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Abstract

We study the elastic inversion of a right circular cone, in particular, the uniform shape of

the narrow crease which divides its upright and inverted parts. Our methodology considers

a cylindrical shell analogy for simplicity where the crease is the boundary layer deformation.

Solution of its governing equation of deformation requires careful crafting of the underlying

assumptions and boundary conditions in order to reveal an expression for the crease shape in

closed form. We can then define the characteristic width of crease exactly, which is compared

to a geometrically nonlinear, large displacement finite element analysis. This width is shown

to be accurately predicted for shallow and steep cones, which imparts confidence to our

original assumptions. Using the shape of crease, we compute the strain energy stored in the

inverted cone, in order to derive an expression for the applied force of inversion by a simple

energy method. Again, our predictions match finite element data very well. This study may

complement other studies of creases traditionally formed in a less controlled manner, for

example, during crumpling of lightweight sheets.
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1 Introduction

Indenting a thin, doubly curved elastic surface can result in local inversion, where a dimple

forms and spreads over the surface. For the case of a point-loaded spherical cap, the dimple is

axisymmetrical and bounded by a planar circular ridge. In the limit of zero cap thickness, the

ridge acquires infinitesimal width as the bending stiffness diminishes; furthermore, the dimple

is a perfect reflection of the initial region above the current ridge plane. This simplified but

immediate view of the partially inverted shape was first proposed by Pogorelov [1]. As we

increase the thickness, the ridge circle expands to become a smooth open torus, or crease,

which seamlessly interconnects the upright and inverted parts. Tracing out a meridian on the

surface gives a clear indication of the crease extent but where it precisely begins or ends is
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not immediately obvious. Most of the elastic deformation, however, is concentrated in the

crease, so knowing its shape precisely is key to finding other features of the problem such as

the applied forces in equilibrium. Often, the crease is endowed with a uniform shape because

of its much smaller “size”—usually a constant radius of curvature [2], which allows the crease

width to be simply written in terms of its meridional arc-length or its projected width onto the

ridge plane. A straightforward dimensional or energy analysis is then possible with the familiar

scaling law that width depends on the square root of the product of shell thickness and spherical

radius. Determining the constant of proportionality in this expression typically requires data

from experiments or numerical simulations, so the absolute width is often an approximate, if

dimensionally correct, expression.

A more recent and thorough examination of the Pogorelov proposition appears in [3], which

also furnishes a historical review of spherical cap inversion. They revise upwards the number of

latitudinal “regimes” to seven, with five alone describing the inverted shape between the central

loading point and the ridge, followed by the ridge itself and the original part beneath. These

regimes are found from an elegant asymptotic analysis of the governing equation of axisym-

metrical deformation, which is compared against its full numerical solution and finite element

analysis. There is a richness of results, however, the crease extent is expressed only in order-of-

magnitude terms because it is not of explicit interest. Here, we examine the precise shape of a

similar crease formed during inversion of a right circular cone. Figure 1 indicates some partially

inverted shapes obtained from the finite element analysis of the next section. Three major geo-

metrical regimes are evident: upright and inverted sections which are largely undeformed, and

a narrow crease. We can surmise a Pogorelov-type profile in the limit of zero thickness, where

the cutaway in Fig. 1(c) shows the more heavily strained area pertaining to the crease diverging

from this profile superimposed. Axisymmetry is prescribed at all times during computation even

though new studies suggest the possibility of secondary “buckling” of the circular ridge into a

rough polygonal outline in practice [4]. We shall be concerned only with solving for the shape

of an axisymmetrical crease using the linear governing equation of deformation for a cylindrical

shell.

Such an approach would appear to flout the major effects of geometrical nonlinearity and

initial cone shape upon the crease shape, but it greatly reduces the complexity of analysis

and enables accurate closed-form solutions provided two key assumptions are upheld. First,

a Pogorelov viewpoint for a partially inverted cone of zero thickness is applicable: this then

provides a coordinate reference for actual displacements. Second, that the meridional span of

major displacements around the ridge-line is very short such that the curvature of the underlying

Pogorelov reference remains approximately constant i.e. cylindrical, over this span. The validity
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of this approach is then tested in two subtle ways. When the cone is steep, it is naturally close

to a cylinder but across the ridge there can be large rotations—up to 180◦, depending on the

initial geometry; on the other hand, a shallow cone is less like a cylinder but has much smaller

displacement gradients in keeping with the “shallow” shell requirement of the linear govern-

ing equation. Remarkably accurate results however emerge for a range of conical geometries.

We then determine an expression for the inverting force applied to the apex, which is usually

intractable in other “elastic” studies: during plastic inversion of metal cones and other axisym-

metrical shells, where crease localisation can occur too, the driving force is usually amenable in

closed form but the underlying formation and propagation of creases are very different to here,

see e.g. [5].

We shall not quantify the formation stage for this itself is challenging. For example, conical

inversion begins with turning the sharp apex inside out, which is impractical and leads to

computational difficulties because of the singular geometry. But we must marshal inversion

in some way, so we “cheat” at the very start by smoothing the apex to form a very small,

localised spherical cap [6]. Under a central point force, this region locally inverts early on in the

deformation profile, enabling conical inversion to become well developed—the starting point of

our study. We consider a range of cone angles, including a tube in the extreme, and we highlight

representative behaviour, in particular, our definition of crease width according to how the ridge

strains attenuate. We then present our analytical model and compare predictions with finite

element data before concluding with a brief discussion.

2 Finite element analysis

The commercial software package used in Fig. 1 and throughout is ABAQUS [7]. Elements

are axisymmetrical two-noded linear SAX1 elements available from the standard library, and

each conical model has 500 elements along the defining meridian; trials using fewer three-noded

quadratic elements makes little difference to the computational efficiency. The material has a

typical Poisson’s ratio of 0.3 and a Young’s Modulus of 1 MPa, which is relatively soft but

which intends to mimic a soft rubber, and all thicknesses are of the order of 0.1 mm for a cone

side-length of around 50 mm. The cone apex is replaced by a spherical cap of radius 3 mm

which connects smoothly to the rest of the cone; a vertical force is applied normal to the cap

at its pole, and the base of the cone is fully built-in. Geometrical nonlinearity is coupled with

a “Riks” arc-length algorithm [7] during solution to capture fine, sometimes highly nonlinear

features of the load path. Before examining a typical path, consider the four partially inverted

cones in Fig. 2. They begin with a shallow cone in Fig. 2(a) inclined initially to the vertical by
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60◦ and become increasingly steeper with cone angles of 45◦, 30◦, and 0◦, which is a cylindrical

tube. Each sub-figure also reveals the deformed cross-section where the crease profile is clearly

evident and accentuated by highlighting elastic strain contours; each inverted cap is also highly

strained. A sense of mirror symmetry about the ridge plane is also conveyed, in particular for

the tube, where the inverted part is passing through its undeformed self. We have also added

the Pogorelov outline to each sub-figure, in order to highlight the crease shape and its relative

size as the cone angle decreases.

Representative results from the first case are given in Fig. 3. First, the inverting force,

F , is plotted against the displacement of the apex, d, in Fig. 3(a). Although difficult to see,

the response is linear at first before softening as the apical cap inverts fully, with the crease

forming completely soon after. The crease then rolls down the side of the cone as the applied

force decreases exponentially. When the crease is halted by the built-in base, the cone is almost

inverted; at this stage, the crease mainly stretches in plane to accommodate d increasing, leading

to a rapid rise again in F albeit with a small intermittent dip.

At some intermediate displacement, we plot the hoop-wise strain, εh, in Fig. 3(b) as a function

of the intrinsic coordinate, s, from the apex (Fig. 4(c)) which is the same for every meridian.

Moving out of the inverted cap, there are high but localised strains which diminish quickly

before increasing again mid-meridian at the position of the crease. There is first compressive

hoop strain on the inside of the crease facing the inverted apex, followed by tensile strain on

the outside. Such compression is surmised as a mechanism for secondary buckling of the crease

but we note a strongly antisymmetrical profile about a local origin which exactly coincides with

the ridge-line. The width of the crease can be clearly correlated with the span of major strain

activity, and we choose bounding points to be given by εh first becoming zero again on either side

of the ridge-line. The corresponding meridional span is denoted as 2l∗, which will be compared

to the same definition of width from theory. Notice also that the highest strain is around 0.5 %,

which exceeds the yield strain of most metals; it is even higher at the start of inversion but

decreases as inversion proceeds. Longitudinal strains are smaller but always vary in proportion

to hoop strains by the Poisson’s ratio, which suggests negligible meridional stresses compared

to hoop stresses.

For each solution increment, we detect positions of zero strain in order to find the variation

of l∗ with d, which is plotted in Fig. 3(c). We omit the data at small displacements because the

crease has not yet localised, giving a false impression of its size. After becoming well formed,

l∗ behaves in a regular way, increasing with d at a diminishing rate. Such variation is repeated

for many conical shapes and thickness, where the radius-to-thickness ratio of shell can range

from 15 at the apex to nearly 1300 close to the base. We aim to predict the responsible factors
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for l∗ and so must carefully focus on the kinematic features in our model. But we also wish to

find the force required to pull the crease through the cone. For example, it is not clear why the

inverting force should decrease: at the same time, the crease circumference increases, suggesting

that more of the cone is becoming strained viz. more external work and a higher force. We

resolve this surmised discrepancy in the following analysis.

3 Theoretical model

Figure 4(a) shows a cross-section of the equivalent Pogorelov viewpoint of conical inversion. The

inverted part can be reflected in the ridge plane to yield the original undeformed cone, and all

lines are straight. This is the zero strain configuration because there are no changes in length

anywhere, and zero shell thickness precludes any stored elastic energy in the ridge-line. More

geometrical detail within the meridional plane is furnished in Fig. 4(b) for a cone with a sharp

apex as well as our apical cap. This cone is also perfectly inverted under a polar displacement,

d, with the crease—still of zero width—being located at a distance, b, along the initial meridian

from the end of the cap. Using Figs 4(b) and (c), where the cone angle is denoted by α and the

cap radius by R, simple geometry affords

d = 2R(1− sinα) + 2b cosα (1)

The current latitudinal radius at the crease position is r, which is equal to R cosα+ b sinα. At

the same position, the current radius of hoop-wise curvature of the conical shell is measured by

the distance from the vertical conical axis normal to the meridian, where the usual notation is

r2 from [8]. If we select the meridian in the upright part, then r2 is drawn as per Fig. 4.2(b)

and r/r2 = cosα. An explicit expression for r2 in terms of d can now be found by eliminating b

between them:

r2 = R+
tanα

cosα

[
d

2
−R(1− sinα)

]
(2)

This returns r2 = d tanα/2 cosα for a perfect cone when R is zero. Strictly speaking, the radius

of curvature of the actual ridge-line is not defined because of the discontinuity in gradient there,

and the expression for r2 is only true immediately on either side of the ridge (if we had selected

the inverted meridian instead, then r2 changes direction and lies above r). But this presents no

problem because at the ridge-line itself, we need to interrogate the local crease shape in order

to ascribe curvature properties in detail.

Figure 4(c) shows a schematic axisymmetrical cross-section of a crease, which is drawn rel-

ative to the Pogorelov outline. Displacements away from this outline constitute straining and
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curving, where the normal component, w, is assumed to be dominant. We also assume that w is

symmetrical about the ridge-line because the crease is far enough away from the base or apex.

The formulation can now be contracted slightly by defining a positive meridional coordinate,

x, moving away from the ridge towards the base; x does not take negative values, rather, any

functions of it are merely reflected about x = 0 either symmetrically or antisymmetrically pro-

vided we are careful about boundary conditions at x = 0. The hoop-wise strain, εh, is therefore

w/r2(x) from [8] where r2(x) is the variation in the underlying conical radius of curvature be-

yond the ridge-line, found by substituting b with b+ x into Eqn 1 and so forth. The reason for

the crease touching the Pogorelov ridge-line at x = 0 is now apparent, for here w must be zero,

which sets the hoop-strain to be zero as per Fig. 3(b). Beyond the ridge-line, r2(x) increases,

but if w decreases sharply with x then there is little change in r2 within the crease itself: in

other words, the radius of hoop-wise curvature of the crease is everywhere 1/r2 with r2 expressed

by the current value of Eqn 2. As noted, meridional strains are not negligible, but w does not

depend on them directly. The curvature, however, in this direction, κ, is set by the shallow gra-

dient expression, κ = −d2w/dx2, where absolute differentials assert the one-dimensional nature

of problem.

We idealise further by excising half of the crease in Fig. 4(c) for all of x and re-drawing

it in Fig. 4(d). At the cut, x = 0, and thus everywhere on the ridge-line, there must be

a bending moment, M , and locally aligned forces in shear, Q, and in tension, T ; these are

all axisymmetrical quantities defined per unit length of shell and are drawn in their positive

directions. Even though we do not show the far field forces at the base in this view, it is possible

to write certain equilibrium relationships between them and M , Q and T . However, specified in

this way, our problem turns out to be statically indeterminate, and we must invoke arguments of

geometrical compatibility for a complete solution. Very quickly, the level of algebraic complexity

increases, which is not the aim of study. Instead, we assume that T is not directly responsible

for transverse displacements, so we neglect its effect for now, and that M and Q are wholly

responsible for ensuring the local boundary conditions at x = 0. We may therefore focus on the

interaction of M and Q alone and, because r2 is deemed to be constant everywhere along the

crease, they behave as if they are loads applied to the edge of a cylinder of uniform radius, r2.

In the absence of a normal pressure, the governing equation of transverse deflections for a

cylindrical shell is given by [8]:

d4w

dx4
+

Et

Dr22
w = 0 (3)

This is derived by considering equilibrium of an axisymmetrical element of original hoop-wise

curvature, 1/r2. Linear elasticity is specified and the deformation is controlled by meridional
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bending where M = Dκ, and by hoop-wise straining via εh: D is the standard flexural rigidity

equal to Et3/12(1 − ν2) where E is the Young’s modulus, ν is the Poisson ratio, and t is the

transverse shell thickness. A slightly more compact notation replaces the w pre-factor with

β4 = Et/4Dr22, and we try solutions of the form, w = Aeξx, where the unknown amplitude,

A, is found later from the boundary conditions. The corresponding auxiliary equation sets

ξ4 + 4β4 = 0, returning roots of ξ = (±1 ±
√
−1)β and a general solution of four terms as

A1e
βx sinβx+A2e

−βx sinβx ... etc. Those terms involving exponential growth can be discounted

for w rapidly decaying with x, resulting in two terms whose amplitudes are found by setting

M = Dκ and Q = dM/dx at x = 0:

w =
e−βx

2β2D

[
M (sinβx− cosβx) +

Q

β
cosβx

]
for x ≥ 0 (4)

Ensuring that w = 0 at x = 0 obviates M = Q/β, giving a gradient of M/2βD at the same

position which must equal π/2 − α from Fig. 4(d). The final expression for w turns out to be

rather compact:

w =
(π/2− α)

β
e−βx sinβx for x ≥ 0 (5)

Because of the proportionality between w and hoop strain εh, and given the latter’s variation

in Fig. 3(b) on either side of the ridge-line, we could have inferred the expression above by

inspection. The formal analysis is conclusive and Eqn 5 immediately offers l∗ when we set εh,

hence w, equal to zero at x = l∗, giving sinβl∗ = 0 and βl∗ = π. Recalling our previous

definitions of β and D, we can therefore write:

l∗ = π

[
4Dr22
Et

]1/4
⇒ l∗ =

π r
1/2
2 t1/2

[3(1− ν2)]1/4
(and l∗ ≈ 2.44

√
r2t for ν = 0.3) (6)

This confirms that the crease increases in width during inversion because r2 increases with d

according to Eqn 2. Comfortingly, the square-root dependency of l∗ upon r2 points to the cusp-

like variation we expect, in particular, when R is small enough to be ignored, r2 is proportional

to d for a given cone angle and thus, l∗ varies with
√
d. In general, being proportional to the

square root of the product of thickness and local radius of curvature, l∗ is akin to the width

of boundary layer deformation along the edges of long, curved thin-walled strips [9] and to the

width of periodic compression “wrinkles” in a variety of pre-tensioned membranes [10, 11], as

discussed later.

We compare Eqn 6 to finite element data in Fig. 5 first for a fairly shallow cone (α = 60◦) of

three different thicknesses, t = 0.2 mm, 0.1 mm and 0.067 mm. For the apical cap, R = 3 mm,

and the straight meridian is 50 mm long. We plot dimensionless quantities l∗/t vs d/dmax where
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d is Eqn 1 and d = dmax when the cone is fully inverted. Again, early computational data near

d = 0 is omitted because the crease has not yet properly formed. Otherwise, the predictions by

Eqn 6 are almost indistinguishable from those of finite elements. We also plot the variation of

l∗/r2 against d/dmax to determine how the crease width compares to the local radius of conical

curvature. The ratio l∗/r2 is always a maximum initially when r2 is smallest, and is typically

around 0.25 - 0.4, giving a crease length, 2l∗, just slightly less than r2. But the ratio quickly

attenuates to around 0.1 - 0.15, which implies that r2 changes little over the crease span, thereby

confirming our original proposal.

Figure 6 deals with different cone angles of the same thickness and, again, the differences

between theory and computational data are minimal. Even though a steeper cone implies

a slower rate of change of r2 along a meridian, which bolsters the cylindrical shell analogy,

the initial gradient in Fig. 4(d) at x = 0 also increases, which undermines the shallow shell

assumption. For a tube where α = 0◦, this gradient is infinite yet Eqn 6 differs by less than

10 % compared to finite element data, which is remarkable. In this case, r2 is a constant and

equal to the radius of the original apical cap. Note that in general, as the cone angle decreases,

so does l∗.

We now proceed to finding the inverting force, F , using an energy formulation for the entire

cone based on the strain energy stored in the crease and not in the deformed apical cap. This

process is reasonably light on algebra because w is a fairly simple expression and there are only

two major strain energy components; as we remarked before on statical indeterminacy, finding

F by equilibrium etc. becomes unwieldy very quickly. First, let the amplitude of w in Eqn 5 be

A for convenience, which gives:

εh =
w

r2
=
A

r2
e−βx sinβx, κ = −d2w

dx2
= 2Aβ2e−βx cosβx (7)

An expression for the strain energy density per unit surface area of cone may now be distilled

from the general expression for shells found in [8] by assuming that these kinematic terms are

predominant and remembering that in-plane meridional strains are equal to −νεh. Hoop-wise

curvature changes are negligible compared to κ, and, because of axisymmetry, shear stresses and

twisting curvatures are zero. The simplified density can be verified as (1/2)Etε2h + (1/2)Dκ2,

and the total strain energy is then found by integrating this expression over the conical surface

area where, recall, x is only positive. The integration can be simply doubled because the crease

shape is perfectly symmetrical about the ridge-line. Its limits are clearly zero and x = l∗ but

we if set the upper limit to infinity instead, the resulting expressions are greatly simplified but

remain accurate because of the rapid attenuation of w. To this end, we calculate the identities:
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∫ x=∞

x=0

(
e−βx sinβx

)2
=

1

8β
,

∫ x=∞

x=0

(
e−βx cosβx

)2
=

3

8β
(8)

and note that a hoop-wise elemental strip has an area of 2πr2 cosαdx where, as per usual, we

set r2 equal to its value at the ridge-line. Bringing altogether, we find the total strain energy

stored in the cone, U , to be

U =
2πEtA2 cosα

8r2β
+ 3πr2DA

2β3 cosα with A = (π/2− α)/β (9)

The total potential energy for the system, V , is defined as the difference between the internal

strain energy and quantities of external work. Since the point of application of F moves by d

in the same direction, the latter is simply Fd, and V = U − Fd. We may retain d in its general

form but for compactness we set R to be zero, giving d = 2r2 cosα/ tanα. The expression for

V is now

V =
π cosα (π/2− α)2 E t5/2 r

1/2
2

33/4 (1− ν2)3/4
− 2Fr2 cosα

tanα
(10)

after substituting for A and replacing β with π/l∗. F is now found by minimising V with respect

to the generalised coordinate, r2, and setting equal to zero. After some manipulation and re-

expressing r2 in terms of d, we can write the final expression for F in one dimensionless form

as:

F

Et2
=
π (sinα)1/2 (π/2− α)2

23/2 33/4 (1− ν2)3/4
· t

1/2

d1/2
(11)

We compare this to finite element data in Fig. 7 for cones of increasing steepness up to α = 15◦.

We cannot compare meaningfully to the case of a tube (α = 0) because Eqn 11 returns zero

force owing to the sinα term when the finite element analysis gives a non-zero but constant

force. The reason for the latter stems from having an apical cap, where a force must be applied

to keep it inverted even though there is no energy penalty as the crease moves along the tube—

which is reflected by Eqn 11. For the cone angles in Fig. 7, we include the computational data

during the formation stage, in order to highlight the much higher forces at this time. When

the crease becomes well formed afterwards, the correlation is delightfully close despite the data

beginning to diverge for the steepest cone. We plot the dimensionless displacement as d/t to

compare directly with Eqn 11 although it can easily be d/dmax, as in the other figures. Because

of the reciprocal term, d−1/2, F must decay even though we initially thought it may increase as

the crease envelopes more material during displacement. Note that Fig. 7 deals with the same

thickness, 0.1 mm: analysis for more thicknesses show the same close trends but are not included

for brevity’s sake. We re-plot the data from Fig. 7 in Fig. 8 using logarithmic axes to ascertain
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the power-law variation of the computational data assuming that such a variation is presently

applicable. We process only the data beyond formation of the crease, and we then add the best

fit predictions to the figure; for each case, the power-law index, tantamount to the gradient of

the data, is given. There are two comforting findings. First, the force vs displacement data is

“linear” in the logarithmic sense, thereby confirming the sensibility of a power-law variation.

Second, all indices are very close to -0.5 as suggested by Eqn 11, which reinforces the credibility

of this formula and underlying assumptions.

4 Discussion

Despite employing a linear governing equation of deformation for shallow shells, our analysis

accurately captures the steady state crease size and inverting force over a range of initial conical

geometries. It is especially pertinent for small conical angles where, despite the initial geometry

being close to cylindrical, the boundary condition for rotation is evidently not small. We note

first that l∗ does not depend on this rotation. Secondly, the form of the shallow transverse

deflections, w, in Eqn 5 turns out to be a rather good “fit” for the large rotation nature of

this specific problem for several reasons. From the arc-tangent of the gradient at x = 0 we

may compare the corresponding boundary rotation against the actual value, π/2 − α. For a

pure cylinder (α = 0◦), dw/dx = π/2 giving a rotation of arctan(π/2) ≈ 58◦; however, as the

cone angle increases, the discrepancy between these angular measures quickly reduces e.g. when

α = 45◦, we see a rotation of arctan(π/2−π/4) = 38◦. Moderate rotations are therefore described

very well. Away from the boundary, the proportions of crease afforded by w also compare well

to finite elements: for example, the ratio of wmax to l∗ is largest for a cylindrical tube and is

roughly equal to one-fifth from finite element data; Eqn 5 predicts 0.5 exp (−π/4) sinπ/4 ≈ 1/6.

The inverting force, Eqn 11 stems from a Rayleigh-Ritz type energy analysis, which is known

to be accurate if the selected mode-shape is close to actual deflections, especially so when w

comprises a single term. Of course, we could approach the problem within the spirit of large

deflections from the outset. The corresponding governing equation is a cylindrical version of the

well-known beam elastica, where geometrical nonlinearity—particularly in view of axial force

effects—is central to its expression. However, for our problem, the effect of axial forces is not

dominant because their stresses are much smaller than circumferential stresses; this can be seen

in the shape of the crease about the ridge line, which is virtually symmetrical because in-plane

meridional stresses are minimal (but not zero). As noted initially, many scaling analysis do

not consider the detailed variation of crease shape, which does not reveal the pre-factor for any

characteristic length, even though its dimensional dependencies are clear: suffice to say, we have
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established the pre-factor immediately.

Our linear analysis is also helped by the crease being a relatively small but concentrative

feature within the overall geometry, which allows us to simplify its local performance; it is

also a contrived example which permits controlled formation of a uniform crease. Apart from

the case of spherical inversion with its own circular crease, similar problems in the literature

usually focus on creases formed in an unregulated way e.g. when a paper sheet is manually

crumpled into a ball. If the ball is unravelled into a planar sheet again, the crease distribution

is naturally random but all creases are straight [12]. As such, we may be tempted to think

these are physically different creases compared to ours; however, their analysis often embraces

the same competition between local bending and stretching where the simplest stress-free crease

begins as a narrow cylindrical strip before being bent into a shallow saddle along its axis in

order to mimic the effect of global bending [13]. The strip becomes doubly curved, which incurs

stretching according to Gauss’ Theorema Egregium [8], and the inevitable balance between these

deformation modes results in a natural radius of span-wise curvature for the crease. Our creases

are also doubly curved because they are toroidal and, using the Pogorelov viewpoint, we see how

they are stretched: and if we return to the strain energy component in Eqn 10 and re-insert the

flexural rigidity, D, into this expression, we find that the energy stored in our creases varies as

D(r2/t)
1/2. For the straight creases in [13], this variation has been shown to go as D(L/t)1/3,

where L is the axial length of the crease. In essence, r2 also measures the length of our creases,

so we see a common ratio of length-to-thickness but with quite different power law exponents.

This comparison could be serendipitous but it begs an obvious and interesting research question

for future study. One approach might be to combine what is known about the bending of

straight creases, with that of forming conical creases, in a generalised way. Finally, we note

that it is not surprising that our single conical crease is geometrically similar to the repetitive,

periodic wrinkles in buckled thin-walled plates or membranes. Indeed, in [10], they remark from

an energy perspective that a characteristic wavelength requires “ingredients” equivalent to the

bending of a plate on an elastic foundation: such problems are well known to be governed by a

fourth-order linear differential equation of similar form to Eqn 3 [8]. Thus, we would expect the

same nature and dimensional variation in our solution.
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5 Figures

(b)

(c)

(d)(a)

Figure 1: Elastic inversion of a thin conical shell using finite element analysis. The initial cone

angle, measured from the vertical, is 60◦, and the side-length of cone is 50 mm; the apex is

a small spherical cap of radius 3 mm, and everywhere the thickness is 0.1 mm. (a) Initial

configuration where a force is applied to the apex and the base of the cone is held rigid. (b)

Two views of the partially inverted state, highlighting contours of maximum principal strain.

These are focussed in the original apex and around the ridge which separates the inverted part

from the original upright part. (c) Cutaway view of (b) from afar and close-up, showing the

deviation of the conical shape near the ridge-line away from perfectly straight meridians (grey

lines). The width of this deviation is roughly the span over which the strain contours diminish

in variation, and shown by the arrow: this is the conical “crease” associated with the ridge-line.

(d) Almost fully inverted cone, indicating the extent of deformation during analysis.
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(c)
(b)

(a)

(d)

Figure 2: Partial inversion of four different cones using finite elements. Top row: full cones

partially inverted. Middle row: cutaway counterparts highlighting the crease width around the

ridge-line according to colour changes in the maximum principal strain contours. Bottom row:

axisymmetrical meridians (green) compared to the perfectly straight meridians (grey), showing

how the actual crease region diverges and “detaches” from the latter; the crease width is later

defined to be the arc-length of the detached region. The cone angles are (a) 60◦, (b) 45◦, (c) 30◦

and (d) 0◦; other material and geometric properties are the same as Fig. 1. In (d), the inverted

part overlays the original undeformed tube, giving a mottled complexion of interference.
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Figure 3: Properties of the conical inversion of Fig. 1. (a) Inverting force, F , vs apex dis-

placement, d. Three regimes are highlighted: first, initial inversion up to d ≈ 0.006 m where

the apical cap turns inside out and the crease on the ridge-line becomes fully formed: second,

movement of the crease through the undeformed cone as inversion proceeds up to d ≈ 0.04 m;

third, cessation of inversion when the crease reaches the base of the original cone. (b) Hoop-wise

strain, εh, along a meridian at some point during inversion when the crease is well formed. The

meridional coordinate from the apex is s, see Fig. 4(c), and smax corresponds to the base of the

cone. Up to s/smax ≈ 0.1, the strains belong to the original apical cap; around s/smax = 0.5, we

encounter strains in the crease, which diminish quickly on either side. This pronounced variation

gives a strong indication of the extent of the crease: it is antisymmetrical about the ridge-line

with εh = 0 on the ridge-line itself; after peaking and reaching zero on either side, εh quickly

diminishes. We define the width of the crease by the span, 2l∗, between these zero-points around

the ridge-line. Green circles are distinct nodal positions along the meridian from finite element

analysis, which are used to calculate this width at each increment of solution. (c) Variation of

l∗ with d during inversion. The initial data before d ≈ 0.005 m is not shown because the crease

has not yet separated from the apical cap. Note the diminishing rate by which l∗ increases.
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Figure 4: Schematic rendering of a partially inverted cone and its ridge-line crease. (a) The

“Pogorelov” viewpoint of deformation in which the cone inverts symmetrically under an axial

force. The small circles signify the position of the inverting ridge-line. (b) Meridional geometry

for perfect inversion. The heavy black line is a cone with a sharp apex; the grey line is our cone

with a shallow apical cap whose vertical displacement is d. For both, the position of the ridge-

line is a small circle located a distance b from the edge of the cap and sitting at radius, r, from

the centre-line (CL) axis of revolution. The radius of hoop-wise curvature at the ridge for a cone

is r2, which extends from the centre-line to the undeformed meridian immediately below the

ridge; γ is a dummy angle equal to π/2−α, where α is the cone angle. (c) Top: definition of cap

geometry from (b) where R is its radius of curvature; s is an intrinsic coordinate from the top of

the cap. Bottom: Close-up view of the crease geometry around the ridge-line. The underlying

straight axes is the Pogorelov shape from (a), which intersects the crease ridge-line. The local

coordinate x is measured from the ridge-line on one-side only; x = l∗ is the characteristic half-

length of crease when the transverse displacement, w, becomes zero again. (d) Half of the crease

from (c) with free-body forces and bending moment added to the position of the cut at x = 0.

The positive directions of M and Q give dM/dx = Q.
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(c)  t = 0.067 mm
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Figure 5: Comparison of l∗ from Eqn 6 (blue dots) with finite element data (solid red line).

Each vertical pair of sub-figures is for the same indicated thickness, and all have the same cone

angle, α = 60◦, and the same apical cap radius, R = 3 mm; the Young’s modulus is 1 MPa and

the Poisson’s ratio is 0.3. The top row compares the crease width, l∗, to shell thickness, t; the

bottom row considers l∗ with the local radius of conical curvature, r2. The apex displacement

is d, which reaches a maximum value, dmax, when the cone is fully inverted. The early parts of

all finite element data do not produce distinct trends because the crease is not properly formed,

so are omitted for clarity.
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Figure 6: Comparison of l∗ from Eqn 6 (blue dots) with finite element data (solid red line) for

different indicated cone angles. The shell thickness for all is 0.1 mm, the apical cap has a radius

of 3 mm, and the material properties are the same as Fig. 5. Again, early finite element data

does not apply and is left out, and because (d) is a tube, we do not show all of l∗ with respect

to d because it is practically constant.
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Figure 7: Comparison of the inverting force, F , from Eqn 11 (blue dots) with finite element data

(solid red line) under displacement, d, for the indicated cone angles, α. The Young’s modulus,

E, is 1 MPa and the Poisson’s ratio, ν, is 0.3; all thicknesses are t = 0.1 mm.
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Figure 8: The same force-displacement data from Fig. 7 plotted on logarithmic axes: as before,

blue dots are for theory and solid red lines for finite element data. Solid green lines pertain to

the best power-law “fit” of the finite element data for a well-formed crease where it is assumed

F ∝ dm; the corresponding index, m, which is also the gradient of green lines, is indicated in

each sub-title.
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