold with metric hij , and the equation is therefore elliptic.

Since we will be solving the nonlinear PDE system by iterative numerical methods, we must also

require RH
ab

to share the same symmetries as the metric gab . This ensures that the metric remains

within the family (2.10) at the end of each iteration. To achieve this, we need only require that the

reference metric Ngab also possesses fT;R.˛/g as Killing vectors and satisfies the same assumption

as gab . In practice, this means that the background metric components also belong to the family

(2.10).

It is important to note, however, that Einstein metrics form a only subset of solutions to (2.9).

Generally speaking, it is entirely possible to construct a solution to (2.9) with � ¤ 0. These are

called Ricci solitons. The authors [48] applied a maximum principle to show that Ricci solitons

cannot exist when solving for static solutions. The absence of Ricci solitons has very recently

been generalised to a more general class of stationary spacetimes satisfying a ‘t � �’ reflection

symmetry [49]. From a more practical point of view, however, we can verify a posteriori that

our solution does indeed have vanishing �. Although the components of � will never be exactly

zero in numerical solutions, the elliptic character of (2.9) nevertheless ensures that any solution

obtained is locally unique, and so a Ricci soliton solution cannot occur arbitrarily close to an

Einstein solution. We can therefore be reasonably certain that a numerical solution is not a Ricci

soliton if the components of the vector � are both suitably small and exhibit convergence to zero

close to machine precision limit as the spatial resolution is increased, at a rate appropriate to the
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discretisation scheme employed.

In addition to a strongly elliptic system of PDEs, we also require an appropriate set of boundary

conditions in order to form a well-posed problem. The boundaries of the computation domain can

be either physical, such as the conformal boundary of AdS, or fictitious, such as those arising at

the axes of rotational symmetries. Since the exact form of the boundary conditions depends on the

metric ansatz used, we defer the discussion of boundary conditions for each specific problem to

each of the subsequent chapters.

Finally, we remark that the DeTurck method has also been successfully used to construct stationary

solutions which lie outside the class for which the aforementioned proof of strong ellipticity apply.

In particular, the method seems to work when the spacetime only possesses a single, helical Killing

field [50, 51], and even for ‘flowing’ geometries with a non-Killing horizon [52, 53] which are

useful for studying heat transport in AdS/CFT. In spite of the lack of a theoretical guarantee of

well-posedness, numerical convergence of the DeTurck method in these situations suggest that it

is a very robust scheme for constructing stationary geometries indeed.

2.3 Numerical methods

Having formulated a boundary value problem, we now turn to the discussion of the methods

which allow us to solve a nonlinear elliptic system numerically. To do this, the continuous problem

domain must first be discretised on to a computational grid of finite spatial resolution. We therefore

begin this section by discussing two discretisation schemes that are commonly used in the field,

namely finite differences and pseudospectral collocation. The discretised problem is a nonlinear

algebraic one, and we proceed to discuss two methods for solving this. The first of which is the

Ricci flow method, whereby the elliptic problem is regarded as the steady state of an associated

parabolic (diffusion) problem, and an initial guess is integrated in ‘time’ until a fixed point is

reached. The second method is a line search based on Newton’s method, whereby an the solution

is iteratively corrected based on the linearised operator. This is the generalisation of the familiar

Newton–Raphson root-finding method for 1D problems. Both of these methods, and indeed both

discretisation schemes discussed, are used in the work presented in subsequent chapters of this
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dissertation.

2.3.1 Spatial discretisation

Here, we will discuss spatial discretisation in one dimension, however the methods presented

trivially generalise to arbitrarily many dimensions by simply performing the same procedure on

each dimension. The most straightforward discretisation scheme is to construct the solution on grid

points which are uniformly spaced at ıx. In other words, on the interval ŒxL; xR�, our functions

are evaluated at the points

xi D xL C i
xR � xL

N
I i D 0; : : : ; N; (2.14)

where the grid spacing is given by ıx WD .xR � xL/ =N . We then replace continuous differentiation

operators by finite differences: for a C n-function, we evaluate derivatives at any particular grid

point by fitting an nth degree polynomial onto the function values at the nC1 grid points closest to

it. The value of the derivative is taken to be that of this interpolating polynomial. Here, n governs

the rate of convergence in the continuum limit. More precisely, if we use an nth degree polynomial

to evaluate the kth derivative, then we can expect the local error between our numerical solution

and the true solution to decay like O.ıxn�kC1/ as ıx ! 0. In practice, we typically specify a

desired rate of convergence, and therefore would use a higher degree polynomial to evaluate a

higher derivative accordingly.

The value of the approximated derivatives can be expressed as a weighted linear combination of

function values at the nC 1 closest grid points. The array of weights is referred to as the stencil,

and we can regard the derivative as the discrete convolution of the function values with the stencil.

In most of the computational domain, the resulting stencil will be symmetric around the point of

interest. However, near domain boundaries, the stencil necessarily becomes asymmetric. This

results in larger errors in these regions, as the stencil extends further away from the given point.

Nevertheless, we should still expect errors to decay at the same rate everywhere as ıx ! 0.

Indeed, we can contemplate fitting a single, high-degree polynomial onto the entire grid. However,

this procedure is highly susceptible to spurious oscillations. This is the well-known Runge’s
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phenomenon, and becomes more severe as the degree of the interpolating polynomial increases.

Nevertheless, it is possible to show that these spurious oscillations are minimised if we replace our

uniformly spaced grid by a specific sets of points, known as Chebyshev nodes, canonically given

on the interval Œ�1; 1� by

xi D � cos
�
i �

N

�
I i D 0; : : : ; N: (2.15)

We are free to move and rescale these nodes to an arbitrary interval ŒxL; xR� via

xi D
xR C xL

2
�
xR � xL

2
cos
�
i �

N

�
I i D 0; : : : ; N: (2.16)

The resulting grid has a higher density of points towards the two ends of the domain. On Œ�1; 1�,

the Chebyshev nodes arise as roots of the Chebyshev polynomials, which are a basis of orthogonal

polynomials defined via

TN .cos �/ D cosN�: (2.17)

In the pseudospectral collocation scheme, we evaluate our functions on a grid of Chebyshev points,

and fit the unique polynomial of degree N on to the entire dataset. Any polynomial PN .x/ of

degree N can be uniquely expressed as a sum of lower degree Chebyshev polynomials

PN .x/ D

NX
kD0

ck Tk.x/: (2.18)

On the other hand, since the Chebyshev polynomials form a complete basis, any function f .x/ can

be expanded as an infinite Chebyshev series

f .x/ D

1X
kD0

ck Tk.x/: (2.19)

We may therefore regard our discretisation scheme as a truncation of (2.19) to the first N terms.

Through (2.17), we can see that the expansion (2.19) in x is related to a Fourier expansion in

� D cos�1 x. It is a standard result in Fourier analysis that if f .x/ is smooth, in the sense that it

has infinitely many continuous derivatives, then the coefficients ck decay faster than O.jkj�m/ for

any integer m, as k !1. Therefore, the truncation error decays at a faster-than-polynomial rate

as N ! 1. This is usually referred to as exponential convergence, however actual exponential
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rate of convergence is only guaranteed when the function is analytic. On the other hand, if f .x/

only has p� 1 continuous derivatives, then we can only expect the truncation error in PN to decay

at O.N�p�1/. In many cases, the pseudospectral method can be expected to converge much more

rapidly than finite differences, and therefore it is usually possible to achieve acceptable accuracy

using fewer grid points.

In order to evaluate derivatives, we simply differentiate the RHS of (2.18). By orthogonality, the

coefficients ck can be expressed as a linear combination of the function values on all the Chebyshev

nodes. The resulting differentiation stencil therefore extends to cover the entire computational

domain. In both the finite difference and pseudospectral schemes, the differentiation of the

discretised function can be expressed as a matrix multiplication,

f 0.xi / D

NX
jD0

Dijf .xj /; (2.20)

whereDij is called the differentiation matrix. In the finite differences method,Dij is a sparse band

matrix, with the number of nonzero elements growing as O.N / in the number of grid points. In

the pseudospectral method, Dij is a dense matrix, with the number of nonzero elements growing

as O.N 2/. Therefore, while the faster convergence of the pseudospectral method allows us to use

fewer grid points, the extra resources required by the dense differentiation matrix can sometimes

offset its potential advantage. This is especially true in a distributed-memory parallel code, where

the density of the differentiation matrix significantly increases communication cost and impedes

scalability.

2.3.2 Numerical solutions to nonlinear elliptic systems

Spatial discretisation turns our system of nonlinear PDEs into a system of nonlinear algebraic

equations, and in this subsection we discuss the numerical methods which can be used to solve

them. In our first method, we begin by considering a family of metrics g�� , parametrised by a

single continuous parameter �, with associated Ricci tensorsR�� . These metrics form a Ricci flow

if they satisfy
@

@�
gab.�I x/ D �2Rab.�I x/: (2.21)
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Ricci flow can be viewed as a geometric diffusion equation, where local curvature as described by

the Ricci tensor is smoothed out over the Ricci flow time �. However, the weak ellipticity of Rab

translated to weak parabolicity of the Ricci flow equation. In [54], DeTurck proved that by adding

a term of the form (2.8), the flow can be rendered into the strongly parabolic Ricci–DeTurck flow

@

@�
gab.�I x/ D �2Rab.�I x/ � 2r.a�b/.�I x/ WD �2R

H
ab.�I x/: (2.22)

Moreover, it was shown that this additional term is a pure diffeomorphism. Therefore, although

the components of the metric in the Ricci flow and the Ricci–DeTurck flow differ, they are in fact

geometrically identical, and therefore the flow is independent of the choice of the gauge vector �.

Furthermore, if the vector � is chosen such thatr.a�b/ possesses the same symmetries as the initial

metric g.0/
ab

, then the flow (2.22) will preserve these symmetries. From a practical point of view,

then, we may regard (2.22) as defining a relaxation scheme for solving 2.9 in vacuum, starting

from some initial guess g.0/
ab

.1 The most straightforward way to proceed is via the method of lines,

where we apply some spatial discretisation scheme to (2.22) to obtain a system consisting of a large

number of coupled, nonlinear ODEs. We can then use any of the numerous time stepping methods

to evolve the flow until a steady state is reached. A clear advantage of this method is that, with

the choice of an explicit time stepper, it is extremely simple to implement and has a very small

memory requirement. However, the convergence of an explicit time integrator is conditional on the

step size ı� being below the Courant–Friedrichs–Lewy (CFL) bound. For a parabolic system, this

bound takes the form ı� D O.ıx2/, making it very expensive to increase spatial resolution. One

could contemplate using an implicit integrator instead in order to sidestep this problem, however

this requires solving yet another nonlinear system numerically in order to take a time step. At

which point, we may as well just use Newton’s method to solve the original equations in the first

place.

Another problem inherent to the relaxation method is that it is highly susceptible to the presence

of a negative mode in the elliptic operator. In our case, if the linearisation of the Ricci tensor,

known as the Lichnerowicz operator, has negative modes at the stationary solution of interest, then

eventually the Ricci flow would start to diverge away from it. For geometries with a single negative

mode, it may be possible to prolong the time until divergence by varying the initial guess, but

1We can generalise this method to a non-vacuum spacetime by replacing the RHS of (2.22) by the difference between
the LHS and RHS of 2.9.
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in general this limitation makes Ricci flow a less popular method in the community. It is worth

noting, however, that the Ricci flow method does have the appealing theoretical property of being

a geometric flow. The failure of the Ricci flow to reach a steady state therefore indicates that the

initial guess does not lie in the basin of attraction of a fixed point, irrespective of the gauge choice,

whereas the failure of Newton’s method to converge could just be the result of a bad gauge choice.

We now move on to discuss Newton’s method. Here, let us consider the general problem of finding

a solution vector X�i to a system of nonlinear equations Fi .X/ D 0. In our case, X correspond to

the metric components, F correspond to the Ricci–DeTurck components, and i; j range over both

the tensor indices and the grid points. In other words, we treat each tensor component on each grid

point as separate variables. Let us now assume that we have some candidate numerical solution

X .0/, and that the exact solution X� occurs at a small �X away from it. We can then expand our

objective function as a Taylor series

0 D Fi .X
�/ D Fi .X

.0/
C�X/ D Fi .X

.0//C
@Fi

@Xj

ˇ̌̌̌
X.0/

�Xj CO
�
k�Xk2

�
: (2.23)

Therefore, we can obtain a better candidate solution X .1/ via

X�i � X
.1/
i
WD Xi �

�
@F

@X

ˇ̌̌̌
X.0/

��1
ij

Fj .X
.0//: (2.24)

For a linear objective function F , this procedure yields an exact solution. For a nonlinear function,

this defines a scheme in which the numerical solution can be iteratively refined until the residual is

smaller than some set tolerance. The main advantage of Newton’s method is that the convergence

is quadratic in the number of iterations. However, our derivation above assumes that the candidate

function is already within some small neighbourhood of the true solution, and most of the time this

is clearly not the case in practice. When the guess X .0/ is far from the true solution, the scheme

(2.24) would quickly diverge after only a few iterations. In order to control this divergence, we

must suppress the size of the correction via

X
.1/
i
WD Xi � �

�
@F

@X

ˇ̌̌̌
X.0/

��1
ij

Fj .X
.0// ; 0 < � � 1: (2.25)

This is referred to as the Newton line searchmethod. The most basic form of Newton line search is

where � is fixed to some small value initially, and is gradually increased after some fixed number
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of steps. The drawback, however, is that if � is increased too quickly then the solver would again

diverge, whereas if � is kept small for longer than necessary then we would not benefit from

the fast quadratic convergence. An alternative method to control step size is through the use of

backtracking. In this scheme, the residual of X .1/ is first evaluated at a few different values of

�. We can then fit a polynomial on to these sampled residuals to estimate the largest value of �

at which the residual still decreases and apply a step of that size. This usually results in a highly

efficient solver, however it is important to note that backtracking assumes a monotonic decrease in

residual towards the solution. When this is not the case, the scheme would fail to make progress,

and one must then revert to the fixed-step scheme until the solution moves onto more favourable

terrain.

The disadvantages of Newton’s method is the increased usage of resources in forming the Jacobian

matrix @Fi
ı
@Xj and in solving a large linear system. Furthermore, the construction of the Jacobian

matrix is a much more involved programming task, compared to the Ricci flow method. The most

straightforward way is to approximate the Jacobian numerically by perturbing each component

in the solution vector and calculate the difference in F . However, the naive implementation of

this method is prohibitively expensive as it involves calculating F twice for every single element

in the Jacobian. When using finite differences, however, we can deduce the sparsity pattern of

the Jacobian matrix from the extent of the stencils used, thus significantly reducing the time

required to construct the Jacobian. Alternatively, we can evaluate the analytic expression of the

Jacobian components for the given family ofmetrics. Generically, this results in highly complicated

expressions, and a computer algebra system such as Mathematica is typically used to generate

these. The complexity of these expressions may sometimes also result in a loss of numerical

precision.

2.3.3 Convergence testing

A numerical solution x� to any equation f .x/ D 0 is never exact, and the residual f .x�/ will

always be nonzero. Although a large residual certainly is a bad sign, a small residual is in itself

not sufficient evidence that we have obtained a correct solution. In order to ascertain whether our

solution can be regarded as a good approximation to the actual analytic solution, we must perform a

convergence test, wherebywe increase the spatial resolution used to construct the solution and study
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how the error behaves as the resolution changes. Ideally, we should require that the error decays

uniformly throughout the domain, at a rate which is appropriate to the method used (e.g. correct

power in the case of finite differences, or exponential in the case of pseudospectral). In practice,

however, limited numerical precision on a computer means that convergence will eventually stop

when errors become sufficiently small. Nevertheless, we should still expect the correct convergence

rate prior to this point. Likewise, strong gradients near boundaries may cause local errors in these

regions to be larger, and limited precision may cause convergence in these regions to stop at a

lower resolution. It may therefore be sensible to monitor the Euclidean norm of the errors or the

median error value, rather than the L1 norm which singles out the maximum error from the entire

domain.

In the DeTurck method, the solution is an Einstein metric only if the vector � vanishes everywhere.

Therefore, this vector provides us with a natural measure of error in our numerical solution, and is

therefore a good target on which to perform a convergence test. In each of our projects, we construct

a number of numerical solutions to cover a range of parameters. It can be extremely expensive

to perform a convergence test on every individual solution in these circumstances. In order to

keep resource usage to a reasonable level, we choose two or three solutions on which to perform

convergence tests. If the rest of the solutions interpolate smoothly between these representative,

tested solutions, then we can be fairly certain that our entire solution set can be trusted.
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Chapter 3

CFTs on a Rotating
Black Hole Background

The contents of this chapter was published as [55] in collaboration with Pau Figueras. All computer

code, numerical computation, and analysis, other than section 3.3.4, is entirely my own work. As

this work neared completion, we became aware of another independent effort [56], whose initial

preprint appeared simultaneously with ours on arXiv. The results of that work agree with those

presented in this chapter.

3.1 Introduction

One of the most remarkable effects in quantum gravity is Hawking’s realisation that black holes

evaporate [57]. Hawking’s result motivated the study of quantum fields in black hole backgrounds

(discussed in greater detail in [58]), but most of these calculations assume that the fields are non-

interacting. Adding interactions is very difficult using this approach. However, in AdS/CFT we

can study strongly interacting quantum fields in curved black hole backgrounds, by constructing

classical solutions to the bulk Einstein equations with a negative cosmological constant.

The authors of [59, 60, 61] pioneered the study of Hawking radiation in large Nc strongly-coupled

field theories which admit gravity duals. As these references point out, the vacuum state in which

the CFT is defined is determined by the boundary conditions the geometry satisfies deep in the IR.

Then, in principle, the AdS/CFT dictionary enables the extraction of all the physical quantities of

the CFT in that particular black hole background and in the chosen vacuum state.
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Using numerical methods developed in [45], the authors of [48] constructed an Einstein metric in

5Dwith a negative cosmological constant, such that the boundary geometry is the 4D asymptotically

flat Schwarzschild solution. In the IR the geometry reduces to the Poincaré horizon of AdS5 and

therefore, by the AdS/CFT correspondence, this gravitational solution should describe the largeNc ,

strong coupling limit of N D 4 super Yang-Mills (SYM) on the background of the Schwarzschild

black hole in the Unruh state. Although [48] did not distinguish between the Unruh and Boulware

vacua, [62] later pointed out that the Boulware state requires a minimum energy configuration and

hence an extremal horizon. This solution enables one to extract the leading O.N 2
c / piece of the

vacuum expectation value (vev) of the dual CFT’s stress tensor in this particular vacuum state.

The results of [48] showed that, remarkably, hTij i is static and is regular on both the future and

past event horizons. Furthermore, there is no energy flux at infinity. These results contradict the

free field theory expectations (see, for example, [63]), and therefore show that strong interactions

can significantly alter the behaviour of quantum fields, especially in curved spaces. Ref. [64]

subsequently addressed a closely related problem, namely the construction of static black holes

localised on the brane in the single infinite Randall–Sundrum II (RS2) braneworld model [65, 66].

The paper successfully constructed braneworld black holes with both small and large radii relative

to theAdS radius of the parent space. This contradicted the non-existence conjecture of [67, 68, 69],

which again were based on free field theory intuition.

Describing CFTs in black hole backgrounds in the Hartle–Hawking state in terms of their gravity

duals requires different boundary conditions in the IR. In the Hartle–Hawking state, the stress

tensor of the plasma at infinity should approach that of a thermal fluid in equilibrium with the

boundary black hole. From the bulk perspective, deep in IR the geometry should asymptote to the

planar black hole. Ref. [59] further predicted the existence of two families of solutions: black

funnels, where bulk horizon has a single connected component, and black droplets, where the

bulk horizon has two disconnected components. The black funnels describe a situation in which

the plasma couples strongly to the boundary black hole, resulting in an efficient exchange of heat

between them. By contrast, the black droplets describe the weakly coupled situation. These two

phases should be connected through a Gregory–Laflamme type transition as the neck of the funnel

becomes thinner. Black funnels have been subsequently constructed in [62], while black droplets

have been recently constructed in [70].
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Black funnels have motivated further research into heat flow in AdS/CFT. Reference [71] showed

that rotating BTZ black holes in AdS3 can be reinterpreted, by means of a change of conformal

frame, as describing heat flow in the CFT. However, the conformal symmetry in two dimensions

implies that the left and right temperatures of the CFT must be constants, and the bulk horizons are

Killing. More recently, [53] considered a stationary funnel solution in global AdS4, consisting of

a single bulk horizon connecting two boundary black holes. The latter have different temperatures,

which implies there is a net transport of heat along the bulk horizon, which cannot be Killing.

Black holes with non-Killing horizons describing stationary plasma quenches were constructed in

[52].

In this chapter we generalise the solutions of [48] by adding rotation to the boundary black hole.

While in principle the Hartle–Hawking state cannot exist in rotating black hole backgrounds with

Killing horizons (due to issues with superradiance [63]) we are not aware of any such difficulties

affecting the Unruh state. Extensive literature exists on the study of free quantum fields in static

black hole backgrounds, for example in [58] and the references therein. Far less is known about the

behaviour of quantum fields in rotating black hole backgrounds. In this chapter, we apply AdS/CFT

to compute the stress tensor vev of a strongly interacting 5D quantum CFT in the background of

a rotating black hole. Our boundary conditions are such that the vacuum state of the CFT is the

Unruh vacuum.

We construct the gravitational dual of a CFT in the background of the 5D Myers–Perry black

hole with equal angular momenta [13], as the enhanced symmetry present in this geometry greatly

simplifies the numerical computation. However, we expect that our construction should capture

most of the qualitative physics of the Unruh state in rotating black hole backgrounds for strongly

coupled CFTs that admit gravity duals generally.

The rest of this chapter is organised as follows. In §3.2we explain our setup and provide details of the

numerical construction of our solutions. In §3.3 we present our results, covering both geometrical

aspects of our solutions, and the resulting holographic stress tensor. We also show that the falloff

behaviour of our numerical stress tensor is consistent with that of the linearised gravitational field

on the brane in the Randall–Sundrum (RS2) model. This is obtained by generalising the calculation

of [72] to an arbitrary number of dimensions.



26 CFTs on a Rotating Black Hole Background

3.2 Rotating boundary black holes in Poincaré AdS

In this section, we describe our construction of rotating black holes in Poincaré AdS. Specifically,

we seek Einstein metrics in 6D with a negative cosmological constant, whose boundary metrics

belong to the same conformal class as the 5D Myers–Perry (MP) black hole [13]. Away from the

horizon, the spacetime geometry approaches the Poincaré horizon of AdS6. Through AdS/CFT,

our solution is dual to a CFT living on the background of the MP black hole. As discussed in

[48, 62], our boundary conditions in the IR should imply that the dual CFT is in the Unruh vacuum

state.

Since the boundary horizon is rotating and Killing, the bulk horizon will have the same angular

velocity as the boundary black hole by continuity. Therefore, our solutions are the first examples of

rotating horizons in the Poincaré patch of AdS. (The planar limit of a rotating black hole in global

AdS yields a boosted black brane.) We restrict ourselves to the case of non-extremal black holes,

and the temperatures of the boundary and bulk horizons are the same.

In four spatial dimensions, the black hole can have two independent rotations. In the general

case, the stationary MP spacetime possesses a Rt � U.1/ � U.1/ symmetry. However, when

the two angular velocities (and hence angular momenta) are equal, the symmetry is enhanced to

Rt � SU.2/, and the metric depends only on the radial coordinate. Therefore, if we take our

boundary MP black hole to have equal angular momenta, then the full bulk metric depends only

on two coordinates. This greatly reduces the cost of our numerical computation, as we need only

solve the PDE in two dimensions. The 5D MP solution with equal angular momenta shares a

number of properties with the 4D Kerr solution, such as a smooth extremal limit, and the absence

of an ultraspinning regime [73]. We therefore expect that the physics of N D 4 SYM on the Kerr

black hole background should be qualitatively similar to that described in this chapter. Indeed,

we believe our solution should capture the essential physics of quantum field theories on rotating

black hole backgrounds generally.
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3.2.1 Equal angular momenta 5D Myers–Perry black hole

We begin this subsection by reviewing the geometry of the 5D Myers–Perry black hole with equal

angular momenta. We then introduce new coordinates which will be useful for our subsequent

numerical construction of the gravitational duals of CFTs in rotating black hole backgrounds.

The 5D Myers–Perry black hole with equal angular momenta is described by the following line

element [13]:

ds2MP5 D � dt2C
�

R2.R2 C a2/

.R2 C a2/2 � �R2

�
dR2C

�
�

R2 C a2

� �
dt C

a

2
�3
�2
C
�
R2 C a2

�
d�2.3/ ;

(3.1)

where � and a are the mass and angular momentum parameters respectively, and

�1 D � sin d� C sin � cos d�

�2 D cos d� C sin � sin d�

�3 D cos �d� C d 

(3.2)

are the left-invariant one-forms on SU.2/. Here d�2
.3/
D

1
4

�
.�1/2 C .�2/2 C .�3/2

�
is the round

metric on the unit 3-sphere. The event horizon is located at R D RH , where RH is the largest real

root of the equation .R2H C a
2/2 � �R2H D 0. In the following, it will be useful to express the

mass parameter � in terms of RH and a as

� D
.R2H C a

2/2

R2H
: (3.3)

It is then straightforward to find a convenient compact radial coordinate by defining

R2 C a2 D
R2H C a

2

.1 � r2/2
; (3.4)

so that r D 0 corresponds to the event horizon (or, more precisely, the bifurcation surface) and

r ! 1 corresponds to spacelike infinity. In terms of the new radial coordinate r , we can rewrite
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(3.1) as

ds2MP5 D � r
2T0.r/ dt2C

4R0.r/�
1 � r2

�4 dr2C B0.r/

4
�
1 � r2

�2 ��3 ��0.r/dt�2C S0

4
�
1 � r2

�2 d�2.2/ ;
(3.5)

where

R0.r/ D
R2H

�
R2H C a

2
��

2 � r2
� �
R2H � a

2.1 � r2/2
�

S0.r/ D R
2
H C a

2

T0.r/ D

�
2 � r2

� �
R2H � a

2.1 � r2/2
�

R2H C a
2
�
1 � r2

�4
B0.r/ D

�
R2H C a

2
� �
R2H C a

2.1 � r2/4
�

R2H

�0.r/ D �
2a
�
1 � r2

�4
R2H C a

2
�
1 � r2

�4 ;

(3.6)

and d�2
.2/
D .�1/2 C .�2/2 is the metric on the round unit 2-sphere. Note that, when written in

this form, the metric exhibits the structure of a U.1/ fibration over an S2 base. As we will see

in §3.2.2, we can consistently construct an extension of this metric into the bulk of AdS6 while

preserving this structure. In these coordinates, the null generator of the future event horizon is

given by,

k D
@

@t
C�H

@

@ 
; (3.7)

and the angular velocity and surface gravity of the horizon are

�H D �0.0/ D
2a

R2H C a
2
; �2 D

T0.0/

4R0.0/
D

�
R2H � a

2
�2

R2H
�
R2H C a

2
�2 : (3.8)

The form of the metric in (3.5) is particularly useful because the boundary conditions at the horizon

are straightforward, as will be discussed in the following subsection. In fact, since any rotating

black hole solution with a Killing horizon and with an orthogonally transitive isometry group can

be cast in an analogous form, the boundary conditions we discuss below are general. Alternatively,

we could have chosen to work in co-rotating coordinates as in [46] at the expense of losing the

manifest asymptotic flatness of the metric. This could potentially be problematic when extending

the metric into the AdS bulk if we wish to ensure that the spacetime asymptotes to the Poincaré

horizon of AdS6 far from the horizon.
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3.2.2 Metric ansatz

Let us first consider the metric on the Poincaré patch of AdS6:

ds2AdS6 D
`2

z2
.dz2 � dt2 C dR2 CR2d�2.3// : (3.9)

For our construction it is convenient to introduce new coordinates that are adapted to the Poincaré

horizon of AdS. To do so, we generalise the coordinate change introduced in [48] and define new

coordinates .r; x/ as

z D

�
1 � x2

�q
R2H C a

2

1 � r2
; R D

x
q�
2 � x2

� �
R2H C a

2
�

1 � r2
; (3.10)

in terms of which (3.9) becomes

ds2AdS6 D
`2
�
1 � r2

�2�
1 � x2

�2
"

4 dx2�
2 � x2

� �
1 � r2

�2 � dt2

R2H C a
2
C

4r2 dr2�
1 � r2

�4 C x2
�
2 � x2

��
1 � r2

�2 d�2.3/

#
:

(3.11)

In these coordinates the conformal boundary of AdS is in the asymptotic region x ! 1, and

x D 0 is the fixed point set of the SO.4/ symmetry. These coordinates are adapted to the Poincaré

horizon of AdS in the sense that the latter lies at r D 1 and x < 1. The point x ! 1 and r ! 1

corresponds to spacelike infinity at the boundary.

We wish to construct a 6-dimensional, asymptotically locally AdS spacetime, with a boundary

metric in the same conformal class as the 5D Myers–Perry black hole, and which approaches the

Poincaré horizon of AdS far from the conformal boundary. The isometry group of the boundary

metric is Rt � SU.2/ � U.1/. In our construction, we impose this isometry on the entire bulk

geometry. It has been shown in 4D that regular and static asymptotically locally AdS metrics

inherit the isometry group of the boundary metric [74]. If the same result holds in 6D and in

the presence of rotation, then our solutions would be the only ones which are compatible with

the Myers–Perry boundary condition. As such, our full spacetime metric should have the full

Rt � SU.2/ � U.1/ isometry group of the boundary metric. We restrict ourselves to the class of

metrics which are closed under diffeomorphisms that preserve these symmetries. The general line
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element belonging to this class is given by

ds2 D
�
1 � r2

�2�
1 � x2

�2
"

4X.x; r/�
2 � x2

� �
1 � r2

�2 dx2 C 2 x r
�
R2H C a

2
�
Y.x; r/�

1 � r2
�3 dx dr

� r2 T0.r/ T .x; r/ dt2 C
x2
�
2 � x2

�
B0.r/ B.x; r/

4
�
1 � r2

�2 .�3 ��.x; r/dt /2

C
x2
�
2 � x2

�
S0.r/ S.x; r/

4
�
1 � r2

�2 d�2.2/ C
4R0.r/R.x; r/�

1 � r2
�4 dr2

#
; (3.12)

where fX.x; r/; Y.x; r/; T .x; r/; B.x; r/;�.x; r/; R.x; r/; S.x; r/g are the unknown functions to

be solved for, and fT0.r/; R0.r/; B0.r/; S0.r/g are the Myers–Perry functions given in (3.6). As

above, the coordinate ranges are 0 � x < 1 and 0 � r < 1, but we will effectively treat the

asymptotic regions (the conformal boundary of AdS x D 1, and the Poincaré horizon r D 1) as

boundaries. We will therefore work on the square domain 0 � x � 1 and 0 � r � 1. On this

domain we assume that all our unknown functions are smooth and bounded. Note that because we

have chosen coordinates which make the isometries of the metric manifest, r D 0 (the horizon) and

x D 0 (the fixed point set of the SO.3/ symmetry) appear as boundaries of our domain. However,

as discussed in [48, 46], some of these boundaries are in fact fictitious after suitable smoothness

conditions on the metric functions are imposed.

3.2.3 Boundary conditions

Comparing (3.12) with (3.5), we see that at x D 1wemust impose the followingDirichlet boundary

conditions:
X.1; r/ D `2 ; Y.1; r/ D 0 ; �.1; r/ D �0.r/ ;

T .1; r/ D R.1; r/ D B.1; r/ D S.1; r/ D
`2

R2H C a
2
:

(3.13)

This choice ensures that as x ! 1 the metric becomes

ds2 �
`2
�
1 � r2

�2�
1 � x2

�2
"

4�
2 � x2

� �
1 � r2

�2 dx2 C 1�
R2H C a

2
� ds2MP5

#
; (3.14)

which shows that the boundary metric lies in the same conformal class as the 5D Myers–Perry

black hole. It is worth noting that we allow for a constant factor of
�
R2H C a

2
��1 multiplying
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ds2MP5 , so that the boundary conditions at x D 1 and r D 1 are compatible for any choice of RH

and a. This is necessary to ensure smoothness of the unknown functions.

At r ! 1, we want our metric to smoothly approach the Poincaré horizon of AdS6. According to

the discussion of boundary conditions for extremal horizons presented in [48], we must therefore

impose

X D `2 C .1 � r/X1 ; Y D .1 � r/ Y1 ; T D
`2

R2H C a
2
C .1 � r/ T1 ;

R D
`2

R2H C a
2
C .1 � r/R1 ; B D

`2

R2H C a
2
C .1 � r/ B1 ; S D

`2

R2H C a
2
C .1 � r/ S1 ;

� D .1 � r/�1 ; T1jrD1 �R1jrD1 D constant (3.15)

where all functions with the subscript 1 are smooth at r D 1 and at x < 1. Note that R0.1/ D

B0.1/ D S0.1/ D R
2
H C a

2 and also that d�2
.3/
D

1
4

�
d�2

.2/
C
�
�3
�2�. As shown in [48], these

boundary conditions are necessary and sufficient for our spacetime to asymptote to the Poincaré

horizon of AdS6. We do not in fact impose the condition T1jrD1 �R1jrD1 D constant, but we do

check that it is satisfied by our solutions as consequence of the equations of motion. Hence, we

can use this condition as an estimate of the numerical error.

At x D 0 both the S2 of the base space and the U.1/ fiber degenerate. To ensure that they do

so smoothly, the functions X; Y; T;R;B;�; S must be smooth functions of x2 near x D 0 and

hence they should obey a Neumann boundary condition there. In addition, to avoid the presence

of conical singularities at x D 0 we must require

B0.r/B.0; r/

X.0; r/
D
S0.r/ S.0; r/

X.0; r/
D 1 at x D 0 : (3.16)

Smoothness of the manifold at the horizon requires all metric functions to be smooth in r2 near

r D 0; hence they must obey a Neumann boundary condition there. In addition, as discussed

in [46], we must ensure that our metric has the same surface gravity and angular velocity as the

reference metric (described below), which can be achieved imposing

T .x; 0/ D R.x; 0/ ; �.x; 0/ D �0.0/ : (3.17)
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Then the surface gravity and angular velocity of our spacetime will be given by (3.8).

In order to solve the Einstein–DeTurck equations (2.8) we have to specify a reference metric Ng on

the same manifold M as the physical spacetime metric g that we are seeking. This is equivalent to

choosing a particular gauge. In our case, we have chosen Ng to be given by (3.12) with

X D `2 ; Y D 0 ; T D R D S D
`2

R2H C a
2
;

� D �0 ; B D
`2

R2H C a
2

�
x2 C

R2H .1 � x
2/

B0.R
2
H C a

2/

�
:

(3.18)

Finally, note that the boundary conditions above are compatible with �aj@M D 0. Given our

boundary conditions, we cannot rule out a priori the existence of ‘Ricci solitons’ (i.e. solutions to

(2.8) with �a ¤ 0). However, because the problem is elliptic, solutions should be locally unique.

Therefore an Einstein metric cannot be arbitrarily close (in the space of solutions) to a Ricci soliton

[45, 48, 46]. As such, we can always check a posteriori for a given solution whether �a D 0. For

all the solutions presented in §3.3 we find that �a ! 0 in the continuum limit.

3.2.4 Details of the numerics

For this work, we solve (2.8) by simulating the associated parabolic Ricci–DeTurck flow, as

discussed in Section 2.3.2. In order to carry out the flows we must provide an initial metric

gabj�D0, and for the results presented in §3.3 we set the initial metric equal to the reference metric.

The results should not be qualitatively different for other choices of initial data, but we did not

investigate this.

As discussed in [75, 45], convergence of the flow toward the fixed point depends on the stability

of the fixed point, which is in turn determined by the presence or absence of negative modes in

the spectrum of the linearisation of (2.8) computed around the fixed point. This coincides with the

Lichnerowicz operator when the fixed point is an Einstein metric. In this discussion, we assume

that this is the case. In our simulations, we found that our initial data always converged to the

desired Einstein metric with no fine-tuning. This indicates that our solutions are stable fixed

points of the Ricci–DeTurck flow and hence do not posses negative modes. Even though the 5D
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Myers–Perry black hole has a negative mode [73] (analogous to the celebrated negative mode of

4D Schwarzschild [76] or Kerr [77]) it seems that pinning the metric to the boundary of AdS

projects out this mode. Reference [48] observed the same phenomenon for the 5D bulk case, in

which the boundary metric is 4D Schwarzschild.

In AdS/CFT, only the conformal class of boundary metrics matters, and therefore we can choose

any representative within the class without loss of generality. For the problem at hand, choosing a

representative of the conformal class amounts to fixing the overall length scale of the boundary 5D

Myers–Perry black hole. In the results below, we fixed the mass parameter � to some convenient

value and varied the angular momentum parameter a to move along the family of solutions. Note

that this implies that both the surface gravity and angular velocity vary along this family.

As in [45], there are two main sources of numerical error. The first is present in any numerical

method, and is due to the fact that we discretise the equations (2.22) according to some scheme

and seek a solution to the discrete problem. The latter approximates the continuum solution, and,

for a consistent discretisation, the error should decrease in the continuum limit at a rate dependent

on the discretisation scheme and the degree of differentiability of the solution. The second source

of error relates to the fact that it takes infinite Ricci flow time for (2.22) to reach its fixed point,

but in practice we can only evolve (2.22) for a finite time. We must therefore ensure that we are

sufficiently close to the fixed point that the discretisation error dominates. We do so by monitoring

j`2R=30 C 1jmax along the flow, which vanishes for an Einstein metric in the continuum limit.

We stop the simulation only when this quantity is constant to within some tolerance. The value

of the constant provides an estimate of the numerical error of our solution, which decreases as we

increase the spatial resolution. Of course, the amount of Ricci flow time that it takes to reach the

fixed point depends on how close to extremality the solution is and the resolution of the spatial

discretisation.

We simulated the Ricci–DeTurck flow using the method of lines. The two spatial dimensions were

discretised onto a square grid of Chebyshev points, and spatial derivatives were approximated

by spectral differentiation. The flow was then time-evolved using a third-order Runge–Kutta

integrator with a fixed step size. Note also that spatial differentiation is equivalent to simple

pointwise multiplication in the spectral space, meaning that we can improve the computational

speed by using the discrete cosine transform rather than repeated matrix multiplications.
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In our calculation of the curvature tensor, we hard-coded the expression for each of the non-zero

components in terms of the metric components and their derivatives. Due to the complexity of this

problem, a typical component involves a large number of additions and subtractions of floating point

quantities. As the metric becomes singular near the horizon, the relative sizes of these summands

can become vastly different. At double-precision, we found that this becomes problematic very

close to the fixed point: numerical error begins to dominate and the flow oscillates wildly and does

not converge any further. The problem worsens as we increase the number of grid points, since the

metric components need to be computed closer to the horizon.

This problem is exacerbated by the fact that, in order to extract the boundary stress tensor, we need

to read off the fifth derivative from our numerical data. For each extra derivative that we require,

the numerical results must be evaluated more precisely. In some cases, we found that in order to

extract the fifth derivative to acceptable accuracy, we had to invoke quadruple-precision floating

point arithmetic in our numerical computation. Unfortunately, no current equipment implements

this at the hardware level, so we had to rely on software libraries to emulate higher-precision

floating point arithmetic, which can be over 20 times slower than native computation.

To optimise the time taken to obtain acceptably accurate solutions, we divided the typical run into

three phases. We first evolved the Ricci flow equation numerically using standard 64-bit double-

precision floating point arithmetic. Once our error indicators (the Ricci scalar and the norm of

DeTurck vector) began to oscillate, we took the numerical solution at the final Ricci flow time and

used it as initial data for a second run, carried out using 80-bit “long double” precision. Finally, we

take our solution from the second run as initial data for a final run at 128-bit quadruple precision.

The entire process typically takes between one and two days. In all cases, the data presented in the

next section is the result of the final run at quadruple precision.

In the majority of cases, we found that a 36 � 36 square Chebyshev grid provided a good balance

between accuracy and computational requirements. However, for the slowly-spinning cases, we

found that finer grids (45 � 45) are necessary to maintain acceptable accuracy.
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3.3 Numerical results

This section presents our numerical results. To construct our solutions we fixed the mass parameter

of the boundary black hole, �, then varied the angular momentum parameter, a, such that the

dimensionless surface gravity is � �
1
2 D

n
16

with n D 1; : : : ; 16. Therefore, for our solutions the

horizon of the black hole is always non-extremal.

3.3.1 Geometry of the horizon

To visualise the horizon geometry of our solutions as we vary the boundary black hole’s angular

momentum, we consider the following embedding. We take the geometry of the spatial cross-

sections of the horizon transverse to the U.1/ fiber,

ds2H D
`2

.1 � x2/2

�
4X.x; 0/

2 � x2
dx2 C

x2.2 � x2/S0.0/ S.x; 0/

4
d�2.2/

�
; (3.19)

and embed them into 4D hyperbolic space with the same radius `, ds2H4
D

`2

z2
.dz2 C dR2 C

R2 d�2
.2/
/, as a curve R D R.z/. We then colour-code this curve according to the relative

size of the U.1/ fibre with respect to the base S2, which is measured by the function ˛.z/ D

B0.0/B.x; 0/=.S0.0/S.x; 0//, where the coordinate x is a function of the z coordinate of the

ambient hyperbolic space. The freedom in the embedding is fixed by requiring that the radius of

the boundary black hole isR.0/ D 1 in the static case, which fixes the ADMmass of the boundary

black hole for any a � 0. Figure 3.1 presents the results. As this figure demonstrates, the radius of

the S2 becomes smaller as the angular momentum increases. This reflects the fact that the horizon

area at fixed mass decreases with greater angular momentum. Note also that the extent of the

horizon into the bulk decreases as the angular momentum increases. Moreover, for a fixed value of

the angular momentum parameter a > 0, the squashing of the horizon three-sphere is more severe

at the boundary than in the interior of the spacetime. In fact, the regularity condition (3.16) at the

axis of symmetry x D 0 implies that the horizon S3 must be locally round there, ruling out any

squashing.

Figure 3.2 depicts the evolution of the curvature invariant CabcdC abcd `4 along the flow for a
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Figure 3.1: Embeddings of the radius R.z/ of the horizon S2 into four-dimensional hyperbolic
space, for fixed mass parameter � of the boundary black hole. At the boundary of hyperbolic
space, z D 0, the value of this radius function coincides with the corresponding one for the 5D
Myers–Perry black hole geometry. The colour code indicates the squashing of the horizon S3

according to the relative size of the fibre with respect to the base S2, which is measured by the
function ˛.z/ D B0.0/B.z; 0/=.S0.0/S.z; 0//. The blue curve with R.0/ D 1 corresponds to
the zero rotation case, and a increases moving inwards in this plot. The squashing becomes more
severe near the boundary and with increasing angular momentum of the boundary black hole.
Absence of conical singularities at the axis of symmetry R.zmax/ D 0 implies that there is no
squashing there.

typical solution. This is a useful geometric quantity because it provides information about both the

curvature of the spacetime and the correctness of our boundary conditions. As the figure shows,

CabcdC
abcd `4 never blows up along the flow (and in particular at the fixed point), which suggests

that there are no curvature singularities in our domain. In addition, we see that for any � this

curvature invariant vanishes at both the Poincaré horizon of AdS6 and at the conformal boundary.

This confirms that our spacetime has the correct asymptotics near these two boundaries.

3.3.2 Linearised gravity in the higher dimensional RS2 model

From our numerical solutions, we can now proceed to extract the stress tensor of the dual CFT.

Firstly, however, it is useful to have a theoretical result to which we can compare our numerical

stress tensor. Following the reasoning of [39, 48], the fall-off of the stress tensor in the AdS/CFT

solution is given by the correction to the standard gravitational potential due to the presence of a

brane. In this section, we therefore generalise the derivation of the linearised gravitational field
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Figure 3.2: CabcdC abcd `4 along the Ricci flow in the whole domain for the � �
1
2 D 0:15 solution.

The snapshots correspond to the Ricci flow times � D 0; 0:5; 1, and the fixed point (top to bottom
in this plot). After a Ricci flow time of � D 1 the surface becomes almost indistinguishable from
that of the fixed point. As this plot shows, CabcdC abcd `4 does not blow up anywhere in the
domain along the flow. It also vanishes at both the Poincaré horizon and the boundary of AdS,
indicating that our spacetime is asymptotically AdS near these boundaries.

in the RS2 braneworld model in [72, 78] to an arbitrary number of spacetime dimensions. For

D boundary dimensions, this shows that the energy density of the dual field theory behaves like

1=R2D�3 in the asymptotic region. In D D 5, this gives 1=R7 behaviour, which is in agreement

with our data, as we show in the next section.

We begin by considering the metric of aD-dimensional brane embedded in a .DC1/-dimensional

AdS space

ds2 D dy2 C a.y/2 ���dx�dx� ; (3.20)

where a.y/ D e�jyj=`. For a metric perturbation of the form ��� 7! ��� C h�� , the perturbation

h�� satisfies

�
1

2

h
a.y/�2�.D/ h�� C a.y/�.D�2/@y

�
a.y/D@y

�
a.y/�2h��

��i
D 0 ; (3.21)
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where we have taken h�� to satisfy the Randall–Sundrum gauge conditions

h55 D 0 D h�5 ; h
�
� I� D 0 ; h�� D 0: (3.22)

We look for normal modes h�� D  .y/eik�.x�x0/� with k�k� D �m2. Imposing the Israel

junction condition on the brane (see [72] for details) and then expanding out the operator, we arrive

at an equation for  .y/:

�
a.y/�2m2 C @y@y � .D � 4/ `

�1@y � 2 .D � 2/ `
�2
�
 .y/ D �4`�1ı.y/ .y/: (3.23)

Note that inD D 4, the coefficient of the first derivative term vanishes, and this expression reduces

to the one presented in [72]. The general solution to this ODE is given in terms of exponentially-

modulated Bessel functions. As the equation is second-order, there are two coefficients to be fixed

for each m: an overall multiplicative constant, which we denote Cm, and a relative coefficient,

which we denote km. We will now show that latter can be fixed by the aforementioned junction

condition, while the former can be fixed by an off-brane boundary condition.

WhenD is odd, the most convenient form of the general solution is

 m.y/ D Cm a.y/
�.D�4/=2

�
J�D=2.m`=a.y//C kmJD=2.m`=a.y//

�
: (3.24)

The value of km is fixed by the presence of the ı-function. To see this, we integrate (3.23) over a

small neighbourhood Œ�"; "� around zero, then take "! 0. Since we want  .y/ to be even under

y 7! �y, we must require  .y/ to be continuous at y D 0. Therefore, the ı-function imposes the

following jump condition on the first derivative of  .y/:

 0
�
0C
�
�  0.0�/ D �4`�1 .0/: (3.25)

Equation (3.24) then implies that

2m
�
J 0
�D=2.m`/C kmJ

0
D=2.m`/

�
D D `�1

�
J�D=2.m`/C kmJD=2.m`/

�
; (3.26)
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and thus

km D �

 
2mJ 0

�D=2
.m`/CD`�1J�D=2.m`/

2mJ 0
D=2

.m`/CD`�1JD=2.m`/

!
: (3.27)

In the following we will also need the expansion of J�.x/ about zero. For completeness we record

it below:

J�.x/ �
x�

2��.1C �/
�

x�C2

2�C2�.2C �/
C : : : as x ! 0: (3.28)

Inserting this into (3.27) gives

km �
�.D=2/

�.2 �D=2/

�
2

m`

�D�2
as m`! 0: (3.29)

WhenD is even, the most convenient form of the general solution is

 m.y/ D Cm a.y/
�.D�4/=2

�
YD=2.m`=a.y//C kmJD=2.m`=a.y//

�
: (3.30)

The jump condition now reads

2m
�
Y 0D=2.m`/C kmJ

0
D=2.m`/

�
D D`�1

�
YD=2.m`/C kmJD=2.m`/

�
; (3.31)

and thus

km D �

 
2mY 0

D=2
.m`/CD`�1YD=2.m`/

2mJ 0
D=2

.m`/CD`�1JD=2.m`/

!
: (3.32)

We now need the expansion of Yn about zero for n 2 N:

Yn.x/ � �
2n .n � 1/Š

�xn
�
2n�2 .n � 2/Š

�xn�2
� : : : as x ! 0: (3.33)

Therefore, in this case km is given asymptotically by

km �
.D=2 � 1/Š .D=2 � 2/Š

�

�
2

m`

�D�2
as m`! 0: (3.34)

We can summarise these results to apply in any number of dimensionsD bywriting km �
�.D/

.m`/D�2
,

where �.D/ is a constant that depends only onD.

The overall constant Cm is determined by requiring that the eigenmodes are finite as m ! 0 for
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any value of jyj. We can therefore consider the behaviour of the eigenmodes as we move far away

from the brane, taking jyj to be sufficiently large. The large argument asymptotics of the Bessel

functions are given by

J�.x/ �

r
2

�x
cos
�
x �

.2� C 1/�

4

�
(3.35)

Y�.x/ �

r
2

�x
sin
�
x �

.2� C 1/�

4

�
as x !1: (3.36)

For convenience, let us write Oy � a.y/�1 D ejyj=`. Then, for large m` Oy, the eigenmodes behave

like

 m. Oy/ � Cm

s
2 OyD�5

�m`

�
sin
�
m` Oy �

.D C 1/�

4

�
C

�.D/

.m`/D�2
cos
�
m` Oy �

.D C 1/�

4

��
:

(3.37)

Far from the brane, we expect the modes to behave like plane waves [66], and therefore the small-m

dependence of Cm should be

Cm � .m`/
D�3=2 as m`! 0; (3.38)

neglecting any numerical factors. Finally, since Cm is a constant independent of y, the above

dependence must also hold on the brane y D 0. We can therefore read off the small-m dependence

of  m as

 m � .m`/
.D�3/=2: (3.39)

The gravitational potential is essentially given by the Green’s function for (3.23), which consists

of a superposition of all the eigenfunctions  m that we have just derived. We are only interested

in the gravitational field on the brane itself in the far field region, so henceforth we set y D 0

and do not keep track of the overall numerical coefficients. Note that there is a continuum of KK

eigenmodes as well as a discrete zero mode, thus

G.x; x0/
ˇ̌
yD0
D �

Z
dDk
.2�/D

eik�.x�x
0/�
�

`�1

jkj2 � !2
C

Z 1
0

dm
 m.0/

2

jkj2 Cm2 � !2

�
: (3.40)

Since we are also only interested in the stationary state, we can integrate out the t 0 dependence,
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leaving just

G.x; x0/
ˇ̌
yD0
D �

Z
dD�1k
.2�/D

eik�.x�x
0/

�
`�1

jkj2
C

Z 1
0

dm
 m.0/

2

jkj2 Cm2

�
: (3.41)

The first term gives rise to the usual 1=rD�3 potential for standard gravity on the brane, while the

second term is responsible for the correction due to the KK modes; this is the relevant term for us.

Thus, we define

VKK D �

Z
dD�1k
.2�/D

eik�.x�x
0/

�Z 1
0

dm
 m.0/

2

jkj2 Cm2

�
: (3.42)

Changing the order of integration and doing first the integral over the momenta k, gives rise to a

Yukawa-type potential

VKK D
1

rD�3
�.D=2 � 1=2/

2.D � 3/�.D�1/=2

Z 1
0

dmF.D�3/=2.mr/ m.0/2 ; (3.43)

where we have defined F�.�/ � 1
2��1�.�/

��K�.�/, and K� is the modified Bessel function of the

second kind. Indeed, forD D 4 we have precisely F1=2.mr/ D e�mr . For a generalD, F.D�3/=2

generalises this exponential screening, as its asymptotic behaviour is given by

F.D�3/=2.mr/ �

p
� .mr/D=2�2 e�mr

2D=2�2�.D=2 � 3=2/

�
1CO

�
.mr/�1

��
: (3.44)

We extract the leading order correction to the linearised gravitational potential by integrating over

m. As in [66, 72], we note that in the large-r limit the integral is dominated by the contribution

from small-m modes. Using (3.39) in (3.43) yields

VKK �
1

r2d�5
.r � 1/ ; (3.45)

so that the full gravitational potential on the brane is

V.r/ �
GN M

rD�3

 
1C

˛ `D�2

rD�2

!
(3.46)

where ˛ is some non-vanishing (dimensional dependent) numerical factor, and GN is Newton’s
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constant on the brane. Then the metric perturbation on the brane will be

h00 � V.r/ : (3.47)

The other components of the metric perturbation can be shown to exhibit similar behaviour in the

far field region.

Following [39, 64] and considering the limit in which the brane is close to the boundary of AdS,

one can use the correction to the Einstein tensor on the brane induced by (3.47) to read off the

components of the stress tensor in the far field regime:

ıG�� D 16� GN hT
CF T
�� i : (3.48)

Note that only the term proportional to ˛ in (3.46) contributes to the left hand side of this equation,

which implies

hT CF T�� i �
1

r2D�3
: (3.49)

ForD D 5, this is precisely the same behaviour that our data exhibits.

3.3.3 Boundary stress tensor

Our bulk 5D solutions can be trivially uplifted on half an S4 to massive type IIA supergravity in

10D, which arises as the low energy limit of intersections of D4 and D8 branes in type I0 string

theory [79]. The CFT that arises as the fixed point of this system under RG flow is USp.2Nc/ 5D

SYM, with matter consisting of a hypermultiplet in the antisymmetric representation of the gauge

group and Nf hypermultiplets in the fundamental [80]. This is the CFT dual to our supergravity

solutions. We extract the vacuum expectation value of the stress tensor of this dual CFT from the

bulk gravity solution, using the standard holographic renormalisation prescription [40]. For a 5D

bulk spacetime, the expectation value of the stress tensor of the dual CFT is given by

hTij i D
5 `4

16� G6
g
.5/
ij ; (3.50)
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where g.5/ij denotes the 5th order term in the near boundary expansion of the metric in Fefferman–

Graham (FG) coordinates, and G6 is the 5D bulk Newton’s constant.

Since we are interested in spacetimes with the isometry group Rt � SU.2/ � U.1/, we can

consistently truncate the general form of the line element in FG coordinates to this particular class

of metrics. Solving the Einstein equations in the usual near boundary expansion, we find that the

stress tensor is given by

hTij i dxidxj D
5 `4

16� G6

�
T5.R/ dt2CR5.R/ dR2CB5.R/.�3 ��5.R/ dt /2CS5.R/ d�2.2/

�
;

(3.51)

where T5; R5; B5; �5; S5 can be extracted from our numerical solutions. These functions are

not all independent: the Einstein equations at 5th order in the near boundary expansion in FG

coordinates impose an algebraic constraint, which is nothing but the tracelessness condition of the

dual stress tensor. With an odd number of boundary dimensions, the stress tensor is always traceless

regardless of whether the boundary metric is Ricci flat, because there is no gravitational conformal

anomaly. At 6th order one finds a differential constraint which implies that (3.51) is covariantly

conserved. Therefore, we find that the stress tensor is fully specified in terms of three independent

functions. However, in our construction we will independently extract the five functions from our

numerical data, then use the trace and divergence of hTij i to estimate the associated numerical

error. We find that the trace is largest near the horizon, with a magnitude of around 10�5 to 10�3

(the fast rotating cases give smaller values). This quickly decays to well below 10�9 in all cases

away from the horizon.

To obtain the components of the stress tensor in terms of our numerical solutions we must change

from the working coordinates .x; r/ used in our ansatz (3.12) into the FG coordinates .z; R/

that we used to derive (3.51). We proceed as in [52] and determine the change of coordinates

z D z.x; r/; R D R.x; r/ in a near boundary expansion, requiring that �a D 0 at each order in�
1 � x2

�
. Note that in our setup �a only has two non-vanishing components, so imposing �a D 0

order by order determines the coordinate change completely.

The dual stress tensor hTij i is symmetric in its two indices, but because the boundary metric (3.1)

is not positive definite, the linear map hT ij i from vectors to vectors need not be diagonalisable.

However, in our case it is, and for all values of the angular momentum parameter a that we have
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Figure 3.3: A plot of (minus) the energy density, for different values of the rotation parameter
versus the Boyer–Lindquist radial coordinate R. We have used a logarithmic scale on the y axis
in order to enhance the near horizon region. As this plot shows, the energy density is negative
everywhere and it becomes more negative as the rotation of the black hole increases.

considered there is one timelike eigenvector and four spacelike eigenvectors. We can identify the

corresponding eigenvalues with the energy density and the pressures in the following way. We

write the stress tensor as

hT ij i D �.R/ t
i
˝tjCp1.R/

�
.s1/i˝.s1/jC.s

2/i˝.s2/j
�
Cp2.R/ .s

3/i˝.s3/jCp3.R/R
i
˝Rj

(3.52)

where t i is the unique timelike eigenvector normalised so that t i ti D �1, and .s[/i and Ri are the

orthonormal spacelike vectors in the 5D Myers–Perry background1 written in Boyer–Lindquist-

type coordinates (3.1). In this way, we identify �.R/ as the energy density of the plasma seen by a

local observer with velocity t i , and the pi .R/ as the corresponding pressures.2

In Figure 3.3 we plot the energy density for different values of the rotation parameter of the

background. First, note that the energy density is negative everywhere in our domain for all a � 0.

1We choose .s[/i � .�[/i with the obvious proportionality factors and Ri D
r

R2.R2Ca2/

.R2Ca2/2��R2
.dR/i .

2Recall that if ki is a unit timelike and future directed vector field, then �T ij k
j represents the energy density seen

by an observer with velocity ka. So ��.R/ is the eigenvalue of the matrix T ij .
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Figure 3.4: A plot of the rescaled energy density for different values of the rotation parameter.
This plot shows that the energy density decays like 1=R7 in the asymptotic R ! 1 region. The
other components of the stress tensor have a similar behaviour near infinity. The colour code is the
same as in Figure 3.3.

Moreover, the energy density is a monotonically increasing function of the radial coordinate: it

becomes less negative for large R, and has the largest absolute value at the horizon. Furthermore,

as the angular momentum increases (moving up the figure) the energy density becomes more

negative at the horizon, but it is always finite. By continuity, the energy density should also be

finite at extremality.

Next we consider the pressures. As in [52] we find that the radial pressure is positive, while the

pressures along the angular directions are negative. There is therefore an anisotropy in the system.

Note that this anisotropy is already present in the static limit. Adding rotation to the boundary

black hole breaks the full SO.4/ spherical symmetry of the static case down to SU.2/ � U.1/,

which results in some further anisotropy between the fibre and the sphere directions. This simply

reflects the squashing of the S3 of the boundary black hole. As the angular momentum of the

boundary black hole increases, the horizon S3 becomes more squashed, which gives rise to a more

negative pressure along the fibre direction than along the base S2 directions.

In Figure 3.4, we study the behaviour of the energy density as a function of the radial coordinate
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R in the R ! 1 region. As one can see from the figure, the energy density decays like 1=R7

near infinity, and the other components of the stress tensor exhibit the same asymptotic behaviour.

Unsurprisingly, this can be understood in a similar manner to the 4D case [81]. The energy density

stored in the field around a point particle in 5-spacetime dimensions behaves like / N
5
2
c Rg=R

7,

where Rg is the gravitational radius of the point particle. The pressures are comparable in

magnitude to the energy density and also decay like 1=R7. Note that these results agree with the

braneworld calculation presented in the previous section.

Finally, we consider the rotation of the dual plasma. To do so, we write the unique timelike

eigenvector of the stress energy tensor of the dual CFT as

T D
@

@t
C�.R/

@

@ 
: (3.53)

This allows us to identify �.R/ as the angular velocity of the plasma with respect to a static

observer at infinity in the boundary directions. In Figure 3.5 we plot this quantity for different

values of the angular momentum parameter a. As one might expect, �.R/! �H as R ! RH .

That is, at the horizon the plasma is co-rotating with the black hole. This is an example of frame

dragging, even though at the boundary gravity is non-dynamical. This result had to hold, since

the boundary black hole is rotating rigidly with respect to infinity; there is no flux of CFT plasma

through the horizon, so the plasma must be co-rotating with the black hole. In the asymptotic

regionR!1, we find that the angular velocity of the plasma decays like 1=R2, so that at infinity

the plasma is at rest and the timelike eigenvector coincides with the asymptotic timelike Killing

vector.

3.3.4 Negative energy density

Figure 3.3 in the previous section clearly showed that the energy density of the plasma is nega-

tive. Therefore (3.52) violates the weak and strong energy conditions, which are what is usually

considered physical in classical general relativity. This is also the case for the stress-energy tensor

of N D 4 SYM in the background of a 4D Schwarzschild black hole in the Unruh vacuum [48].

However, the energy density in the Hartle–Hawking state was found to be positive in [62]. While

a negative energy density may be a sign of a pathology and/or instability in classical solutions, it
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Figure 3.5: Rescaled angular velocity of the plasma as a function of the radial coordinate R for
different values of the rotation parameter. Near infinity the angular velocity of the plasma decays
as � 1=R2, while at the horizon it reduces to the angular velocity of the black hole.

is not necessarily problematic in our present setting, as we are considering a quantum field theory.

References [48, 81] provide a heuristic physical interpretation of the stress tensor (3.52) as a ‘halo’

of plasma in equilibrium with the boundary black hole. According to this picture, the strong

attractive self-interactions of the CFT are balanced by thermal radiation pressure from the black

hole. Another instance in which a non-trivial background results in a QFT stress tensor with

similar qualitative properties is the celebrated Casimir effect [82]. In that setting, the vacuum

energy of the electromagnetic field between two perfectly conducting plates is negative, giving

rise to an attractive force between the two plates. Reference [68] also noted a large contribution of

the Casimir effect in the stress tensor of a conformally coupled weakly interacting scalar field in

the background of the BTZ black hole. We may therefore be able to attribute our negative energy

density in (3.52) to the attractive nature of the self-interactions of the CFT due to the Casimir

effect.

In the calculations that follow, we can concentrate only on the t -r part of the geometry, as this

gives rise to the non-trivial causal structure of the spacetime. Under our symmetry assumptions,
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the sphere directions are merely spectators. We begin by analysing the t -t and r-r components

of the stress tensor through a simple 2D model. For concreteness we consider hT ij i for a generic

quantum field theory in the 2D space

ds2 D �
�
1 �

2M

r

�
dt2 C

dr2

1 � 2M
r

: (3.54)

The advantage of working in 2D is that the stress tensor is completely determined by symmetries

and conservation in terms of purely geometrical data [83, 84]. Indeed, assuming that the stress

tensor is time-symmetric, one finds that the conservation equation reduces to

@rhT
r
ri D

M

r2
1

1 � 2M
r

�
hT tt i � hT

r
ri
�
) @r

��
1 �

2M

r

�
hT rri

�
D
M

r2
hT ii i : (3.55)

This equation can be readily integrated to get

hT ij i D diag

 
�
H2.r/

1 � 2M
r

C hT ii i;
H2.r/

1 � 2M
r

!
; (3.56)

where the first entry denotes the t -t component of the stress tensor, and

H2.r/ WDM

Z r

2M

dr 0
hT ii i.r

0/

r 02
: (3.57)

The full stress tensor is now completely determined by its trace, which is fixed by the conformal

anomaly. For the 2D geometry (3.54), this is given by

hT ii i D ˛ R D
4 ˛M

r3
; (3.58)

where ˛ is a constant that depends on the spin of the field being considered. For a free massless

scalar field, we have ˛ D 1
24�

[83, 84]. The stress tensor in this geometry is therefore

hT ij i D ˛ diag
�
4M

r3
�

1

16M 2

�
1C 2M

r

��
1C 4M2

r2

�
;

1

16M 2

�
1C 2M

r

��
1C 4M2

r2

��
: (3.59)

In the near horizon region, (3.59) has the same qualitative features as our 5D stress tensor. In

particular, it is static and regular on both the future and past event horizons, and the energy density

near the horizon is negative. Since the origin of (3.59) is clearly the near-horizon spacetime
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curvature itself, we can conclude that it is a vacuum polarisation effect. However, this 2D model

does not capture the physics in the asymptotic region near infinity. For large r (3.59) reduces to

the stress tensor of radiation at the Hawking temperature set by the horizon in (3.54), and this is

not what we observe in our numerical results.

We now add additional dimensions and consider the full 4D Schwarzschild geometry. As we are

only interested in CFTs in this background, we assume that the stress tensor is static, spherically

symmetric and traceless. With these assumptions, conservation of the stress tensor fully determines

its components in terms of one undetermined function [84, 48]:

hT ij i D diag

 
�

H4.r/

r2.1 � 2M
r
/
� 2‚.r/;

H4.r/

r2.1 � 2M
r
/
; ‚.r/; ‚.r/

!
;

H4.r/ D 2

Z r

2M

dr 0.r 0 � 3M/‚.r 0/ ;

(3.60)

where the first two entries in (3.60) correspond to the t -t and r-r components and hT �
�
i D hT

�
�i D

‚.r/ by spherical symmetry. Note that the extra dimensions introduce new pressures along the

angular directions, and the extra powers of r in the denominators of (3.60) can alter the behaviour

of hT ij i near infinity.

The actual formof the function‚.r/ in (3.60) depends on the details of theCFTunder consideration.

However, one can constrain it on general grounds without assuming strong coupling. First, note

that for (3.60) to be finite at the horizon .r D 2M/, we only require that ‚jrD2M be finite. In

addition, we saw above that the 2D model captures the vacuum polarisation effect near the horizon,

and therefore we require that hT tt i > 0 for r � 2M . This implies that ‚ < 0 in this region,

and so we conclude that the polarisation of the vacuum near the horizon will inevitably make the

pressures along the angular directions negative. Also note that from (3.60) we can conclude that

the following relations must hold at the horizon: hT tt ijrD2M D hT
r
rijrD2M D �‚jrD2M . A

close examination of the data of [48] shows that this is true for N D 4 SYM in the background of

Schwarzschild, the deviations being smaller than 1%. At infinity we want hT ij i ! 0, and for this

we require ‚ � 1=r3 or faster. Then (3.60) implies that all the components of the stress tensor

have the same behaviour near infinity. Note that ‚ has to decay sufficiently fast if we require that

hT tt i and hT
r
ri do not change sign at a sufficiently large r . One can infer the fall off of ‚ from

the linearised calculation of [72] and one finds that the pressures along the sphere directions are
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negative and the fall off is � 1=r5.

Finally, we note that negative energy densities can be bound by quantum energy inequalities (see

[85] for a review with references). These are the remnants of the classical energy conditions

satisfied by quantum field theories, and they quantify the extent to which a quantum field can

violate these classical energy conditions. Even though most of the results available in the literature

apply only to Minkowski spaces, one might expect similar results to apply on curved spacetimes

over regions which are small compared the curvature length scales. Ref. [86] shows that this

intuition is indeed correct. Our results, obtained using AdS/CFT and valid at strong coupling,

show that in this regime the energy density also remains bounded below.

3.4 Conclusions

In this chapter, we constructed the gravitational duals of 5D CFTs in rotating black hole back-

grounds. For simplicity, we considered only the case in which the boundary black hole is the 5D

Myers–Perry solution with equal angular momenta. Far from the horizon, the spacetime reduces to

the Poincaré horizon of AdS, and hence the CFT is in the Unruh state. While our solutions should

capture the general qualitative physics of the Unruh vacuum in rotating black hole backgrounds

(at large Nc and strong coupling), it would still be interesting to consider the gravitational dual of

N D 4 SYM on the background of Kerr. From a computational perspective, the problem reduces

to solving elliptic PDEs in 3 variables, which is considerably more expensive than the work we

present here. The construction of gravitational duals to CFTs on rotating black hole backgrounds

becomes even more interesting if one considers an IR horizon with a finite temperature. As [62]

pointed out, this requires that the horizon of the black hole be non-Killing. We noted that a generic

feature of the Unruh vacuum for strongly coupled CFTs in black hole backgrounds is that the energy

density is everywhere negative in the domain of outer communications. We argued that this can

be understood in terms of the polarisation of the vacuum due to the curvature of the background.

Furthermore, our stress tensor (3.51) is bounded from below, in accordance with generic local

quantum energy inequalities [85]. The fact that the energy density is negative need not signal

that our solutions are unstable, but we did not perform a detailed analysis of their stability under

gravitational perturbations.
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It is interesting to compare the results of this chapter (and of [48]) with black funnels [62]. The latter

represent the gravitational dual of the Hartle–Hawking state for N D 4 SYM on the background

of Schwarzschild. In the black funnels case the energy density is positive everywhere (see Figure

4 in [62]), and not only at infinity, where the stress tensor reduces to that of pure radiation at

the Hawking temperature set by the IR horizon. Therefore, the stress tensor does not seem to

have a component corresponding to the vacuum polarisation. This can be contrasted with the free

field theory results [87], which indicate that near the horizon it is the vacuum polarisation that

dominates the stress tensor, as in this paper. However, [59] conjectured that there should exist

another family of solutions dual to the Hartle–Hawking state, namely the black droplets. The

latter should arise as a continuous deformation of the solutions of [48], where the continuous

parameter is the temperature of the IR horizon. Because in [48] (and this work) the non-vanishing

stress tensor is due to vacuum polarisation effects, the stress tensor of the black droplets should be

dominated by vacuum polarisation effects near the horizon, at least when the temperature of the

IR black hole is sufficiently small relative to the size of the boundary black hole. In the asymptotic

region, the stress tensor should reduce to pure radiation, as in the black funnels case. Therefore,

for black droplets the hT tt i component of the stress tensor should change sign, being positive near

the horizon and negative in the near infinity region.
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Chapter 4

Localised Plasma Balls

The work presented in this chapter was published as [88]. The paper was co-authored with Pau

Figueras. Both authors wrote separate code for this project, which allowed us to cross-check

results. The results should be regarded as a product of collaborative work.

4.1 Introduction

AdS/CFT can be applied to the study of the confinement/deconfinement phase transition in strongly

coupled gauge theories. This was originally proposed in [41]. Conformal symmetry implies that

a CFT in Minkowski space cannot have a phase transition at any finite temperature. Since any

non-zero temperature can be scaled to any other value, all non-zero temperature states must be

equivalent. From the bulk perspective, this translates into the fact that the planar Schwarzschild–

AdS solution is the dominant phase for all temperatures. When conformal symmetry is broken by

putting the CFT on a sphere, one has a phase transition which has been identified as a confine-

ment/deconfinement phase transition. The bulk dual of this phase transition corresponds to the

celebrated Hawking–Page phase transition between thermal AdS and global Schwarzschild–AdS

[89]. Strictly speaking, this transition is only present in the Nc ! 1 limit. Ref. [90] provides a

much more extensive review on this and related topics.

In this chapter, we will study the confinement/deconfinement transition of CFTs on a flat space with

one spatial direction compactified onto a circle. Fermions are subject to anti-periodic (Scherk–

Schwarz) boundary conditions on this circle. The compact circle breaks conformal invariance,
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therefore allowing the CFT to have a non-trivial confinement/deconfinement phase transition as

the temperature changes. From the bulk perspective, the low temperature confining vacuum

corresponds to the AdS soliton geometry [41, 91], while the high temperature deconfined phase

corresponds to the planar Schwarzschild–AdS geometry. Further details of these geometries are

reviewed in §4.2.1.

At the deconfinement temperature, the period of the Euclidean time circle and that of the Scherk–

Schwarz circle coincide, while the pressure of the plasma vanishes. This suggests the existence of

a new solution to the Einstein equations in the bulk which interpolates between the AdS soliton

geometry and the planar Schwarzschild–AdS black hole. This solution would be dual to a domain

wall configuration of the CFT. Indeed, such a solution has been numerically constructed in [42].

The authors of this work further conjectured that finite size black holes, localised at the IR bottom

of the AdS-soliton background, should also exist. From the dual CFT perspective, these black holes

would correspond to localised balls of deconfined plasma surrounded by the confining vacuum. In

fact, [42] argued that such finite size plasma balls should generically exist in any large Nc gauge

theory that exhibits a first order confinement/deconfinement phase transition. In the semiclassical

approximation, these plasma balls should be stable, as in the full quantum theory they can only

evaporate via the emission of colour singlet glueball states; a process which is dual to Hawking

evaporation of the bulk black hole. However, out of the O.N 2
c / degrees of freedom available in

the theory, only O.1/ of them correspond to the colour singlet states that can be emitted into the

confining vacuum, thus suppressing the evaporation process in the large Nc limit [42].

The work in [92] took the first steps towards a quantitative understanding of plasma balls in

confining backgrounds. The authors considered a particular form of the four-dimensional AdS C-

metric [93], which corresponds to a black hole moving in an accelerated trajectory inside AdS, but

with the geometry cut off in the IR. This construction can be viewed as the complement of the one

in [94], which constructed localized black holes on the brane in Randall-Sundrum II braneworld

models. The solutions of [92] confirmed some of the predictions made in [42]. In particular,

the bulk horizon corresponding to large plasma balls does indeed have a pancake-like shape that

extends along the IR bottom of the geometry. The properties of the plasma at the interior of the

ball are also those of the deconfined state at the same temperature. However, the solutions of [92]

also exhibited certain peculiarities due to the boundary conditions at both the IR and UV ends of
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the geometry. For instance, the boundary metric is not flat and asymptotes to a cone with a certain

excess angle.

In light of these results, it is desirable to investigate the physical properties of these plasma balls in

a cleaner setting, such as the framework of [42]. In this chapter, we employ numerical methods to

construct localized black holes at the IR bottom of the AdS soliton geometry, which are dual to the

sought plasma balls. For simplicity, we consider static and spherically symmetric configurations

from the point of view of the non-compact directions along the boundary. This reduces the

problem to solving non-linear PDEs in two variables. Here, we limit our construction to 5 and 6

bulk dimensions; in either case, the qualitative physics of the plasma balls is the same. Having

found solutions, we proceed to study some of their physical properties. First, we study the shape

of the horizon for plasma balls of different sizes. We find that small plasma balls are described by

approximately spherical black holes in the bulk, while large plasma balls are dual to pancake-like

black holes which extend along the IR bottom of the geometry. Away from the edges of the black

hole, the geometry is well-described by a homogeneous black brane at the same temperature. By

extracting the stress of the dual field theory, we can also assess the behaviour as the deconfinement

temperature is approached. Under these conditions, the energy density at the centre of the ball

approaches the energy density of a homogeneous black brane at the same temperature. For large

plasma balls, the region in the vicinity of their edge reduces to a good approximation to the domain

wall solution of [42]. In particular, we find that the tension is positive. We should also note that

in this chapter we are only considering solutions in the universal gravity sector. In the presence

of a compact internal space, we should expect that plasma balls which are much smaller than the

length scale of the internal space will be subject to the Gregory–Laflamme instability.

The chapter is organized as follows. In §4.2 we explain our set up. §4.2.1 reviews the confine-

ment/deconfinement phase transition in relevant backgrounds, while §4.2.2 gives details of our

numerical construction of black holes which are dual to plasma balls. §4.3 is devoted to analysing

the physical properties of plasma balls. In §4.3.1 we study the horizon geometry of the black holes

and in §4.3.2 we analyse temporal Wilson loops as a probe of confinement. Finally, §4.3.3 presents

our results for the stress tensor of the dual field theory.
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4.2 Numerical setup

This section explains our numerical construction of localized plasmaballs. In §4.2.1 we review the

necessary features of both the AdS-soliton metric and the black brane. In §4.2.2 and §4.2.2 we

then explain the details of the actual numerical construction.

4.2.1 Preliminaries

Here, we briefly review the basics of thermal field theory in Scherk–Schwarz–AdS (SS–AdS), with

anti-periodic boundary conditions for the fermions on the SS circle. For further details, see the

recent review [90] and references therein.

We are interested in solutions to the Einstein vacuum equations inDC1 dimensions with SS–AdS

boundary conditions. In other words, we require that the boundary geometry is conformal to

R1;D�2 � S1SS. We will take the fermions in the CFT to be anti-periodic on the circle S1SS, which

is usually referred to as the Scherk–Schwarz (SS) circle. The anti-periodic boundary condition is

required for the existence of a spin structure on bulk manifolds whose SS circle shrinks to zero

size, such as the AdS-soliton solution [41]. Since we wish to use AdS/CFT to study thermal field

theories, we will work with the Euclidean section t D �i � . The Euclidean time � is periodic

with � � � C ˇ, where the period ˇ is the inverse temperature. Therefore, in this chapter,

we consider .D C 1/-dimensional asymptotically locally AdS spaces whose boundary metric is

RD�2�S1
ˇ
�S1SS. Since we will only address static configurations here, working in the Euclidean

section does not make any practical difference at the level of the numerical construction.

Within this class of geometries, it has been conjectured that the so-called AdS soliton [41, 91] is

the actual ground state [91]:

ds2soliton D
`2

z2

�
d�2 C

1

f .z/
dz2 C dx2D�2 C f .z/ d�

2

�
; f .z/ D 1 �

�
z

z0

�D
; (4.1)

where dx2D�2 D
PD�2
iD1 dx

i dxi is the flat metric on RD�2. The space-time (4.1) is smooth and
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complete if and only if the period of the SS circle is given by

�� D
4� z0

D
� L : (4.2)

Near z D z0 the metric (4.1) approaches the flat metric on RD�2 � S1
ˇ
� R2 and therefore the

global topology of the space-time is S1
ˇ
�RD . This shrinking of the SS circle in the bulk smoothly

cuts off the geometry in the IR, leading to a mass gap and confinement [41]. Note that in (4.1) the

period of the Euclidean time circle can be arbitrary. Thus, from the point of view of the canonical

ensemble, the AdS-soliton phase (4.1) exists at all temperatures.

By exchanging the thermal and the SS circles (i.e. � $ � ) in (4.1), we can immediately write

down another solution to the Einstein equations obeying the same boundary conditions:

ds2brane D
`2

z2

�
fˇ .z/ d�2 C

1

fˇ .z/
dz2 C dx2 C d�2

�
; fˇ .z/ D 1 �

�
z

zh

�D
; (4.3)

This is the well-known planar Schwarzschild–AdS black hole. In this solution, the Euclidean time

circle is contractible in the bulk, and the regularity of the geometry (4.3) at z D zh fixes the

temperature as a function of the IR cutoff:

ˇ D
4� zh

D
: (4.4)

Note that in this case the SS circle is non-contractible and hence the period of � can be arbitrary.

There is yet another classical solution to the Einstein equations obeying these boundary conditions,

namely thermal AdS, which is simply pure Poincaré–AdS space-time with both � and � suitably

identified. However, the free energy of this saddle point is always greater than the free energies

of the other saddles (the AdS-soliton and the planar Schwarzschild-AdS black hole). Therefore,

thermal AdS never dominates the canonical ensemble and thus we ignore it from now on.

In this chapter we are interested in studying the finite temperature phases in SS–AdS. By comparing

thermodynamic quantities, in particular the free energy, one can determine which is the dominant

phase at a given temperature. It turns out that at temperatures T < 1
L
, the AdS-soliton has the

lowest free energy and is therefore the dominant phase. By contrast, at temperatures T > 1
L
the

planar black hole dominates the thermal ensemble, and at T D Td D
1
L

there is a first order
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confinement/deconfinement phase transition. Given the symmetry between the � and � circles in

the AdS-soliton and planar black hole geometries, it is unsurprising that the phase transition occurs

precisely when the sizes of these two circles become equal. In fact, at T D Td , (4.1) and (4.3)

are symmetric under exchange of the � and � circles. This led the authors of [42] to construct

numerically a domain wall solution at temperature T D Td that interpolates between the confined

and deconfined regions. The wall has thickness � L, since at T D Td the thermal scale and the

scale of the mass gap coincide. One can also measure the tension of the wall �d�1 in the field

theory, which turns out to be positive. We will return to this point when we analyse the physics of

plasma balls in Section 4.3.3.

The existence of this domain wall solution led the authors of [42] to conjecture the existence

of finite size black holes localized in the IR region of the geometry. From the perspective of

the dual CFT, these black holes would correspond to bubbles of deconfined plasma within the

confining vacuum. More precisely, [42] conjectured that generic confining backgrounds should

host a one-parameter family of black holes, labeled by a mass, which are spherically symmetric in

the p D D � 2 non-compact spatial dimensions, and which satisfy the following properties:

1. The radius of these black holes in p dimensions scales with the mass like m
1
p .

2. Away from the edge in the p non-compact dimensions, the geometry of these black holes

approximate the black brane at T D Td .).

3. In the vicinity of the edge, these black holes reduce to a domain wall, which interpolates

between a black brane at Td and the AdS soliton.

In this chapter we will provide strong evidence that such black holes do exist by numerically

constructing them. Moreover, by extracting some of their physical properties we will be able to

test certain conjectures put forward in [42].

Before moving on to describe the details of our numerical construction we will outline some

conventions. Unless otherwise stated, we will set the AdS radius ` to one. In order to study the

thermal phases in SS–AdS we first recall that by conformal invariance only the dimensionless ratio
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ˇ=L is physical. It is therefore convenient to fix the scale by setting

z0 D 1 ) L D
4�

D
; (4.5)

and then vary the inverse temperature ˇ. As such, the deconfinement temperature in our units is

Td D
D
4�

.

4.2.2 Numerical details

To construct these black holes numerically, we use the Einstein–DeTurck method as described

in Section 2.2. Ref. [48] showed that all solutions to (2.8) are necessarily Einstein for static

space-times that are asymptotically flat, AdS or Kaluza–Klein, and whose boundary conditions are

compatible with �a vanishing at the boundaries @M of the manifold. For the problem we consider

in this chapter, these conditions are met, and therefore solving (2.8) is equivalent to solving the

Einstein equations.

We seek finite size black holes which are asymptotically SS–AdS, and which are localized in the

IR of the geometry. This can be thought of as finite energy (as opposed to finite energy density)

excitations about the AdS soliton background. For simplicity, we consider only static black holes.

The AdS soliton is the lowest energy state in the class of metrics with boundary geometry RD�2�

S1
ˇ
� S1SS [91]. Since the global topology of the spatial sections of the background is RD , one

expects that localized black holes in the bulk should exist. These would be static black holes

that are asymptotically SS–AdS, and have a horizon with SD�1 spatial topology. Indeed, in the

limit in which the black hole is much smaller than the AdS radius and the SS circle radius at

infinity, one would expect such solutions to be well-approximated by the standard asymptotically

flat Schwarzschild black hole. In §4.3.1, we will show that this intuition is indeed correct. From

the dual CFT perspective, these black holes correspond to states that are localized on the RD�2

part of the boundary geometry, and not on the S1SS, as this is a contractible circle in the bulk. For

simplicity, we restrict ourselves to bulk space-times which are rotationally symmetric from the

point of view of the boundary, in the sense that they preserve the SO.D � 2/ � U.1/SS symmetry

of the spatial RD�2 � S1SS flat boundary metric. From the perspective of the CFT, these black
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holes should correspond to the plasma balls considered in [42]; i.e., rotationally symmetric balls

of deconfined plasma sitting in the confining vacuum.

Metric ansatz and boundary conditions

It is very difficult to construct a single coordinate system that is adapted to the entire geometry

under our symmetry assumptions. We work around this difficulty by instead using two coordinate

charts: one adapted to the asymptotic region far from the black hole and the other adapted to the

near-horizon region. This approach was first used successfully in the numerical construction of

5D localized Kaluza–Klein black holes [45].

In the region far from the bulk black hole, the space-time should approach the AdS soliton metric

(4.1). Since we are interested in preserving the spatial SO.d � 2/ � U.1/SS symmetry of the

boundary metric, we rewrite (4.1) to make these symmetries manifest as

ds2soliton D
1

z2

�
d�2 C

1

f .z/
dz2 C d�2 C �2 d�2.D�3/ C f .z/ d�

2

�
; (4.6)

where f .z/ has already been defined. For computational purposes, we find it convenient to

introduce new compact coordinates .x; y/,

z D 1 � y2 ; � D
kx x

1 � x2
; (4.7)

where kx is a freely adjustable parameter that allows us to stretch the � coordinate. With these

co-ordinates, we can bring the asymptotic region �!1 in to a finite coordinate distance x D 1.

In terms of these new coordinates, the AdS soliton metric becomes,

ds2soliton D
1

.1 � y2/

 
d�2 C

4 z20
Nf .y/

dy2 C
k2x.1C x

2/2

.1 � x2/4
dx2 C

k2x x
2

.1 � x2/2
d�2.D�3/ C Nf .y/ d�

2

!
;

(4.8)

where we have defined Nf .y/ via f .y/ D y2 Nf .y/. We can now write down the ansatz for the
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metric in the outer region:

ds2outer D
1

.1 � y2/2

 
T d�2 C

4 y2 Nf .y/ S

D2
d�2 C

k2x x
2R

.1 � x2/2
d�2.D�3/

C
k2x.1C x

2/2A

.1 � x2/4
dx2 C

4B

Nf .y/
dy2 �

2 kx .1C x
2/ F

.1 � x2/2.1 � y2/
dx dy

!
:

(4.9)

Here, the functions fT; R; S; A; B; F g are our unknowns and they depend on both x and y. In

these coordinates, x D 0 and y D 0 correspond to the fixed point sets of the SO.D�2/ symmetry

and the U.1/SS symmetry respectively. Regularity at these axes requires that all functions satisfy

a Neumann condition there, except for F , which must satisfy a Dirichlet boundary condition. To

avoid conical singularities at x D 0 we must also impose A D R; similarly, the avoidance of

conical singularities at y D 0 requires that B D S there. The boundary x D 1 is an asymptotic

end, at which the space-time should approach the AdS soliton metric (4.8). Therefore, we impose

Dirichlet boundary conditions there: T D R D S D A D B D 1, F D 0. Similarly, y D 1 is

the boundary of AdS and we impose Dirichlet boundary conditions there as before. Recall that by

varying the norm of the Euclidean time circle at the boundary we can change the temperature of

the bulk black hole. We will make use of this in our construction to efficiently explore the branch

of solutions. Finally, note that (4.9) is not adapted to describe the horizon in the sense that in

these .x; y/ coordinates the horizon does not lie at a constant value of either of them. Therefore,

in order to avoid unnecessary difficulties when dealing with horizons in non-adapted coordinates,

we ensure that the domain covered by (4.9) does not contain horizons. We will return to this point

in Section 4.2.2, when we describe our computational domain.

In the region near the horizon, the space-time should approach the near-horizon region of a

topologically spherical black hole. We expect that for small plasma balls, the corresponding bulk

black holes should approximate the asymptotically flat, static and round black holes. The geometry

should therefore be close to spherical symmetry in the full .DC 1/-dimensional sense. For larger

plasma balls, the presence of a non-zero cosmological constant and the non-trivial topology of the

IR bottom of the geometry should become significant. The black holes should therefore be highly

deformed from spherical symmetry. It is clearly desirable to have an ansatz which can be adapted
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to suit each of these two regimes. To achieve this, we write the near-horizon ansatz as

ds2inner D
1

.1 � r2/2

�
r2 g.r/ T 0 d�2 C r20

�
.1 � a2/2R0 d�2.D�3/ C a

2.2 � a2/ S 0 d�2
�

C
4 r20 A

0

g.r/
dr2 C

4 r20 B
0

2 � a2
da2 C 2 r F 0 dr da

�
:

(4.10)

where g.r/ is a freely specifiable function. The functions fT 0; R0; S 0; A0; B 0; F 0g are our

unknowns. The radial coordinate r in (4.10) ranges from r D 0 (the horizon) up to some r D router

that we can in principle freely choose. In practice, rout can neither be too large nor too small,

and we find that rout ' 0:6 works well. In our calculations, we choose g.r/ so that the near-

horizon geometry (4.10) coincides with the asymptotically AdS Schwarzschild black hole when

T 0 D R0 D S 0 D A0 D B 0 D 1 and F 0 D 0. Regularity at the horizon requires that all

functions satisfy the Neumann condition there. In addition, we must impose T 0 D A0 to ensure

that the space-time metric and the reference metric have the same surface gravity. Here, r0 is a

dimensionless parameter related to the surface gravity by

�2 D
g.0/2

4 r20
: (4.11)

a is an angular coordinate, whose range is 0 � a � 1. At a D 0 the SS circle shrinks to zero

and regularity requires that all functions satisfy the Neumann condition there except for F 0, which

must vanish. To avoid conical singularities we also impose B 0 D S 0. Similarly, at a D 1 it is the

.d � 3/-sphere that shrinks to zero size; regularity requires that all functions satisfy a Neumann

boundary condition there and that F 0 D 0. Absence of conical singularities further imposes

B 0 D R0 at a D 1.

Computational domain and reference metric

In our construction, the far region coordinates .x; y/ and the near region coordinates .r; a/ are

simply related by

x D r .1 � a2/ ; y D r a
p

2 � a2 : (4.12)

Note that by construction the range of the far region coordinates is 0 � fx ; yg � 1. This condition

limits the range of r in the inner region patch. In terms of the far region .x; y/ coordinates, the
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Figure 4.1: Computational domain. The blue dots correspond to grid points in the far region patch,
while the red dots are grid points in the near region patch, expressed in the far region coordinates.
The larger dots indicate boundary points whose values are obtained by interpolation of the metric
functions in the other patch.

horizon .r D 0/ appears to be point-like, but this is only a coordinate artefact.

We solve (2.8) numerically using sixth-order finite differences and Newton’s method. One advan-

tage of using finite differences is that we can cover our domain by two simple patches. Figure 4.1

displays our computational domain and shows the patches: the far patch (in blue) and the near

patch (in red). As this figure indicates, the two coordinate charts overlap in a certain region; by

appealing to the uniqueness of the solution in the whole domain, we can use this overlapping region

to transfer information between the values of the metric functions in the two patches. Although in

principle the size of the overlapping region is arbitrary, in practice we found that a relatively small

overlap between the patches, as in Figure 4.1, worked best. Function values on the interpolation

boundary of the overlapping region (the points indicated by larger dots in Figure 4.1) are obtained
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by interpolating values taken from the other patch. More precisely, at each point p on the inter-

polation boundary, we choose in the other patch a 6x6 square of points whose centre is closest to

p. We can uniquely fit a local polynomial of fifth degree to the six chosen points in each grid

direction from which we can read off approximate values for the functions at p. Although this high

order interpolation is still likely to introduce a local error with a lower order convergence than that

of our differentiation scheme, we have not observed a loss of convergence order within the range

of resolutions employed. The resolutions used appear to be sufficient for extracting the physical

quantities of interest.

In order to solve (2.8), we need to provide a global reference metric in the space-time manifold

as part of the gauge fixing procedure. Following [45], we achieve this by a simple interpolation

between the near-horizon geometry and the AdS soliton metric (4.8):

Ng�� dx� dx� D
��
1 � I.r I dmin; dmax/

�
Nginner�� C I.r I dmin; dmax// Ng

outer
��

�
dx� dx� ; (4.13)

where we have used the interpolation function

I.r I dmin; dmax/ D

8̂̂̂<̂
ˆ̂:

0 ; r � dmin

1
2
�
1
2
tanh

h
cot

�
�
�
1C dmax�r

dmax�dmin

��i
; dmin < r < dmax

1 ; dmax � r

(4.14)

anddmin, dmax are freely adjustable parameters. These parameters control the size of the overlapping

region between the near-horizon geometry and the AdS-soliton metric. In our calculations we

typically used dmin D 0:2 and dmax D 0:9. Note that (4.14) is a smooth compactly supported

function; this is useful to ensure that the reference metric (4.13) satisfies our boundary conditions

in all regions. In (4.13), Ngouter denotes the AdS soliton metric, which can be obtained from (4.9)

by setting T D R D S D A D B D 1, F D 0; similarly, Nginner denotes the near-horizon black

hole metric and is obtained from (4.10) by setting T 0 D R0 D S 0 D A0 D B 0 D 1, F 0 D 0.

As conjectured in [42], and as we confirm here, there exists a unique branch of plasma balls labelled

by temperature. As such, we can explore the branch of solutions by varying the parameter r0 in

(4.10), since it controls the surface gravity � of the black hole. Crucially, we cannot simply use

the function g.r/ from the global Schwarzschild–AdS black hole metric, as the variation of r0
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will only allow us to explore a finite range of temperatures that may not include the deconfinement

temperature. This is because the global Schwarzschild–AdS black hole branch of solutions has

a minimum temperature which is not necessarily below the deconfinement temperature. We can

overcome this difficulty by introducing another parameter corresponding to the value of T at the

boundary, T
ˇ̌
yD1
D T0. Changing T0 corresponds to changing the norm of the Euclidean time

circle at the boundary, which in turn implies that the inverse temperature is modified as

ˇ D
2�
p
T0

�
: (4.15)

Note that we must also set T D T0 on the AdS soliton end of the geometry, at x D 1.

To generate the data presented in the next section, we used 73852 grid points (equivalent to a

resolution of 175 � 275 in the inner patch and 175 � 175 in the outer patch). The error in

our numerical solution can be estimated by considering the maximum magnitude of the scalar

1C R= ŒD .D C 1/� on the grid, which suggests a relative error between 0.0001% and 0.01% for

medium-sized plasma balls. Another useful measure of error is the maximum norm of the DeTurck

vector
p
�a�a, which was found to have about the same order of magnitude as the Ricci scalar

above. The highly deformed geometry of larger plasma balls naturally induces larger errors, and

our numerical code typically fails when the error is estimated to be on the order of 1%.

4.3 Results

This section presents our main results. §4.3.1 characterizes the plasma ball geometry as we move

along the family of solutions. In §4.3.2, we go on to study temporal Wilson loops, which are

probes of confinement/deconfinement in the background of the plasma balls. Finally, in §4.3.3 we

provide our results for the stress tensor of the dual field theory.

4.3.1 Characterizing the geometry of plasma balls

In this subsection, we characterize the horizon geometry of plasma balls. For small plasma

balls (i.e. those at high temperatures), the dual black holes are much smaller than the radius of
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Figure 4.2: Plasma ball horizons can be characterized by two quantities: the radial extent RIR
(black) of the spatial S2 along the IR bottom, and the radiusRSS (red) of the SS circle at the origin
of the non-compact spatial dimensions. Here we plot these two quantities as functions of the scaled
inverse temperature.

AdS and the size of the SS circle. As such, they look approximately like the asymptotically flat

Schwarzschild solution, and the geometry of the spatial cross-sections of the horizon is roughly that

of a round sphere. In the opposite limit, approaching the deconfinement temperature, plasma balls

approaches the domain wall solutions of [42]. Therefore, we expect that the horizon will have finite

extent in the SS direction at the IR bottom, while its size along the IR floor will diverge. Hence,

for large plasma balls, the horizon of the dual black holes should look like a pancake extending

along the IR bottom of the space-time.

To study the actual horizon shape, we can consider the induced metric on the spatial cross sections

of the horizon:

ds2H D r
2
0

�
.1 � a2/2R0 d�2.D�3/ C a

2.2 � a2/ S 0 d�2 C
4B 0

2 � a2
da2

�
; (4.16)

where the various functions are evaluated at r D 0 (the horizon). Recall that the topology of the

horizon is SD�1; we can measure the deformation of the horizon sphere by comparing the size of
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the SS circle at the a D 1 equator and the size of the round SD�3 at the other equator, a D 0:

RSS D r0
p
S 0
ˇ̌
rD0;aD1

; RIR D r0
p
R0
ˇ̌
rD0;aD0

: (4.17)

For a round sphere, these two radii should be approximately equal, whereas for a pancaked black

hole we should have RIR � RSS. Figure 4.2 displays these radii in the 5D case, measured in units

of the AdS radius and plotted as a function of the inverse temperature. As this figure shows, in

the high temperature limit both radii are equal to a very good approximation, and the black hole

in the bulk is small compared to the radius of AdS. This demonstrates that the geometry of the

horizon is indeed that of an approximately round sphere. As we lower the temperature toward the

deconfinement temperature, we see that RSS tends to saturate at a value of around 0.535. This

suggests that in the limit T ! Td , the extent of the horizon orthogonal to the IR bottom is finite.

On the other hand, the size of the horizon along the IR bottom of the geometry is measured by

RIR, which diverges at the deconfinement temperature. Of course, our expectation is that the bulk

geometry of the plasma ball should approach the black brane solution as T ! Td , where the SS

circle has constant size everywhere. Given our choice of parameters, this means that RSS should

approach 1=2 as T ! Td . While one might suspect that our ‘overshot’ value of 0.535 is indicative

of numerical error, our consideration of the dual stress tensor leads us to believe that this is not

the case. Instead, this apparent saturation in the value of RSS is actually a turning point beyond

which it will decrease to 1=2. More precisely, for the black brane family we know analytically

that the (subtracted) holographic energy density decreases monotonically as ˇ % ˇcrit. However,

in our solutions we find that the energy density at the centre of the plasma ball increases with ˇ

throughout the entire range for which our solution converged, in a similar fashion to RSS (see

Figure 4.7 in Section 4.3.3). For very large plasma balls the dependence on ˇ of the energy density

at the centre of the ball must become effectively brane-like, which implies the existence of a turning

point in this dependence as ˇ % ˇcrit. It seems reasonable to expect that a corresponding turning

point will exist in the RSS dependence as well.

In Figure 4.3 we plot the horizon area, AH , as a function of radial extent of the horizon along the

IR bottom, RIR, for 5D plasma balls. Notice the logarithmic scale of the x-axis in this plot. For

small values of RIR, the area of the horizon scales like R3IR, which is the expected behaviour for

a spherically symmetric, static 5D Schwarzschild black hole. On the other hand, for large plasma
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Figure 4.3: Horizon area AH as a function of RIR, the radial extent of the horizon along the
IR bottom, for 5D plasma balls. The red line shows the function AH D 2�2R3IR, which is
the scaling behaviour of a perfectly-S3 horizon. The green line shows the function AH D
2�2

�
R2IRRSS CRIRR

2
SS
�
, which is the scaling behaviour of a horizon that is only stretching in the

spatial S2 direction, while the SS circle maintains a constant size RSS � 1=2. As RIR ! 1 the
behaviour becomes effectively AH � R2IR.

balls, the horizon area scales like R2IR. This is the expected behaviour for a 5D black brane whose

horizon is infinitely extended in two directions while the third one is compact. Our results therefore

indicate that even though the plasma balls we have constructed are not parametrically much larger

than the radius of AdS, they already exhibit some of the expected behaviours of a black brane. In

fact, the Smarr relation in 5D implies that the mass of the large plasma balls scales with radius like

R2IR, just like the horizon area. Hence, our results confirm the predictions of [42]. We will provide

additional evidence from the analysis of the stress tensor of the dual CFT.

Finally, to obtain a better intuition about the actual geometry of the horizon, we embed the horizon

geometry (4.16), into Euclidean RD�1 � S1SS space,

ds2E D dX2 C dY 2 CX2 d�2.D�3/ C Y
2 d�2 : (4.18)
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Figure 4.4: Embeddings of the horizon geometry into Euclidean Rd�1 � S1SS, for 5D solutions at
ˇ=ˇcrit, roughly equally spaced between 0.2 and 0.9.

Figure 4.4 shows plots of Y vs. X for some of the solutions that we have constructed. As expected,

this demonstrates that small plasma balls appear to be round, while large plasma balls have a

pancake-like shape.

4.3.2 Wilson loops as a probe of confinement

The standard order parameter for deconfinement is the expectation value of aWilson loop wrapping

the Euclidean time circle:

hjtrW ji D
�ˇ̌̌̌
1

N
tr
�
P exp

�
i

I
C

A� d�
��ˇ̌̌̌�

; (4.19)

whereA� the gauge field, and ‘P exp’ denotes the path-ordered exponential. The temporal Wilson

loop measures the cost in free energy of perturbing the system by an external quark. If the system is

in a confining state, then the cost in free energy is infinite and hjtrW ji D 0, whereas in a deconfined

state, the cost in free energy is finite and the temporal Wilson loop has a finite expectation value

[41].

Refs. [95, 96] provide a prescription for calculating Wilson loops in AdS/CFT. According to this

prescription, one should consider the action of a classical string wrapping the Euclidean time circle

on the boundary in a contour C D P � S1
ˇ
, where P is a point in the transverse directions, and
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Figure 4.5: Expectation value of temporal Wilson loops, hjtrW ji, for different temperatures in the
5D bulk case. For temperatures closer to the deconfinement temperature, the black holes in the
bulk are larger and hence hjtrW ji is non-zero over a larger region of the boundary. The size of this
region provides an estimate of the actual size of the plasma ball.

smoothly extending into the bulk,

hjtrW ji � e�Sstring : (4.20)

This classical string action (i.e. the area of a minimal surface) diverges, and its divergence is

proportional to the length of the circumference C on the boundary. By subtracting the universal

infinite piece, we can define a regularised classical string action, which can be meaningfully

compared with the CFT predictions. It is this regularised area that we calculate below.

When the Euclidean time circle is non-contractible in the bulk, no classical string world-sheet

ending on C exists, and hence hjtrW ji ' 0 [41]. This is the expected result for the confining state,

whose bulk dual is the AdS soliton. On the other hand, if the Euclidean time circle is contractible,

then a minimal surface ending on C which smoothly caps off in the bulk does exist, and hence

hjtrW ji ¤ 0. This is the deconfined phase and its dual geometry is the black brane. For our
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plasma ball geometries, the Euclidean time circle is contractible in the bulk, because at any finite

temperature there is a finite size horizon sitting at the IR bottom of the geometry. Therefore, we

expect that a minimal surface ending on C should exist and so the temporal Wilson loop should

have a non-zero expectation value. Indeed, from the boundary CFT perspective, there is a finite

region of deconfined plasma and the temporal Wilson loop should be sensitive to it. Since hjtrW ji

is a probe of deconfinement, the expectation value of this operator should provide a measure of

the size of the deconfined region. In other words, if the size of the Wilson loop on the boundary

is much larger than the size of the deconfined region, then the corresponding expectation value

should be exponentially small. By contrast, if the size of the Wilson loop is of the same order as

the size of the deconfined region, then the Wilson loop should have a finite expectation value.

To see this, we consider temporal Wilson loops ending at some fixed value of the radial coordinate

x along the boundary (4.9). We therefore have C D x � S1
ˇ
for our Wilson loops. In Figure 4.5,

we display hjtrW ji as a function of the radial co-ordinate on the boundary, x, for plasma balls of

different sizes and therefore different temperatures. As the figure shows, when the size x of the

Wilson loop on the boundary is comparable to the size of the bulk horizon along the IR bottom,

the expectation value of the Wilson loop is non-zero. In fact, the typical size of a plasma ball can

be estimated by the value of x for which hjtrW ji has decayed by one e-fold with respect to the

corresponding value at the centre of the ball. The estimate we obtain using this simple method is

comparable to the size of the black hole along the IR bottom, RIR. Therefore, we conclude that the

expectation values of temporal Wilson loops offer a measure of the size of the deconfined region

on the boundary.

4.3.3 Dual stress tensor

In this final subsection, we study the vacuum expectation value of the stress tensor of the plasma

balls. Having constructed plasma ball solutions numerically, we extract the stress tensor using

standard holographic renormalization techniques [40].

The prescription of [40] normalises the stress tensor such that it vanishes when the bulk geometry

is AdS. The AdS soliton would therefore have a non-zero vacuum expectation value, which can

be interpreted as a Casimir energy. Since the AdS soliton is the lowest energy state obeying our
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boundary conditions [91], in the following analysis we subtract the stress tensor of the soliton, so

that the final stress tensor vanishes on the AdS soliton background. We obtain,

hT sub
ij i dx

i dxj D ceffD
�
�
t .D/.x/

T0
d�2 C s.D/.x/ d�2 C

k2x x
2 r.D/.x/

.1 � x2/2
d�2.D�3/

C
k2x.1C x

2/2

.1 � x2/4

 
t .D/.x/

T0
� s.D/.x/ � .D � 3/ r.D/.x/

!
dx2

�
:

(4.21)

where ceff is the effective central charge [90],

ceff D
`DC1

16� GDC1N

: (4.22)

Note that (4.21) is manifestly traceless. As usual, this follows from solving the bulk equations

of motion near the boundary. In (4.21), the functions t .D/.x/, s.D/.x/ and r.D/.x/ denote the

coefficients of the orderD terms in the near boundary expansions of T .x; y/, S.x; y/ andR.x; y/,

in the far-region metric (4.9) and in our working coordinates:

T .x; y/ D T0 C .1 � y
2/D t .D/.x/C : : :

S.x; y/ D 1C .1 � y2/D s.D/.x/C : : :

R.x; y/ D 1C .1 � y2/D r.D/.x/C : : :

(4.23)

We can extract these functions from our numerical solutions by fitting our data to this near boundary

behaviour. Of course, the functions are not independent; conservation of the stress energy tensor

imposes one differential constraint among them. As is well-known, the conservation of the dual

stress energy tensor is guaranteed by the bulk equations of motion. Therefore, we need not impose

this constraint, but we can use it to asses the numerical error in the stress energy tensor. In the data

below, we estimate the error to be less than 5%.

Figure 4.6 shows the various components of the stress tensor for a five-dimensional plasma ball

with temperature ˇ=ˇcrit D 0:90, as a function of the radial coordinate along the boundary x.

This particular plasma ball is quite large, with RIR=` D 1:35. Therefore, it is unsurprising that

the stress tensor exhibits features which are qualitatively similar to the stress tensor of the domain

wall solution ([42], see also [90]). In particular, at the centre of the ball, hT sub
�� i and hT

sub
��
i have

a similar magnitude and opposite sign. Note also that the components of the stress tensor along
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Figure 4.6: Components of the subtracted stress tensor for a 5D plasma ball with temperature
ˇ=ˇcrit D 0:90. This stress tensor shows some of the qualitative features of the stress tensor of the
domain wall solution [42]. In particular we find that the tension of the wall, measured by tangent
components of the stress tensor �hT��i, is positive.

the sphere directions (the tangential components) obey hT sub
��i < 0 throughout the boundary of the

ball, resulting in a positive tension.

Figure 4.7 displays the subtracted stress tensor components hT rri (red) and � hT �� i (blue). These

correspond to the radial pressure and the energy density at the centre of the plasma ball respectively.

The pale solid lines in Figure 4.7 show the same components of the stress tensor dual to a black

brane, at the same range of temperatures. As ˇ % ˇcrit, the plasma ball curve should essentially

behave like the black brane curve, and indeed we clearly observe a turning point in the radial

pressure toward the end of our available dataset. In order to see a turning point in the energy

density, it appears we would need to construct larger plasma balls. However, the fact that the dotted

blue curve must asymptote to the solid pale blue curve as ˇ % ˇcrit suggests that a turning point

in the energy density should exist. Our results also imply that for large, finite plasma balls, the

energy density at the centre of the ball is greater than the energy density for the black brane at the

deconfinement temperature; supporting the conjecture in [42].
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Figure 4.7: The subtracted stress tensor components hT rri (red) and � hT
�
� i (blue) at the centre

of the plasma ball, as a function of the inverse temperature ˇ=ˇcrit. Pale solid lines show the
corresponding components of the stress tensor dual to the black brane.

We can assess how close our large plasma balls are to the domain wall solution by investigating the

tension of the ball in more detail. [42] computed the tension in the domain wall limit and found,

�D�1 D CD; �c

�
L

2�

�2
C4 D 2:0 ; C5 D 1:7 ; (4.24)

where the constants C4;5 are determined numerically. For very large plasma balls of size �� L,

the interior of the ball should be well-described by the homogeneous deconfined plasma phase,

and in the vicinity of the edge these solutions should reduce to a domain wall. One can infer the

behaviour of these large plasma balls by balancing the pressure of the internal deconfined phase

with the tension of the wall, which yields

P D .D � 3/
�

�
: (4.25)

Since we know the pressure P of the deconfined phase as a function of the temperature, we can use

(4.25) to obtain the corrections to temperature above the deconfinement transition, as a function of
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the size � of the ball [90],

T D
1

L

�
1C

.D � 3/CD

.2�/2
L

�
CO

�
L2

�2

��
: (4.26)

Using this relation, we can then independently estimate the values of C4 and C5, for comparison

with the values reported in [42], by considering data from our largest plasma balls. Our best

estimates for these parameters are

C4 D 1:9 ; C5 D 1:8 : (4.27)

4.4 Summary

In this chapter, we numerically constructed localized spherical black hole solutions in 5D and 6D

in the confining background of the AdS soliton. From the dual CFT perspective, our solutions

correspond to localized balls of deconfined plasma surrounded by the confining vacuum. These

solutions are parametrized by temperature, and exist above the deconfinement temperature.

At temperatures that are much higher than the deconfinement temperature, these black holes are

small relative to the radius of AdS, and are approximately spherically symmetric. By contrast, as

the deconfinement temperature is approached, the extent of the horizon along the IR bottom of the

geometry grows without bound, and the horizon adopts a pancake-like shape. In the region near

the edges, these large black holes look like domain walls, similar to the one constructed in [42]

but at a different temperature. In the region far from the edges, the geometry of the space-time is

well-approximated by that of a homogeneous black brane at the corresponding temperature. As

[42] predicted, and as we have confirmed, these localized black holes have the unusual property that

in the infinite mass limit they have constant temperature (namely the deconfinement temperature).

The black holes we have constructed are thermodynamically unstable, since they have negative

specific heat (they become cooler as their mass increases). At the deconfinement temperature

their mass should become infinite. We have computed the spectrum of the Lichnerowicz operator

around our solutions, and we find that it has a single negative mode, with no zero modes appearing
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along the branch of solutions. This suggests that these black holes are classically stable under

perturbations that preserve the spatial symmetries of these backgrounds. However, in the full

quantum theory these black holes should be unstable to evaporation through the emission of

Hawking radiation. The absolute value of the negative mode becomes smaller as we approach the

deconfinement temperature; this makes it computationally challenging to construct very large black

holes, as the operator we must invert at each Newton step has a near-zero mode. Although we do

not address it here, it would be interesting to perform a detailed analysis of the quasi-normal mode

spectrum of these black holes, as it could provide insight into near-equilibrium plasma physics in

confining backgrounds. We have also computed temporal Wilson loops in the background of the

plasma balls, and have verified that their expectation value provides an estimate of the size of the

deconfined region.



Chapter 5

Black Rings in Global AdS

The work presented in this chapter was published as [97]. The paper was co-authored with Pau

Figueras. The numerical setup, computer code, and analysis are entirely my own work. The

majority of the numerical solutions produced are also my own work, however a small number of

data points were generated by Figueras.

5.1 Introduction

The study of equilibrium black holes in D � 5 has revealed that the physics of these objects

can be very different from that of their four-dimensional counterparts. In particular, there exist

black holes with a non-spherical horizon topology, such as black rings [14, 15, 98], black ringoids

[99], and regular multi-black hole spacetimes in vacuum [16, 17, 18, 19, 20], among others

[100, 101, 102, 103]. These types of black objects do not exist in D D 4, and thus they possess

fundamentally new physical properties. A review on this topic can be found in [104]. A natural

question to ask is whether these objects can also exist in asymptotically anti-de Sitter (AdS) space.

This question is further motivated by the gauge/gravity correspondence [24], according to which

new types of stationary black holes should correspond to new finite temperature phases of gauge

theories. Furthermore, AdS is a maximally symmetric space and, as such, can be regarded from a

mathematical perspective as being as fundamental as Minkowski space. The study of black holes

in AdS is therefore also an interesting question in its own right.

Through the AdS/CFT duality, one can look for new types of black holes by solving the equations
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of motion of the dual field in their hydrodynamic regime, in which they simplify considerably.

Using this approach, [105] looked for solutions to the Navier–Stokes equations on the Einstein

static universe, Rt � S
3, corresponding to rotating fluid configurations. However, they found only

stationary fluid configurations which are dual to known rotating spherical black hole solutions

in AdS [106, 43, 107]. Still, the assumption of AdS asymptotics also allows for more general

boundary conditions, such as Scherk–Schwarz compactifications of AdS. In these settings, [108]

constructed solutions to the relativistic Navier–Stokes equations corresponding to rotating plasma

balls and plasma rings; hence the authors were able to study the phase diagram of rotating black

holes in such spacetimes. Of course, this approach can only capture the physics of black holes that

admit a hydrodynamic limit, which is unfortunately not always the case.

This chapter concerns the numerical construction of stationary black rings in global AdS5. This

choice of dimensionality is particularly interesting from the point of view of the gauge/gravity

correspondence. These black rings will have horizons with topology S1 � S2. Techniques for

generating analytic solutions [26, 109, 110] that have been successful in a 5D asymptotically flat

(AF) setting do not seem to straightforwardly extend to AdS. Nevertheless, an approximate solution

for black rings in global AdS was given in [111].

In the AF setting, black rings are classified as either thin or fat, depending on the ratio between

the size of the horizon’s S1 (denoted RS1) and S2 (denoted RS2). By working in AdS, the AdS

radius ` provides yet another lengthscale which can influence the physics of black rings. In order

to take all three lengthscales into account, the following terminology was introduced in [111] to

classify black rings in AdS:

� Thin rings have RS2 � RS1 , while fat rings have RS2 & RS1 .

� Small rings have RS2 < `, while large rings have RS2 > `.

� Short rings have RS1 < `, while long rings have RS1 > `.

According to this classification, the approximate method of [111] is valid for rings which are

small and thin, regardless of whether they are short or long. Based on quantitative results for

thin rings and some educated guesses, [111] proposed a phase diagram of AdS black rings in
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the microcanonical ensemble which is qualitatively similar to the AF one, but with the angular

momentum compressed into the range J �M `.

By using numerical methods, we can access all AdS black rings: thin or fat, small or large, short or

long. This allows us to provide a complete phase diagram of 5D black rings in AdS. In particular,

we confirm that fat rings merge with the spherical black holes at a singular solution with zero

area, as in the AF case. This suggests that the pattern of connections between various stationary

black hole phases of different topologies conjectured in [111] is indeed correct in D � 6. One of

the main unanswered questions in [111] was whether rings that are both thin and large exist. We

address this question here and, quite confidently, find no evidence for such thin large rings.

The rest of this chapter is organised as follows. In §5.2 we describe our numerical construction

of black rings in AdS and in §5.3 we explain how we calculate various physical quantities, in

particular the mass, from our numerical solutions. In §5.4, we study the geometry of the horizon

of the AdS black rings, and in §5.5 we study the thermodynamics and produce phase diagrams for

the grand canonical and microcanonical ensembles. Finally, in §5.6, we extract the v.e.v. of the

stress tensors of the dual CFT and compare them with that of the spherical black holes.

Throughout this chapter, we use a tilde to denote quantities which have been nondimensionalised

with respect to the AdS radius `. In particular, we define the following quantities

QM WDM `�2 ; Q� WD � ` ; QAH WD AH `
�3 ; Q�H WD �H ` ; QJ WD J `�3: (5.1)

5.2 Numerical construction of AdS black rings

This section provides details of the method used to numerically construct black rings in global AdS.

We begin in §5.2.1 by discussing our choice of coordinates and the formulation of our spacetime

metric ansatz. We then proceed to explain our construction of the reference metric in §5.2.2,

followed by a description of our boundary conditions in §5.2.3. We conclude the section with

further technical details in §5.2.4
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5.2.1 Basic setup

Our goal is to construct black rings in 5D with the asymptotics of global AdS. These are stationary

black hole solutions to the vacuumEinstein equations with a negative cosmological constant, whose

spatial horizon topology is S1 � S2. For simplicity, we shall restrict ourselves to singly-spinning

black rings, i.e. those which are only rotating along the S1 direction. Our solutions are therefore

the AdS generalisation of the black rings of [14].

The isometry group of the AdS rings is the same as that of the AF rings, namely Rt � U.1/
2,

corresponding to time translations and rotations on the two 2-planes. In the AF case, the Einstein

equations restricted to spacetimes with this isometry group are completely integrable. This makes

it possible to explicitly construct all solutions within this class using an algebraic procedure

[26, 109, 110]. Unfortunately, it is not currently known whether this integrability persists in the

presence of a cosmological constant. Therefore, we shall rely here on numerical methods to

construct our solutions.

The black ring metric can be written in a C -metric type of coordinates [14, 112, 98], which are

well-adapted to its horizon geometry. Specifically, they foliate spatial slices of the spacetime with

surfaces of ring-like topology. Similar coordinates can be used in AdS [113]. The main drawback

of this approach is that spatial infinity is represented by a single point in this coordinate system. In

order to use this in numerical work, it would be necessary to first analyse the singular behaviour of

the various metric components near the boundary of AdS. Furthermore, spatial infinity would be

very poorly resolved when discretised, and this could become an issue when it comes to extracting

the stress tensor of the dual CFT. For this work, we instead cover the spacetime with two coordinate

patches: one is adapted to the “outer” region near the boundary of AdS, whilst the other is adapted

to the “inner” region near the horizon of the ring.

The geometry near the horizon of the AdS black ring can be treated as a deformation of the

near-horizon geometry of the AF black ring. This deformation will not be small in general, but at

very high temperatures, where the rings are much smaller than the AdS radius, we can expect the

near-horizon geometry to be very close to that of AF rings. Therefore, we build our inner region
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ansatz by “dressing" the AF black ring metric:

ds2inner D� T0 e
T dt2 CX0 e

X dx2 C Y0 e
Y.dy �W dx/2

CU0 e
U d�2 C V0 e

V .d �Z0 .1CZ/ dt /2 ;
(5.2)

where F WD .T ;X;Y;U;V ;W ;Z/ are unknown functions of .x; y/, and F0 WD .T0;X0;Y0;

U0;V0;Z0/ are functions which are analytically prescribed so that we recover the AF black ring

line element when F � 0. In order to normalise the coordinate ranges and impose boundary

conditions, we transform the ring-like .x; y/ coordinates from the ones described in [112, 98] to

x ! cos.� x/ ; y ! �
1C � C .1 � y/ cos.� y/

2 �
: (5.3)

The ranges of these transformed coordinates then become 0 � fx; yg � 1 in this near horizon

region. Here � is the dimensionless parameter introduced in [112], which is related to the ring’s

surface gravity � and horizon angular velocity �H by

� D
�Hq

4 �2 C�2H

: (5.4)

For the AF black ring the range of this parameter is 0 < � < 1. However, in AdS we found that the

lower bound increases as the temperature lowers (see §5.5.1). Writing down the AF ring in these

new .x; y/ coordinates allows us to identify the expressions for the functions F0.

Near the conformal boundary, we expect the black ring spacetime to be a small deformation of

pure global AdS. Therefore, the metric in the outer region is written in a form which is manifestly

asymptotically AdS. The most general one which is closed under diffeomorphisms preserving the

Rt � U.1/
2 isometry is given by

ds2outer D�
�
1C �2R2

�
eT dt2 C

eX

1C �2R2
.dR �W da/2

CR2
h
�2

4
eY da2 C cos2

�
� a
2

�
eU d�2 C sin2

�
� a
2

�
eV .d �Z0 .1CZ/ dt /2

i
;

(5.5)

where� WD `�1 is the inverse of theAdS radius,F WD .T;X; Y; U; V;W;Z/ are unknown functions

of .R; a/, and Z0 is identical to the function that appeared in (5.2) but transformed into .R; a/

coordinates via a relation which we explain in due course. We use � instead of ` as a parameter in
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our ansatz to allow us to easily connect to AF rings by setting � D 0, rather than trying to make `

very large.

In order to cover the AdS boundary, we define a compact radial coordinate r via

R D
r

1 � r2=k2
; (5.6)

where k is some constant lengthscale. The ranges of these coordinates are rmin � r � k and

0 � a � 1, where rmin is a parameter that sets the location where we switch between the outer and

inner region patches, which is an arbitrary gauge choice within the limits described below. For this

work, we take rmin � k=2.

The outer region coordinates .r; a/ are related to the inner region ones .x; y/ by a simple coordinate

transformation,

x D .1 � r=k/ cos
�
� a
2

�
; y D 1 � .1 � r=k/ sin

�
� a
2

�
: (5.7)

The transformation becomes singular when r D 0, which sets a lower bound on the parameter

rmin. We choose to fix k D 1 throughout, thereby setting the scale for the solutions. A graphical

depiction of the two coordinate patches is given in Figure 5.1.

5.2.2 Reference metric

We follow [45] and construct a suitable reference metric Ng on the manifold M by considering

Ng�� dx� dx� D Œ1 � I. Or/� Ngouter�� dx� dx� C I. Or/ Nginner�� dx� dx� ; (5.8)

where Ngouter�� is obtained from (5.5) and Nginner�� is obtained from (5.2) after setting F � 0 � F . I. Or/

is an interpolating function which is a function of a suitably defined coordinate Or satisfying Or D 0

at the horizon and Or D 1 at infinity. The function I. Or/ must be smooth and must lie within the

range 0 � I. Or/ � 1, with equality only at the endpoints. We found that the system behaves better if

we further require I. Or/ to be monotonic. Previous works, e.g. [45], used an interpolating function

with a compact support which is limited to a subregion that did not extend to the boundaries.
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Figure 5.1: Our computational grid, shown in the inner (left) and outer (right) region coordinates.
Orange dots show grid points where the inner patch ansatz (5.2) is used. Pink dots show grid points
where the outer patch ansatz (5.5) is used. Green dots show grid points where boundary conditions
are imposed, and blue dots show grid points where function values are obtained by interpolating
data from the other patch. Note that these diagrams are only illustrative, as the grid resolution used
for actual calculations is significantly higher than shown above.

However, such a function tends to have large derivatives which are inevitably inherited by the

solutions. For the AdS black ring setup, we found that this proved problematic for the numerics.

Instead, we use an interpolation function which is supported near the boundaries, but whose normal

derivatives vanish up to at least fourth order, both at the horizon and at the boundary of AdS. This

still ensures that the reference metric (5.8) satisfies all the boundary conditions without introducing

excessively large gradients into various functions. To construct such an interpolating function, we

exploit the fact that the .x; y/ coordinates (5.3) can in fact cover our entire computational domain.

This allows us to globally define a non-compact “radial” coordinate, centered at the AdS boundary

.x; y/ D .0; 1/, by

OR WD

s� x

1 � x

�2
C

�
1 � y

y

�2
: (5.9)

OR can be compactified to obtain Or 2 Œ0; 1� via

Or WD
1

1C OR
: (5.10)
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Figure 5.2: The interpolating function I. Or/ in terms of the inner region coordinates .x; y/. This is
a smooth function defined everywhere, but it is not compactly supported.

Crucially, this gives us y � Or as Or ! 0 in the inner patch, and r � Or as Or ! 1 in the outer patch.

In terms of Or , we may now define our interpolating function as

I. Or/ WD 1 � O%4
�
6 � 8 O%C 3 O%2

�2 where O% WD sin2
�
� Or

2

�
: (5.11)

Note that, by defining I in terms of O% rather than Or , we ensure that all even-order normal derivatives

of I vanish at y D 0 and r D 1. We depict our choice of interpolating function in Figure 5.2.

5.2.3 Boundary conditions

The boundary conditions imposed on our unknown functions are detailed below. At all boundaries,

the reference metric Ng must also satisfy the same conditions. Our construction above ensures that

this is the case.

Near region patch:

� Horizon .y D 0/: regularity of the spacetime metric requires that we impose a Neumann

boundary condition @yF
ˇ̌
yD0
D 0 on all functions, except for W which has to vanish. To
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ensure that the temperature and angular velocity of the AdS rings are the same as those of

the AF ring, we further impose Y D T and Z D 0 on this boundary.

� S1 axis .y D 1/: regularity of the spacetime metric requires that we impose a Neumann

boundary condition @yF
ˇ̌
yD1
D 0 on all functions, except for W which has to vanish. To

avoid conical singularities, we further require Y D V on this boundary.

� S2 axes (x D 0 and x D 1): again, regularity of the spacetime metric requires that we

impose a Neumann boundary condition @xF
ˇ̌
xD0;1

D 0 on all functions, except for W

which has to vanish. To avoid conical singularities, we further require X D U on these

boundaries.

� Interpolation boundary (blue dots in Fig. 5.1 (left)): the value of each function is deter-

mined by first interpolating the values of the functions in the outer patch, then applying the

coordinate transformations.

Far region patch:

� Spacelike infinity .r D 1/: our ansatz is manifestly asymptotically AdS, provided that we

impose a Dirichlet boundary condition F D 0 on all functions.

� S3 axes (a D 0 and a D 1): regularity of the spacetime metric requires that we impose a

Neumann boundary condition @aF
ˇ̌
aD0;1

D 0 on all functions, except for W which has to

vanish. To avoid conical singularities, we further require Y D V at a D 0 and Y D U at

a D 1.

� Interpolation boundary (blue dots in Fig. 5.1 (right)): the value of each function is deter-

mined by first interpolating the values of the functions in the inner patch, then applying the

coordinate transformations.

These boundary conditions are compatible with the DeTurck vector, � , vanishing everywhere on

the manifold M. However, for stationary spacetimes we do not have a result analogous to that in

[48], so we must check a posteriori that the components of � do indeed vanish to within numerical

tolerance.
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5.2.4 Technical details

For the data presented in this chapter, the outer patch consists of 320� 320 grid points, equispaced

in both 0:49 � r � 1 and 0 � a � 1. The inner patch is constructed by taking a 320 � 320 grid

of points equispaced in both 0 � x � 1 and 0 � y � 1, then removing points corresponding

to r > 0:51. We use either fourth- or sixth-order centered difference stencils to discretise the

Einstein–DeTurck equations. The resulting non-linear algebraic system is then solved using the

Newton line-search method with adaptive step size. We used MUMPS [114, 115] or Intel MKL

PARDISO [116, 117] to solve the linear system at each Newton step. The code was based on the

nonlinear solver framework (SNES) provided by PETSc [118, 119].

We bootstrap our solution procedure by starting at a high temperature, Q� � 1, and a “friendly”

angular velocity, Q�H � 2, where we simply use the reference metric as the initial guess to seed

the Newton solver. The Q� � 1 condition ensures that the effects of the AdS background are small,

and so the reference metric, which is built from analytically-known AF solutions, is already almost

Einstein in both the near-horizon and near-boundary regions. Meanwhile, the Q�H � 2 condition

ensures that the geometry interpolating these two regions is not too highly deformed. These two

properties combine to give us the best chance of obtaining convergence from Newton’s method.

Once we have obtained a solution in this somewhat uninteresting regime, we can use it as the initial

guess to seed the Newton solver at less favourable parameters. In this way, we can progressively

move away from asymptotic flatness towards the more extreme corners of the parameter space.

5.3 Calculating physical quantities

We now move on to discuss the method that we used to calculate various physical quantities from

our solutions. In particular, we chose a rather nontrivial process to calculate the rings’ mass, in

order to ensure that we obtained an accurate answer.
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5.3.1 Horizon area

Our boundary condition manifestly makes the hypersurface H WD fxa 2M j y D 0g a Killing

horizon of @t ��H @ . To obtain the horizon’s area, we simply need to integrate the volume form

pulled back onto a constant-t slice ofH , thus

AH D

Z
H jt

dS
q

det g innerjt;yD0

D 4�2
Z 1

0

dx
p

X0.x; 0/R0.x; 0/S0.x; 0/ e
1
2
ŒX.x;0/CR.x;0/CS.x;0/� : (5.12)

We perform the integration using Mathematica’s NIntegrate feature, where the unknown func-

tions are first interpolated using polynomial splines.

5.3.2 Angular momentum

Ref. [120] showed that the usual AF Komar integral for angular momentum also gives the correct

result in AdS asymptotics. Therefore, we calculate

J D
1

16�

Z
†

? d
�
@ 
�
[ ; (5.13)

where † is any closed spacelike 3-surface bounding a region containing the horizon. The full

expression for the integrand is complicated and unenlightening so wewill not reproduce it here. We

choose† to reside completely in the outer patch at constant r � rJ , where rJ can be any number.

In practice, we found that our result varies by less than 1% over the range 0:75 < rJ < 0:95.

5.3.3 Mass

We found that the most reliable means of calculating the mass is through the first law of black hole

mechanics. In terms of nondimensional quantities this reads

d QM D
Q�

8�
d QAH C Q�H d QJ : (5.14)
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Since each of our data series are obtained by varying Q�H while keeping Q� fixed, we can write the

above as an ODE
d QM
d Q�H

D
d

d Q�H

 
Q� QAH

8�
C Q�H QJ

!
� QJ ; (5.15)

which can be integrated to give

QM. Q�H / D
Q� QAH . Q�H /

8�
C Q�H QJ . Q�H / �

Z Q�H
Q�0

d! QJ .!/C Qc1; (5.16)

where Q�0 is some chosen limit of integration, and Qc1 is some constant which depends only on Q�.

Clearly, the formula (5.16) is not of much use unless we also have a way to fix Qc1 for each Q�. One

way to do this is by integrating (5.14) over a different data series which is continuously connected

to an asymptotically flat solution, where we can then use the analytically known mass to fix the

constant. To be more precise, we reintroduce explicit factors of the inverse AdS radius � WD `�1

into the first law, thus

d
�
�2M

�
D
.�=�/

8�
d
�
�3AH

�
C .�H=�/ d

�
�3 J

�
(5.17)

D d
�
�2
�
� AH

8�
C�HJ

��
C �

�
� AH

8�
C�HJ

�
: (5.18)

If we now keep � and � fixed while allowing � to vary, this turns into an ODE which we can

integrate with respect to �

M.�/ D

�
� AH .�/

8�
C�HJ.�/

�
C

1

�2

Z �

0

d�0
�
�0
�
� AH .�

0/

8�
C�HJ.�

0/

��
C c2: (5.19)

To fix the constant c2, note that as �! 0 the integral term becomes

1

�2

Z �

0

d�0
�
�0
�
� AH

8�
C�HJ

�
�D0

CO.�02/

�
�
1

2

�
� AH

8�
C�HJ

�
�D0

: (5.20)

The AF mass is therefore given by

M j�D0 D
3

2

�
� AH

8�
C�HJ

�
�D0

; (5.21)

where we have fixed c2 D 0 by identifying the above formula as nothing but the familiar Smarr

relation. Our mass calculation can thus be summarised as a two-step process:
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1. Produce a “mass calibration” series of numerical solutions at fixed � and �H , but over a

range of �. Calculate A and J for each point in the series, then use (5.19) to calculateM .

Here, we somewhat arbitrarily chose Q� D 0:4 and Q�H D 0:6. Note that, in order to calibrate

the mass at larger values of �, we had to increase both � and �H . This is not a problem,

provided that �H=� remains constant, as we can then divide all three parameters (�, �H ,

�) by the same number to restore constancy. Using this technique, we were able to fix the

mass at Q�H= Q� D 1:5 for temperatures down to Q� D 0:68.

2. For our “main” datasets at some fixed Q�, we can now use (5.16) to calculate the mass by

setting Q�0 D 1:5 Q� and Qc1 D
�
QM � Q�

QAH
8�
� Q�H QJ

�
Q�HD Q�0

, using the values obtained in

step 1.

We close this section by recalling that [121] proved that regular black hole solutions in AdS with

a single (positive) angular momentum satisfy a BPS bound:

J �M ` : (5.22)

The rotating spherical AdS black holes [106, 43, 107] and perturbative black rings [111] satisfy

this bound. Indeed, all of our numerical AdS black ring solutions also satisfy this bound. However,

since the black ring becomes singular as J !M `, the solutions that we havemanaged to construct

never get very close to saturating this limit.

5.4 Geometry

In this section we study the geometry of the spatial cross section of AdS black ring horizons.

Throughout, we refer to the size of the rings relative to the AdS radius `, using the terminology

defined in §5.1. For small and short black rings, either thin or fat, the horizon geometry is similar

to that of the AF black ring. Therefore, we shall not study the horizon geometry of those rings

any further. In what follows, we will describe the geometry of black rings which are either long

(RS1 > `) or large (RS2 > `). In addition, as noted in §5.1, we have not found any evidence that

long rings which are both thin and large exist; in other words, our results suggest that all long thin

rings are small.
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The induced metric on the spatial cross sections of the horizon is

ds2H D Rk.x/
2 d 2 CR?.x/2 d�2 CX0.x; 0/ e

X.x;0/ dx2 ; (5.23)

where Rk.x/ WD
p

S0.x; 0/ e
1
2

S.x;0/ and R?.x/ WD
p

R0.x; 0/ e
1
2

R.x;0/. To characterise the

geometry, it is useful to consider the radii of the rotation circle, RS1 , and of the transverse two-

sphere, RS2 . However, unless the ring is very thin, these are rather ambiguously defined, because

the S2 can be highly distorted. It is possible to come up with some reasonable characterisations of

these radii that can provide some information about the actual geometry of the horizon. Here we

follow [122], and define the inner and outer radii of the horizon S1 as

R
(inner)
S1

WD Rk
ˇ̌
xD1

; R
(outer)
S1

WD Rk
ˇ̌
xD0

: (5.24)

There are various ways to characterise the size and shape of the S2. One option is to define the S2

radius as the radius of its equator, where the S2 is fattest,

R
(eq)
S2
WD max

0<x<1
.R?.x// : (5.25)

Alternatively, we can define the radius of the S2 in terms of the proper length of the S2 meridians,

R
(mer)
S2
WD

1

�

Z 1

0

dx
p

X0.x; 0/ e
1
2

X.x;0/ : (5.26)

These two definitions of RS2 coincide when S2 is perfectly round. For thin rings, these two

numbers remain very close, however as the rings become fatter neither of these numbers alone

provides an authoritative “size” of the S2. We can characterise the distortion in the shape of the

S2 by defining the stretch � as

� WD
R

(mer)
S2

R
(eq)
S2

� 1 : (5.27)

A perfectly round S2 would therefore have � D 0. For the black rings, the gravitational self-

attraction means that the S2 is always prolate, and so � � 0. Finally, there is a third definition of

the S2 radius in terms of its area

R
(area)
S2
WD

r
AS2

4�
; (5.28)
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where the S2 area is given by

AS2 WD 2�

Z 1

0

dx R?.x/
p

X0.x; 0/ e
1
2

X.x;0/ : (5.29)

In our solutions, we found that these three radii are always related by R(eq)
S2
� R

(area)
S2
� R

(mer)
S2

.

5.4.1 Isometric embeddings

A useful way to visualise the distortion of the horizon’s transverse S2 is to isometrically embed it

into 3D Euclidean space E3, as was done in [122] (see also [103]). The metric on the horizon S2

is given by

ds2
S2
D X0.x; 0/ e

X.x;0/ dx2 CR?.x/2 d�2 : (5.30)

We wish to embed it into E3 via cylindrical polar coordinates,

ds2E3 D du2 C d�2 C �2 d�2 : (5.31)

Letting

u D u.x/ ; � D R?.x/ ; (5.32)

the resulting induced geometry is given by

ds2emb D
�
R0?.x/

2
C u0.x/2

�
dx2 CR?.x/2 d�2 : (5.33)

By comparing (5.33) and (5.30), one obtains the embedding

u.x/ D

Z x

0

d�
q

X0.�; 0/ eX.�;0/ �R0
?
.�/2 ; (5.34)

which exists for as long as R0
?
.�/2 � X0.�; 0/ e

X.�;0/. We find that this condition is satisfied for

all the AdS black rings that we have managed to construct.

Figure 5.3 presents embedding plots of some representative AdS black rings. For long thin rings

one would expect that the gravitational self-interaction is small, and hence the horizon S2 should be

nearly round. This is precisely what figure 5.3(a) shows for a ring with Q� D 5 and Q�H D 1:3113.
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Figure 5.3: Isometric embeddings. (a) Embedding of a thin ring with QR.inner/
S1

D 1:573 and
QR
.outer/
S1

D 2:097. The stretch (5.27) is given by � D 0:006 and hence the horizon S2 is almost

perfectly round. (b) Embedding of a fat ring with QR.inner/
S1

D 0:285 and QR.outer/
S1

D 53:040. The
stretch is � D 1:812 and hence the horizon S2 is highly deformed from spherical symmetry.

Note that the gravitational pull due to the negative cosmological constant is compensated for by

having a large enough angular momentum, and hence it should not affect the geometry of the

horizon in a significant manner.

Fat rings in AdS have a more interesting geometry. Whilst R(inner)
S1

may be small, R(outer)
S1

can be

very large, and so in this sense it can be long. In Fig. 5.3(b) we depict the S2 embedding of a ring

which fits this description: at Q� D 0:5 and Q�H D 1:0375, we have a rather long QR
(outer)
S1

D 53:040.

On the other hand, this ring is not large in the sense that the typical size of the S2 is not larger

than the radius of AdS. For this particular example we have QR(eq)
S2
D 0:224, QR(area)

S2
D 0:415 and

QR
(mer)
S2
D 0:629, so the S2 is indeed highly distorted, as Figure 5.3(b) shows. Note that for any

measure of the size of the S2, we have that QR(outer)
S1

� QRS2 , so this ring actually looks like a very

large and thin membrane with a tiny hole drilled through the middle. It seems reasonable to expect

that, by lowering the temperature even further, one should be able to obtain long and fat rings

which are also large. But at least in our set up, these are hard to construct numerically.

Figure 5.4 depicts the stretch � , as defined in (5.27), as a function of the angular velocity Q�H for

rings at temperatures Q� D 0:5; 1:; 2: (from top to bottom). At sufficiently high temperatures, the

Q�H ! 1 limit is reached by thin rings and hence � ! 0 in this limit as the S2 becomes perfectly
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Figure 5.4: The S2 stretch, � , plotted against Q�H , for rings with Q� D 0:5; 1; 2 (top to bottom).
At high temperatures, the Q�H ! 1 limit is reached by thin rings and hence � ! 0 in this limit.
� increases monotonically as the ring becomes fatter. At low temperatures, the Q�H ! 1 limit is
reached by membrane rings, so � cannot be a monotonic function of Q�H .

round. As the ring becomes fatter, increasing Q�H while keeping Q� fixed, the stretching increases

monotonically, since the deformation of the S2 also increases. It seems natural to expect that � will

diverge in the Q�H !1 limit. On the other hand, at sufficiently low temperatures, the Q�H ! 1

limit is reached by the membrane rings. For these temperatures, increasing Q�H makes the hole in

the middle grow, which implies that � will decrease for a while. However, at some point, the ring

starts to become fatter again and hence � increases.

5.4.2 Invariant radii

Since R?.x/ and Rk.x/ are both geometric invariants, plotting them against each other allows us

to directly compare the relative sizes of the two cycles. However, the information about the lengths

along the S2 meridian is lost and it is therefore important to keep in mind that distances along the

curve in these diagrams do not have any real meaning.
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Before we describe the geometry of AdS black rings, let us recall some facts about the geometry

of rotating AdS black holes. In AdS, the rotating spherical black holes have two different singular

limits [111]. In 5D and for fixed mass, the angular momentum of the spherical black hole is strictly

less than the BPS value, Jmax < M `. In the limit J ! Jmax for fixed M , the size of the black

hole on the plane of rotation remains finite but the total horizon area goes to zero, hence becoming

singular. One can see that in this limit the angular velocity of the horizon diverges. In D � 6

this corresponds to the well-known ultraspinning limit of black holes, and the value of the angular

momentum approaches the BPS value. In AdS, it is possible to take another limit [111], even in

5D, in which both the mass M and the angular momentum J diverge whilst their ratio remains

finite with J=.M `/ ! 1. In this limit, the black hole approaches a rotating black hyperboloid

membrane with a horizon topology H2 � S1.

Figure 5.5 depicts some representative plots for rings in different regimes: thin, fat and membrane.

We compare the geometry of the ring with that of the rotating AdS black hole with the same

temperature and angular velocity. Note that because we have not fixed the total mass, the actual

“sizes" of the black ring and the black hole can be quite different in certain limits. Long thin rings

are depicted in 5.5(a). As this plot shows, the radius of the S1 of the ring is quite large compared

to the radius of AdS, and in some sense the black ring is close to the boundary. As we shall see

in §5.6, this gets imprinted into the stress-energy tensor of the dual CFT. Figure 5.5(b) shows a fat

ring. Even though we could not reliably construct fatter rings at this particular temperature, the plot

suggests that the black ring and the black hole would merge in the Q�H !1 limit. At low enough

temperatures, as Q�H ! 1 the black ring should tend to the same rotating hyperbolic membrane as

does the spherical black hole. This is shown in Figures 5.5(c) and 5.5(d). In particular, in Figure

5.5(d), it is quite apparent that the black ring and the black hole are tending to the same solution.

Note that, since both the ring and the black hole are close to the same black membrane, fixing the

mass and the angular momentum instead does not produce a significantly different plot.

5.5 Thermodynamics of AdS black holes

We now move on to discuss the thermodynamics of singly-spinning black holes and black rings in

AdS. In §5.5.1 we work in the grand canonical ensemble and study the black hole phases at a fixed
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Figure 5.5: Invariant radii plots for some representative temperatures and angular velocities. The
solid line corresponds to the black ring and the black dashed line corresponds to the rotating AdS
black hole with the same temperature and angular velocity. In (d) we depict the invariant radii for
the same black ring as in Fig. 5.3(b). The aspect ratio is the same in all the plots above, with the
vertical axis stretched at exactly 10 times the scale of the horizontal axis.

temperature and angular velocity. Most of our discussion will lie in this section, as this ensemble

is much easier for us to access numerically. We also briefly consider the microcanonical ensemble

in §5.5.2, where we instead fix the total mass of the solution. This will allow us to make a direct

comparison with the perturbative results of [111].

5.5.1 The grand canonical ensemble

The grand canonical ensemble naturally arises from our numerical procedure, as it is precisely the

surface gravity and horizon angular velocity that we are able to fix directly as boundary conditions

on the horizon. We first review the properties of the rotating spherical AdS black holes, before

looking at the thermodynamics of our numerical black ring solutions.
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Spherical black holes

We begin by looking at 5D asymptotically AdS solutions for which the metric is known analytically.

The most trivial of these is of course the pure global AdS solution itself. This is a solution without

a horizon. As a result, we can assign an arbitrary period to the Euclidean time coordinate, and

so the temperature can be taken to be anything whatsoever. In this context, it is usually referred

to as thermal AdS. The other class of solutions that we will consider in this subsection are the

topologically spherical black holes rotating in a single plane. These are described analytically by

the following metric [43, 107]

ds2 D �
�

�2

�
dt �

a sin2 �
1 � a2=`2

d 
�2
C
†

�2
sin2 �

�
a dt �

r2 C a2

1 � a2=`2
d 
�2

C
�2

�
dr2 C

�2

†
d�2 C

r2

�2
cos2 �

�
r2†C a2 cos2 �

�
1C

r2

`2

��
d�2

�2 WD r2 C a2 cos2 � ; � WD
�
r2 C a2

� �
1C

r2

`2

�
� 2� ; † WD 1 �

a2

`2
cos2 �;

(5.35)

where � > 0 is the mass parameter and a is the rotation parameter. Cosmic censorship requires

that j Qaj < 1. The event horizon occurs at r D rH, where rH is the largest real root of the polynomial

�.r/. After nondimensionalising the parameters,

Q� WD �=`2 ; Qa WD a=` ; QrH WD rH=`; (5.36)

the physical quantities for these black holes are given by [123]

QM D
� Q�

�
3 � Qa2

�
4
�
1 � Qa2

�2 ; (5.37)

Q� D QrH

 
1C

1C Qr2H

Qr2H C Qa
2

!
; (5.38)

QAH D
2�2 QrH

�
Qr2H C Qa

2
�

1 � Qa2
; (5.39)

Q�H D
Qa
�
1C Qr2H

�
Qr2H C Qa

2
; (5.40)

QJ D
2 Qa QM

3 � Qa2
: (5.41)
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The solution saturates the BPS bound j QJ j � QM as j Qaj ! 1 (although strictly speaking this is a

singular limit). It is easy to verify that these quantities do indeed satisfy the first law of black hole

mechanics (5.14). From now on we will always take Qa (and hence Q�H and QJ ) to be positive.

We begin by solving for Qa in terms of Q� and QrH :

Qa D

s
QrH
�
1 � Q� QrH C 2 Qr

2
H

�
Q� � QrH

: (5.42)

The BPS limit Qa D 1 corresponds to QrH D Qr
.max/
H

WD Q�=2. This is the upper bound on QrH which

holds at all temperatures. The static limit Q�H D 0, i.e. Qa D 0 and QrH ¤ 0, yields two roots

Qr
.˙/
H
WD

1
4

�
Q� ˙
p
Q�2 � 8

�
, corresponding to the small and large black holes. The singular limit

QrH ! 0 translates to Q�H !1.

When Q� �
p
8, both Qr.˙/H are real. In this regime, rotating solutions split into two families: those

with 0 < QrH < Qr
.�/
H are the small rotating black holes, while those with Qr.C/H < QrH < Qr

.max/
H are

the large rotating black holes. There is no solution with Qr.�/H < QrH < Qr
.C/
H and so, for a fixed Q� in

this range, the small and large families are not connected.

It is well known that, in the presence of a negative cosmological constant, static black holes cannot

exist below the critical Hawking–Page temparature, denoted Q�HP [89]. This is reflected in our

calculation here, as the Q�H ! 0 limit yields imaginary roots when Q� < Q�HP WD
p
8 � 2:828.

However, rotating black holes can still exist at these temperatures as long as they are spinning

quickly enough. To see this, we substitute (5.42) into the expression for Q�H to obtain

Q�2H D
1

QrH
. Q� � QrH /

�
1 � Q� QrH C 2 Qr

2
H

�
; (5.43)

and hence
@ Q�2H
@ QrH

ˇ̌̌̌
ˇ
Q�

D �
1

Qr2H

�
Q� � 3 Q� Qr2H C 4 Qr

3
H

�
: (5.44)

The behaviour of Q�H as a function of QrH is clearly governed by the cubic factor C. QrH / WD

Q� � 3 Q� Qr2H C 4 Qr
3
H , which is always monotonic in 0 � QrH � Qr

.max/
H . While C.0/ D Q� > 0 at all

temperatures, C. Qr.max/
H / D 1

4
Q�
�
4 � Q�2

�
changes sign at Q� D 2. The low temperature solutions are

therefore further split into two regimes.
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For 2 < Q� < Q�HP we have C. Qr.max/
H / < 0, so C must have a root Qr�H corresponding to the turning

point in Q�H . Solutions with QrH < Qr�H are the low-temperature continuation of the small black

holes family, while those with QrH > Qr�H are the continuation of the large black holes family. These

two branches are now continuously connected to each other at these temperatures.

For 0 < Q� < 2 the function Q�H has no turning point. Instead, it is monotonically decreasing,

with Q�H ! 1 as QrH ! Qr
.max/
H . Physically, these solutions behave like small black holes. Large

black holes therefore cease to exist in this temperature regime. It is important to note, however,

that the terminology of small vs. large here no longer reflects the geometric size of the black hole.

These “small” black holes can grow to arbitrarily large horizon areas as Q�H & 1. Instead, we

must view it as a classification of thermodynamic stability: large black holes are those which are

thermodynamically stable.

We can now discuss the phase diagram of these solutions. Fixing the values of Q� and Q�H is

analogous to placing the system in the grand canonical ensemble, and thus phase dominance is

determined by the grand canonical potential Q̂ WD QM � 1
8�
Q� QAH � Q�H QJ . With our normalisation,

thermal AdS obviously has Q̂ D 0. The small black holes always have a positive Q̂ and therefore

never dominate the ensemble. On the other hand, large rotating black holes with negative Q̂ do

exist at all Q� > 2. In the range 2 < Q� < 3, some large black holes still have a positive Q̂ and so

there is an angular velocity threshold below which thermal AdS is still dominant. When Q� > 3,

even the static solution has Q̂ < 0 and so the entire large black hole branch becomes dominant. It is

important to note that large rotating black holes always obey the Hawking–Reall bound, Q�H < 1.

This means that they admit a globally defined timelike Killing vector field, thus implying that they

should be classically dynamically stable [124]. On the other hand, small black holes violate this

bound and could be subject to the superradiant instability, as studied in detail in [125]. The actual

phase diagram of rotating AdS black holes is summarised in Figure 5.6.

Black rings

Using the procedure described in §5.3 to calculate physical quantities for the AdS black rings, it

is straightforward to compute the associated grand canonical potential. In Figure 5.7, we depict

the grand canonical potential for representative AdS black rings at Q� D 5, as a function of the
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Figure 5.6: A phase diagram for rotating spherical AdS black holes. The colour shows the horizon’s
angular velocity Q�H for each black hole solution, each uniquely parametrised by . Q�; QAH /. Blue-
tinted points are superradiant-stable solutions with Q�H < 1. The coloured region is bounded on
the right by a thick curve corresponding to the static solutions, which only exist when Q� �

p
8.

The solid interior curve marks the boundary between the small and large black holes, the latter of
which cease to exist when Q� � 2. Instead, in this regime “small” black holes can have an arbitrarily
large QAH . Lastly, solutions above the dashed interior curve (all of which are large black holes)
have negative grand canonical potential Q̂ , and thus dominate the ensemble.

angular velocity Q�H , and compare it with that of the small rotating AdS black holes at the same

temperature. For these configurations, the grand canonical potential of the large black holes is

always negative and off the scale of this plot. At any other non-zero temperature, the picture for

the rings is qualitatively the same. The only difference in the phase diagram for rings as one varies

Q� is that, for Q� > 2, the Q�& 1 limit is attained by thin rings, whilst for Q� < 2 this limit is attained

by membrane rings. Therefore, we conclude that black rings in AdS, regardless of their size or

shape, never dominate the grand canonical ensemble. Moreover, in the Q�H ! 1 limit, which

is always attained from the fat branch, black rings are connected to the small rotating AdS black

holes. Hence, from a thermodynamic point of view, black rings behave in a similar manner to

small rotating black holes. In particular, they are always thermodynamically unstable.
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Figure 5.7: Grand canonical potential for AdS black rings (black dots) and small AdS black holes
(gray curve) for Q� D 5. The dashed red line indicates the Q� D 1 limit. AdS black rings never
dominate the grand canonical ensemble and their angular velocity always exceeds the Hawking–
Reall bound.

5.5.2 The microcanonical ensemble

Accessing the microcanonical ensemble is rather more challenging from a numerical point of view.

This is because the mass of the black hole is defined in terms of an integral over some hypersurface

in the spacetime, which is not a local condition at any given point. We are not aware of any

boundary condition which would allow for a specific mass to be fixed directly. For a given mass,

we instead resort to first estimating the combinations of the parameters . Q�; Q�H / by interpolating the

QM across the datasets produced for the grand canonical ensemble. Having obtained solutions near

the desired mass at various values of Q�, we then proceed to fine-tune our estimation by performing

a bisection search on Q�H until the mass becomes correct to within some tolerance. This entails

a significant amount of work for each data point (on average we had to obtain four full solutions

for each bisection search), and therefore we only present here a phase diagram for one particular

choice of QM .

We choose to focus on QM D 10 as this allows us to complete the perturbative picture presented
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Figure 5.8: Microcanonical ensemble phase diagram for mass QM D 10, showing the horizon area
QAH against angular momentum QJ . The faint blue curve in the background is the exact result for
the spherical AdS black holes, while the yellow curve shows the perturbative results of [111]. Red
points show our black rings with Q� � 1, i.e. the thin rings, while the blue points show rings with
Q� < 1, i.e. the fat rings. There is a cusp at the minimum value of QJ around Q�� � 0:93. Our
numerical results approach the perturbative curve at high Q�, while for low Q� the fat rings approach
the curve for spherical black holes.

in Figure 1 of [111]. For this mass, we have obtained ten solutions in the range 0:6 � Q� � 2:0,

and plotted their horizon areas QAH against the angular momenta QJ . This can be superposed onto

the corresponding curve for the spherical black holes at the same mass, and also the perturbative

result of [111]. As expected, our data points approach the perturbative curve at larger values of

Q�, for which the ring is geometrically thin. The BPS bound is approached as Q� ! 1, where

we have QAH ! 0, QJ ! QM , and the ring becomes arbitrarily thin. Similarly to the AF black

rings, the . QAH ; QJ / curve for the AdS black rings has a cusp separating “fat” and “thin” rings in the

thermodynamical sense. We estimate that for QM D 10 this occurs at Q�� � 0:93. As Q� decreases

beyond Q��, the ring becomes fatter and the curve approaches that of the spherical black hole, before

merging at the singular solution at Q� D 0.

The existence of the cusp allows us to precisely separate thin rings from fat rings in the micro-

canonical ensemble. We define fat rings by requiring

@ QAH

@ Q�

ˇ̌̌̌
ˇ
QM

> 0 : (5.45)
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One can easily apply the first law (5.14) and the chain rule to deduce that this is equivalent to

� WD
@ QAH

@ Q�

ˇ̌̌̌
ˇ
Q�

@ QJ

@ Q�

ˇ̌̌̌
ˇ
Q�

�
@ QAH

@ Q�

ˇ̌̌̌
ˇ
Q�

@ QJ

@ Q�

ˇ̌̌̌
ˇ
Q�

> 0 : (5.46)

It was shown in [126] that the above quantity is proportional to the Hessian determinant of the

grand canonical potential Q̂ with respect to the coordinates . Q�; Q�/. Note also that � carries the

same sign as the constant-J heat capacity, CJ .

5.6 Holographic stress tensor

In this final section, we study the stress tensor of N D 4 SYM on Rt � S
3 for states which are

dual to rotating AdS black holes and black rings. For rotating spherical black holes in AdS this

was first done in [105], and we shall borrow some results from this reference.

We extract the stress tensor using the standard holographic renormalisation prescription [40]. Note

that with our choice of outer patch ansatz (5.5) the boundary geometry is given by the standard

metric on the Einstein static universe, Rt � S
3. As is well known, N D 4 SYM on this geometry

has a non-zero Casimir contribution [91]. In the derivation below we will need to subtract this

universal piece.

In order to extract the stress tensor of the dual CFT, we must first transform the outer region metric

ds2outer from (5.5) into Fefferman–Graham (FG) coordinates. In these coordinates, ds2outer can be

expanded around z D 0 in the form

ds2outer �
`2

z2

�
dz2 C

�
g.0/.x/C z

2 g.2/.x/C z
4 g.4/.x/CO

�
z5
��
ij
dxi dxj

�
; (5.47)

g.0/.x/C z
2 g.2/.x/ WD diag

h
� 1 � z2

2 `2
; `2 � z2

2
; cos2 �

�
`2 � z2

2

�
; sin2 �

�
`2 � z2

2

� i
;

xi WD .t; �; �;  / :

Note that index contractions are with respect to the metric g.0/, which in this case is just the

standard metric on the Einstein static universe. Then, the v.e.v. of the dual stress tensor is given
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by [40]

hTij i D
`3

4� G5

�
g.4/ij �

1

8

h�
Tr g.2/

�2
� Tr g2.2/

i
g.0/ij �

1

2

�
g2.2/

�
ij
C
1

4

h
Tr g.2/

i
g.2/ij

�
:

(5.48)

We perform the change into FG coordinates by substituting r ! r.z; �/ and a ! a.z; �/ into

(5.5), then imposing the Einstein–DeTurck equations near z D 0 at each order in z up to (and

including) O.z5/. We also subtract off the contribution from pure global AdS, i.e. the Casimir

energy. The final result, expressed in terms of our unknown functions, is given by

˝
Tij
˛sub dxi dxj D

N 2
c k

8

768�2 `8

�
� T .4/.�/ dt2 � 2 `„.�/ dt d 

C `2
�
Y .4/.�/ d�2 C cos2 � U .4/.�/ d�2 C sin2 � V .4/.�/ d 2

� �
;

(5.49)

where F .4/.�/ WD @4rF
�
r; 2�
�

�
jrDk for any function F , and

„.�/ WD
3�4 �

�
� C Q�H

�2 � �
� C Q�H

�
�
�
� � 3 Q�H

�
cos 2�

�2 sin2 �

8 k4
�
� � Q�H

�4 �
1CZ

�
k; 2�

�

��
;

with � WD

q
4 Q�2 C Q�2H :

(5.50)

Note that our differentiation variable r has dimensions of length, and we have reinstated the

compactification scale k, as defined in (5.6), so that the expression above manifestly has the

correct dimensions. The expression has already been somewhat simplified by using the relation

T .4/.�/ C Y .4/.�/ C U .4/.�/ C V .4/.�/ D 0, which arises from Einstein’s equation at O.z2/.

However, we have not completely eliminated any of the four functions altogether, so
˝
Tij
˛sub is

not manifestly traceless. This will prove useful for our calculation method as detailed in §5.6.1.

From now on all our stress tensors will have the Casimir contribution subtracted, and as such we

no longer explicitly show the “sub” superscripts.

5.6.1 Extraction of the stress tensor

Having derived the stress tensor components in terms of our unknown functions, we now explain

our method of evaluating (5.49) numerically. For each unknown function F , we first apply the

following protocol. At each a 2 Œ0; 1� in the outer patch grid, we take the eight data points
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closest to the boundary at r D 1 and fit onto them a polynomial of the form pa.r/ WD
1
4Š
˛a .1 �

r/4C 1
5Š
ˇa .1�r/

5C
1
6Š

a .1�r/

6. The coefficients f˛a; ˇa; 
ag are determined by least squares

regression. This fitting naturally has large numerical errors, and so the setA WD f.a; ˛a/ j a 2 gridg

must be regarded as a noisy sampling of the fourth derivative F .4/
�
� a
2

�
evaluated on the boundary

r D 1. Rather than applying standard noise-reduction filters (e.g. moving averages) on A, we can

achieve significantly better results if we take into account the fact that F .4/ is a smooth function

of � in the continuum limit. Since we have @aF .4/
�
� a
2

�
D 0 at both a D 0 and a D 1, we can

expand it spectrally as

F .4/
�
� a
2

�
D

1X
nD0

fn cos.n � a/ : (5.51)

We can therefore obtain a good approximation to F .4/ by fitting the coefficients fn to the first N

terms in the series above. Once again, we determine these fn by applying least squares regression

on the set A. For the work presented here, we managed to achieve good results at N D 20.

Next, we note that Einstein’s equations imply that we should have

".a/ WD T .4/.� a
2
/C Y .4/.� a

2
/C U .4/.� a

2
/C V .4/.� a

2
/ D 0 (5.52)

on the r D 1 boundary. Numerical errors mean that we can never expect the functions obtained

by fitting fn as described to yield ".a/ � 0 exactly. However, we noticed that in many cases

".a/ is actually of the same order of magnitude as the F .4/ themselves, even though the DeTurck

vector norm
p
� i�i suggests that these solutions should have very small errors. The nonzero ".a/

therefore seems to contain some systematic discrepancy beyond what one would expect from pure

numerical errors.

With this in mind, we manually enforce (5.52) by subtracting ".a/=4 from each of the functionsn
T .4/; Y .4/; U .4/; V .4/

o
. One way to gauge the accuracy of our procedure is to calculate the total

energy v.e.v. from the stress tensor,

hEi D �4�2 `3
Z �=2

0

d� cos � sin �
˝
T tt .�/

˛
: (5.53)

To our surprise, this seemingly ad hoc procedure resulted in energy densities which, when inte-

grated, agree remarkably well with the black hole masses calculated by the first law method as
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described in §5.3.3, with differences ranging between 0.0005% and 0.1%. These results were ob-

tainable by following the above procedure exactly, without having to fine-tune it for each particular

solution.

We will not analyse this method in greater detail here, however we will make a few comments.

The imposition of (5.52) amounts to solving the leading-order term of Einstein’s equations on the

AdS boundary. At the computational level, there are infinitely many ways to do this. One could

add unequal proportions of ".a/ to each function, or apply some completely different operations

altogether. Our choice corresponds to pulling out a conformal factor from the boundary metric

and imposing Einstein’s equations by only modifying this conformal factor. We note that this

bears a striking resemblance to the conformal decomposition widely used elsewhere in numerical

relativity, and it would be interesting to see if a formal justification can be found for its use in this

context.

5.6.2 Results

In this subsection we present results for the stress tensor of CFT states dual to black rings for some

representative configurations. We concentrate on the energy density distribution on the boundary

S3 and compare it to the energy density distribution of the rotating AdS black hole at the same

temperature and angular velocity, using the results of [105].

In order to make the correlation between the horizon geometry and the stress tensor of the boundary

CFT apparent, we have depicted in Figure 5.9 the energy density distributions for the same black

rings and black holes shown in Figure 5.5. For thin long rings (Figure 5.9(a)) the energy density

is concentrated on one of the poles of the boundary S3, whilst it is negligible on the other pole.

The reason is that the ring gets very close to the boundary only along one of the axes of symmetry;

the other axis goes through the hole of the ring and hence the energy density in that direction is

negligible. Therefore, for such configurations, it becomes particularly simple to distinguish states

dual to black rings from states dual to spherical black holes. As the black ring becomes fatter

(Figures 5.9(b)-5.9(d)) the energy densities of the black hole and the black ring approach each

other, and the distinction between the two becomes less obvious. This is to be expected, since these

two phases should eventually merge. This is particularly striking near the membrane limit (Figure
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Figure 5.9: Energy density distribution, normalised by the total energy of the CFT, as a function
of the polar angle � D � a

2
on the boundary S3. The data for the black ring is represented by solid

black curves, while the data for the corresponding spherical black hole is represented by dashed
curves. Firstly, (a) shows the energy density distribution for the same long and thin ring as in
Figure 5.5(a). The ring approaches the boundary along the axis of symmetry that goes through
one of the poles of the S2; hence the energy density is concentrated near the corresponding pole of
the boundary S3. By contrast, the spherical black hole exhibits a much more uniform distribution.
(c) shows the distribution for a typical fat ring, while (b) and (d) show the distributions for rings
approaching the membrane limit. In all of these cases, the energy densities corresponding to the
black ring and the rotating black hole are very similar. Indeed, the two curves become virtually
indistinguishable as one moves further toward either of these limits.

5.9(d)) for which it is very hard to distinguish the energy density corresponding to the ring from

that of the black hole. The fact that we see the energy densities of the two phases approach each

other in this limit is reassuring of the correctness of our calculations. Note that in the membrane

limit the energy density also gets concentrated on one of the poles. The reason is that in this

limit, the bulk solution spreads out on the plane of rotation whilst it becomes infinitely thin in the
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transverse directions. Therefore, the energy density should get very large (and eventually diverge)

around the pole of the S3 that connects to the rotation plane, while being negligible around the

other pole.

We noted in §5.5 that the thermodynamic behaviour of the AdS black rings is qualitatively similar

to that of the small rotating black holes in AdS. This is reflected in the dual stress tensor, in the sense

that the latter does not fall into the hydrodynamic regime, even though the stress tensor for rings

can be quite different from the stress tensor corresponding to black holes with the same temperature

and angular velocity. This result is unsurprising, since [105] solved the relativistic Navier–Stokes

equations on S3 for stationary fluid configurations and found only solutions corresponding to large

rotating black holes in AdS.

5.7 Summary

In this chapter, we place AdS black rings among the known stationary black hole phases in the

grand canonical ensemble, through the use of numerical techniques. This allows us to cover a

large region of the black ring’s parameter space, beyond what is accessible perturbatively. The

thermodynamic behaviour of AdS rings is qualitatively and quantitatively similar to that of small

rotating black holes. The phase diagram for AdS black rings, expressed in terms of TH and �H ,

can be summarised as follows:

� TH > Tc : the j�H `j ! 1 limit is reached from the fat family of rings, and the limit is

saturated by a singular solution which merges with the small spherical black hole family, as

in the AF case. On the other hand, the j�H `j ! 1 limit corresponds to an infinitely thin

and long ring, and hence is accessible using the perturbation theory of [111].

� T � < TH < Tc : the limit j�H `j ! 1 still corresponds to the (singular) merger of a fat

ring with the spherical black hole. However, the�H `! 1 limit now corresponds to a new

membrane-like limit for rings which are not geometrically thin. In this limit, black rings tend

to the same singular black membrane-type solution as the small black holes, with horizon

topology H2 � S1 (see [111]). For intermediate angular velocities, geometrically thin rings

can still occur.
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Figure 5.10: Phase diagrams of singly-spinning (a) spherical black holes and (b) black rings in
5D global AdS, presented in the .TH ; �H / plane. Both kinds of object exist at all non-zero
temperatures. All of our AdS black rings have j�H `j > 1. The black rings can be classified into
two distinct phases according to their heat capacity at constant angular momentum, CJ . Those
with CJ > 0 are fat rings, as in the AF case, while those with CJ < 0 exhibit somewhat more
complicated behaviour. At high temperatures, TH ` > 1=� , these rings are indeed thin, again as
in the AF case. However, for TH ` < 1=� , the outer radius of the S1 of these rings grows much
more quickly than its inner radius as �H ` ! 1, causing the S2 to become highly stretched. In
this regime, the ring no longer becomes “thin” in the geometric sense, but instead approaches a
membrane-like geometry.

� TH < T �: there are no geometrically thin rings below a certain temperature T �. This

may be related to the fact that we find no evidence for long thin rings which are also large.

The limits j�H `j ! 1 and j�H `j ! 1 are reached by fat and membrane-like rings

respectively, as in the previous case. We find that T �` > 1
2�

.

Figure 5.10 presents a sketch of the various black ring phases on the .TH ; �H / plane. We

note that neither fat rings nor membrane-like rings appear to develop new negative modes of the

Lichnerowicz operator as one moves along the family of solutions. This suggests that, at least

in 5D, these black rings are not unstable under a Gregory–Laflamme type instability along the

rotation plane.

Using standard holographic renormalisation techniques [40], we extracted the one-point function

for the stress-energy tensor of the dual N D 4 super Yang-Mills (SYM) field on S3. This

observable gives us some idea of how the dual field theory might be affected by the horizon

topology of the black hole in the bulk. We find that long thin rings can get very close to the
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boundary of AdS, giving rise to an energy distribution that is highly localised on one of the poles

of the boundary S3. This energy distribution is very different from the one corresponding to the

small black hole with the same temperature and angular velocity. Unsurprisingly, fat rings give

rise to an energy distribution that is qualitatively and quantitatively very similar to that of the

corresponding small black hole. In any case, we found that black rings in AdS never dominate the

grand canonical ensemble. Since AdS black rings always obey j�H `j > 1, we expect that they

should all be classically dynamically unstable under superradiance.
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Chapter 6

Evolving Higher-Dimensional
Black Holes with GRChombo

6.1 Introduction

In four dimensions, black hole uniqueness theorems [8, 9, 10, 11] imply that all stationary objects

in General Relativity which are sufficiently compact are mathematically described by the Kerr

metric [12]. In astrophysics, these objects include, for example, massive bodies at the centre of

galaxies and remnants of core-collapse supernovae. The suitability of the black hole description

of astrophysical objects implicitly depends on the assumption that the Kerr solution is stable to

gravitational perturbations. Mode analysis [127] and the study of the scalar wave equation on

the Kerr background [128, 129, 130], along with evidence from numerical relativity [131, 132],

strongly suggests that this is indeed the case, however a rigorous nonlinear stability analysis is

so far only achieved for the Minkowski spacetime [133]. Very recently, the linear stability of the

Schwarzschild solution has been proven in [134], but the corresponding result for the Kerr solution

remains an open, and indeed very difficult, problem.

While the landscape of stationary black holes is much richer in higher dimensions, many of these

solutions turn out to be unstable. In their seminal paper [30], Gregory and Laflamme demonstrated

that black strings and black branes, which are the simple Cartesian products of a Schwarzschild

black hole with an arbitrary number of extra flat dimensions, are linearly unstable to gravitational

perturbations. The unstable modes have a minimum wavelength, however, and therefore they do

not occur if the extra dimensions are compactified to a sufficiently small size. In other words, only
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sufficiently thin black strings and branes are subject to the Gregory–Laflamme (GL) instability.

Beyond the fact that these solutions are unstable, the linear analysis does not say anything about

the dynamical behaviour or the end state of these instabilities. Nevertheless, the authors argued

that since the 5D Schwarzshild-Tangherlini black hole has much higher entropy than a long and

thin black string, it is possible that the instability could cause the string to pinch off and give rise

to a spherical black hole.

It took many more years before a fully nonlinear study of the 5D black string was successfully

carried out in [31] using numerical relativity. The remarkable simulation revealed a self-similar

process, inwhich the perturbed black string becomes increasinglymore non-uniform and condenses

into spherical black hole ‘bulges’ connected by pieces of thinner black strings. These thinner strings

themselves are also subject to GL instability, forming smaller bulges connected by even thinner

strings ad infinitum. Over the course of their simulation, the authors observed that the timescale

between the formation of subsequent generations of bulges decreases geometrically, and therefore

by extrapolating this trend they conclude that it is likely that the black string would completely

pinch off within a finite time. This change of horizon topology must occur in a singular fashion,

and is therefore taken as evidence of a violation of the weak cosmic censorship conjecture [32] in

the 5D asymptotically Kaluza-Klein setting.

In asymptotically flat spacetimes, thin stationary black rings [14] locally resemble boosted black

strings. Following this observation, [135] extended Gregory and Laflamme’s analysis to show that

boosted black branes are also subject to the GL instability. They then constructed an approximate

model of the black ring as a boosted black string, and concluded that it too should suffer from

the GL instability. However, the approximation is only valid for rings with a very small thickness

parameter �, and the authors suggested that their result should really only be trusted when � . 0:05,

i.e. when the ring is extremely thin. Nevertheless, this result suggests that the existence of a thin

black ring could eventually result in a violation of the weak cosmic censorship conjecture in an

asymptotically flat setting. Much more recently, a linearised study of gravitational perturbations

of the black ring [136] revealed that the linear GL instability indeed affects all thin rings, and in

fact even extends into the fat branch as well.

Topologically spherical Myers-Perry (MP) black holes [13], which are the counterpart of Kerr

black holes in higher dimensions, are also known to be unstable. In D > 5, the rotation of
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these black holes is no longer subject to the Kerr-like extremality bound. Instead, they can enter

the ultraspinning regime with arbitrarily fast rotations [13]. As the black hole rotates faster, the

horizon becomes increasingly flattened and eventually starts to resemble a thin black brane [137].

Once again, this led the authors of [137] to the observation that they too would be subject to the

GL instability. Ref. [138] subsequently constructed a family of stationary axisymmetric linear

perturbations of the MP solution, signalling an onset of GL instability in these black holes. In

addition to the axisymmetric GL instability, the authors of [137] also speculated on thermodynamic

grounds that MP black holes may also be unstable to non-axisymmetric perturbations, as they have

lower entropy than the corresponding system of two boosted Schwarzschild black holes. This was

eventually confirmed in the numerical simulations of [139, 33], where it was shown that highly

rotating MP black holes are subject to the bar mode instability, which tends to stretch the horizon

into an elongated shape. The end state of the bar mode instability on 6D black holes with extremely

high spins remains an open problem in numerical relativity. It is possible that the horizon would

eventually break up in this case, leading to yet another example of violation of weak cosmic

censorship.

Certain aspects of these instabilities can be studied using approximate methods. Linearised

perturbation theory has been used to successfully identify the onset of potential instabilities [30,

140, 136], while large D calculations [29, 141, 142, 143] can inform us about their dimensional

dependence. An obvious advantage of these techniques is that they give a concise, qualitative

description of the physics in their relevant domains of validity, covering a range of parameter

values in an economical manner. Nevertheless, numerical relativity remains an essential tool with

which we can study the end state and the dynamical evolution of these instabilities, including the

way in which they interact with each other at the fully nonlinear level. A common feature amongst

these scenarios is the dynamical emergence of features at new length scales throughout the course

of the instabilities. Fully flexible adaptive mesh refinement (AMR) therefore becomes a necessity

for the feasibility and success of these simulations. TheGRChombo code was developed to address

the need for AMR, both in our study of black hole instabilities and in other areas, such as critical

phenomena in gravitational collapse. This is achieved by implementing Einstein’s equations on

top of the general-purpose Chombo AMR library, allowing us to avoid duplicating the significant

software engineering effort needed to implement and parallelise numerous complex algorithms.
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In this chapter, we begin with a brief review of the CCZ4 formulation of numerical relativity,

which gives us a strongly hyperbolic PDE system. We will then give an overview of the adaptive

mesh refinement scheme implemented in GRChombo. We will also discuss various techniques

which form part of a successful simulation of higher dimensional black holes, namely the use of

artificial dissipation and viscosity to control numerical errors, and the modified cartoon method,

which is used to reduce the simulation to a 2D or 3D computational domain. The final section

concerns the considerations involved in tuning runtime parameters to obtain good performance,

and in programming Einstein’s equations in such a way as to allow the compiler to generate efficient

binary code on modern processors.

6.2 The CCZ4 formulation

For a non-stationary metric, the harmonic Einstein equation (2.9) is strongly hyperbolic, and we

can therefore directly formulate it into an initial value problem on the metric components g�� .

Indeed, this is the basis of the generalised harmonic coordinates evolution method, which was

successfully employed in the first breakthrough simulation of a binary black hole merger [3]. The

main disadvantage of GHC, however, is that it is not robust to singularities on the computational

grid. In order to achieve stable evolution, one has to additionally employ black hole excision, that

is the manual removal of grid points near the singularity. This is typically done by assuming that

the physical singularities are contained inside black hole horizons. One would therefore need to

find apparent horizons after each time step in order to define the region to be excised. Furthermore,

as black holes move through the domain, previous excised points need to be reintroduced, with

values extrapolated from neighbouring points.

In order to sidestep the difficulties associated with the handling of singularities in GHC, a large

part of the numerical relativity community instead uses ‘3+1 decompositions’ of the Einstein

equation with moving punctures. Since we are concerned with simulating higher dimensional

spacetimes, we will generalise this terminology to ‘d C 1 decomposition’. In this approach, the

metric components are first expressed in ADM form

ds2 D �˛.t; x/2 dt2 C 
ij .t; x/
�
dxi C ˇi .t; x/ dt

� �
dxj C ˇj .t; x/dt

�
: (6.1)
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Here ˛.t; x/ is called the lapse and ˇi .t; x/ is called the shift vector. This foliates the spacetime

with spacelike hypersurfaces (‘slices’) † labelled by the time coordinate t , where the metric on †

is given by 
ij . Let n� WD .1=˛;�ˇi=˛/ be the unit normal vector to †, we can then define the

projectors


�� D g�� C n�n� ; 
�� D g�� C n�n� ; P�� D ı
�
� C n

�n� : (6.2)

In order to obtain a system of equations which is first order in time, we formulate it in terms of

both the induced metric 
�� on †, and its extrinsic curvature K�� defined by

K�� WD �
1

2
Ln
�� : (6.3)

By expanding out the Lie derivative L˛n
ij , we can see that

@t
ij D �2 ˛ Kij CLˇ
ij ; (6.4)

and so the extrinsic curvature is related to the canonical momentum of the induced metric from the

Hamiltonian point of view. We will also define the trace of the extrinsic curvatureK WD 
��K�� .

Next, we consider various contractions of the Riemann tensor with either P�� or n� to obtain the

Gauss–Codazzi relations

P ˛�P
ˇ
� P



� P

ı
�R˛ˇ
ı D

.†/R���� CK��K�� �K��K�� (6.5)

P ˛�P
ˇ
� P



� n

ıR˛ˇ
ı D D�K�� �D�K�� (6.6)

P ˛�P


� n

ˇnıR˛ˇ
ı D LnK�� CK��K
�
� C

1

˛
D�D�˛; (6.7)

whereD� is the covariant derivative associated with the induced metric on† and .†/R���� is the

Riemann tensor on †. In order to apply the Einstein equation, we note also that

P��P ��R���� D 2n
�n�G�� (6.8)

P ˛�n�R�� D P
˛�n�G�� ; (6.9)

where G�� is the Einstein tensor. By contracting the indices on these relations, equations (6.5)
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and (6.6) become the Hamiltonian constraint and the momentum constraint

.†/RCK2 �K��K
��
D 16�� (6.10)

D�
�
K�� � 
��K

�
D 8�j�; (6.11)

where we define

� WD n�n�T�� (6.12)

j� WD �P��n�T��: (6.13)

These are not evolution equations, but instead impose differential constraints which our functions

must satisfy at all time. The remaining equation (6.7) defines the so-called ADM evolution

equation. However, this is not yet a numerically stable formulation of the Einstein equation.

Indeed, it can be shown that the system is only weakly hyperbolic, leading to an ill-posed initial

value problem (see e.g. [144]).

The Baumgarte–Shapiro–Shibata–Nakamura (BSSN) system [145, 146] is a 3+1 formulation of the

Einstein equation that is widely popular in the numerical relativity community, which is strongly

hyperbolic when combined with appropriate gauge conditions. In BSSN, the induced metric is

conformally decomposed and the extrinsic curvature is trace-decomposed. In particular, we define

� WD .det 
/�1=D ; Q
ij WD �
ij

Aij WD Kij �
1

D

ijK ; QAij WD �Aij

(6.14)

Note that this introduces additional constraints det Q
 D 1 and Q
 ijAij D 0. The variable � is

usually referred to as the conformal factor. The crucial modification of BSSN compared to the

ADM system is that it treats the conformal connection Q� i WD Q
jk Q� i
jk
D �@j Q


ij , where Q� i
jk

is

the Christoffel symbol of Q
 , as a separate evolution variable. This amounts to adding a multiple

of the constraints (6.10) and (6.11) to the ADM equation, which does not modify the physics of

the system as these constraints vanish for metrics satisfying the Einstein equation. However, it

does modify the character of the PDEs such that they become strongly hyperbolic, leading to a

well-posed initial value problem.
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BSSN is a free evolution scheme, whereby the physical constraints (6.10) and (6.11) are not

explicitly imposed at each time step. At the continuum level, it can be shown that if these

physical constraints are satisfied in the initial data, then they remain satisfied at all time. However,

in numerical solutions, errors mean that constraint violating modes will always be present in the

solution. One particular weakness of the BSSN formulation is that there is a Hamiltonian constraint

violating mode with a zero speed of propagation [147]. Such a mode would therefore remain on

the computational grid throughout the evolution.

From a more mathematical point a view, BSSN modifies the ADM equations in a non-covariant

manner. An alternative d C 1 formulation is proposed in [148], known as the Z4 system, which

extends the Einstein equation in a generally covariant way. This formulation is essentially a

d C 1 decomposition of the modified Einstein equation (1.7). Here, the differential constraints

(6.10) and (6.11) are replaced by the algebraic constraint Z� � 0. Additionally, the components

Z� WD .‚;Zi /, are promoted to become additional evolution variables. Therefore, all constraint

violating modes now propagate through the grid. The authors of [149] further showed that the

Z4 formulation admits natural constraint damping terms, which can be added covariantly to the

Einstein equation via

Rab CraZb CrbZa D 8�

�
Tab �

1

D � 2
gabT

�
C �1

�
taZb C tbZa � .1C �2/ gabtcZ

c
�
;

(6.15)

where ta is a timelike vector field. In a d C 1 decomposition, a natural choice is to take ta D na.

The breakthrough success in simulating a dynamical black hole system using BSSN was enabled

by the development of the moving puncture gauge and initial data. It is therefore desirable to cast

Z4 into a form which would allow us to utilise these standard techniques while still benefiting from

its constraint damping properties. This amounts to performing a conformal decomposition of the

Z4 system. A covariant way to do this was proposed in [150], resulting in the CCZ4 (“conformal

and covariant Z4”) system, which is what we implement in GRChombo.1 Instead ofZi , the CCZ4

equations are given in terms of the variable O� i WD 2ZiC Q� i , where Q� i is the conformal connection

1An alternative conformal decomposition, known as Z4c, is given in [151].
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as previously defined. InD spatial dimensions, the equations read

@t� D
2�

D

�
˛K � @kˇ

k
�
C ˇk@k� (6.16)

@t Q
ij D �2˛ QAij C 2 Q
k.i@j /ˇ
k
�
2

D
Q
ij @kˇ

k
C ˇk@k Q
ij (6.17)

@tK D 2
�
@t‚ � ˇ

k@k‚
�
C ˛

�
QAij QA

ij
C
1

D
K2
�
�DiDi˛ C �1˛ .1 � �2/‚ (6.18)

C 2Zi@i˛ C ˇ
k@kK (6.19)

@t QAij D �
�
�DiDj˛ C ˛

�
Rij C 2D.iZj /

��TF
C ˛ QAij .K � 2‚/ � 2˛ QAil QA

l
j (6.20)

C 2 QAk.i@j /ˇ
k
�
2

D
QAij @kˇ

k
C ˇk@k QAij (6.21)

@t‚ D
˛

2

�
RC 2DiZ

i
� QAij QA

ij
C
D � 1

D
K2 � 2‚K � �1 ..D C 1/C .D � 1/ �2/‚

�
(6.22)

�Zi@i˛ C ˇ
k@k‚ (6.23)
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�
Q� ijk
QAjk �
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In equation (6.20) above, the superscript TF denotes the trace-free part. The Z4 system and its

conformal decompositions are strongly hyperbolic when coupled to the (1 + log) slicing and the

gamma-driver shift gauge conditions

@t˛ D �2˛ .K � 2‚/C ˇ
k@k˛ (6.27)
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� �B i C ˇj @jB
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where B is the time-derivative of the shift, and F and � are some constants.

In order to be able to evolve a black holewithout having to explicitly excise grid points in its interior2,

2The author of [152] argued that moving punctures should also be considered a form of “natural excision”, where
the puncture is implicitly ‘excised’ by not occurring on any grid point.
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we must formulate the initial condition in such a way as to remove physical singularities. For a

single black hole, this is typically done by expressing the metric in (quasi-)isotropic coordinates,

where the initial slice has two asymptotically flat ends, and the black hole’s horizon occurs at

the throat of the Einstein–Rosen bridge. These coordinates would, however, map the second

asymptotic region to a single point (or in the case of the black ring, a circle), thus creating a

coordinate singularity there. In a conformally decomposed scheme, this manifests itself as the

vanishing of the conformal factor �. Nevertheless, we can ensure that singularity does not coincide

with any grid point, allowing us to avoid evaluating any singular quantity. This forms the basis of

the puncture evolution approach.

Another feature of isotropic coordinates is that the resulting lapse function becomes negative

inside the horizon, which is not suitable for numerical evolution. A standard practice is to use the

pre-collapsed initial lapse

˛init D �
D�3
2 : (6.30)

In the (1 C log) slicing condition (6.27), this causes time to freeze at the black hole’s puncture,

eventually resulting in the slices becoming highly distorted as constant-coordinate lines fall into

the black hole. This phenomenon is known as slice stretching. However, the gamma-driver shift

condition (6.28-6.29) counters this effect by providing an outward-pointing shift vector at the

puncture.

6.3 Adaptive mesh refinement and GRChombo

The presence of multiple, well-separated length scales in the dynamics of black hole instabilities

necessitates the use of different grid resolutions in different parts of the computational domain.

Covering the entire computational domain with a single, uniformly spaced grid with sufficient

resolution for intricate geometric features near the black hole is a prohibitively expensive exercise.

Even where it is theoretically possible, it would be an extremely wasteful use of computational

resources. Berger–Oliger mesh refinement [153] is by far the most common method used in

numerical relativity to achieve multiple grid resolutions. In this method, the computational domain

is divided up into a collection of boxes, each containing uniformly spaced grid points. Regions

containing finer geometric features would be covered by higher resolution boxes. The resolution



120 Evolving Higher-Dimensional Black Holes with GRChombo

of boxes is refined in discrete levels, with a fixed ratio of grid spacing between the levels. A typical

choice is to double the resolution in each level. Instead of replacing a box with a higher-resolution

one where required, in the Berger-Oliger algorithm we enforce the proper nesting property on the

boxes: a refined region is covered by boxes in both the coarser and finer levels, with the finer-level

box entirely contained within the coarser-level one.

The mesh hierarchy can be arranged as either a cell-centered or a node-centered one. A particular

mesh refinement library typically only supports one of these modes, or has much better support

for one mode over another. The main difference between the two lies in the transfer of data from

a finer level to a coarser level. In a cell-centered code, grid points from different levels do not

coincide, so we must average the data from all finer grid points within a cell to obtain coarser level

data. In a node-centered code, we can simply replace the coarser level data with finer level data

at the same grid point. In the opposite direction, data transfer from coarser to finer level is done

using polynomial interpolation in both cases. To obtain data at some finer level point, we apply

a Lagrange interpolation stencil to the coarser level grid points closest to it. The stencil width is

determined by the desired order of convergence.

The organisation of the computational domain into boxes is particularlywell-suited to the distributed-

memory parallel programming model, as we can readily send different boxes to different compute

nodes. However, since we need to apply finite-difference stencils, data from points at the edges

of neighbouring boxes must be duplicated into so-called ghost points. Ghost data must be re-

copied each time the grid data is updated, and since neighbouring boxes can reside in different

compute nodes, this represents the biggest serial bottleneck in a mesh-refinement time-evolution

code. Ghost data beyond the boundaries of a particular level is obtained by interpolating data from

the next coarsest level as described above.

We now provide a high-level overview of the time stepping algorithm. Each level is treated

as an independent computational domain when a time step is taken. The numerical relativity

community by and large adopts explicit integrators, such as RK4, and therefore we must maintain

the CFL convergence condition by using smaller time steps at finer levels. Since our equations are

hyperbolic, whenever we reduce the grid spacing by a factor of k, we must also suppress the time

step size by a factor of k. Therefore, starting from some time t , if we take a single time step to time

t C ıt at any given level L, then at the next finest level LC 1 we must take k steps to reach the
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same time. After both levels L and LC 1 are evolved to time t C ıt , we transfer data from level

LC 1 back to level L in the region where the levels overlap. This procedure is sometimes referred

to as “subcycling”. An important point to note here is that the recursive nature of this algorithm

means that the total number of time steps taken scales exponentially with the number of levels.

In order to take a subcycled time step at a finer level, we first need to fill the out-of-boundary ghost

points with interpolated coarser-level data. However, since the coarser level step skips over the

subcycled time point, we must also perform an interpolation in time to calculate ghost data. If a

Runge-Kutta integrator is used, we can store the intermediate data from the RK substeps in order

to achieve a higher order of convergence in the time interpolation process using the so-called dense

output formula. For RK4, the fourth-order dense output formula between time t and tC ıt is given

by [154, 155]

y.t C � ıt/ D y.t/C ıt
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which reduces to the standard RK4 step when � D 1.

Box-structured mesh refinement can be implemented in two different flavours: fixed mesh re-

finement (FMR) and adaptive mesh refinement (AMR). FMR code requires the user to manually

specify the extent of each level beforehand. To simplify this process, the mesh structure generally

takes on simple geometric shapes, such as nested cuboids. Once this is done, the refined boxes

are allowed to move around to track certain prespecified features, such as a black hole puncture,

and they may also be allowed to merge. However, the shape of the refined regions is not altered

over the course of the evolution. As the dynamics of the mesh is very simple, FMR codes can

be more performant as they have a comparatively smaller overhead, and they also introduce less

noise from mesh refinement errors. This approach is therefore very well suited to the simulation of

systems which only involve movements of discrete objects whose size do not vary much over time.

A prototypical example of this kind of system is the black hole binary. However, in systems whose

dynamics involve the creation of new features and length scales, as is the case when simulating

instabilities, the FMR approach lacks the flexibility to cope with the ever-changing requirement

for the mesh geometry. Moreover, when the object of interest has a non-trivial shape, the manual
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specification of the mesh to conform with the geometry or topology of the object can become a

painstaking process. On the other hand, if we were to continue to use a geometrically simple mesh

hierarchy then we may end up wastefully refining a region which do not require extra resolution.

For example, in a simulation of black rings, a hierarchy of nested boxes would lead to the hole in

the middle of the ring being unnecessarily refined.

AMR is a more flexible approach which addresses both of these concerns. In AMR, the user

specifies a criterion used to determine whether a region requires extra resolution. This is expressed

in terms of a tagging function � and a threshold value for � above which a particular point is

deemed to be insufficiently resolved. After some user-specified number of time steps, the tagging

criterion is reevaluated and a newmesh is created accordingly. Data is then transferred from the old

mesh to the new one, and the evolution can continue. The success of an AMR simulation is highly

dependent on a good tagging criterion. A criterion which is too conservative would cause the mesh

to be refined and unrefined in an erratic manner, injecting large amounts of error into the system

in the process, while a criterion which is too eager would lead to a large usage of computational

resources. In numerical relativity, it is also important to ensure that the boundary of refined meshes

do not lie too closely to the apparent horizon, as this would tend to cause mesh refinement noises to

leak into the exterior. The main disadvantage of AMR is clearly the greatly increased complexity

in implementation, especially in the context of parallel programming. Fortunately, a number of

general-purpose AMR libraries exist on top of which we can build a numerical relativity code with

a reasonable level of effort.

Our GRChombo numerical relativity code [156] is built on top of the Chombo library [157], which

is developed at the Lawrence Berkeley Laboratory. Chombo provides a collection of distributed

data structures for AMR, along with necessary parallel algorithms implemented through MPI. The

library is primarily geared towards cell-centered AMR. The library keeps track of the layout of

AMR boxes and handles data transfer both within a node and between nodes, including temporal

and spatial interpolation in both directions between coarser and finer levels. The built-in RK4

integrator also distributes the necessary intermediate substeps value across nodes and applies the

aforementioned continuity formula to provide a fourth-order accurate temporal interpolation. In

order to achieve good performance and scalability, Chombo also provides routines to distribute

boxes across nodes in a load-balanced manner, however as this can be a fairly costly procedure, the
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user has the option to invoke it as often or as rarely as appropriate.

Chombo is primarily written in C++, however certain routines which are deemed performance-

critical are implemented in Fortran. The user builds a simulation program by subclassing AM-

RLevel and overriding a number of pure-virtual functions to provide the evolution equations,

tagging criteria, and to invoke necessary data exchange and interpolation routine. In GRChombo,

we implement the CCZ4 equations [150] with Kreiss-Oliger dissipation [158] to reduce high-

frequency noises. For the black ring simulation, it was also necessary to add an additional diffusive

term near the ring-like singularity in order to stabilise the system. This is done using a localised

artificial viscosity term, similar to the ones used in computational fluid dynamics [159]. In order

to be able to simulate higher-dimensional spacetimes using a reasonable amount of computational

resource, we reduce the effective number of dimensions by exploting rotational symmetries through

the modified cartoon method [160, 33]. In the following sections, we give further details of these

techniques, along with some technical considerations for efficient implementation and running of

the code.

6.4 Artificial dissipation and viscosity

The evolution of a PDE system on a discrete grid with finite resolution can become unstable when

the solution contains high-frequency features which cannot be resolved. These features could arise

from the nonlinearities in the equations, such as the development of shocks in hydrodynamics, or

from numerical errors from domain boundaries. Moreover, when AMR is used, the interpolation

between levels could also inject unphysical high-frequency noise into the system. A standard way

to address this problem is to modify the equations by adding extra terms to dampen or dissipate

modes which cannot be well-resolved by the grid. While such terms would themselves introduce

some additional errors into the system, we can nevertheless ensure that they converge to zero as

the grid spacing is reduced, at least at the same order as the finite difference scheme used in the

evolution. The standard practice in numerical relativity is to add the Kreiss-Oliger dissipation
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[158] to the right-hand side of each equation,

@tf 7! @tf CKO

KO WD
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ıx

.�1/N�1

22N
DNCD

N
� f

; (6.32)

where N is some chosen integer, " � 1 is the strength of the dissipation. In one dimension, D˙

are the one-sided difference operators

.DCf /i D �fi C fiC1 ; .D�f /i D �fi�1 C fi : (6.33)

In more than one dimensions, we simply apply these operators along each direction separately. It

can be shown that KO D O.ıx2N�1/ as ıx ! 0. Therefore, if we use a finite difference scheme

in the evolution which converges asO.ıxr/, then adding theKO term withN � .r C 1/=2 would

not change the convergence behaviour. In particular, for our fourth order code we use N D 3,

where theD3
C
D3� operator can be expressed as a stencil

�
D3CD

3
�f

�
i
D fi�3 � 6fi�2 C 15fi�1 � 20fi C 16fiC1 � 6fiC2 C fiC3: (6.34)

Another source of numerical instability in a black hole simulation is the large gradients near the

black hole’s singularity. In conformally-decomposed evolution schemes such as BSSN or CCZ4,

we can aim to contain the singular behaviour entirely within the conformal factor �, leaving

the conformal metric Q
ij regular. The moving puncture gauge conditions are then employed

to move the singularity around the grid, and one typically finds that errors which arise from

applying finite difference stencils across the singularity do not leak outside the black hole’s horizon.

However, where the slicing is not conformally flat, such as in simulations of rotating black holes,

the singularity cannot be fully absorbed into �. While this does not typically cause trouble in

simulations of spherical black holes, where the singularity occurs at an isolated point, we found that

the extended nature of a black ring’s singularity (or, indeed, the disc-like singularity of a Myers–

Perry black hole) is much more likely to cause the evolution to become numerically unstable.

More specifically, large gradients in the conformal metric components Q
ij are problematic, as our

equations involve the second derivatives of these quantities. In order to achieve stable evolution in

this setting, we found it necessary to add an extra diffusive behaviour to Q
ij on top of the standard
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KO dissipation. The form of our diffusion term is inspired by artificial viscosity terms used in

computational fluid dynamics, and is given by
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2 g
�
�;
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ij �TF ; (6.35)

where cL sets the strength of the diffusion, and g
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the effect of this term to a region which is not too close to the horizon. Again, the idea here is

to diffuse away modes which cannot be resolved by our computational grid without changing the

physical behaviour of the system in the continuum limit. The choice of a traceless diffusion term
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where �c is a threshold for the value of � above which the diffusion term is deactivated entirely. In

our choice of gauge, contours of � follow roughly the shape of the apparent horizon, and therefore

it acts as a good trigger to confine the diffusion region within the horizon’s interior. In the 5D

black rings simulation, the choice 0:015 < �c < 0:03 confines the diffused region to well within

the horizon, even in the very thin necks when the GL instability is in full swing.

6.5 The modified cartoon method

Numerical computations can quickly become infeasibly costly as the number dimensions increase.

At a fixed resolution, the amount of resources required scales exponentially with the number of

dimensions. However, many physical behaviours of interest can be studied even when rotational

symmetries are imposed. By exploiting these symmetries, we can reduce the effective dimension-

ality of the problem, which in turn significantly reduces the computational cost involved. One

obvious way to proceed is to express the line element in a system of coordinates in which the

symmetries are manifest. The downside of this method, however, is the emergence of coordinate

singularities at the axes of rotational symmetries, which can become problematic for numerical

evolution unless they are carefully handled. Furthermore, the evolution equations will be different
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for each component, resulting in a more complex code. Another method, which was implemented

in [161], is to perform dimensional reduction on the Einstein equation itself, then perform the dC1

decomposition on the resulting modified equation. The cartoon method [162] is an alternative ap-

proach which allows us to impose symmetries on any dC1 decomposition of the Einstein equation

while remaining in the relatively simple Cartesian coordinates. This was originally proposed for

axisymmetric d C 1 simulations. The method involves setting up a 2D Cartesian grid to hold the

dimensionally reduced data, along with an extra layer of 2D grid above it. Data on these adjacent

layers are not evolved using the equations, but are instead filled with values obtained by rotating the

actual data grid up, thus imposing the required symmetry. With this extra grid layer, it is possible

to calculate derivatives using finite differences as usual. Besides the additional resources required

to hold the extra grid, the downside of this approach is that the symmetry is only approximately

imposed: the derivatives obtained via finite differences along the reduced dimensions are not what

one would get if the symmetries were imposed analytically.

In our work, we employ the so-called modified Cartoon method [160, 33], where we continue to

work in Cartesian coordinates, but the derivatives along the symmetry-reduced dimensions are

now calculated using expressions obtained by imposing the symmetries analytically. We begin by

considering a 4-dimensional spacelike slice † with Cartesian coordinates .x; y; z; w/ and impose

a U.1/ symmetry on the .z; w/ plane. In order to impose the rotational symmetry, we change to

polar coordinates on this plane, thus

z D � cos� ; w D � sin�; (6.37)

where � is the coordinate on the orbits of our U.1/ symmetry. Therefore, � WD @=@� is a Killing

vector on †. We now choose to perform our computation on the plane w � 0, and we denote this

subsurface by†0. Our setup is now effectively 3+1, and we use the index i D 1; 2; 3 to range over

the remaining coordinates .x; y; z/. In terms of these Cartesian coordinates, our Killing vector has

components

� D z @w � w @z : (6.38)

The U.1/ symmetry can now be expressed as the requirement that the Lie derivatives L� of all

physical quantities on † vanish and setting w D 0. Expressed in Cartesian coordinates, these

conditions can be rearranged to obtain various w-derivatives in terms of grid derivatives on †0.
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The resulting relations for the components required for standard CCZ4 can be found in [33], and a

complete list all components is given in [163]. For scalar quantities F , we have
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:
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For second-rank tensor quantities Tab , we have
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More generally, in d spatial dimensions we can take our symmetry group to be SO.n/ for any

2 � n � d . To fix notation, we take n D d � 2 and denote the Cartesian coordinates on †

by .x; y; z; w1; : : : ; wn�1/. As before, the SO.n/ acts on the .z; w1; : : : ; wn�1/ hyperplane,

and our computational domain is the 3-dimensional subsurface †0 obtained by setting all the
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wA coordinates to zero. For n > 2, the SO.n/ contains U.1/ subgroups corresponding to

rotations in the .wA; wB/ planes for any A ¤ B . The Killing vector generating this subgroup is
.AB/� WD wA @B � w

B @A. For any vector V and second rank tensor T , we find that

.AB/L�V
B
D 0) V A D 0

.AB/L�TiB D 0) TiA D 0

.AB/L�TBB D 0) TAB D 0

.AB/L�TAB D 0) TAA D TBB

Therefore, vector quantities do not carry any extra cartoon components, while tensor quantities

only carry a single diagonal cartoon component denoted by Tww . Next, for each wA, we consider

the Killing vector .A/� WD z @A �w
A @z . We now proceed in the same way as in the U.1/ case to

obtain the same expressions as before, except that those marked with .�/ now vanish. Additionally,

we find that expressions involving two different cartoon indices vanish, i.e. those with two w

indices on the LHS should be replaced by A;B and the RHS multipled by a factor of ıAB or

ıAB as appropriate. For example, @j @wV w ! @j @BV
A D ıAB

�
1
z
@jV

z �
1
z2
ıjzV

z
�
. The only

expression with a somewhat nontrivial change is the one for @w@wTww , which now reads

@C @DTAB D
1

z
ıAB ıCD @zTww C

1

z2
.ıAC ıBD C ıAD ıBC / .Tzz � Tww/ :

We can now apply these expressions to the d C 1 CCZ4 equations to obtain what is essentially the

3C 1 CCZ4 equations with additional terms added involving the cartoon components. From an

implementational point of view, this is simply achieved by adding a few extra grid variables for the

cartoon components to the code which implements the equations (6.16)-(6.26) (the ‘RHS code’).

One obvious potential difficulty is the apparent singular behaviour of some cartoon expressions at

z D 0. While it is possible to regularise the expressions and treat the evaluation at z D 0 as a

special case, since GRChombo is a cell-centered code, we never actually have grid points at z D 0

and therefore we can straightforwardly implement the cartoon expressions.
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6.6 Technical considerations

The performance of AMR under distributed-memory parallelism can be highly dependent on the

runtime settings. Dividing the domain up into a larger number of smaller boxes means that the

computational workload can be straightforwardly distributed to a larger number of nodes, which

may appear beneficial in terms of strong scalability of the code. However, more boxes also incur

more communication, as we need to fill in ghost data at the boundaries of each box. Furthermore,

for very small boxes, the communication overhead can become larger than the computational

workload. In GRChombo, we only specify the maximum box size, as in certain places the use

of large boxes would mean that we cannot conform to the geometry of the solution, and would

therefore be refining a larger region than necessary. However, the majority of boxes would still

have the maximum box size. For our simulations, we found that setting 32 � nmax � 64 allows us

to strong-scale well up to 2000 cores.

Another way to increase the performance is to ensure that the RHS code itself is well-optimised.

A large part of floating point performance on modern processors relies on single-instruction,

multiple-data (SIMD) vectorisation. Instead of performing computation on one data point at a

time, a SIMD-vectorised code allows the processor to apply the same instruction to multiple data

points in each cycle. Compilers are generally capable of turning computational loops into ones

which make use of SIMD instructions, however we found that the equations of numerical relativity

tend to be sufficiently complicated as to prevent this from happening reliably. As an alternative

to automatic vectorisation, we can also program our equations using compiler intrinsics which

explicitly tell the compiler to generate SIMD instructions, however this approach is tedious and

error-prone. The resulting code would also be specific to one particular machine architecture and

not portable to any other. Using C++, we can wrap the compiler intrinsics up into overloaded

operators, allowing one to explicitly vectorise the code in a much more straightforward manner.

To illustrate our solution, let us consider the following simple 2+1 evolution system

@tXab D .X
�1/cdYacYbd ;

@tYab D .Y
�1/cdXacXbd :

This PDE system has nomathematical or physical significance, however it will serve to demonstrate
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the issues that arise in the course of writing a numerical relativity code. In the framework of

Chombo, we need to provide a function which evaluates the RHS of the system. A first attempt at

implementing this in C++ could look like the following

#define FOR1(i) for (int i = 0; i < 2; ++i)
#define FOR2(i,j) FOR1(i) FOR1(j)

struct grid_data
{

double X[2][2];
double Y[2][2];

}

void invert(const double (&in)[2][2], double (&out)[2][2])
{

double det = in[0][0]*in[1][1] - in[0][1]*in[1][0];
out[0][0] = out[1][1] / det;
out[0][1] = -out[0][1] / det;
out[1][0] = -out[1][0] / det;
out[1][1] = out[1][1] / det;

}

grid_data calculate_rhs(grid_data in)
{

double invX[2][2], invY[2][2];
invert(in.X, invX);
invert(in.Y, invY);

grid_data rhs;
FOR2(a,b)
{

FOR2(c,d)
{

rhs.X[a][b] += invX[c][d]*in.Y[a][c]*in.Y[b][d];
rhs.Y[a][b] += invY[c][d]*in.X[a][c]*in.X[b][d];

}
}

return rhs;
}

void rhs_loop(int npoints, const double ** in_arr, double ** rhs_arr)
{

for (int idx = 0; idx < npoints; ++idx)
{

grid_data in = load_data(in, in_arr, idx);
grid_data rhs = calculate_rhs(in);
store_data(rhs, rhs_arr, idx);

}
}

We omit the implementation details of the load_data function, which loads the input array data

at grid point idx into a meaningful grid_data struct. The store_data function does the same
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thing in the opposite direction. In the actual code, we also provide functions which apply finite

difference stencils to the input array data which also return results as grid_data structs. While

the code as written above is a reasonably readable and concise representation of our equations, we

found that compilers cannot reliably vectorise the outermost loop over the AMR box. Three factors

seem to contribute toward this failure, namely the presence of the small inner loops, the use of local

structs and arrays, and external function calls. In principle, modern compilers are supposed to be

able to handle these situations, however the complexity of the expressions in numerical relativity

seems to still confuse the autovectoriser. One obvious solution would be to manually inline the

functions, and completely unroll the inner loops and struct declarations, thus

void rhs_loop(const double ** in_arr, double ** rhs_arr)
{

for (int idx = 0; idx < npoints; ++idx)
{

double in_X00 = in_arr[0][idx];
...
double in_Y11 = in_arr[7][idx];

double detX = in_X00*in_X11 - in_X01*in_X10;
double invX00 = in_X11 / detX;
...

double rhs_X00 = invX00*in_Y00*in_Y00
+ 2*invX01*in_Y00*in_Y01
+ invX11*in_Y01*in_Y01;

...

rhs_arr[0][idx] = rhs_X00;
...
rhs_arr[7][idx] = rhs_Y11;

}
}

In practice, this approach is far too complicated and error-prone for manual coding, and we

therefore require a code generator to produce such a function. Mathematica is a good environment

in which to create a code generator, thanks to its symbolic manipulation capabilities. The real

problem with this approach, however, is that it results in a very large binary when done naively.

Instead of structured loops, the compiled code essentially contains multiple copies of the same

expression for each component of the tensors. While the code can now be trivially vectorised, it

is now significantly larger than the processor’s instruction cache, thus causing severe performance

degradation. The Kranc code generator [164], which is implemented in Mathematica, follows

this type of approach, however it additionally breaks the equation down into self-contained chunks
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which can fit in the instruction cache, and can achieve good performance in practice.

An alternative solution is to provide a manually vectorised version of the code using compiler

intrinsics. For example, on an AVX machine, we might have

struct grid_data_avx
{

__m256d X[2][2];
__m256d Y[2][2];

}

void invert_avx(const __m256d (&in)[2][2], __m256d (&out)[2][2])
{

__m256d det = _mm256_sub_pd(_mm256_mul_pd(in[0][0], in[1][1]),
_mm256_mul_pd(in[0][1],in[1][0]));

out[0][0] = _mm256_div_pd(in[1][1], det);
...

}

grid_data_avx calculate_rhs_avx(grid_data_avx in)
{

__m256d invX[2][2], invY[2][2];
invert_avx(in.X, invX);
invert_avx(in.Y, invY);

grid_data_avx rhs;
FOR2(a,b)
{

FOR2(c,d)
{

_mm256_add_pd(rhs.X[a][b], _mm256_mul_pd(invX[c][d],
_mm256_mul_pd(in.Y[a][c], in.Y[b][d])));

...
}

}

return rhs;
}

// Assume for now that npoints is a multiple of 4
void rhs_loop_avx(int npoints, const double ** in_arr, double ** rhs_arr)
{

for (int idx = 0; idx < npoints; idx += 4)
{

grid_data_avx in = load_data_avx(in, in_arr, idx);
grid_data_avx rhs = calculate_data_avx(in);
store_data_avx(rhs, rhs_arr, idx);

}
}

In this approach, the code is fully vectorisedwhile still retaining the loop structures of the equations.

The resulting binary size is therefore significantly smaller than that of the “fully unrolled” version.



Evolving Higher-Dimensional Black Holes with GRChombo 133

The main disadvantages here are that the code is essentially unreadable and unportable, as we

would have to manually create separate versions of the RHS for different hardware platforms. In

order to address these issues, we can use object-oriented programming techniques and operator

overloading capabilities in C++ to create SIMD-enabled data types which behave like the standard

double. While we will not reproduce the entire implementation of such a data type here, we

will note that care must be taken to ensure that binary operators can accept a mix of SIMD and

scalar (both integer and floating point) operands. For example, if x is a SIMD vector, then both

2 / x and x / 2 should be valid. This can be achieved by declaring appropriate type casts and

careful definitions of binary operators in a base type. Our base type is also designed so that the

code can fallback to scalar types when no SIMD is detected. A skeletal code for this (we are only

implementing division here) is as follows.

// Trivial, non-SIMD base template for use
// when no specific SIMD platform is detected
template <typename t>
struct simd
{

t m_value;

simd(const t & value) :
m_value (value)

{}

operator t&() { return m_value; }
static simd load(const double * array) { return *array; }
static void store(double * array, const simd & v) { _array = v.m_value; }

}

// Helper type to provide platform-specific parameters
// Defaults to scalar unless overridden
template <typename t>
struct simd_traits
{

using data_t = t;
static const int simd_len = 1;

}

// Common logic for actual SIMD types
template <typename t>
struct simd_base
{

using data_t = typename simd_traits<t>::data_t;
data_t m_value;

simd_base(const data_t & value) :
m_value (value)

{}

operator data_t&() { return m_value; }
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// Binary version of the division operator, implemented in terms
// of the unary version, which is provided as platform-specific code
friend simd<t> operator/(const simd<t> & a, const simd<t> & b)
{

simd<t> out(static_cast<const simd<t>&>(a));
out /= static_const<const simd<t>&>(b);
return out;

}
}

Platform-specific logic can then be provided in a separate file as a template specialisation, inheriting

the common logic from simd_base. An example implementatation for AVX is as follows.

template <>
struct simd_traits<double>
{

using data_t = __m256d;
static const int simd_len = 4;

}

template <>
struct simd<double> : public simd_base<double>
{

simd(const double & scalar) :
simd_base<double> (_mm256_set1_pd(scalar))

{}

// C++ does not forward constructor to the base class,
// so we have to explicitly declare it here
simd(const __m256d & v) :

simd_base<double> (v)
{}

simd& operator/=(const simd& a)
{

m_value = _mm256_div_pd(m_value, a.m_value);
return *this;

}

static simd load(const double * array) { return _mm256_loadu_pd(array); }
static void store(double * array, const simd & v)
{ _mm256_storeu_pd(array, v.m_value); }

}

The above snippet only contains code which is strictly specific to the AVX platform. If we wish

to, say, also support SSE packed double, we can simply create another platform-specific source

file, and replace the AVX intrinsics with the SSE ones. We can then use compiler macros to detect

the target platform at compile time, so that we do not need to worry about selecting the correct

platform file manually.
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#if defined(__AVX__)
#include "avx.hpp"
#elif defined(__SSE2__)
#include "sse.hpp"
#endif

Using our SIMD data type, we can reliably generate a fully vectorised program from our original,

readable RHS code. The only modification that we need to make is replace double with a

templated type, and provide a remainder loop for when the array size is not an integer multiple of

the SIMD width. For clarity, we use ### to denote the portion of code which is identical to our

first implementation.

template <typename data_t>
struct grid_data
{###}

template <typename data_t>
void invert(const data_t (&in)[2][2], data_t (&out)[2][2])
{

data_t det = ###
###

}

template <typename data_t>
grid_data<data_t> calculate_rhs(grid_data<data_t> in)
{

data_t invX[2][2], invY[2][2];
###

grid_data<data_t> rhs;
###

}

void rhs_loop(int npoints, const double ** in_arr, double ** rhs_arr)
{

int idx = 0;
int simd_max = simd<double>::simd_len * (npoints / simd<double>::simd_len);

// SIMD loop
for (; idx < simd_max; idx += simd_traits<double>::simd_len)
{

auto in = load_data<simd<double>>(in, in_arr, idx);
auto rhs = calculate_rhs(in);
store_data(rhs, rhs_arr, idx);

}
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// Remainder loop
for (; idx < npoints; ++idx)
{

auto in = load_data<double>(in, in_arr, idx);
auto rhs = calculate_rhs(in);
store_data(rhs, rhs_arr, idx);

}
}

The driver function rhs_loop can now be treated as reusable code. Any threading or optimisation

performed on rhs_loop could therefore potentially benefit multiple RHS codes. On the other

hand, new RHS code can be written in a straightforward manner without the need to consider the

compiler’s ability to vectorise complex loops.



Chapter 7

Finding Apparent Horizons

7.1 Introduction

The ability to locate black hole horizons in a spacetime is a crucial ingredient in any numerical

relativity code. This is especially true in our work, where we are interested in the nonlinear

dynamics of the black hole horizon itself. An accurate description of the horizon surface is the

first step in the study of its physical characteristics. Additionally, from a numerical point of view,

this also allows us to ensure that sufficient resolution is used in the black hole’s interior. This

is critical in achieving a stable evolution and in preventing spurious behaviour from singularity

regularisation schemes leaking into the exterior region.

The defining characteristic of a black hole is that it is a region which is causally disconnected

from future null infinity. The boundary of this region defines the event horizon of the black hole.

As this is a global definition, we can only locate the event horizon from the entire history of the

spacetime. Generally speaking, this is a prohibitively expensive process, especially in terms of

storage andmemory requirements. Furthermore, from the numerical perspective, the event horizon

plays no role in the local causal structure at each constant time slice †, which is what determines

the region in which spurious behaviour can be contained. We are instead interested in apparent

horizons, which are the outermost marginally trapped surface on †. More precisely, a trapped

null surface is a closed, codimension-1 hypersurface H on†, such that the expansion of outgoing

null geodesics vanishes everywhere on H , and the apparent horizon is the outermost such surface.

The apparent horizon is ‘gauge dependent’ in the sense that it is specific to a particular choice of
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slicing. However, given a particular slice †, the apparent horizon is unambiguously defined.

We proceed to present the derivation as given in [144] to obtain a condition satisfied by H . Let s be

the outward spacelike unit normal to H in †, and let n be the future-directed timelike unit normal

vector to†. The outgoing null vector on H is then given by la WD naC sa. Let hab D 
ab � sasb

be the metric pulled back onto H . The expansion of outgoing null geodesics on H is given by

‚ D
1

2
habLlhab D

1

2
hab .Lshab CLnhab/ : (7.1)

For the first term, we simply note that �1
2
Lshab is just the extrinsic curvature kab of H in†. For

the second term, we have

�
1

2
Lnhab D �

1

2
Ln
ab C

1

2
Ln.sasb/ : (7.2)

Once again, the first term is just the extrinsic curvatureKab of†. Note also that, sincera.sbsb/ �

0 and ra.nbsb/ � 0, we also have habLn.sasb/ D 0. We are therefore left with the condition

‚ D .
ab � sasb/ .�kab �Kab/ � 0; (7.3)

which the apparent horizonH must satisfy. In order to proceed, we first need to pick an appropriate

parametrisation scheme for H . This turns (7.3) into a PDE system which we can solve numerically.

Apparent horizon finders with various different schemes have been implemented, and these are

extensively reviewed in [165]. In the following sections, we discuss two different approaches which

have been successfully used in studies of higher dimensional black hole instabilities. We begin

with the level set approach, which is a very common method in the field, and can be adapted to suit

black rings. Limitations of this method will lead us to develop a new, fully parametric approach,

which is capable of handling much more general surfaces. As far as we are aware, this method has

not been previously used elsewhere.



Finding Apparent Horizons 139

7.2 Level set parametrisation

A common approach to parametrising apparent horizons in numerical relativity is to find a scalar

function F such that H occurs as the zero contour

u � F.v;w/ � 0: (7.4)

Here .u; v; w/ are some coordinates on † that are well-adapted to the geometry of H in its

neighbourhood. For example, a popular choice for horizons with spherical topology is the standard

spherical polar coordinates .u; v; w/ WD .r; �; �/, with the radial coordinate r treated as a function

of the two angular parameters .�; �/. In this parametrisation, the unit normal to H is given by

sa D raF=krF k . By expanding 7.3, we can formulate the apparent horizon equation as a PDE

for F  

ab �

raF rbF

krF k2

! 
rarbF

krF k
�Kab

!
D 0: (7.5)

The PDE can then be solved using Newton’s method as described in previous chapters, subject

to boundary conditions obtained by requiring that the resulting surface is smooth. This approach

can be successfully used to find horizons with a ring-like topology, such as those arising from

the evolution of black rings. For this discussion, we denote the grid Cartesian coordinates by

.X; Y;Z/. We begin by recalling the ring coordinates .x; y;  / originally used to describe analytic

stationary black rings in [14], which are related to the Cartesian coordinates via

X D r2.x; y/ cos ; Y D r2.x; y/ sin ; Z D r1.x; y/

r1.x; y/ WD
R
p
1 � x2

x � y
; r2.x; y/ WD

R
p
y2 � 1

x � y

�1 � x � 1 ; �1 < y < �1 ; 0 �  < 2�;

(7.6)

whereR is some chosen constant which defines the scale of the coordinate system. More precisely,

the coordinate system has a ring singularity at y D �1, which corresponds to a circle of radius

R centered at the Cartesian origin. To gain a geometric understanding of these coordinates, let us

fix  D 0 for the time being and focus on the .X;Z/ plane. The flat Euclidean metric is given by

ds2 D
R2

.x � y/2

�
dx2

1 � x2
C

dy2

y2 � 1

�
: (7.7)
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Near the singularity, i.e. as y ! �1, we have

ds2 � R2
 
dy2

y4
C

dx2

y2
�
1 � x2

�! D R2 �d.1=y/2 C .1=y/2 dx2

1 � x2

�
: (7.8)

If we now define new coordinates .�; �/ with x D cos � and � � �1=y as y !1, we would get

ds2 � R2
�
d�2 C �2 d�2

�
: (7.9)

In other words, .�; �/ form a system of local polar coordinates about the ring singularity. Fur-

Figure 7.1: Standard ring coordinates with constant R are not suitable when the apparent horizon
is highly deformed. The left plot shows the greatest extent of deformation which can be handled
by these coordinates. Clearly, if the surface becomes any more eccentric then we can no longer
fit the circular coordinate singularity entirely within H . The severe distortion of coordinate lines
where the singularity is very close to H also causes steep gradients which are problematic for the
numerical solver. The same coordinate system becomes more generally applicable if R is allowed
to be a function of  . The right plot shows a much more eccentric H which can be parametrised
by ring coordinates when the functionR. / is chosen appropriately. Note that the coordinate lines
are also much more uniformly distributed across the surface.

thermore, it is desirable also have y ! �1 as � ! 1. In our code, we choose y D �1= tanh �,

however presumably other choices such as y D �1=�� 1 could also work. The horizon H is then

described as the zero set � � F.�;  / � 0, with the function F satisfying the PDE (7.5). The

problem with this setup, however, is that it is not suitable when H becomes highly stretched. If we

cannot fit a circle of any size into the interior of the projection of H onto the .X; Y / plane, then the

.�; �;  / coordinates as currently defined cannot be used to parametrise H under this approach,

as the ring singularity must intersect H regardless of the chosen value of R. One solution to

overcome this limitation is to allow R to be a function of  rather than a constant. We would then

have to inspect the grid functions to guess the shape of H , e.g. by looking at the contour of the
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conformal factor �, and manually specify the function R. / to roughly conform to the expected

geometry. To summarise, we can use the following coordinate system to parametrise a fairly large

class of ring-like horizons as a level set:

X D r2.�; �;  / cos ; Y D r2.�; �;  / sin ; Z D r1.�; �;  /

r1.�; �;  / WD
R. / sin �

cos � C 1=tanh �
; r2.�; �;  / WD

R. /=sinh �
cos � � 1=tanh �

0 � � <1 ; �� � � � � ; 0 �  < 2�;

(7.10)

where R. / > 0 is some prescribed function that roughly follows the shape of H . Creating a

suitable function R. / for each H is a rather tedious process if done manually, however it can be

somewhat automated by using some heuristic algorithm, e.g. setting R to the point with minimum

� along each constant- ray.

The main limitation of this approach is that it can only describe surfaces which occupy a convex

region in the .v; w/-plane. From a practical point of view, we typically further restrict this to be a

rectangular region. (For topologically spherical horizons, this translates to the requirement that the

projection of H onto the equatorial plane of the coordinate system forms a star domain.) When

simulating rapidly spinning black holes, however, frame dragging effects tend to twist H in such

a way as to break the convexity condition. In this case, we can apply some intuition to distort

the coordinate system to compensate. The simplest way to do this is to define twisted Cartesian

coordinates . QX; QY ; QZ/ with Z D QZ and

X D QXcos
�
kr2

�
� QY sin

�
kr2

�
Y D QXsin

�
kr2

�
C QY cos

�
kr2

�
r2 WD X2 C Y 2 D QX2 C QY 2

: (7.11)

By replacing the Cartesian coordinates in (7.10) by the twisted ones, we can continue to use the

ring coordinates to parametrise H which is subject to some mild frame dragging.
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Figure 7.2: By applying a twisting transformation to the angular coordinates, we are able to use
the ring coordinates to parametrise a mildly frame-dragged apparent horizon using the level set
approach. However, this is only applicable in a very limited setting.

7.3 General parametrisation

The intuition-led coordinate transformation described in the previous section is an ad hoc solution

to address a major limitation of the level set approach. In the study of black hole instabilities,

we may encounter complex geometries for which there is no obvious coordinate trick that applies.

Figure 7.3 shows one scenario in which this occurs.

In order to create a more robust apparent horizon finder, we propose to instead treat H as a general

parametric surface. More precisely, we define H via

xi D X i .u˛/; (7.12)

where xi (i D 1; : : : ; d ) are the Cartesian coordinates on the constant-time slice †, and the u˛

(˛ D 1; : : : ; d � 1) are parameters on the surface H . From a computational point of view, we

now need to solve for d unknown functions, X i , in order to determine H . The tangent and normal
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Figure 7.3: In the initial stages of the evolution of an axisymmetrically perturbed, ultraspinning 6D
Myers-Perry black hole, the apparent horizon forms a star domain and can therefore be constructed
using the level set parametrisation with standard spherical coordinates. This is clearly not the case
in the later stages as the GL instability develops in earnest. There is no obvious coordinate system
which can describe the dynamically changing geometry as a level set, and we must instead resort
to using a more general parametrisation in order to construct the horizon.

vectors to H in † are given by

T i.˛/ D
@X i

@u˛
and S i D ?

�
T.1/ ^ � � � ^ T.d�1/

�] (7.13)

respectively. For notational convenience, we will also use t i
.˛/

and si to denote the corresponding

unit vectors. The extrinsic curvature of H in † is given by

k˛ D �T
i
.˛/T

j

.ˇ/
rj si

D �T
j

.ˇ/
rj

�
si T

i
.˛/

�
C si T

j

.ˇ/
rjT

i
.˛/

D si

 
@2X i

@u˛@uˇ
C � ijk

@Xj

@u˛
@Xk

@uˇ

!
: (7.14)

Denoting the induced metric on H by 
˛ˇ D T i
.˛/
T
j

.ˇ/

ij and its inverse 
˛ˇ D

�

˛ˇ

��1, the
equation for H can be expressed as

si 

˛ˇ

 
@2X i

@u˛@uˇ
C � ijk

@Xj

@u˛
@Xk

@uˇ

!
C

�

 ij � sisj

�
Kij D 0; (7.15)

where we treat si as a function of the @X i
ı
@u˛ .

Since we now need to solve for d functions, we must provide an additional set of d � 1 equations

in order to complete the PDE system. We begin by considering the one-dimensional case, where
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H can be described as a curve on an .x; z/ plane, parametrised by a single parameter u. One way

to fix the gauge is to fix the norm of the tangent vector to some prescribed values QH.u/ along the

curve, that is,


ij
@X i

@u

@Xj

@u
D QH.u/: (7.16)

However, imposing the above condition amounts to fixing the coordinate distance between the two

ends of the curve, which is not generally known a priori. Instead, we differentiate it to form a

second order condition

1

2
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@Xj
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@Xk

@u
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!
D H.u/; (7.17)

whereH.u/ is some prescribed function. A simple choice is to setH.u/ � 0, which is equivalent

to requiring that u be an affine parameter. This condition and (7.15) together form a system

of well-posed PDEs which can be solved numerically. Since H is a compact surface in †, the

domain of u must either be periodic or terminate on an axis of symmetry. In this latter case,

boundary conditions are determined by smoothness requirements, such as the absence of conical

singularities.

As usual, we apply the Newton line search method to solve the nonlinear PDE system. In our

current setup, both the expansion and the gauge condition are simultaneously corrected in each

Newton step. When the geometry of H becomes more extreme, we found that the gauge condition

becomes significantly more stiff than the actual physical equation, and the nonlinear solver either

requires strongly suppressed step sizes to make progress in the best case, or outright diverges in the

worst case. We found that the Newton solver becomes significantly more robust if we project out

the gauge mode from the line search direction entirely. To do this, instead of choosing a particular

gauge by providing a specificH.u/ in (7.17) a priori, we now setH.u/ to coincide with the LHS

of (7.17) at the current iteration. In other words, we are fixing the gauge to be whatever gauge the
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current iteration is in. Figure 7.4 illustrates the difference this makes in a schematic diagram. In

practice, this is very easy to implement in code: we simply need to fix the Newton residual of the

gauge equation to always be zero but still use the Jacobian of the full system (7.15) and (7.17). If

our gauge condition is linear, this procedure would cause us to always remain in the same gauge as

the initial guess. However, since (7.17) is nonlinear, we would be committing a change of gauge

after each iteration, and therefore we no longer have control over the gauge of the final surface.

Nevertheless, we found that if the grid points are evenly distributed across the initial guess surface,

then the solver tends to converge to the final surface in a sensible gauge.
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Figure 7.4: Schematic diagrams showing the action of a Newton line search step under different
gauge fixing schemes. In both, the horizontal black line represents the initial guess surface, while
the red curve represents the solution surface. (left) When a particular H.u/ is specified in (7.17),
we are not only fixing the red surface as the solution, but also the exact location of the grid points
along the solution surface. The direction taken by each line search step (black arrows) consists of
both the correction to the actual surface (pink component) and the correction to the gauge condition
(blue component). In many cases, this simultaneous gauge correction causes the nonlinear solver
to become unstable. (right) By fixing the residual of the gauge equation to always be zero, we
no longer specify any target gauge condition on the solution surface. Instead, we are completely
projecting out the gauge modes from the Jacobian, leaving the line search direction with no pure
gauge component. Since the gauge condition is nonlinear, we are actually committing a slight
change of gauge after each Newton step and therefore have no control over the gauge of the final
solution.

This 1D case is applicable where the modified cartoon method is used to reduce the simulation

to effectively 2+1 dimensions. An example of this is a simulation of the Gregory–Laflamme

instability of a 6D Myers–Perry black hole, where the instability is axisymmetric. Following the

notation used in our discussion in Section 6.5, we denote coordinates on † by .x; y; z; wA/. The

additional axisymmetry allows us to also use the modified cartoon method on the .x; y/-plane,

thus we can treat y as a cartoon coordinate, leaving only xi D .x; z/ as the grid coordinates on

our simulation domain †0. Since H inherits the same symmetries as †, we can locally use wA
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and y as parameters on H along the reduced dimensions in the neighbourhood of †0. Therefore,

H is parametrised by .u; y;wA/. The coordinate condition (7.17) for u remains unchanged in

this setting, and we do not need to provide any additional coordinate conditions for y or wA. To

evaluate (7.15), we use the following relations implied by the symmetries

@Y

@y
D X ;

@W 1

@w2
D Z ;

@W 2

@w1
D �Z ;

@2Y

@x@y
D
@X

@u
;

@2Z

@wA@wB
D �ıAB Z ;

@2W 1

@x@w2
D
@Z

@u
;

@2W 2

@x@w1
D �

@Z

@u
:

(7.18)

We may also generalise this to construct H with more than one dimension.1 We begin by recalling

the generalised harmonic coordinate condition,

�Hu
˛
D QH˛.uˇ /: (7.19)

Expanding the left-hand side, we get

�Hu
˛
D �
ˇ
�˛ˇ
 : (7.20)

To evaluate this, note that u˛ can also be used as coordinates on † in the neighbourhood of H .

We can therefore apply the coordinate transformation rules for the Christoffel symbol

�˛ˇ
 D
@u˛

@xi

 
� ijk

@Xj

@uˇ

@Xk

@u

C

@2xi

@uˇ@u


!
: (7.21)

As it is desirable to avoid having to evaluate the inverse Jacobian @u˛
ı
@xi numerically, we

consider instead the index-lowered version of this, namely


˛ı�Hu
ı
D �
ˇ

˛ı�

ı
ˇ
 D 
ij

 
@2X i

@uˇ@u


@Xj

@u˛
C � ikl

@Xj

@u˛
@Xk

@uˇ

@X l

@u


!
: (7.22)

1The general parametric method for H with more than one dimension is given here as a theoretical treatment. It has
not yet been implemented in code, as the level set approach was sufficient for the published black ring work. The one
dimensional case, however, has been successfully deployed in an ongoing project on simulating GL instability in MP
black holes, where the new approach is absolutely necessary.
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Our general gauge condition is therefore given by


ij 

ˇ


 
@2X i

@uˇ@u


@Xj

@u˛
C � ikl

@Xj

@u˛
@Xk

@uˇ

@X l

@u


!
D H.˛/.u

ˇ /; (7.23)

where H.˛/ are some d � 1 prescribed functions. Note that in the 1D symmetry-reduced case,

this coincides with (7.17), therefore we can regard this as a natural generalisation of our previous

result. We can also rewrite the system of (7.15) and (7.23) in a form which makes their common

structure manifest:


ij 

ˇ


 
@2X i

@uˇ@u

Sj C � iklS

jT k.ˇ/T
l
.
/

!
D �




Sk


 �
 ij � sisj�Kij (7.24)


ij 

ˇ


 
@2X i

@uˇ@u

T
j

.˛/
C � iklT

j

.˛/
T k.ˇ/T

l
.
/

!
D H.˛/: (7.25)

As in the previous 1D case, where the modified cartoon method is used, we can use the wA

coordinates as parameters along the reduced dimensions. In this case, the ˛; ˇ; : : : indices in

the gauge condition (7.25) only range over the non-cartoon parameters, whereas in the physical

equation (7.24) they range over all parameters, including the wA.

7.4 Interpolation of AMR data

In order to find apparent horizons, we must solve a nonlinear PDE on the geometry of each constant

time slice†. This requires the components of the induced metric 
ij and extrinsic curvatureKij to

be C 2 functions on†. However, since we have constructed these numerically, their values are only

given at the discrete grid points in our AMR hierarchy. In this section, we discuss methods which

can be used to interpolate our grid data to obtain sufficiently smooth functions that are suitable for

use in further numerical work.

We begin by considering the interpolation problem in one dimension. Let fx0; : : : ; xN g be our

grid points, which we take to be uniformly spaced with separation ıx. A scalar function f .x/ is

sampled onto our grid with values ff0; : : : ; fN g. We wish to construct an interpolant Of .x/ such

that
ˇ̌̌
Of .x/ � f .x/

ˇ̌̌
D O.ıxn/ for some chosen n, as ıx ! 0 and N ! 1. Any given point x
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can be written as x D xi C s ıx for some 0 < s < 1. In order to simplify the implementation,

we focus only on interpolation schemes which are linear in the grid data, i.e. those which can be

expressed as

Of .x/ D Of .xi C s ıx/ D

N�iX
jD�i

fiCj w.js � j j/: (7.26)

We refer to the function w.x/ as the interpolation kernel. In order for the interpolant to coincide

with the grid data, we require that w.0/ D 1 and w.j / D 0 for each j 2 Z n f0g. Furthermore,

we can obtain an estimate of the d th derivative f .d/.x/ via

Of .d/.x/ D Of .d/.xi C s ıx/ D
1

ıxd

n�iX
iD�i

fi w
.d/.js � j j/: (7.27)

Note that if Of .x/ converges as O.ıxn/ then Of .d/.x/ converges as O.ıxn�d /. If w.x/ has no

support outside of Œ�k; k�, then this can regarded as an application of some 2k-point stencil to the

grid data

Of .x/ D Of .xi C s ıx/ D

kX
jD�k

fiCj wj .s/: (7.28)

One of the most straightforward way to proceed is to use the piecewise Lagrange polynomials. In

this scheme, we pick the 2k grid points nearest to a given point x where an interpolated value is

required. We can then fit a unique .2k � 1/-th degree polynomial on to the corresponding data via

Of .x/ D

iCkX
jDi�k

fi
Y
l¤j

x � xl

xj � xl
(7.29)

) wj .s/ D

kY
lD�k
l¤j

s � l

j � l
: (7.30)

In this scheme, the k-point stencil converges at O.ıxk/. It is straightforward to construct an

interpolant of arbitrary convergence order in this scheme. Furthermore, [166] provides an efficient

pseudocode to generate derivative weights w.d/j .s/ for arbitrarily high d using an arbitrary stencil

width. This allows us to leave the stencil width as a fully tunable runtime parameter.

However, the Lagrange polynomial method suffers from a major drawback in that it provides a

discontinuous interpolant. The construction above simply fits independent polynomials into each
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.xi � ıx=2; xi C ıx=2/ interval without imposing any regularity condition. As a result, Of .x/ will

have jump discontinuities halfway between each pair of grid points. To obtain a more suitable

interpolant, we can choose to fit an n-th degree polynomial on fewer than n C 1 data points,

and use the remaining degrees of freedom to impose continuity of higher derivatives. This is

generically known as spline interpolation. Generically, the construction of splines requires the

values of derivatives at each grid point, in addition to the function values themselves. An alternative

approach is to use the polynomial convolution method [167, 168], where we impose the continuity

conditions on the kernel function w.x/. This only needs to be done once in advance, and the

resulting kernel can then be applied to any dataset. We define a k-point, nth-degree polynomial

convolution kernel to be the piecewise polynomial

pk;n.x/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

a1n jxj
n
C : : :C a10 0 � jxj < 1

a2n jxj
n
C : : :C a20 1 � jxj < 2

:::
:::

akn jxj
n
C : : :C ak0 k � 1 � jxj < k

0 otherwise

; (7.31)

where the coefficients aij are chosen so that the following conditions are satisfied:

� pk;n.0/ D 1

� pk;n.i/ D 0 for i 2 Z n f0g

� pk;n.x/ 2 C
n�2

The first two conditions impose k conditions on the cofficients. The third condition imposes

a continuity condition for each derivative at each grid point (including the “zeroth derivative”),

giving a total of .n � 1/ .k C 1/ conditions on the coefficients. However, continuity of even-

order derivatives at x D 0 is trivial, so this removes bn=2c conditions from the count. This

leaves us with a final total of nk C dn=2e � 1 conditions for k .nC 1/ unknown coefficients.

The remaining k � dn=2e C 1 degrees of freedom can be used to match the resulting interpolant

Of .xi C s ıx/ D
P
j fiCjpk;n.js � j j/ to the Taylor expansion of f .x/ to as many terms as

possible. By solving for all the aij in this way, the .k; n/-polynomial convolution interpolant can
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achieve a convergence rate of O.ıxk�dn=2eC3/. In particular, note that for any given stencil width

k, we obtain a smoother interpolant at the cost of a worse convergence rate by using higher-degree

kernels. Note also that an odd degree kernel wk;2n�1 converges at the same rate as the one with

next highest even degree wk;2n, however the latter will give a smoother result.

Since we need to be able to embed the interpolator within our mainGRChombo code, we now focus

only on 7-point stencils (i.e., 3 points each side) in order to fit within the ghost region width of our

AMR boxes. With the Lagrange polynomial method, we can obtain a O.ıx6/ interpolant which is

not continuous. The weights are readily determined by expanding out (7.30). For the polynomial

convolution method, we have a choice between the piecewise-quartic (n D 4) kernel which is C 2

and converges at O.ıx4/, or a piecewise-quintic (n D 5) kernel which is C 3 but converges at a

slower rate O.ıx3/. Since the apparent horizon problem only requires first derivatives, the quartic

kernel should be sufficiently smooth and gives a faster convergence rate. For completeness, we

give the stencil weights for both here.

Quartic Convolution Quintic Convolution

w�2.s/
1
12
s .1 � s/3 3

64
s .1 � s/4

w�1.s/ �
1
12
s .1 � s/ .2 � s/ .4 � 3s/ �

1
64
s .1 � s/

�
38 � 42s � 6s2 C 13s3

�
w0.s/

1
6
.1 � s/

�
6C 6s � 9s2 C s3

�
1
32
.1 � s/

�
32C 32s � 36s2 � 36s3 C 27s4

�
w1.s/

1
6
s
�
4C 9s � 6s2 � s3

�
1
32
s
�
19C 40s C 18s2 � 72s3 C 27s4

�
w2.s/ �

1
12
s .1 � s/ .1C s/ .1C 3s/ �

1
64
s .1 � s/

�
3C 15s C 33s2 � 13s3

�
w3.s/

1
12
s3 .1 � s/ 3

64
s4 .1 � s/

In practice, since the apparent horizon usually lies within the finest levels in the AMR hierarchy, the

grid data to be interpolated is available at extremely high resolutions. The Lagrange polynomial

and the two convolution kernels given above yield very similar end results. However, since we

employ Newton’s method with numerically approximated Jacobian, the lack of continuity in the

Lagrange interpolant tends to lead to a less robust code. As only first derivatives are required

in our computation here, the quartic convolution method provides a good compromise between

convergence rate and smoothness for our purpose.



Chapter 8

End Point of 5D Black Ring Instabilities

This chapter provides a brief summary of the results of a collaborative work, as published in [169].

Further work on this topic is currently ongoing by other members of the collaboration. This chapter

is included for completeness, as an example of a successful application of the tools and techniques

discussed in the previous two chapters. The analysis methods described in Section 8.3 are entirely

my own work.

8.1 Introduction

Black rings are asymptotically flat and stationary black hole solutions to theD-dimensional vacuum

Einstein equation whose Killing horizon has an SD�3�S1 topology. This family of solutions was

first found in D D 5, where the metric is known analytically [14]. Five dimensional black rings

are parametrised by two parameters: the radius R > 0 and the thickness 0 < � < 1. Solutions

with � < 1=2 are called thin, while those with � > 1=2 are called fat, where these labels reflect the

geometry of the ring’s horizon in the obvious manner. As previously discussed in Section 6.1, the

resemblance between thin black rings and boosted Kaluza-Klein black strings led to the speculation

that thin rings could also be subject to the Gregory–Laflamme (GL) instability [135]. The authors

of [135] also constructed a model which approximates thin rings as boosted black strings to show

that this should indeed be the case, however their argument is only valid when the ring is very thin.

More recently, linearised perturbation analysis of black rings [136] found axisymmetry-breaking

unstable modes which affect not only all thin rings, but also some slightly fat ones as well. These

modes deform the S2 so as to cause the ring’s thickness to become non-uniform in a qualitatively
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similar manner to the GL modes in black strings.

The numerical simulation of black strings presented in [31] showed that the GL instability results in

a self-similar process, by which the string condenses into a sequence of spherical droplets adjoined

by ever thinner black strings. The geometric decay in time elapsed between successive generations

of this process led the authors to conclude that the adjoining strings would shrink to zero radius in

finite time, causing the horizon to pinch off to form disconnected pieces. This singular topology-

changing process is regarded as evidence of violation of the weak cosmic censorship conjecture

in a 5D, asymptotically Kaluza-Klein setting. Demonstrating that the same process occurs in

thin black rings could therefore provide an example of a violation of the weak cosmic censorship

conjecture in an asymptotically flat spacetime, which is more closely related to the astrophysical

setting. Resolution of the weak cosmic censorship conjecture is one of the most important open

problems in general relativity, as it must hold true if GR is to be a complete, predictive classical

theory.

Aside from the axisymmetry-breaking GL instability, we could also ask how black rings react to

radial perturbations. To study this, [122] considered constraint-violating deformations to the black

ring geometry. This ‘off-shell deformation’ can be regarded as an application of an external radial

force to the black ring. Fat rings (� > 1=2) appear at a local maximum of the effective potential of

the force, while the thin rings (� < 1=2) appear at a local minimum. The authors argued that local

maxima correspond to a configuration where the inner S1 of the ring requires an inward-pulling

tension to restore equilibrium, suggesting that the ring would tend to collapse in this setting, with

the hole in the middle closing to form aMyers-Perry black hole. The existence of a radial instability

in fat rings is confirmed in [170] through the application of local Penrose inequalities.

To gain an understanding of the nonlinear dynamics and the end states of these various instabilities,

we conduct a numerical simulation of perturbed black rings using the tools and techniques discussed

in Chapters 6 and 7. Our simulations reveal a new family of non-axisymmetric instability which had

not been identified prior to our results. Unlike the GL instability, this does not cause a substantial

variation in thickness along the S1. Instead, it acts to deform the shape of the S1 itself, stretching

certain regions apart while bringing other regions closer to the centre. This new instability affects

both thin and fat rings. In keeping with the terminology used in blackfold analyses [28], we call it

the elastic instability. Unless the ring is extremely thin, this elastic mode causes the ring to merge
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in the middle, forming a topologically spherical horizon before the GL mode has time develop its

expected singular behaviour.

In this chapter, we will give a brief summary of our simulation methods and results, in line

with those reported in [169]. The project to numerically investigate the dynamics of black ring

instabilities is an ongoing collaborative work, and further detailed results will be reported by other

members of the collaboration in future publications.

8.2 Numerical setup

The metric of a stationary black ring with radius R and thickness � can be expressed in terms of

ring coordinates via

ds2 D �
F.y/

F.x/

�
dt � C R

1C y

F.y/
d 
�2

C
R2 F.x/

.x � y/2

�
dx2

G.x/
�

dy2

G.y/
C

1

1C �2

�
G.x/

F.x/
d�2 �

G.y/

F.y/
d 2

�� (8.1)

F.�/ WD 1C
2 � �

1C �2
; G.�/ WD

�
1 � �2

�
.1C � �/ ; C WD

vuut 2 � .1C �/3

.1 � �/
�
1C �2

�3 :
Note that the above line element is given in the form which manifestly has no conical singularities,

and whose angular coordinates have a canonical period, �� D � D 2� . The range of the x

and y coordinates are �1 � x � 1 and �1=� < y < �1. The metric clearly has a coordinate

singularity at the Killing horizon y D �1=�. To remove this singularity, we recast (8.1) into

isotropic coordinates using the transformation introduced in [170],

y.z/ WD z2 � 1=� : (8.2)
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We then simply take the spacelike hypersurface † to be the constant-t slice. The induced metric

on † is then given by

ds2† D �
C 2R2 .1C y.z//2

F.x/ F.y.z//
d 2

C
R2 F.x/

.x � y.z//2

�
dx2

G.x/
�

4 dz2

1 � y.z/2
C

1

1C �2

�
G.x/

F.x/
d�2 �

G.y.z//

F.y.z//
d 2

��
:

(8.3)

We apply a perturbation to the analytic ring initial data by modifying only the conformal factor �.

A generic perturbation can be decomposed into Fourier modes as

� D �0

1X
mD0

fm.r2/ cosm ; (8.4)

where r2 WD
p
X2 C Y 2 and  D tan�1 Y=X . For the work presented in this chapter, we focus

entirely on m D 2 perturbations. In terms of Cartesian coordinates, these take the general form

� D �0

�
1C " F

�
X2 C Y 2; X2 � Y 2; Z

��
; (8.5)

where " is the perturbation amplitude. The specific perturbation function used in our work is given

by

F D
1�

1C„2
�3=2 X2 � Y 2†

† WD

q�
QR2 CZ2 C r22

�2
� 4 QR r22 ; „ WD

4† .1 � �/

�
�
r2 C QR2 �†

� :
This choice of perturbation violates both the Hamiltonian and momentum constraints. However,

for small " the constraint-damping property of CCZ4 can quickly suppress any initial constraint

violations. Indeed, we can consider this initial phase of the CCZ4 evolution as a relaxation scheme

for solving the initial constraint equations.
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8.3 Analysing the black ring’s horizon geometry

In order to measure the extent of the GL instability, we need to characterise the size of the transverse

S2 spheres along the ring’s horizon. For the stationary axisymmetric solution, the spheres are

obtained simply by fixing the angular coordinate  constant. However, for our dynamical horizon,

taking a constant- section is no longer a sensible choice, as the axisymmetry is broken. Generally

speaking, there is no preferred way to slice a transverse section through an arbitrarily chosen point

on H . One may contemplate using spacelike geodesics along H to define a preferred S2, however

the section obtained by slicing along such geodesics will generically not form a smooth S2. Our

approach here is to instead extremise the sphere’s area over all the possible smooth S2 that can

be sliced on H . Specifically, consider an apparent horizon H with topology S2 � S1, which is

defined as the level set � D F.�;  / as previously described. The line element on H is given by

ds2H D h�� d�
2
C h  d 2 C 2 h� d� d CZ2 hww d�2 (8.6)

Z WD
R sin �

cos � C 1=tanh �
; (8.7)

where h�� denote the components of the metric on† pulled back onto H . Recall also that we allow

R D R. / in order to accommodate stretched horizons.

We parametrise an S2 section on H via  D ‰.�/. The line element on the S2 is given by

ds2
S2
D
�
h  ‰

0.�/2 C 2 h� ‰
0.�/C h��

�
d�2 CZ2 hww d�2; (8.8)

and thus its area is given by

AS2 D 4�

Z �

��

d�
q�
h  ‰0.�/2 C 2 h� ‰

0.�/C h��
�
Z2 hww : (8.9)

To extremise the area, we vary AS2 with respect to ‰.�/ to obtain the Euler-Lagrange equation,

which schematically takes the form

2Z
�
h�� h  � h

2
� 

�
‰00.�/C A‰0.�/3 C B ‰0.�/2 C C ‰0.�/CD D 0; (8.10)

whereA,B ,C , andD are some complicated expressions involving only the metric components,Z,
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Figure 8.1: The red curve shows the transverse S2 with minimum and maximum area of a
particularly deformed ring horizon, as found by the variational method.

and their derivatives (i.e., independent of ‰.�/). In practice, the exact expression can be produced

using computer algebra. The boundary conditions are obtained by requiring that the solutions are

smooth spheres, in particular that there are no singularities at the poles. Expanding (8.8) near

� D 0, we can see that the smoothness condition is given by

h  ‰
0.0/2 C 2 h� ‰

0.�/C h�� D
R2hww

1C 1=tanh �
; (8.11)

which can be solved to obtain a Neumann boundary condition

‰0.0/ D
1

h  

0@�h� Csh2� � h  �h�� � R2 hww

1C 1=tanh �

�1A : (8.12)

Note that the choice of positive square root is dictated by the direction of the black ring’s rotation.

Likewise, by considering (8.8) near � D � , we get

‰0.�/ D
1

h  

0@�h� Csh2� � h  �h�� � R2 hww

�1C 1=tanh �

�1A : (8.13)

The resulting boundary value problem can be discretised using finite differences and solved via

Newton’s method. In general, we expect there to be multiple S2 solutions corresponding to local

extrema and saddle points. For example, with them D 2 perturbation, the symmetry of the system

is such that we should expect the minimal and maximal S2 to have another copy on the opposite

side of the ring, giving a total of four solutions during the first generation of GL instability. Since

solutions obtained by Newton’s method depend on the initial guess used, we proceed by running

the Newton solver on multiple initial guesses around the ring in order to converge to all possible
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Figure 8.2: To measure elastic deformation of the ring horizon, we use distances along spacelike
geodesics from the centre of the ring to the point where they intersect the inner S1 of the horizon.
These are shown by the red curves.

solutions. A good choice for this is to use constant- curves as initial guesses. Even though these

curves do not satisfy our boundary conditions, we found that the Newton solver can quickly correct

for this. We can then pick out the solutions with minimal and maximal areas, as displayed in Figure

8.1, to characterise the GL instability.

Over the course of our simulation of thin black rings, we identified a new type of non-axisymmetric

instability which deforms the shape of the ring but does not cause its thickness to vary like in GL.

This elastic mode instability is somewhat more mathematically straightforward to characterise

compared to the GL instability. Let .r;  / be the polar coordinates on the z D 0 plane. For each

0 �  0 < 2� , let .r.�/;  .�// be the affinely-parametrised spacelike geodesic emanating from

the origin in the direction  0, i.e. r.0/ D 0,  .0/ D  0 and  0.0/ D 0. The geodesic intersects

H at some parameter � D �� with  .��/ D  �, and we denote length from � D 0 to � D ��

by `. 0/. By treating  � as a bijective function of  0, we can use `. �1� . �// to characterise

the distance from the centre of the ring to various points along its inner S1. Any variation in this

function is indicative of the deformation in the shape of the ring, which is precisely what we are

after. This procedure is depicted in Figure 8.2.
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t=
p
M D 0 t=

p
M D 5:53 t=

p
M D 17:3 t=

p
M D 17:4

Figure 8.3: Evolution of a fat ring with � D 0:7, subject to an m D 2 perturbation mode with
amplitude A D 0:02. The ring initially grows in coordinate size as the evolution goes through the
gauge adjustment phase. This ceases at t=

p
M � 5. We can then clearly see the radial instability

kicking in, causing the ring to become thicker over time. Eventually, the hole in the middle closes
at t=
p
M � 17 and the geometry settles down to that of a Myers–Perry black hole. Here, we

show snapshots corresponding to the coarsest time steps immediately before and after a spherical
horizon is formed. Note that there is no substantial deformation in the shape of the ring’s S1 or
non-uniformity in the S2 size in this case.

8.4 Summary of results

For very fat rings, the evolution is dominated by a radial instability, as predicted by [122, 170].

When such a ring is subject to a non-axisymmetric perturbation, the size of its S2 increases in a

roughly uniform manner, while the shape of the S1 does not deform significantly. This eventually

leads to the closure of the hole in the middle, and the final state here is therefore a Myers–Perry

black hole. Snapshots of the apparent horizon showing the evolution of a � D 0:7 fat ring subject

to an m D 2 perturbation is shown in Figure 8.3.

For rings whose thickness lies in the range 0:4 . � . 0:6, the dynamics of the instability resulting

from an initial m D 2 perturbation are dominated by a deformation of the S1. As shown in

the second snapshot of Figure 8.4, this mode of instability stretches the ring without causing a

substantial variation in thickness. Prior to the publication of our work, this instability of the

black ring had not previously been identified in the literature as far as we are aware. We call this

the elastic mode instability, in keeping with the terminology used in blackfolds work [28]. This

deformation eventually results in the ring merging in the middle along the short side of the stretch,

forming a topologically spherical horizon with an elongated shape. This elongated black hole then

proceeds to shed its angular momentum before settling down to the round Myers–Perry black hole
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t=
p
M D 2:93 t=

p
M D 10:4 t=

p
M D 12:2 t=

p
M D 32:6

Figure 8.4: Evolution of a ring at the cusp between the fat and thin branch with � D 0:5, subject to
anm D 2 perturbation mode with amplitudeA D 0:02. The first snapshot shows the ring’s horizon
after gauge adjustment. The evolution is clearly dominated by a stretching behaviour of the S1,
while the S2 size still remains roughly uniform throughout. We call this an elastic mode instability.
This instability eventually causes the ring to merge along the short side of the stretch, forming an
elongated black hole with a topologically spherical horizon. The black hole then quickly sheds
angular momentum before settling down to a round, Myers–Perry final state.

as a final state.

For thinner rings with 0:2 . � . 0:4, the GL behaviour starts to become important, and the

resulting dynamics is a nonlinear combination of the GL and elastic modes. In Figures 8.5-8.6,

we can see that the ring’s thickness becomes markedly non-uniform in the advanced stages of

the evolution, while the S1 also becomes highly stretched. In this regime, we observed that the

stretching behaviour causes a topologically spherical horizon to form before the GL mode can

develop to the point where the horizon pinches off. Therefore, we do not observe any potential

violation of weak cosmic censorship here.

We can also clearly see the presence of both the elastic and GL instabilities through geometric

measurements, as described in Section 8.3. In Figure 8.7(a), the plot shows a divergence between

the size of the largest and the smallest S2 of the ring. This significant non-uniformity in the ring’s

thickness is consistent with the expected behaviour of GL dynamics. On the other hand, 8.7(b)

also shows a divergence in the shortest and longest S1 radii of the ring, which is precisely the

behaviour of an elastic mode instability. We can also observe the S1 radii eventually plunging

towards zero, showing the hole in the middle of the ring closing before further generations of GL

bulges can develop.

For very thin rings with � . 0:15, the GL instability becomes dominant in the nonlinear dynamics,
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Figure 8.5: Evolution of a thin ring with � D 0:3, subject to an m D 2 perturbation mode with
amplitude A D 0:002. The first snapshot shows the ring’s horizon after gauge adjustment. A GL
instability is clearly present here, as the S2 becomes pronouncedly non-uniform. However, the
m D 2 elastic mode remains important and the ring still merges along the short side of the stretch.
The final state is therefore still a Myers–Perry black hole.

t=
p
M D 7:00 t=

p
M D 18:1 t=

p
M D 27:2 t=

p
M D 33:0

Figure 8.6: Evolution of a thin ring with � D 0:2, subject to an m D 2 perturbation mode with
amplitude A D 0:0005. The first snapshot shows the ring’s horizon after gauge adjustment. The
effect of the GL instability is clearly more substantial here compared to the � D 0:3 case, while the
elastic stretching behaviour remains important. Unlike in the previous case, the fatter part of the
ring occurs along the short side of the stretching. The apparent horizon finder fails after the final
snapshot shown above, and we suspect that this is because the horizon first goes through a brief
intermediate stage with the topology of a two-holed torus. Finding an appropriate parametrisation
of such a genus-2 horizon remains a challenging problem.
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S2 of the ring.
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(b) Evolution of the shortest and longest
geodesic distances from the middle of the ring
to its inner S1.

Figure 8.7: Geometric measurements of the apparent horizons for rings with � D 0:2 and � D 0:3.
The methods by which these quantities are calculated are described in Section 8.3. The divergence
between the largest and smallest S2 size is the result of a GL instability. The initial divergence
between the largest and smallest S1 radii is the result of an elastic mode behaviour. The S1 radii
eventually plunge towards zero as the hole in the middle closes, and a spherical horizon forms.

as shown in Figure 8.8. Although we only explicitly perturbed the ring with an m D 2 mode,

various numerical errors and noises also act to excite all angular modes throughout the evolution.

The amplitudes of the perturbations induced by these noises are orders of magnitude lower than

our explicit perturbation, however they could nevertheless become important if modes other than

m D 2 have a faster-growing instability. This appears to be the case at � D 0:15, where the

evolution clearly exhibits an m D 4 behaviour. The m D 4 elastic mode stretches the ring’s S1

along two perpendicular directions, resulting in a square-shaped deformation without a particular

‘short side’. In Figure 8.8, the effect of the initial m D 2 perturbation is still visible, as two of the

GL bulges are large than the others. As the evolution continues, the ring begins to stretch in such

a way as to cause difficulties for our apparent horizon finder. However, we can use a contour of

the conformal factor � as a proxy to determine the qualitative shape of the horizon. As shown in

Figure 8.9, a second generation of bulges appear to have developed along the thinner necks of the

ring’s horizon. This is the same behaviour as observed in the black string in [31], and we expect

that our evolution will continue to develop smaller bulges connected by ever thinner necks over

time. As we did not fine-tune our initial condition, this behaviour can be regarded as generic, and

therefore provides evidence that weak cosmic censorship is violated in the neighbourhood of very
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M D 24:0 t=

p
M D 26:5 t=
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Figure 8.8: Evolution of a very thin ring with � D 0:15. The first snapshot shows the ring’s horizon
after gauge adjustment. Although we only explicitly perturbed the ring with an m D 2 mode with
amplitude A D 0:00005, the dynamics becomes dominated by an m D 4 instability excited by
various numerical noises. The GL instability is very prominent here, and the ring’s horizon has a
clear structure of bulges connected by thin necks. The m D 4 elastic mode deforms the ring in a
counter-balanced fashion without a preferred “short side” as in previous cases, allowing more time
for the GL instability to fully develop before the ring collapses. This type of behaviour is likely to
cause the ring horizon to pinch off in finite time, leading to a violation of weak cosmic censorship.

Figure 8.9: The contour � D 0:2 of the same � D 0:15 ring as shown in Figure 8.8. The unusual
geometry of the ring poses a difficulty for the apparent horizon finder, but the contour displayed
above provides a qualitative shape of the horizon.

thin rings.

In Figure 8.10, we show the result of an evolution of the same � D 0:15 ring without any added

initial perturbation. Here, we obtain a ‘cleaner’ evolution, where the entire dynamics is governed

by the m D 4 modes excited by the grid noises, resulting in four virtually identical GL bulges

connected by extremely thin necks. Without the additional stretching effect from the m D 2

perturbation, however, the time scale required for the necks to become sufficiently thin for us to

observe further GL behaviour is much longer than in the previous case. Therefore, significant

additional computational resources will be required to reach the second GL generation in this case.
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Figure 8.10: Apparent horizon at t=
p
M D 32:1 of a very thin ring with � D 0:15, without

any explicitly added perturbation. The horizon clearly exhibits behaviour which shows that the
dynamics is dominated by an m D 4 mode instability. All four first-generation bulges have the
same size and shape, and the necks become extremely thin compared to the bulges.

Finally, we can compare the growth rate and frequency of the gravitational wave emitted from the

black rings in our simulation with the perturbative results of [136]. We do this by measuring the

quantity

hC WD
Q
xx � Q
yy

2

�
r

QR

�3=2
(8.14)

along the z-axis, far away from the ring’s horizon. Since we expect the dynamics of thin rings to

contain GL-mode and elastic-mode behaviours, we fit the raw wave form to the model

A1 sin.R$1t C '1/ eI$1t C A2 sin.R$2t C '2/ eI$2t ; (8.15)

where fA1; A2; '1; '2;$1;$2g are chosen to minimise the difference between the model and the

data. The results are displayed in Figure 8.11, where our data for the GL mode are in excellent

agreement with the results of [136] over the range 0:15 � � � 0:4.
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Figure 8.11: Growth rate and frequency of the gravitational wave emitted from thin rings subjected
to an m D 2 perturbation. The perturbative results of [136] are shown as dotted curves.



Chapter 9

Summary

In this dissertation, we explored the application of numerical methods to construct various solutions

to the Einstein equation which lie outside the usual astrophysical setting. The work presented can

be divided into two distinct categories. In the first part of the dissertation—chapters 1-5—we

considered the construction of stationary solutions which are physically motivated through the

AdS/CFT correspondence. This has allowed us to investigate thermodynamic aspects of certain

strongly coupled conformal field theories in various physical configurations. The ‘rotating black

droplets’ of chapter 3 allowed us to study Hawking radiation in the background of a rotating

black hole. The ‘plasma balls’ of chapter 4 allowed us to study a metastable, localised ball of

deconfined CFT plasma surrounded by a confining vacuum. Finally, the construction of AdS black

rings in chapter 6 provided us with a more complete picture of the phase diagram of AdS black

holes in 5D, which also correspond to the thermodynamic phase diagram of N D 4 SYM in 4D.

The programme to numerically construct new stationary spacetimes with a negative cosmological

constant remains a very active area of research.

The second part of the dissertation—chapters 6-8—concerned the dynamical evolution of higher

dimensional spacetimes. This line of work requires the use of dimensional reduction and adaptive

mesh refinement techniques, which were implemented in our GRChombo numerical relativity

code. The extended singularities which arise in higher dimensional black holes led us to introduce

a new artificial viscosity term in order to regulate them over the course of the evolution. The

unusual and complex geometries arising from black hole instabilities in higher dimensions also

required new techniques to be developed in order to locate the apparent horizon over the course of

the evolution, which were discussed in chapter 7. These tools and techniques were then applied
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to evolve perturbed asymptotically flat black rings in five dimensions. In addition to the expected

Gregory–Laflamme instability, our simulations also revealed a new type of unstable mode which

acts to deform the shape of the ring’s S1. For very thin rings, the GL instability eventually unfolds

in a manner which is consistent with the behaviour previously observed in Kaluza–Klein black

strings, namely the development of a family of bulges connected by ever thinner string-like ‘necks’

which eventually reduce to zero size. We interpret this as the first concrete evidence of a possible

violation of the weak cosmic censorship conjecture in the asymptotically flat setting. Further

work is currently being carried out by other members of the collaboration to apply these tools and

techniques to investigate instabilities of ultraspinning Myers–Perry black holes in six dimensions,

where it is expected that both the GL instability and ‘bar-mode’ instability would also lead to

violations of weak cosmic censorship.
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