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ABSTRACT  

The adverse outcome pathway (AOP) framework provides an alternative to traditional in vivo 

experiments for the risk assessment of chemicals.  AOPs consist of a number of key events 

(KEs) linked by key event relationships (KERs) across a range of biological organization backed 

by scientific evidence. The first KE in the pathway is the molecular initiating event (MIE); the 

initial chemical trigger that starts an AOP. Over the last three years the AOP conceptual 

framework has gained a large amount of momentum in toxicology as an alternative to animal 

methods and so the MIE has come into the spotlight. What is an MIE? How can MIEs be 

measured or predicted?  What research is currently contributing to our understanding of MIEs? 

With this review we outline answers to these key questions. 

 

INTRODUCTION 

Toxicology risk assessment is undergoing a paradigm shift away from in vivo data and towards 

risk assessment frameworks that incorporate non-animal alternatives. Traditional in vivo toxicity 

studies form the basis of the majority of regulations globally that relate to assuring human and 

environmental safety. Increasingly however, there are societal, scientific and regulatory drivers 

to develop new ways of assuring safety that do not rely on data generation in animals. Rather 

than relying on apical toxicity endpoints in animals, new frameworks rely on an understanding of 

the mechanism of a chemical’s toxicity in a relevant system which is thought to provide a more 

scientifically sound methodology on which to base risk assessment decisions. 
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The National Research Council of the United States (NRC) opened the field for discussion in 

2007, in an attempt to make toxicity testing quicker, less expensive, and more relevant to human 

exposures.
1
 It pointed to a number of advances in the fields of biology and biotechnology that 

make it possible to feed data into new risk assessment approaches. These include physiologically 

based pharmacokinetic (PBPK) modelling methods, which provide a better understanding of how 

a compound behaves inside the body, and how much of it is able to get to a site of action.
2,3

 

Furthermore, additional understanding of biological processes and the holistic nature of biology 

are being gained through -omics technologies
4–6

 and systems biology.
7,8

 In silico methods also 

have their part to play in this paradigm shift. Informatics approaches such as (Quantitative) 

Structure Activity Relationships ((Q)SARs) and Read-Across have the potential to make better 

use of existing data and target required testing to bring down the volume of in vivo studies 

required for a risk assessment.
9,10

 In addition to these, the coordination of the international 

scientific community, including collaboration between industry, academia and regulators, is of 

great importance for the advance of toxicity testing.
11,12

 These combined changes move 

toxicology away from a predominantly observational craft towards a science based on 

understanding.
13

 

The adverse outcome pathway (AOP) framework for risk assessment is one approach to combine 

in silico, in vitro and in chemico methods with existing data to offer an alternative to animal 

experiments. Since it was first described in 2010, this framework has gained a lot of attention 

within the toxicology community. The Molecular Initiating Event (MIE) is the initial chemical-

biological interaction that starts the AOP. Understanding, characterizing and predicting MIEs 

will be of great importance to allow the AOP framework to realize its potential as a predictive 

tool and this key interaction is the focus of this work. With this review we aim to cover key MIE 
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research between the description of the AOP framework in 2010 and the end of 2015, giving an 

overview of how this concept has risen to prominence, and how it will aid toxicity risk 

assessment of the future. 

This review is focused on the MIE within human health risk assessment, but MIEs are also 

relevant to ecotoxicology. Many of the ideas presented are equally applicable to ecotoxicology 

and human health, as the MIE occurs early in the AOP and can be common to a number of 

species. 

Up to 2012 

The first mention of a Molecular Initiating Event can be traced back to 2006. Schultz et al 

identified plausible MIEs based on the covalent interaction of soft electrophiles and biological 

molecules.
14

 These interactions can lead to a number of toxicological endpoints including skin 

sensitization, DNA damage and immunological responses. These MIEs are considered 

appropriate targets for (Q)SAR modeling, and some models are presented linking molecular 

reactivity at a thiol moiety to aquatic toxicity and respiratory irritation endpoints. These 

reactivity-driven MIEs and their subsequent toxicity pathways were a key driver for the 

development of the AOP framework. 

The modelling of chemical interactions between electrophiles and biological macromolecules 

was already established before the MIE. Work by Aptula and Roberts defined mechanistic 

domains for reactive aquatic toxicants,
15

 and the same mechanistic domains were later applied to 

skin sensitizers.
16

 This work due to a similarity in the MIE for these toxicological endpoints, the 

covalent modification of proteins. This MIE can be broken down based on the type of 

electrophilic chemistry that causes it. These categories were used as a basis for qualitative 
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 6

mechanistic modelling (QMM), a type of local model based on linking toxic effects to 

physicochemical properties for a specific case rather than a global QSAR model encompassing a 

number of different reactivity domains and MIEs. These QMMs bring a transparent mechanistic 

basis to modelling, and a number have been developed since for different mechanistic categories 

leading to skin sensitization.
17

 These models, based on the interpretation of mechanistic 

chemistry, can be thought of as the precursor to the MIE. 

The AOP framework was first outlined by Ankley et al in 2010.
18

 Ankley presented the AOP as 

a conceptual framework, containing key information outlining the links between an MIE and an 

Adverse Outcome (AO) at a high level of biological organization relevant to risk assessment. 

Generalized examples of Key Events (KEs) along an AOP were presented by Ankley, including 

receptor/ligand interactions, DNA binding and protein oxidation. This conceptual framework is 

shown in Figure 1. 

A number of case examples from ecotoxicology were also presented, including pathways for 

narcosis, photo-activated toxicity, the aryl-hydrocarbon receptor, activation of the estrogen 

receptor and impaired vitellogenesis. It was noted that a complete AOP with full elucidation of 

all steps is not necessary for the AOP to be a useful tool. Gaps in an AOP can be filled using 

weight-of-evidence or statistical approaches to establish links between exposure and adverse 

outcomes. Much effort can be saved by specifically targeting areas of the AOP designated as 

important for the assessment of a specific endpoint. The AOP framework for risk assessment 

complies with the NRC's vision for the future of toxicity testing, allowing for the identification 

of specific endpoints of regulatory concern and providing understanding of the toxicity 

mechanisms that cause them.  
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 7

This initial framework was extended by Villeneuve and Garcia-Reyero early in 2011,
19

 who 

identified the importance of predictive methodology in the application of AOPs. MIEs are 

critical interactions that can be modelled to develop (Q)SARs for predicting the likelihood of a 

chemical interacting with a specific target. In an analogous manner the AOP highlights key 

toxicity pathway events that can be linked to in vitro tests, and so can be used to predict or test a 

pathway. These enable the AOP framework to build upon previous risk assessment approaches, 

as well as to bring new science to bear on the problems and challenges faced by toxicology. 

The European funded initiative SEURAT-1
20

 started in January 2011, with the aim of developing 

a replacement for repeat-dose, systemic-toxicity in vivo tests. The strategy was to combine the 

use of in vitro and in silico methodologies, through a number of linked projects, to deliver results 

applicable in both the pharmaceutical, and consumer goods/cosmetics spheres. Of the seven 

projects, the most relevant to MIEs are COSMOS
21

 and ToxBank
22

. COSMOS is focused on the 

development of in silico open access tools for the prediction of systemic toxicity endpoints for 

cosmetic products. The ToxBank project is developing a web-based warehouse for systemic 

toxicity data, a database and repository for test compounds, and tissue and cell banks for in vitro 

tests. 

A first approach at linking the MIE to chemistry came from Enoch et al in 2011.
23

 Enoch related 

the MIE to chemical category formation, using the fact that genotoxic chemicals are often 

electrophilically reactive, leading to the covalent modification of DNA. A number of mechanistic 

categories were developed to describe such MIEs, including acylation, Michael addition, Schiff 

base formation, SN1, SN2, and SNAr. For each category, mechanistic and structural alerts were 

developed, combined into models know as in silico profilers, then assessed and discussed 

through a number of examples. Profilers such as these have been used to construct predictive 
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 8

tools such as the OECD QSAR Toolbox.
24

 Enoch noted that, while the predictions made using 

these methods were only as good as the toxicological data that was sourced to build them, 

chemical categories are useful because they are mechanistically driven, and help to provide an 

understanding of why a chemical is able to undergo a specific interaction. This work aligns well 

with the MIE, as it too is mechanistically driven. This approach builds upon earlier work linking 

electrophilic reactivity to human health endpoints and brings it into an MIE perspective. 

Originally, an electrophilic index was used to predict skin sensitization potential quantitatively 

using Read-Across QSAR techniques.
25

 This was followed by the formation of electrophilic 

chemical groups for low molecular weight chemical compounds known to cause respiratory 

sensitization,
26

 and these rules were later developed to link respiratory sensitization mechanisms 

to the electrophilic index.
27

 These studies were published before the introduction of the MIE and 

AOP framework, but fit well with the ideas presented since, and conform to similar ideals. 

A key step in defining the AOP, and terms used within it, came from the OECD in 2012, 
28

 when 

it collected relevant definitions of important terms from the AOP and toxicity pathway research 

frameworks. The OECD defined the AOP as a linear sequence of events from the exposure of an 

individual to a chemical substance through to an understanding of the adverse (toxic) effect at 

the individual level (for human health) or population level (for ecotoxicological endpoints). An 

AOP consists of a number of KEs that are intermediate between the MIE and an apical adverse 

outcome. These KEs must be toxicologically relevant to the apical outcome and experimentally 

quantifiable. A number of similar, but distinctly different, definitions for the MIE were presented 

by the OECD, including: 

• The initial point of chemical-biological interaction within the organism that starts the 

pathway.
29
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• Direct interaction of a chemical with specific biomolecules.
19

 

• The molecular level, chemical-induced perturbation of a biological system. 

• Chemical interaction at a molecular target leading to a particular adverse outcome. 

• The seminal interaction (e.g. DNA-binding, protein oxidation, or receptor/ligand 

interaction) of a chemical with a biological target. 

The OECD recognized that the development and elucidation of AOPs will require contributions 

of multiple scientific fields, covering chemistry, biology and toxicology. Standardization of 

terms used in AOPs is necessary to allow these fields to communicate and develop the 

framework into the future. 

Developments in 2013 

In March 2013, the 7th amendment to the cosmetics directive 76/7678/EEC,
30

 and subsequent 

cosmetics regulation 1223/2009
31

 came into effect in Europe, enacting a ban on the use of animal 

testing for cosmetic ingredients. At this time, the availability of alternatives to in vivo methods 

appropriate for cosmetic product risk assessment varied greatly by endpoint. The commission 

noted that good progress had been made in the area of in vitro alternatives to measure basal 

cytotoxicity.
32

 In other areas, such as eye irritation and skin sensitization, more work is required 

to provide adequate alternatives. This important milestone, in the transition from toxicology 

dominated by in vivo methods to one accepting the non-animal alternatives of in vitro, in silico 

and in chemico, provides a key industrial incentive to the development of these alternatives, 

including the MIE and AOP. 

In a study analogous to an MIE approach to carcinogenicity, Benigni et al reviewed and 

combined a number of 2D SARs.
33

 Carcinogenicity is broken down by mechanism of action to 
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 10

yield structural alerts for receptor binding, oxidative stress, hormonal imbalance, and direct and 

indirect alkylation of DNA. Of nine structural alert classes across genotoxic and non-genotoxic 

carcinogens, a positive predictivity of greater than 70% was obtained in six cases. This 

computational methodology shows the promise of the integration of theoretical knowledge with 

in vitro assay information. Benigni notes that the addition of further structural alerts will allow 

for an expansion of this approach, increasing its impact. 

Casalegno and Sello published a similar study predicting mode of action of environmental 

toxicants by structural similarity.
34

 These models were based not on experimental data, but on 

structural features alone. This approach relies on the fact that the interaction between well-

characterized molecules and an ill-defined biological target depends on the chemistry of both 

parts. Casalegno and Sello note that a lack of understanding of the modes of action associated 

with ecotoxicology makes this a difficult study, as poorly defined modes of action, such as 

narcosis or electrophilicity, are often used. Both a better understanding of the complex 

mechanisms behind ecotoxicity and a greater availability of data are required to make an 

approach such as this practically useful.  

Gutsell and Russell's 2013 analysis, 
35

 shows that chemistry is key to understanding the MIE and 

also has other important roles to play in the AOP framework. Linking a defined dose of a 

chemical compound to an adverse effect requires the use of both chemical information, including 

analytical experiments, and theoretical techniques, such as (Q)SARs. An understanding of the 

chemical attributes that are required to generate an MIE can be used to filter the number of 

pathways that need to be considered in risk assessment. The MIE can be boiled down to a 

chemical interaction, and so a series of in chemico experiments coupled with in silico models 
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will be able to make risk assessment, based on chemistry alone, a reality. A visualization of this 

wet/dry cycle is shown in Figure 2. 

AOP approaches were reviewed in mid-2013 by Vinken.
36

 This review covered the development 

of AOPs from key building blocks, and several well-developed examples were discussed, 

including skin sensitization, cholestasis, liver fibrosis and liver steatosis. Vinken also discussed 

the key roles of (Q)SARs and in vitro tests to predict and to inform pathways. Key challenges in 

the field are presented, including compliance with the complexity of toxicology, the inclusion of 

dose-response relationships in pathway development, the integration of exposure and 

toxicokinetic data, and the transparent and objective evaluation of the outcomes. 

Martin et al presented the use of mode of action to categorize aquatic toxicants and build 

models.
37

 This study involved modes of action including receptor agonism, enzyme inhibition, 

chemical reactivity and biosystem disturbance. Martin notes that while the models provide 

promising results (overall prediction accuracy 85%), further categorization of the more general 

modes of action, such as chemical reactivity, into smaller structural-mechanism groupings (as 

may be expected with a more MIE-like analysis) should improve predictivity. 

A key issue, particularly in ecotoxicology, is the extrapolation of data points between species 

during chemical risk assessment. This also applies to KEs within the AOP – including the MIE. 

LaLone et al described a quantitative tool for the extrapolation of MIEs between species using 

bioinformatics approaches and an understanding of the target species biology.
38

 The conservation 

of KEs across several AOPs is an important simplification of biology within the AOP approach. 

If some of these KEs can also be preserved across species, this will aid the difficult task of 

ecotoxicological risk assessment, due to the diverse nature of the environment, and provide 
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additional data points in human toxicology, where results can be read across from existing 

animal studies. 

An entirely quantitative risk assessment using the AOP framework was attempted by Maxwell et 

al at the end of 2013.
39

 The skin sensitization AOP was one of the first AOPs to be considered 

well developed within the field.
28

 Maxwell used KEs from early in the pathway to provide input 

parameters for the “total haptenated protein” model, with the “CD8+ T cell response” model 

providing predictions for KEs late in the pathway and for the overall adverse outcome (allergic 

contact dermatitis).  

Chemical dose applied to the skin is linked to the amount of total haptenated protein using 

mathematical models, taking into account the pharmacokinetic steps as the chemical travels from 

skin surface to the protein. These include clearance mechanisms, metabolism, and other chemical 

transformations. The CD8+ T cell response model aims to predict the number of hapten-specific 

human CD8+ central memory T cells generated following repeated exposure to a chemical 

sensitizer, using inputs from the total haptenated protein model. Maxwell suggests that, once a 

threshold of hapten-specific human CD8+ central memory T cells is exceeded, an inflammatory 

response will manifest upon re-exposure to a sensitizer. These models were at the time in the 

early stages of development. However, by benchmarking them against clinical data it should be 

possible to predict whether a specific skin exposure will cause the required hapten-specific T cell 

response required to cause an adverse effect upon re-exposure. 

In November 2013, Wu et al published a decision tree to predict Developmental And 

Reproductive Toxicity (DART) endpoints.
40

 This in silico assessment was made without use of 

an AOP framework and shows the complexity associated with predicting across multiple 
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endpoints and toxicity pathways. Development of the decision tree identified a number of 

important structural fragments that can enhance the understanding behind DART modes of 

action using MIEs. The decision tree itself allows for rapid screening of potential DART.  

Developments in 2014 

In January 2014, Caldwell et al published an integrated approach for prioritizing pharmaceutical 

ingredients for ecotoxicological risk assessment using an AOP-informed approach.
41

 Mammalian 

pharmacology data and pharmaceutical usage data were combined to provide a prioritization for 

risk assessment and advanced research. Prioritization of assessment is particularly important in 

ecotoxicology where the amount of data available to construct predictive models is often limited. 

In 2014 the AOP Wiki was released as version 1.0.
42

 This project represents a joint effort by the 

European Commission - Joint Research Centre and the U.S. Environmental Protection Agency, 

and serves as part of the OECD-sponsored AOP Knowledgebase. The AOP Wiki resource is 

designed to allow toxicology scientists to share AOP-related knowledge in an appropriate format 

in an open source forum. It also encourages the evaluation and acceptance of this research by the 

AOP community. The AOP Wiki represents an important tool in data-sharing and peer-review. 

Making research available through this wiki should be a priority for scientists working on AOPs 

and MIEs. 

Computationally linking the reactivity of a chemical compound to its skin sensitization potential 

has been a key goal of the AOP community as the skin sensitization AOP is one of the best 

developed within the AOP Wiki. The MIE for skin sensitization is the covalent modification of a 

skin protein by a toxicant. Building on their earlier work,
15–17

 Roberts and Aptula linked 

previously developed QMMs to local lymph node assay results for SNAr electrophiles in 2014.
43
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This resulted in the development of a linear relationship between reactivity parameters and EC3 

values measured experimentally. This analysis provides further evidence for the use of chemical 

reactivity as a descriptor for the analysis of the skin sensitization potential of novel molecules in 

the AOP framework.  

Modern approaches to toxicology risk assessment must attempt to improve on existing in vivo 

methods. Leist et al highlighted this in 2014, pointing out that limited resources and high cost 

associated with animal methods have led to a large number of chemicals being untested, and 

mixtures are rarely evaluated at all.
44

 Leist proposed a new vision, running chemicals and 

mixtures through in silico and in vitro approaches, using toxicity pathways, mode of action and 

AOP frameworks to gain a comprehensive evaluation. Only if no conclusive results can be 

obtained would animal testing be carried out. An understanding of the MIEs of these chemicals 

will aid in the generation of a comprehensive risk assessment of many chemicals without the use 

of in vivo experiments. A large number of under-tested chemicals and mixtures could be risk-

assessed using this high-throughput method, as illustrated in Figure 3. 

Molecular modelling is one area of in silico science that shows much promise in its ability to 

study the MIE. One such approach was published by Tsakovska et al in 2014.
45

 A model was 

developed for the PPARγ receptor as a target of interest for liver steatosis. The receptor binding 

pocket was analyzed using PPARγ complexes with full agonists from the Protein Data Bank 

(PDB),
46

 and a pharmacophore was developed encompassing the most important features for 

binding and their role in PPARγ activation. As may be expected for a receptor binding MIE, the 

pharmacophore consists of hydrogen bonding, hydrophobic and aromatic interactions between 

the ligand and PPARγ. Models such as this provide in silico screens to identify potential 

steatogenic inducers early in risk assessment. 
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Following their previous work into reactivity-driven MIEs for DNA modification,
23

 Nelms et al 

used a similar approach to develop a collection of structural alerts built into an in silico profiler 

for systemic toxicity of hair dyes.
47

 Repeat dose toxicity studies for 94 hair dyes were used, and 

chemicals were grouped based on structural similarity. Four categories were identified for hair 

dyes containing a 2-nitroaminobenzene, a 4-nitroaminobenzene, an aromatic azo, or an 

anthraquinone moiety. Nelms went on to develop a mechanistic hypothesis for each of the four 

groups, and refined structural alerts were presented as an in silico profiler, covering pro-

quinones, quinones, meta-substituted benzenes and aromatic azo compounds. This profiler 

assigned 56 of the 94 chemicals in the dataset to a mechanism-based chemical category. The 

reactivity-driven nature of these toxicity mechanisms may also allow the alerts to be used in 

mitochondrial toxicity, and this was also discussed by Nelms. This paper emphasizes that 

approaches like this do not attempt to predict oral repeat-dose toxicity, but instead a particular 

MIE that might be responsible for an AOP leading to chronic toxicity. Detailed studies such as 

this are required to develop models for MIEs, and to identify the MIEs themselves, as at this time 

they are generally poorly understood at a mechanistic level. 

The workshop “Advancing AOPs for Integrated Toxicology and Regulatory Applications” took 

place in 2014. One report from this workshop by Tollefsen et al mentions the pivotal role of 

MIEs.
48

 MIEs measured through in silico, in vitro and in chemico techniques were discussed and 

shown to have an important part to play in the AOP framework. MIEs cover a wide variety of 

chemical interactions, and these were highlighted through examples, including receptor binding 

MIEs leading to endocrine disruption and reproductive toxicity, as well as covalent binding to 

skin proteins leading to skin sensitization and allergic contact dermatitis, as has been discussed 
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above.
28

 These discussions highlight the significance of the MIE and the important roles different 

areas of toxicology will play in gaining an understanding of these key interactions. 

Chemistry’s key role in MIE and AOP research was further highlighted by Allen et al.
49

 AOP 

networks for a number of well-understood toxicants were developed using literature searches. 

These case studies were used to unify existing definitions of the MIE and concluded that an MIE 

is the initial interaction between a molecule and a biomolecule or biosystem that can be causally 

linked to an outcome via a pathway. The role of the MIE in AOP research and toxicity risk 

assessment was also discussed, including a framework in which an in silico (Q)SAR relates 

molecular properties of a novel compound to an MIE, and any associated AOP can then infer an 

expected adverse outcome for the compound, as shown in Figure 4. By establishing an 

understanding of the chemistry behind interactions between molecules and biomolecules or 

biosystems (Q)SARs can be constructed, allowing the MIE to directly contribute to toxicity 

screening processes and, later, with further quantitative understanding, risk assessments. 

Madden et al published a report on the development of AOPs in ecotoxicology in late 2014,
50

 

noting that AOPs can receive criticism due to their simplistic nature which makes them poor 

reflections of complex toxicological processes. In response, they point out that an AOP should 

never be seen as a complete picture, but as a flexible tool that will improve over time as new data 

is constantly added. Even if an AOP is incomplete, it can still provide a large amount of useful 

information in a risk assessment. In vitro to in vivo extrapolation (IVIVE) of doses also presents 

a challenge due to the difference between in vitro experiments and in vivo situations. For 

example in an in vitro assay does not consider the metabolism of a chemical. Effective 

integration of data from in chemico, in silico, in vitro and in vivo will be required to overcome 

this, and the AOP Wiki,
42

 among other resources,
22,24,51,52

 provides a way to achieve this. 
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As has already been discussed,
23,33,47

 structural alerts play a key part in predictive toxicology. 

Chemotypes were introduced in 2014 as a new way of coding such alerts, and Chemotyper is 

software that allows them to be searched against a dataset.
53

 Chemical substructure mark-up 

language (CSRML), an XML-based code, is used to capture chemotypes. This language allows 

for the inclusion of physico-chemical properties and descriptors as well as 2D structure, allowing 

greater flexibility of constructed models. 

Developments in 2015 

In February 2015, a report from FutureTox II (held in January 2014) was published by Knudsen 

et al
54

 The goals of this meeting were to discuss the progress towards the NRC's vision for 

toxicity testing in the 21st century
1
 and in silico and in vitro methodologies featured heavily. 

AOPs were discussed as a key concept. Despite OECD guidelines which state that an AOP links 

a single MIE and an effect at a high level of biological organization, it is accepted that a single 

MIE may lead to several AOPs and an adverse effect may be associated with several MIEs. AOP 

networks can capture the complexity of the biological sphere far better; and the MIE is identified 

as an important KE that can be used to screen compounds to identify the AOPs that are likely to 

be of most interest. 

The difficulty associated with IVIVE has already been mentioned.
50

 Angrish et al presented an 

approach to bridging the IVIVE gap in high throughput screening (HTS) assays.
55

 Using an 

ultra-sensitive gas-phase probe molecule, they aim to measure effects on metabolism that will 

link through to understood in vivo outcomes. As an example, the pharmacokinetic parameters 

associated with a cytochrome-2A6-driven metabolism were identified in order to measure the 

effect of a toxicant indirectly by observing a metabolite: methyl tertiary-butyl ether. 
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Methodology such as this allows MIEs and other KEs to be directly linked to relevant in vivo 

data. 

Steinmetz et al utilized open-source data to construct a screening tool for retinoic acid receptor 

binding using the MIE principle.
56

 2D fragments of binders were coded in SMARTS based on 

“rules” derived from the PDB. In addition to this, physicochemical properties (vertex adjacency 

information magnitude,
57

 number of rotational bonds, molecular weight and logarithm of the 

water-octanol partition coefficient) were used to give an insight into the physico-chemical 

applicability domain for retinoic acid receptor binding. These early approaches towards MIE 

tools are designed not to replace in vitro testing or be a complete in silico model, but rather to 

provide a rapid screen and prioritization methodology to assist in risk assessment. 

The importance and potential impact of AOPs as a framework in non-animal risk assessment was 

reviewed by Burden et al in March 2015.
58

 Key to the recent paradigm shift in toxicity testing is 

the Replacement, Refinement and Reduction of animal methods - also known as the 3Rs.
59

 The 

AOP framework provides an important scientific basis on which new risk assessment practices 

can be built - as no single alternative testing method will replace an in vivo model like-for-like. 

One such combined approach could involve the prediction of adverse effects based on a pre-

determined MIE. Concerted efforts to collect, integrate and organize data from relevant sources 

across scientific disciplines will be required to reap the benefits of such a coherent framework. 

Regulatory input is also required, to guide the use of AOPs in risk assessment decision-making.  

While single AOPs are considered the building blocks of AOP development, they are not a 

complete representation of complex biological systems when considered in isolation. AOP 

networks would seem to provide a solution to this, as described by Knapen et al. 
60

 AOPs are 
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constructed from MIEs, KEs and AOs that can be shared across multiple pathways. Where these 

common elements are shared, AOPs can be combined into AOP networks. This principle is 

demonstrated in the case of DART, where aryl hydrocarbon receptor, estrogen receptor, 

aromatase and androgen receptor-based MIEs lead to pathways that converge in DART 

endpoints. This AOP network is shown in Figure 5. The analysis of networks such as this 

conveys a number of advantages over considering AOPs in isolation. Not only are AOPs in 

isolation unrealistic, by combining them into networks of assays, measurement of a single MIE 

or KE can provide information on a number of different endpoints and pathways, improving 

testing efficiency. The more understanding that can be gained about the MIEs, KEs, and their 

networks the more potential combinations will come to light, further benefitting risk assessment. 

Judging the quality of AOPs will be an important step in their development to become a staple of 

the chemical risk assessment procedure. This is discussed by Becker et al who present a number 

of examples using the OECD approved Bradford-Hill considerations for the assessment of 

confidence in an AOP.
61

 These considerations include the biological plausibility and empirical 

evidence (i.e. dose-response) for KE relationships (KERs), and the essentiality of KEs (i.e. are 

downstream events prevented if an upstream event is blocked?). Each consideration is broken 

down, with the aim being to assign a high, moderate or low confidence in each KE or KER. 

Several case studies are given and the importance of using weight-of-evidence-based approaches 

to analyze AOPs discussed. To ensure transparency and promote consistency across AOP 

research, these kinds of confidence assessments must be carried out and analyzed. This 

ultimately will lead to enhanced rigor, transparency and reproducibility for AOP confidence 

assessment, improving confidence in AOPs themselves. 
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This particular area of AOP research has been further explored by Yauk et al
62

 The AOP for 

alkylation of DNA in male premeiotic germ cells leading to heritable mutations was examined in 

depth in order to establish its biological plausibility and the empirical evidence that supports it. 

In turn each KE was considered, examining how the KE works and how it was measured or 

detected experimentally. KERs are then examined, looking at how the biological processes work, 

the weight of evidence that supports them, any uncertainties or inconsistencies in their 

supporting data, and the level of quantitative understanding of the linkage they provide. 

Following this analysis the KEs and KERs are assessed as having strong, moderate, or low levels 

of confidence. A particular challenge, noted by Yauk, in this AOP development was the 

gathering of appropriate dose-response data for assessment of the Bradford-Hill considerations 

from historical studies that were not conducted with this type of research in mind and which are 

time-consuming to interpret. The AOP framework should be able to overcome this hurdle, since 

the more KEs and KERs are isolated, the more likely it is that new AOPs will incorporate KEs 

and KERs which have already been characterized, and so the process will speed up. 

Dent et al discussed the AOP for anti-androgenic activity in humans in a similar level of detail.
63

 

The aim was to establish the status of the tools and approaches being put towards a non-animal 

risk assessment for this AOP. A particular point noted here was the high level of uncertainty 

associated with the extrapolation of data from effects seen in high dose animal studies to the 

much lower exposures anticipated for humans. Therefore, the exposure of the human to the 

chemical will be key. If human exposure is not significant, is a detailed risk assessment 

necessary at all? 

Risk assessments for metals pose a number of different issues compared to those for organic 

chemicals. Von Stackelberg et al used an AOP approach to analyze the neurodegeneration 
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endpoint caused by the exposure of humans to metals and mixtures of metals, specifically lead, 

arsenic, cadmium and manganese.
64

 An AOP was developed and assessed using the Bradford-

Hill considerations. This AOP linked the activation of extracellular-signal-related kinase by 

metals to an increase in levels of cellular calcium ions and neurological disorders including 

deficits in learning and cognition. It is important that MIE and AOP approaches can be utilized 

in these different situations to increase their impact in toxicology. 

Following on from previous work into in silico models for reactivity driven MIEs for DNA 

modification
23

 and skin sensitisation
47

, Nelms et al published the development of an in silico 

profiler for analyzing mitochondrial toxicity in June 2015.
65

 Category formation based on 

structural similarity was performed on a set of pharmaceutical drugs with mitochondrial toxicity 

data. Once categories had been decided, a literature search was undertaken to elucidate 

mechanistic information behind the MIE, and other KEs in AOPs associated with mitochondrial 

disruption. Structural alerts were defined and coded in SMARTS using information from the 

literature and substructures from the category formation. The structural alerts highlight 

molecules that exhibit toxicity as protonophores, redox cyclers, and inhibitors of the complexes 

of the electron transport chain. With a small amount of data available, this study has been able to 

gain insight into several key MIEs for mitochondrial dysfunction, and provide a profiler that can 

be utilized to screen large data sets to identify chemicals with the potential to induce 

mitochondrial toxicity. 

A number of AOPs leading to hepatic toxicity were compiled by Mellor et al in late 2015.
66

 This 

work links the agonism and/or antagonism of several nuclear receptors to hepatic steatosis via a 

number of converging pathways. These pathways are currently reasonably well understood from 
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a biological standpoint, but further research is required to elucidate key information about the 

MIE and build structural alerts or other models to be able to predict this endpoint. 

Difficulty in understanding MIEs can be aided by finding new ways to measure them, and this 

was demonstrated by Sanderson et al using NMR spectroscopy.
67

 The binding of molecules to 

protein residues features in MIEs for skin sensitization and hepatotoxicity among others. The rate 

of this reaction could be used to inform toxicological risk assessments quantitatively, providing 

an in chemico link between molecule and extent of protein modification. NMR spectroscopy was 

used to measure these rates for the reactions of electrophilic organic chemicals (representing 

different mechanistic classes) and simple amines and thiols (representing lysine and cysteine 

protein side chains respectively). In chemico assays, such as this, will be important in informing 

MIE and AOP driven toxicological risk assessment, providing vital quantitative information and 

experimental validation. 

Constant development of new AOPs has led to the discovery and characterization of new MIEs, 

for example, the chemicals binding to tubulin identified by Marchetti et al in late 2015.
68

 This 

MIE leads to aneuploidy offspring – a teratogenic disorder causing an abnormal number of 

chromosomes. The majority of data for the MIE and KEs of this AOP come from rodent studies. 

They are thought to be conserved in humans, allowing the extrapolation of the existing in vivo 

data for use in human toxicology. Similarities in the mechanism of action across several phyla 

and the high homology between mouse and human tubulin provide evidence for this. This MIE 

presents an interesting case, in which in silico, in chemico, in vitro and in vivo studies may all be 

able to be used to predict the impact of an MIE in humans. 
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The main drive in the development of AOPs up to this point has been for the risk assessment of 

cosmetic products and industrial chemicals. AOPs can also find use in drug development, as was 

discussed by Patlewicz and Fitzpatrick in December 2015.
69

 They focused mainly on the use of 

in silico tools, particularly (Q)SARs, for the prediction of KEs along an AOP. While a number of 

tools, some of which we have already discussed, have been developed previously, the number of 

KEs requiring prediction will continue to demand more from (Q)SAR scientists. It is particularly 

highlighted that AOPs must be kept in mind during the development of new (Q)SARs, 

promoting the development of tools which model small steps between KEs and not large leaps 

over many complex levels of biological organization. 

At the end of 2015 the SEURAT-1 initiative closed and the EU-ToxRisk program,
70

 was initiated 

early in 2016 to continue driving mechanism-based toxicity testing for risk assessment in the 

21st century. 

CONCLUSIONS 

As toxicology moves away from animal experiments and towards in silico, in vitro and in 

chemico methods, as well as combinations of these, deeper understanding and new tools are 

required. The AOP framework provides a powerful method to do this. As arguably the most 

important key event within the AOP, a greater knowledge of MIEs will be vital to the success of 

this framework. A greater understanding of the MIE must be developed, and tools must be 

constructed to allow MIEs to be predicted, and measured for novel compounds. 

The MIE sits on the boundary between biology and chemistry, and as such both these fields have 

important roles to play in its development. This has been shown in this review, with a number of 
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publications coming from both a chemical and biological background. In silico, in vitro and in 

chemico methods all have a part to play, and this is also represented.  

As the first KE in an AOP, the MIE has a key role to play in the understanding of toxicity in both 

humans and animals. As a result the MIE is applicable in both human health and ecotoxicology 

risk assessment. The MIE and AOP provide a template for the coming together of these fields, as 

it is expected that some, but not all, of the KEs and KERs will be shared across species. One of 

the main drives of the AOP framework is for better risk assessment procedures, and this 

collaboration can help by providing additional data and understanding previously confined to 

their fields. 

As outlined above a number of MIEs have now been characterized. This allows us to begin 

grouping these interactions based on their chemistry. The earliest studied MIEs were covalent 

bond forming reactions between chemicals and biological molecules. These MIEs include the 

reactions of electrophilic chemicals with DNA molecules,
23

 and the covalent modification of 

skin proteins.
43

 MIEs such as these can lead to toxicological endpoints such as allergic contact 

dermatitis,
39

 genotoxicity, and immunological disorders.
39

 

A second category of MIEs is those which involve non-covalent binding of a chemical to a 

biological target such as a receptor or enzyme. These can include the activation of PPARγ,45 or 

the agonism or antagonism of nuclear receptors,
66

 both leading to liver steatosis, the inhibition 

of complexes of the mitochondrial electron transport chain leading to mitochondrial 

dysfunction,
65

 and the binding of chemicals to tubulin leading to teratogenic endpoints.
68

 

A final category of MIEs is for those chemicals that do not directly interact with a specific 

biomolecule, but rather cause a disturbance in cellular or organelle biosystems. Biosystem 
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disturbance has been alluded to in several cases
37,49

 and provides an MIE category for the 

narcosis mode of action often used in ecotoxicology which is associated with membrane 

disruption.
34

 Other biosystem disturbance MIEs include chemicals which act as protonophores or 

redox cyclers leading to mitochondrial toxicity endpoints.
65

 

The impact of the MIE and AOP framework has undoubtedly increased over the last three years, 

with the number of publications contributing to the area increasing each year. The understanding 

gained, and tools developed so far, represent an important platform for future development, with 

the ultimate aim being a tool for quantitatively predicting the impact of a chemical on a human 

or ecotoxicological target. The emergence of the MIE highlights the idea that chemical 

understanding is critical in modelling, and that mechanistic local modelling is key to providing 

the best predictions. Feeding an MIE prediction tool into a combined AOP framework, 

incorporating exposure, absorption, distribution, metabolism and excretion (ADME), and an 

understanding of downstream effects along the AOP will be able to provide a genuine alternative 

for toxicology: reliable risk assessment entirely free of in vivo experiments.  
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FIGURES  

 

Figure 1. Ankley’s conceptual diagram of an AOP, including the MIE (Anchor 1). Adapted with 

permission from Ankley, G. T., Bennett, R. S., Erickson, R. J., Hoff, D. J., Hornung, M. W., 

Johnson, R. D., Mount, D. R., Nichols, J. W., Russom, C. L., Schmieder, P. K., Serrrano, J. A., 

Tietge, J. E., and Villeneuve, D. L. (2010) Adverse outcome pathways: A conceptual framework 

to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem., Vol. 29, 730–

741,
18

 from John Wiley & Sons Inc. 
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Figure 2. A wet/dry cycle for the development of in silico models. Adapted from Gutsell, S., and 

Russell, P. (2013) The role of chemistry in developing understanding of adverse outcome 

pathways and their application in risk assessment. Toxicol. Res., Vol. 2, 299–307,
35

 with 

permission from The Royal Society of Chemistry.  
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Figure 3. Leist's new vision for the future of toxicity testing. Adapted with permission from 

Leist, M., Hasiwa, N., Rovida, C., Daneshian, M., Basketter, D., Kimber, I., Clewell, H., Gocht, 

T., Goldberg, A., Busquet, F., Rossi, A. M., Schwarz, M., Stephens, M., Taalman, R., Knudsen, 

T. B., McKim, J., Harris, G., Pamies, D., and Hartung, T. (2014) Consensus report on the future 

of animal-free systemic toxicity testing. ALTEX 31, 341–356.
44
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Figure 4. Framework for a (Q)SAR approach based around MIEs. The (Q)SAR relates 

molecular characteristics to the MIE and the AOP infers an adverse outcome from the MIE. 

Adapted from Allen, T. E. H., Goodman, J. M., Gutsell, S., and Russell, P. J. Defining Molecular 

Initiating Events in the Adverse Outcome Pathway framework for risk assessment. Chem. Res. 

Toxicol. 27, 2100–2112. Copyright 2014 American Chemical Society.
49
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Figure 5. An example of an AOP network based on five reproductive and developmental 

toxicity-related AOPs in fish available on the AOP wiki. MIEs are indicated in green, KEs in 

orange and adverse outcomes in red, as per the AOP wiki template. The grey box represents a 

KE with a “weak” weight of evidence. The dotted squares indicate KEs that are defined as 

changes in the opposite direction of the same biological component. AHR: aryl hydrocarbon 

receptor, E2: estradiol, GtH: gonadotrope hormone, T: testosterone, VTG: vitellogenin. 

Reprinted from Reproductive Toxicology, Vol. 56, Dries Knapen, Lucia Vergauwen, Daniel L. 

Villeneuve, Gerald T. Ankley; The potential AOP networks for reproductive and developmental 

toxicity assay development; pp 52-55; Copyright 2015;
60

 with permission from Elsevier. 
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