
Transforming Spreadsheets with Data Noodles
Maria I. Gorinova, Advait Sarkar, Alan F. Blackwell

Computer Laboratory, University of Cambridge
{mig30, advait.sarkar, alan.blackwell}@cl.cam.ac.uk

Karl Prince
Judge Business School, University of Cambridge

k.prince@jbs.cam.ac.uk

Abstract—Data wrangling is the term used by data scientists
for the work of re-organising data into a new structure, before
work starts on reporting or analysis. We present a prototype that
applies programming by example methods to data wrangling in
spreadsheets. The Data Noodles system guides the user through
constructing a simple example that illustrates how they would
like their spreadsheet to look. A transformation program is
then synthesised and executed to produce the final reshaped
spreadsheet.

I. INTRODUCTION

Customisable information systems often result in complex
databases, from which users need to extract data in a simpler
form for further analysis. In recent work [1], we showed that
hospital patient records would benefit from this kind of ‘data
wrangling’ capability. We argued that recent program synthesis
methods would allow end-users to select and reorganise data,
if only an appropriate interaction metaphor were available.
This paper presents a candidate metaphor, which we call Data
Noodles.

II. DESIGN

The Data Noodles system generates programs to restructure
spreadsheets by applying a series of transforms. The user
constructs a simple example that illustrates what form they
would like the spreadsheet to be in. Based on this example,
a spreadsheet transformation program is automatically synthe-
sised and executed to produce a spreadsheet with the desired
shape. Below, we describe in more detail those two steps in
the implementation of our approach.

A. Specifying the intended program

Menu-driven data wrangling interfaces expect users to select
the sequence of individual transformations to be applied.
However, users then must understand in advance the scope and
effects of the available transformations. We reduce this barrier
by asking the user only to describe what the overall result of
the transformation should be, rather than individual steps. The
user interacts with a split screen showing two spreadsheets –
original input data on the left, and an output area on the right.
The user first selects a range of cells on the left, producing
a ‘noodle’ (hanging wire) that can be dragged to the right to
specify the required transformation.

Fig. 1 demonstrates the process of constructing an example
transformation. Each row in the input spreadsheet gives the
number of papers published by an academic in a particular
year. The desired output is to have only one row per person,
with number of papers for each year in separate columns.

(a) Step 1

(b) Step 2

(c) Step 3

(d) Step 4

Fig. 1: ‘Unfolding’ a spreadsheet so that each ‘Year’ value
becomes a separate column.

Fig. 1a shows the spreadsheet after the user has defined
two mappings: the red noodle maps the first column of the
input spreadsheet to the first column of the output, while the
green noodle maps values from the second input column to
column labels in the output. To finish, the user must specify
how data will be arranged into those columns. Fig. 1b shows a
noodle (in blue) with the left end attached to values in the input
sheet. The right end is ‘active’, offering alternative mappings
to cells in the output spreadsheet. Hovering over cells on the
right gives suggestions (in light grey) showing possible ways
that these values might be modified or filtered by ‘passing
through’ the noodle transformation channel. By clicking, the
user accepts the displayed suggestion and places the right end
of the noodle (Fig. 1c). The example is now complete, and the
user can request the rest of the output spreadsheet to be filled

978-1-5090-0252-8/16/$31.00 c©2016 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/83939403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in automatically (Fig. 1d). If the synthesised transformation is
different from the one the user had in mind, parts of the output
can be ‘corrected’ to refine the example and re-synthesise.

B. Transformation language and program synthesis

Our transformation language is inspired by the Potter’s
Wheel [2] and Wrangler [3] languages. It currently implements
reshaping transformations such as Fold and Unfold, and we
plan to add support for filtering, splitting and merging. In
addition, we currently support an interpolation operation,
which fills in missing values of a column by inferring a simple
linear or nearest neighbour substitution from example text
entered in that cell. The transformation program is synthesised
using the PROSE SDK [4], a .NET framework for program
synthesis of domain-specific languages. In applying PROSE
to spreadsheets, we define the syntax and semantics of our
transformation language, a set of ‘witness functions’ that give
domain-specific insight to guide the synthesis process, and a
set of ‘scoring functions’ used to rank candidate programs.

III. PREVIOUS WORK

Data wrangling tasks have previously been identified as
a candidate for end-user programming methods. Tools such
as PADS [5] and FlashExtract [6] allow users to extract
structured data from semi-structured data, by either specifying
the required format with a description language (PADS) or
demonstrating it with an example (FlashExtract). Previous
spreadsheet transformation systems use menus, demonstration
or examples to specify a transformation program. Menu-driven
tools such as Potter’s Wheel [2] allow the user to create
programs by specifying a sequence of operations. Wrangler
[3] extends this approach with an interface that allows the
user to demonstrate the scope of a operation by selecting
columns or rows, after which the system suggests transfor-
mations. FlashRelate [7] allows users to give examples of
the spreadsheet transformations they want to perform. The
transformations are then automatically synthesised. Our aim is
to unify these last two approaches, by providing an interface
that prompts the user to specify an example of the effect of the
desired transformation, automatically synthesises and executes
a program that matches it, and allows the user to understand
and amend this program when needed.

IV. DISCUSSION

This approach draws on a long tradition of programming-
by-example (PBE) where users demonstrate example be-
haviour using concrete data values, after which the system
generalises for arbitrary input. In our spreadsheet context, we
specify the example using a concrete subset of the data, which
is then generalised to the entire spreadsheet. To minimise the
burden of learning new representations, we make the PBE in-
terface look like a spreadsheet. We indicate the transformation
process with a familiar before-and-after metaphor from left to
right, emphasised by the fact that the ‘after’ side is initially
empty, and that the user must fill it in.

Drag and drop of cells from the input spreadsheet offers
clear benefits: it is faster and less error-prone than copy-
ing text, and provides an unambiguous input cell reference.
However, as the number of input-output examples grows, and
the synthesised transformation becomes more complex, these
transient operations are hard to remember and impossible to
modify. By instead drawing lines that express the transforma-
tion, we express the dependencies between input and output,
preserve and visualise the transient actions of the user, and
offer a visual transformation language.

Rather than straight lines, we created a stylised rendering
with physics-based animation effects, to give the impression of
a noodle dangling between the input and output cells. Our goal
here was to facilitate ludic engagement – an important new
consideration for data wrangling tasks as they extend beyond
professional data scientists to end-users [1]. Although program
synthesis by example is technically complex, and presents
new usability challenges, previous research has not given
explicit consideration to hedonic pleasure in the design of data
management tools. The playful appearance (and indeed, the
name) of Data Noodles is intended to draw in and engage
users who might otherwise find data manipulation a dry and
unengaging task.

Although motivated by our research agenda that combines
artistic live coding with scientific visualisation, we recognise
the inevitable tradeoffs in the playful approach of Data Noo-
dles. The curved trajectory might increase perceptual load,
or impair scalability. Although complex transformations can
be specified with only 5-10 noodles, how many can we in-
clude before creating an impossible-to-detangle noodle soup?
The physical metaphor of catenary geometry with dynamic
wobbling movement helps to provide perceptual cues, but we
have made a deliberate trade-off of perceptual efficiency in
favour of pleasurable engagement. Further study is required
to investigate the value that this provides in our intended
application domain.

ACKNOWLEDGMENT

The project is funded by the Health Foundation.

REFERENCES

[1] M. I. Gorinova, K. Prince, S. Meakins, A. Vuylsteke, M. Jones, and A. F.
Blackwell, “The end-user programming challenge of data wrangling.”
PPIG, 2016.

[2] V. Raman and J. M. Hellerstein, “Potter’s wheel: An interactive data
cleaning system,” in VLDB, vol. 1, 2001, pp. 381–390.

[3] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer, “Wrangler: Interactive
visual specification of data transformation scripts,” in Proceedings of the
2011 annual conference on Human factors in computing systems - CHI
’11. New York, New York, USA: ACM Press, 2011, p. 3363.

[4] O. Polozov and S. Gulwani, “Flashmeta: A framework for inductive pro-
gram synthesis,” in Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications. ACM, 2015, pp. 107–126.

[5] K. Fisher and D. Walker, “The PADS project: An overview,” in Proceed-
ings of the 14th International Conference on Database Theory - ICDT
’11. New York, New York, USA: ACM Press, 2011, p. 11.

[6] V. Le and S. Gulwani, “FlashExtract: A framework for data extraction by
examples,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 542–553, 2014.

[7] D. W. Barowy, S. Gulwani, T. Hart, and B. Zorn, “FlashRelate: extracting
relational data from semi-structured spreadsheets using examples,” ACM
SIGPLAN Notices, vol. 50, no. 6, pp. 218–228, 2015.

