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Abstract

ISO 20072 is an international standard detailing the methods and testing protocols required
to ensure the quality of aerosol drug delivery devices (ADDDs), for use in humans [1]. Our
paper examined the pitfalls and errors in this standard, and the difficulties in its application to
ADDD-producing factories. We find that the likelihood of many imperfect factories which satisfy
the requirements listed in the standard actually passing the prescribed testing is minuscule. We
suggest other testing protocols, which achieve the stated goals of the standard. In the specific
example we consider, they also reduce the workload by around 25-fold compared with the
methods specified in ISO 20072, as well as giving crucial additional advantages.

∗Sadly David MacKay FRS, Regius Professor of Engineering, died in April 2016 during the preparation of this
report.
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1 Introduction

In 2009, the International Standards Organization published a standard, ISO 20072 (see [1]), which
describes a protocol for specifying and verifying the properties of a factory producing inhalers.

A paper prepared by the International Pharmaceutical Aerosol Consortium on Regulation and Sci-
ence (IPACRS), the European Pharmaceutical Aerosol Group (EPAG) and other experts (see [2])
criticizes the 2007 draft of ISO 20072 in the following statement: “the values for [the minimum
probability content] p proposed in ISO DIS 20072:2007 are set so high that meeting the statis-
tical requirements will be challenging or even impossible for many ADDD-based products.”. We
investigated whether or not this statement is true.

The intentions of ISO 20072 are noble. The aim of the standard is to require aerosol drug delivery
device (ADDD) manufacturers to comply with stringent testing protocols, in order to ensure that
the ADDDs are of a high quality. However, there are two problems with the standard: a minor
error, which is easily correctable but has had the effect of satisfactory factories being rejected by
the standard, and a major flaw, which renders the entire standard unfit for purpose. The second
issue leads to manufacturers being tempted to manipulate their test data in order for their factories
to be deemed compliant with this standard.

1.1 Overview of the paper

In sections 2, 3, and 4, we explain what a “Device Functionality Profile” is and define some terms
we will use in this report, then using an example Device Functionality Profile, discuss the testing
protocol mandated by ISO 20072.

We then explain the minor error which occurs in table D1, Annex D of ISO 20072. This table
contains the values of k to be used in a particular two-sided test of a continuous variable, under
the assumption that this variable follows a Gaussian distribution. This table contains values which
are often incorrect to the first decimal place, and even before for some values of n. For instance,
one of the correct k values is 48% lower than the incorrect one listed in table D1 of ISO 20072.

We discuss this issue further in section 4.2. However, this error can be simply remedied by replacing
the incorrect table of k values with a correct one, which is why we consider it to be a minor problem.

In section 5 we examine the sample sizes needed, which leads us in sections 5.2, 5.3, and 5.4 to
describe the major problem, which is that the statistical tests in the ISO 20072 protocol are deeply
flawed - so flawed that it is essentially impossible for many factories that are in fact satisfactory
to pass all non-trivial tests1, unless the tests are rigged (for example, by censoring unfavourable
results).

The public is then seen to be in the following highly unsatisfactory situation: all devices that are
stated to have complied with ISO 20072 and have non-trivial DFP requirements are extremely
likely to have done so by a testing process that in fact did not comply with the ISO standard:

1For examples of non-trivial requirements of the DFP, see section 2.1
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some of the test results will have been censored or falsified. This not only implies that patients
are at risk, but also that ISO 20072 is not fit for purpose. Note that we do not imply that the
censoring or falsification of the results is done with malicious intent; rather, we note in section 5.3.1
that the workers in question may be bending over backwards to try to reconcile the commercial
pressure to pass the test with the difficulty of doing so, but have insufficient knowledge of statistics
to understand that what they are doing constitutes falsification of the results.

The root of the problem with the standard is that it is based on classical “frequentist” statistical
tests, which calculate a parameter called the “(frequentist) confidence” of the test, and which do
not pay attention to the properties that we actually care about, such as the probability that a
“good” factory might fail the test, or the probability that a factory that has passed the test is
actually “bad”.

In section 6 we therefore propose an alternative approach, aiming for the same high standard
of quality control, but using Bayesian statistics. In section 7 we see that this results in both
enormously reduced workload and in a much higher probability of a compliant factory passing the
test. In section 8 we look briefly at what may be motivating regulators, based on the comments of
others, before concluding in section 9.
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2 The Device Functionality Profile (DFP)

2.1 Example of a DFP

In order to understand how the major flaw in ISO 20072 arises, we must first consider how the
this standard refers to a device functionality profile (DFP), developed by the manufacturer in
conjunction with the requirements of ISO 14971. This DFP is a guide to the intended properties
and acceptable limits of the parameters of the ADDD. An example DFP is shown in table 1: this
DFP is for an inhaler which, in addition to its drug delivery functions, also comes to and reports
judgments about whether the device has been correctly used, by monitoring the vibrations occurring
in the device during use.

We make various comments on the specific DFP items in table 2.

2.2 Rationale behind the various basic items in the DFP

From a manufacturer’s perspective, compliance with the items in the DFP shows that the device
is working and safe to use. Therefore, a manufacturer is faced with a trade-off: to include many
items in the DFP, thus enhancing the safety of the patients and at the same time increasing the
amount of testing needed, or to sacrifice safety of the patients by reducing the number of items in
the DFP, which in turn reduces the amount of testing needed.

We note several properties of the example DFP:

1. There are 16 basic items in the DFP to be tested within ISO 20072, since item 9 adds three
separate basic items to the DFP.

2. There are four types of variable in the DFP:

(a) Directly observable, real-valued, continuous variables, constrained to be between finite
lower and upper bounds, l and u, respectively (e.g. item 1).

(b) Directly observable, real-valued, continuous variables, constrained either to be below a
finite upper bound u or to be above a finite lower bound l (e.g. item 3).

(c) A probability, which cannot be directly observed (e.g. item 2).

(d) A Poisson rate, which cannot be directly observed (e.g. item 8).

3. Each variable specified within the DFP has some distribution across the population of devices.

There are several additional specifications related to the example DFP:

1. Temperature range for correct operation must be at least −15◦C to +45◦C, with relative
humidity between 5% and 95%.

2. Storage temperature range must be at least −30◦C to +60◦C.

3. Operating and storage atmospheric pressure range must be at least 0.5 to 1.2 atmospheres.
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Item Description Type of variable

1 The force needed to remove the cap must be
not less than 8N, and not more than 12N.

Real, two-sided

2 The probability, given a particular device,
which has not warned of low battery, must
be at least 0.99 that power comes on within
5 seconds of removal of the cap.

Probability parameter

3 The force needed to replace the cap must
be not more than 15N.

Real, one-sided

4 The probability, given a particular device,
must be at least 0.99 that power turns off
within 5 seconds of replacing the cap.

Probability parameter

5 The pressure drop to achieve 60 l/min flow
must be between 0.9 and 1.2 kPa.

Real, two-sided

6 The probability, given a particular device,
must be at least 0.93 that, after a correct
inhalation, it gives the response appropriate
to correct use.

Probability parameter

7 The probability, given a particular device,
must be at least 0.93 that, after an incorrect
inhalation, it gives the response appropriate
to incorrect use.

Probability parameter

8 The Poisson rate of false detection of in-
halations, given a particular device, must
be less than 1 per hour of power-on time.

Poisson rate

9 The device must still operate correctly (i.e.
satisfy items 6, 7, and 8 in the DFP) when
1m in front of the standard acoustic back-
ground noise generator

(as 6, 7, 8)

10 The battery must last for at least 2 hours
of cap-off time before needing replacement.

Real, one-sided

11 The device must give a low-battery warn-
ing between 10 and 20 minutes of power-on
time before the battery will expire if not
turned off.

Real, two-sided

12 Peak current drain from the battery must
not exceed 500µA.

Real, one-sided

13 The device must have mass not exceeding
12 g, including the battery.

Real, one-sided

14 The mean particle radius in the delivered
airflow during a correct inhalation must not
exceed that in the dose of drug powder put
into the device by a factor of more than 1.2

Real, one-sided

Table 1: Example DFP. The third column indicates which type of variable the respective item in
the DFP is referring to. Note that drug dose delivered is outside the scope of ISO 20072, although
of course it does in practice also need to be tested.
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DFP item Comments

1 Lower bound required so that the cap does
not fall off accidentally, and upper bound
required so that a physically weaker user
will never be unable to remove the cap

2 Required since, otherwise, a user may not
be able to use the ADDD.

3 See comment on item 1.
14 This might happen if the device uninten-

tionally charged the particles with static
electricity.

Table 2: Comments on some of the items in the example DFP.

3 Technicalities

We now turn to various definitions and assumptions that are necessary to make sense of the rest
of this report.

3.1 Definitions

For the avoidance of ambiguity we here define some specific terms for use in the rest of the report.

By a factory we mean whatever combination of product design, manufacturing method, and
manufacturing facility is used to produce a population of inhalers whose properties are to be tested.

A measurement is a single experiment on a single device, done exactly once. Thus, for example,
dropping a device once and seeing whether it breaks is a measurement. Applying a single inhalation
to a single device and determining whether it gives the correct or incorrect result is a measurement.

A basic item is one numbered item in the DFP defined therein without reference to ISO 20072.
Thus for example “The pressure drop to achieve 60 l/min flow must be between 0.9 and 1.2 kPa”
is a basic item.

An item is one of the sets of measurements that results from combining a basic item defined in the
DFP with one of the environmental and/or insulting test conditions defined in ISO 20072. Thus,
for example, “The pressure drop to achieve 60 l/min flow must be between 0.9 and 1.2 kPa when
testing at standard atmosphere after exposure to cold storage atmosphere” is an item.

A test is a procedure that involves testing all the different items invoked by the combination of
the DFP and ISO 20072, the outcome of which is that the factory either passes or fails the test.

In this case a factory passes a Bayesian test, using a suitable prior, if we confirm for each item
that given the data the probability that the item’s constraints hold for the relevant fraction (95%
or 97.5% depending on environmental conditions) of produced devices is at least 0.95 . We refer
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to this posterior probability as the confidence that an item is complied with (see the definition of
fconfidence below for some justification for this unusual nomenclature).

A factory passes a frequentist test if, for each item, we achieve 95% fconfidence that the item’s
constraints hold for the relevant fraction of produced devices. Note that, to avoid confusion be-
tween the Bayesian and frequentist concepts of confidence, we refer to the frequentist concept as
fconfidence. As justification for this unusual terminology, we note that the Bayesian concept
of “confidence” corresponds much more closely to the intuitive concept of “confidence” than does
fconfidence; we will expand on this point in section 5.1 and appendix A below. We also mention
in passing that the fconfidence level of frequentist hypothesis tests is often misinterpreted. The
fconfidence level is widely thought of as “how likely it is that the tested devices comply with the
requirements”, or “the degree of belief that one should have that the tested devices are compliant”,
but this is a incorrect interpretation. If one wants to know that probability then one needs to
calculate the Bayesian posterior probability, which is what we define here as “confidence” (without
the f).

We say that a device is good for an item if the true parameter in question is within the specification
limits for the item. For example, if the force required to remove the cap when testing at standard
atmosphere after after exposure to cold storage atmosphere is between 8 and 12 N then the device
is good for that item.

We say that a factory is good for an item if the actual distribution of the parameter over devices
satisfies the probability content requirement. For example, if the fraction of the devices produced
by the factory whose cap removal force under normal use conditions lies between 8 and 12 N is
97.5% or more, then the factory is good for that item.

We say that a factory is good for for the test (or for all items), or that it is compliant, if for each
item it is good for that item.

The meaning of bad in each case is that the factory or device is not good.

We define a superlative factory to be a factory such that:

1. For each item in the DFP constraining a probability to be at least some value p, all devices
produced by the factory have that probability exactly equal to 1− 1−p

10 .

2. For each item in the DFP constraining a Poisson rate to be at most λ, all devices produced
by the factory have that Poisson rate exactly equal to λ

10 .

3. For each item in the DFP constraining 2-sidedly a continuously distributed parameter that
is intrinsically positive, that parameter of devices produced by the factory is log-Gaussianly
distributed with median equal to the geometric mean of the two constraints and standard
deviation such that the fraction of the devices with that parameter outside the range of
constraint is one tenth of the maximum fraction permitted.

4. For each item in the DFP constraining 1-sidedly a continuously distributed parameter that
is intrinsically positive, that parameter of devices produced by the factory is log-Gaussianly
distributed with median strictly inside the constraint and standard deviation such that the
fraction of the devices with that parameter outside the range of constraint is one tenth of the
maximum fraction permitted.
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5. For each item in the DFP constraining a parameter not so far discussed, i.e. a continuous
parameter that is not intrinsically positive, the distribution of that parameter of devices
produced by the factory is as required above for the exponential of that parameter (which is
intrinsically positive).

By a perfect factory we mean one such that the probability of passing the test is in practice
indistinguishable from 1.

We will use the symbol ∝ in the following precise sense: We will write P (A,B | C,D) ∝
expression1 ∝ epression2 to mean that at both ∝ symbols there is a ‘constant’ of proportional-
ity that does not vary with any of the variables to the left of the | sign (here A and B), but may
vary with any of the symbols to the right of the | sign (here C and D).

We will describe an item as insulted if it is performed under such (adverse) environmental con-
ditions that ISO 20072 prescribes 95% minimum probability content, and as uninsulted if 97.5%
minimum probability content is prescribed.

3.2 Assumptions

In order to simplify the analysis we make the following assumptions, which are of varying levels of
realism, but in practice necessary.

1. The devices do not wear out, indeed each device has the same probability distribution of
behaviours when it is new as at any other stage of its life other than “end of life” (though
these distributions may be different from device to device). Note that this does not exempt
us from end-of-life testing according to ISO 20072, and at that point we do not assume that
the distribution is as it was at the start.

2. In each case the parameter specified is constant for the device, but may vary from device
to device; in some cases the parameter specified is a probability, in other cases it is a force,
pressure, duration, etc.

3. The distributions of each of the specified parameters are mutually independent.

4. Where a continuous parameter that ranges over (0,∞) is considered, we will consider instead
the logarithm of that parameter when assumptions of Gaussianity etc. are considered.

12



4 The ISO 20072 testing protocol

Once a manufacturer has established the DFP, ISO 20072 lists multiple differing environmental
conditions under which each basic item must be tested. There are 14 such sets of conditions2

listed, in each of which a hypothesis test must be passed for each of the 16 basic items of the DFP,
giving 224 = 16× 14 items to be tested in total.

In this section, we discuss the attempts made by ISO 20072 to prescribe a valid testing protocol.

4.1 The approach prescribed

Under ISO 20072, the compliance of each of the four types of parameter is tested with a frequentist
hypothesis testing protocol. This section describes the testing protocols laid out in ISO 20072 for
each type of parameter. ISO 20072 requires that all frequentist hypothesis tests are performed at
a fconfidence level of 95%, i.e. that the probability of any specific non-compliant factory passing
any given item is at most 5%.

All of the hypothesis testing protocols in ISO 20072 involve a “probability content”, p, which is
a proportion of the underlying population, either 95% or 97.5%. Each hypothesis test aims to
determine whether a proportion p of the underlying distribution of the given parameter is within
the given acceptable bounds.

4.1.1 Two-sided, real variable

For the case that a real continuous variable follows an underlying normal distribution, and the
DFP specifies both upper and lower bounds l < u for that variable, ISO 20072 gives a specific test,
performed as follows.

Exactly one measurement is taken from each of N devices, and the sample mean, x̄ =

N∑
n=1

xn

N , and

sample standard deviation, s =

√
N∑

n=1
(xn−x̄)2

N−1 , are calculated. These two values are then used to

calculate x̄ − ks and x̄ + ks, where the value of k is obtained from table D1, in Annex D of ISO
20072, depending on the value of N and the probability content required. The two aforementioned
values are subsequently compared with l and u, respectively, to determine whether the factory
”passes” the test. The critical region is the event

(x̄− ks > l) ∩ (x̄+ ks < u)

2The ”free fall” condition in ISO 20072 states that the test must be performed with the cap on and the cap off.
We consider the EMC environmental condition to involve one test.
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4.1.2 One-sided, real variable

The testing protocol in this case is very similar to the two-sided real variable. The only two
differences are as follows: either l = −∞ or u = ∞, since there is either only a lower or only an
upper bound on our parameter; additionally, the values of k to be used differ from those to be used
in the two-sided real parameter test.

These values of k are not included in ISO 20072. The reader is instead referred to a corresponding
table in ISO 16269-6:2005.

4.1.3 Probability parameter

For this type of parameter, a testing protocol is not explicitly stipulated in ISO 20072. However,
the standard requires every test to have a fconfidence level of 95%, i.e. states that the probability of
any specific non-compliant factory passing must be ≤ 0.05. We suggest a frequentist test protocol
in section 5.1.3 below.

4.1.4 Poisson rate

Similarly to the probability parameter, a testing protocol for the Poisson rates is not explicitly
mentioned in ISO 20072. However, we suggest a frequentist testing protocol in section 5.1.4 below.

4.2 Erroneous values in ISO 20072 table of 2-sided values of k

ISO 20072 refers to ISO 16269-6:2005 for how to calculate the k values used in its two-sided testing
of real continuous variables.

ISO 20072 invites the user to assume that the value of each continuous variable (e.g. the force
needed, in Newtons, to remove the cap from a device) (or alternatively its logarithm) has a Gaussian
distribution. Given this assumption, the testing protocol consists of obtaining sample values of the
variable from N different devices, and evaluating the sample mean x̄ and standard deviation, s.
This is then followed by performing a frequentist hypothesis test at a fconfidence level of 95%. The
null and alternative hypotheses are

H0 :

∫ u

l
f(x)dx ≤ p

H1 :

∫ u

l
f(x)dx > p,

where f(x) is the population probability density function of the continuous variable, and l and u are

14



the pre-determined lower and upper bounds, respectively, within which we wish a pre-determined
proportion p (e.g. 97.5%) of our underlying population to lie.

The factory passes the hypothesis test, i.e. H0 is rejected, and we say with 95% fconfidence that
the factory is suitable, if

x̄− ks > l

x̄+ ks < u

The values of k used to perform this test are “. . . determined based upon the confidence level (95%),
probability content, p, and the number of measurements, n. . . ” (see [1]). These k values, contained
within Annex D of ISO 20072, are copied from the table which appears in ISO 16269-6.

However, the values within ISO 16269-6 have been misused. ISO 16269-6:2005 states that the values
of k are to be used in order to determine an interval (x̄− ks, x̄+ ks) such that “...the probability
that [the] interval constructed in the prescribed manner will contain at least a proportion p of the
population [is 95%]”.

In the hypothesis test, we wish to use a value of k such that the probability of falsely rejecting H0

is less than 5%. These two definitions of k produce values which differ to the first decimal place for
n < 100, and, even for n = 1500, differ at the second decimal place. The disparity between these
values of k result in compliant factories being rejected, since the correct values of k are lower than
the values provided in ISO 20072.

In ISO 16269-6:2005, it is stated that “The tolerance limits discussed... can be used to compare
the natural capability of a process with one or two given specification limits, either an upper one U
or a lower one L or both...”. This statement is a misleading indicator that the k values contained
within table E.4 of this standard are appropriate for use in a hypothesis test, which is wasteful of
good factories.

The second edition of this standard, ISO 16269-6:2014, does not correct this statement sufficiently.
ISO 16269-6:2014 suggests that “...the appropriateness of the given specification limits U and L
can be compared with the actual properties of the process”, which is again a wasteful protocol for
performing a frequentist hypothesis test.

However, the table of k values pertaining to the case in which we know neither the mean, µ, nor
the standard deviation, σ, of our underlying population is not included in the 2014 edition of ISO
16269-6. It is possible that, if ISO 20072 had been revised upon the publication of ISO 16269-
6:2014, the requirement to calculate the values of k could have resulted in the values of k being
corrected.

The corrected table of k values is provided in Appendix C.
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4.3 A comment about two DFP basic items

Now that we have seen the testing protocol proposed by ISO 20072, we can comment about our
choice of two of the basic items in the example DFP, which we consider in the uninsulted case
where the desired probability content is 0.975 .

Firstly, let us compare DFP 2 with the following statement:

“The device shall switch on within 5 seconds of the cap being removed” (*)

If we suppose 95% of devices have the probability parameter equal to 1, and the remaining 5% of
devices have probability parameter equal to 0.5, then the population of devices does not satisfy
DFP item 2, but does satisfy the ISO 20072 interpretation of (*) because the mean is 0.975 (and no
device is tested more than once). Indeed, any population satisfying our DFP 2 will also satisfy (*),
since 0.975× 0.99 + 0.025× 0 > 0.95. Therefore our choice of basic item 2 in the DFP is stronger
than (*) in the uninsulted case.

Secondly, let us compare DFP 6 with the following statement, again in the uninsulted case:

“The device shall signal a correct inhalation as correct.” (**)

If we consider a population with all devices having the probability parameter equal to 0.94, then
the population satisfies our DFP item 6; however it does not satisfy the ISO 20072 interpretation
of (**) because the mean is 0.94 < 0.975. Therefore our choice of basic item 6 is not stronger than
(**). However, if we consider a population with 90% of devices each with the probability parameter
equal to 1, and another 10% of devices with probability parameter equal to 0.9, the mean will be
0.99 > 0.975, hence it will satisfy the ISO 20072 interpretation of (**) despite not satisfying our
DFP item 6. Therefore, our DFP item 6 is also not weaker than (**). Therefore, our DFP item 6
is neither weaker nor stronger than (**).

So we should ask “Why would we use DFP 2 rather than (*) ?”, and “Why would we use DFP
6 rather than (**) ?”. In the DFP 2 case, the answer is that it is important that a very high
proportion of devices turn on with very high probability, and it is not acceptable to permit 5% of
devices to be only turn on half the time (which would be permitted by (*)). In the DFP 6 case,
(**) requires a mean probability of correct answer that may be unachievable within the available
technological constraints, so needs to be set weaker. However, ISO 20072’s interpretation makes it
impossible to specify a DFP item that merely requires the mean probability to exceed 0.93; and
if one did that, it would then be permissible for up to 14% of devices to give random correct or
incorrect answers with probability 0.5, which would be unacceptable.
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5 Frequentist testing

In this section, we propose a frequentist approach to doing testing that is in accordance with ISO
20072. We start by explaining the rationale that leads to this approach, taking into account the
manufacturer’s perspective.

5.1 Details of an approach to designing a frequentist test compliant with ISO
20072

In the previous sections we have described in outline the extent to which ISO 20072 prescribes how
statistical testing is to be done. Before designing the remaining details of such a procedure, it is
also necessary to examine the perspective of an ADDD manufacturer who will have to comply with
those requirements.

ISO 20072 does not stipulate how many devices should be examined in each test of each required
item; it simply requires that every item should have an fconfidence level of 95%, i.e. the probability
that any specific non-compliant factory passes the hypothesis test must be ≤ 5%.

However, any factory owner who has made a good factory cares about another probability – the
probability that their good factory might fail one of the 224 items. Failure of any one of the items
would lead to a manufacturer being unable to produce any ADDDs for human use, resulting in a
loss of the millions of dollars used to design and build an ADDD-producing facility.

Retaking a test is not an option for a manufacturer, on account of the confidence level required by
ISO 20072. Consider, for example, a specific non-compliant factory which has a probability of 5%
of passing one item given a single run of the relevant testing procedure, but which is allowed to
take the test a second time if it fails the first. The probability that this item either passes the first
time, or fails the first time and subsequently passes a second one, is 9.75%, which implies that the
confidence level of the extended ”double” test is now less than 95% (it is, in fact, equal to 90.25%).

We strongly believe that a manufacturer would prefer that a good factory should have at least 0.95
probability to pass the ISO 20072 protocol. In order to satisfy this, the frequentist approach must
be designed such that a good factory passes each of the 224 items with probability substantially
higher than 0.95: indeed, if the design is such that each item has the same probability of failing,
then the probability of passing a single item needs to be at least 0.9998 (to 4 decimal places), so
that the aforementioned good factory will pass the whole protocol with probability 0.9998224, which
is about 0.95.

While this is not required by ISO 20072, it is essential for a manufacturer of ADDDs. From their
point of view, if their factory is entirely compliant with their DFP in the manner required by ISO
20072, they would wish their probability of passing any required testing protocols to be as close to
1 as possible.

Now, it is possible to design a testing plan giving a probability of 0.95 of passing the entire test in
many different ways — provided that one knows the true parameters of the factory. For simplicity,
in what follows, we will assume that the design is such that each item is assigned the same pass

17



probability of 0.951/224, or approximately 0.9998, but it is likely that significant savings can be
made on the overall number of tests by allocating the pass probabilities non-uniformly; for our
present purposes, however, the workload of doing so optimally would be excessive. Furthermore,
whether one designs for equal pass probability for each item or not, even the idea of doing so
assumes that one knows the true parameters of the factory, which in practice one doesn’t.

We will return to this topic later, but for now we note that for the following sample size calculations
we will assume that the factory is superlative according to the definitions in section 3.1 above;
intuitively then, we will be assuming that the factory is ten times better than it needs to be (in a
carefully defined sense).

5.1.1 Continuous parameter with 2-sided constraints

We have seen in section 4.1.1 how to test each item involving a continuous parameter that is
(log-)Gaussianly distributed with a two-sided constraint.

We will examine only DFP basic item 1, as Gaussian and log-Gaussian distributions can be linearly
transformed to match the other basic items in the DFP that contain a two-sided constraint.

Therefore, our data x will come from a log-Gaussian distribution logN(µ, σ), i.e. log x will be
Gaussian with median µ and standard deviation σ. The lower and upper constraints on log x are
respectively log(8) and log(12). The parameters, according to section 3.1 and knowing that the
median is eµ, are as follows:

1. For probability content p = 0.95, µ = 2.2822 and σ = 0.0722.

2. For probability content p = 0.975, µ = 2.2822 and σ = 0.0671.

Taking into account what we discussed in section 5.1, the minimum number of measurements per
item needed when testing a superlative factory in order to have 0.9998 probability of passing each
item is:

1. For probability content p = 0.95, at least 108 measurements are needed.

2. For probability content p = 0.975, at least 154 measurements are needed.

Therefore, as we have three DFP basic items with two-sided constraints and ISO 20072 mentions
8 environmental conditions for 0.95 content, and a further 6 conditions for 0.975 content, the total
number of measurements needed for passing the 2-sided basic items will be 3×(108×8+154×6) =
5364.

5.1.2 Continuous parameter with one-sided constraint

As we have seen in section 4.1.2, this is very similar to the previous subsection.
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Again, we will examine only DFP basic item 3, as Gaussian and log-Gaussian distributions can be
linearly transformed to match the other basic items in the DFP that contain a one-sided constraint
and a superlative factory.

Therefore, our data x will come from a log-Gaussian distribution logN(µ, σ) and the lower and
upper constraints on log x are −∞ and log(15) respectively. The parameters, according to section
3.1 and choosing an arbitrary value below the upper constraing for the median eµ, are as follows:

1. For probability content p = 0.95, µ = 1.3540 and σ = 0.5256.

2. For probability content p = 0.975, µ = 1.3540 and σ = 0.4823.

Taking into account what we discussed in section 5.1, the minimum number of measurements per
item needed when testing a superlative factory in order to have 0.9998 probability of passing each
item is:

1. For probability content p = 0.95, at least 93 measurements are needed.

2. For probability content p = 0.975, at least 135 measurements are needed.

Therefore, as we have 5 DFP basic items with one-sided constraints and ISO 20072 mentions 8
environmental conditions for 0.95 content, and other 6 conditions for 0.975 content, the total number
of measurements needed for passing the one-sided basic items will be 5× (93× 8+135× 6) = 7770.

5.1.3 Probability parameter

On account of what we discussed in sections 5.1 and 4.1.3, we suggest the following frequentist
testing protocol.

We iterate the following procedure over a suitably wide range of values of N and Nn, picking the
version giving the minimum total number of measurements.

We consider testing N devices, collecting Nn 0/1 measurements from device n; we consider only
the possibility that Nn is the same for all n, although clearly there are other possibilities. We need
to determine a critical region, i.e. a subset of {0, 1, . . . , Nn}N which gives a frequentist fconfidence
level of 95%.

As usual there are an enormous number of possible critical regions; we consider only those of the
form “At most Nmax devices give more than nmax measurements that are 0”, and consider what
values of Nmax and nmax result in this defining a critical region for 95% fconfidence.

The null and alternative hypotheses are as follows, where q is the lower constraint on the proba-
bility parameter, p is the required probability content and F (x0) = P (x ≤ x0) is the cumulative
distribution function of the probability parameter x:
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H0 : F (q) ≥ 1− p

H1 : F (q) < 1− p,

The probability that the data lies in a critical region of the form being considered is maximised
over h ∈ H0 by the “critical distribution” given by

F (x) =


0 if x < q,

1− p if q ≤ x < 1,

1 if x = 1.

and we therefore can determine, for each set of values of N,Nn, Nmax, and nmax, whether or not the
probability that data generated from the critical distribution lies in the critical region is less than
0.05 as required. Having picked the set of values of N,Nn, Nmax, and nmax minimising N ×Nn over
those satisfying this requirement on the critical region, we can then check whether if data is instead
generated from the a superlative factory we get a sufficiently high probability (at least 0.9998) that
that data lies in the critical region. If not, we discard that set of parameters and try the next best.
Eventually we come to the set of parameters minimising the total number of measurements among
those that are permissible.

We then measure each of the N devices Nn times. The hypothesis test for this item is then passed,
i.e. the null hypothesis H0 is rejected and we say, with 95% fconfidence, that the factory is good
for this item, if the data produced lies within the critical region.

When testing a superlative factory (see section 3.1), we have found the following optimal minimal
numbers of measurements and hypotheses needed in order to achieve what we discussed in section
5.

For items that with a lower constraint on the probability parameter of 0.99, we will say that a
device “passes” if we observe at most 8 fails per device and the critical region is “every device
passes”, i.e. Nmax = 0, nmax = 8. The following numbers are per item:

1. For content p = 0.95, it is optimal to test N = 71 devices 1171 times each, giving 83141
measurements.

2. For content p = 0.975, it is optimal to test N = 141 devices 1192 times each, giving 168072
measurements.

Therefore, as we have 2 DFP basic items with target 0.99 and ISO 20072 mentions 8 environmental
conditions for 0.95 content, and another 6 conditions for 0.975 content, the total number of measure-
ments needed for passing the target 0.99 basic items will be 2× (83141×8+168072×6) = 3347120.
With British understatement, we note that this number is rather large, particularly in a context
where manufacturers are hoping to use no more than a couple of hundred devices to test and to
test each only a handful of times. We note also that we have paid no attention to whether a device
would in practice survive being tested over one thousand times.
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For items with a lower constraint on the probability parameter of 0.93, we will say that a device
“passes” if we observe at most 9 fails per device and the critical region is “every device passes”,
i.e. Nmax = 0, nmax = 9. The following numbers are per item:

1. For content p = 0.95, it is optimal to test N = 68 devices 190 times each, giving 12920
measurements.

2. For content p = 0.975, it is optimal to test N = 142 devices 184 times each, giving 26128
measurements.

Therefore, as we have 4 DFP basic items with target 0.93 and ISO 20072 mentions 8 environmental
conditions for 0.95 content, and other 6 conditions for 0.975 content, the total number of measure-
ments needed for passing the target 0.93 basic items will be 4× (12920× 8+26128× 6) = 1040512.
Note that, while lower that the previous one, this number is still rather large.

5.1.4 Poisson rate

As in the previous case, we search for parameters N the number of devices to be tested, Tn the
length of time for which each the response of device n is to be recorded, Nmax and nmax specifying
the critical region of the form “Not more than Nmax devices gave more than nmax events while
being observed”. Again, we consider only the case where all Tn are the same, and we search for
the minimum number of total hours of observation N × Tn compatible with a critical region giving
a fconfidence level of 95% and a sufficiently high pass probability for a superlative factory.

The null and alternative hypotheses are as follows, where λ is the upper constraint on the Poisson
rate, p is the probability content and F (x0) = P (x ≤ x0) is the cumulative distribution function of
the Poisson rate x:

H0 : F (λ−) ≤ p

H1 : F (λ−) > p.

The probability that the data lies in a critical region of the form being considered is maximised
over h ∈ H0 by the “critical distribution” given by

F (x) =

{
p if x < λ,

1 if λ ≤ .

and we therefore can determine, for each set of values of N,Tn, Nmax, and nmax, whether or not the
probability that data generated from the critical distribution lies in the critical region is less than
0.05 as required. Having picked the set of values of N,Tn, Nmax, and nmax minimising N × Tn over
those satisfying this requirement on the critical region, we can then check whether if data is instead

21



generated from the a superlative factory we get a sufficiently high probability (at least 0.9998) that
that data lies in the critical region. If not, we discard that set of parameters and try the next best.
Eventually we come to the set of parameters minimising the total number of measurements among
those that are permissible.

We then observe each of the N devices for a time Tn. The hypothesis test for this item is then
passed, i.e. the null hypothesis H0 is rejected and we say, with 95% fconfidence, that the factory is
compliant in the environmental condition in which the item was tested, if the data produced lies
within the critical region.

When testing a superlative factory (see section 3.1), we have found the following optimal minimal
device-hours of observation time needed in order to achieve the goals of section 5.

1. For content p = 0.95, each device “passes” if we register no more than 9 false inhalations
during a testing time of 11.1 hours. The optimal testing time we found is 11.1 hours per
device, and a total of 76 devices. This gives a total of 843 device-hours of observation.

2. For content p = 0.975. each device “passes” if we register no more than 8 false inhalations
during a testing time of 9.9 hours. The optimal testing time we found is 9.9 hours per device,
and a total of 182 devices. This gives a total of 1801 device-hours of observation.

Therefore, as we have 2 DFP basic items with upper constraint 1/hour and ISO 20072 mentions
8 environmental conditions for 0.95 content, and another 6 conditions for 0.975 content, the total
number of device-hours of observation needed for passing the Poisson basic items will be 2× (843×
8 + 1801× 6) = 35100 device-hours.

5.2 Summary of effort required for frequentist test

We now have all the necessary information to assess how much testing needs to be done, in order to
have a probability at least 95% that a superlative factory passes the whole test, that is passes all
items. Note that a superlative factory is an almost perfect one, and in reality such a factory may
be almost impossible to design. Therefore, in reality, all the numbers are likely to be even higher.

Summing the minimal number of measurements needed for each category of items, we get that at
least 3347120 + 1040512 + 7770 + 5364 = 4400766 measurements are required plus 35100 device-
hours of observation. If we reckon that a robot could perform one measurement per minute, this
gives a total of almost 12.5 years of robot time. This makes it an incredibly difficult task for the
reality we live in. But this is just the tip of the iceberg - in reality, the only frequentist way that we
could know that our factory was superlative is by doing an amount of testing that is enormously
larger still. This cannot be the right way of doing things !

Sadly, if we are determined to stay with frequentist rather than Bayesian methods, this naturally
points the discussion to the topic of cheating and manipulating data, to which frequentist testing
provides exquisitely acute temptation.
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5.3 Cheating

In our opinion, the enormous amount of testing needed in order to honestly pass such a test
naturally leads to the phenomenon of cheating and data manipulation.

The first and most serious consequence of this is, of course, that the safety of patients is in danger.

People with experience in the industry (who understandably wish to remain anonymous) tell us
there there are several ways one can cheat while doing frequentist tests, some of which are pretty
obvious, but nonetheless hard to check and control:

1. There is no assurance that the critical region was picked before rather than after collecting
the data. In some instances, it is done after doing the measurements, which completely
invalidates the results, although this is becoming more difficult now that the test plan is
required to be recorded in advance.

2. Censoring of data: when the observed data does not fall into the critical region, hence the
frequentist approach cannot infer anything, the temptation is to discard some or all of the
unfavourable measurements and collect new measurements to take their place. In an extreme
case, of course, one can discard every bad measurement and get 100% “correct” results. There
are a battery of excuses available for discarding such data:

(a) “I haven’t actually started yet”

(b) “I didn’t do that one properly”

(c) “I wasn’t wearing goggles, so I need to do it again”

(d) “That one was faulty”

(e) “Operator error”

Our suggestion is that if an independent observer, given other data on all the measurements,
but deprived of their results, is able to determine precisely the set of measurements to be
discarded, and is in agreement with the operators, then that is reasonable evidence that those
measurements may be discarded. In reality, often, the decision to discard is considered only
for those measurements which have given an undesirable result.

3. The “Concession Note”: here it is admitted that some of the items did in fact fail, but only
in small print and buried in a large report, while the executive summary states that “All
the tests passed as described in detail in the body of this document”. Such documents may
even succeed in obtaining regulatory approval; we can never tell whether this is because the
regulator hasn’t noticed the concession note, or because they realise that it is not realistic to
hope that the ISO 20072 test will truly be passed.

Because of the unrealistic number of measurements needed to pass a frequentist test of a realistic
factory honestly, taking only a few measurements results in obvious cheating that is in principle
easy to detect as follows:

1. Calculate a level of performance that although in H1 gives a very low probability of passing
the test.
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2. Collect sufficient new data to show that the performance is indeed that bad.

In other words, if a factory passed such a frequentist test and the manufacturer claims that the
reason is a good design, then there are a number of possibilities:

1. Their factory is not just superlative, but actually close to perfect. (We may believe that
such a perfect factory is yet to be designed, and if so we note that proving that a factory is
not perfect is far easier than proving it is perfect.)

2. Their DFP contains very few basic items. Noting that even one basic item gives rise to 14
items, getting a small number of items while still providing adequate control of the parameters
of the ADDD is difficult.

3. Their DFP constraints are very slack. This is likely to mean that their ADDDs may not be
safe.

4. They have cheated in one of the many possible ways.

However, there is also the danger of cheating unintentionally. In the following subsection we will
discuss an anecdote brought to our attention by someone in the industry, where the intention of
being honest resulted in a false claim to have passed a test.

5.3.1 An example of an ignorant attempt to be honest

Say that we want 95% fconfidence that 97.5% of the devices do not break when dropped. To do
this, drop 119 devices. If none break, pass the item. If any break, fail the item.

Then the hypothesis space is H = [0, 1], the null hypothesis is H0 = [0, 0.975] and H1 = (0.0975, 1].
Then the data space of how many devices broke is X = {0, 1, · · · 119} and the critical region is
C = {0}.

Consider h0 ∈ H0.

Then P (x ∈ C | h0) = h1190 which achieves its upper bound of 0.975119, which is about 0.05, hence
the fconfindence is about 95% – if the data falls in C.

However, without planning to do this in advance, what was actually done was that when a device
did break (and some did), it was replaced by 3 others and the data on the broken device discarded.
While the intention was to be honest (the operator knew that just discarding the broken device and
replacing its data with one new device would be dishonest), this procedure drastically reduces the
fconfidence as shown in the following calculation.

Denote the statement “on 1 drop either 0 break or 1 breaks then 3 more do not” by (E). Then
P (E | h0) = h0 + (1 − h0)h

3
0 which achieves its upper bound of 0.975 + 0.025 × 0.9753, which is

about 0.9982. This happens 119 times with probability 0.9982119, which is about 0.8043. Therefore
the fconfidence is now at most 19.6%, when it was supposed to be 95%.
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Since this “replace by three” procedure was not planned in advance, the test is invalid anyhow. To
see that the situation is actually even worse than it appears from the above calculation, one must
ask oneself “If one of the three replacements had also broken, would it have been replaced by a
further set of three, and so on iteratively as needed ?”. If the answer to this is Yes, then a further
calculation shows that although the item will now pass with probability 1 (so long as h0 > 0), the
fconfidence then achieved would be zero. Thus we see that:

1. The fconfidence resulting depends on “what would have been done if...”, which is why any
test whose procedure and critical region have not been fixed in advance cannot be regarded
as valid.

2. Those who are intending to be honest, but whose mathematics is not up to the job, are
likely to falsify the results due to the extreme temptation posed by the conflict between the
commercial pressure for the test to pass and the impossibility of getting it to pass honestly.

5.4 The frequentist results are in fact irrelevant

Apart from the huge numbers of devices required and the temptation to cheat, the frequentist
approach has some other major flaws that makes its results in our view irrelevant.

5.4.1 Fconfidence misbehaves when applied to combinations of items

To see this, consider a simplified DFP consisting of just one basic item of the form “When dropped
the device must not break”, to be tested under only two environmental conditions (impossible under
ISO 20072, of course). To make the diagrams drawable, suppose also that the probability content
required is only 0.9, and that we require only 65% fconfidence of that. We then make the following
observations.

1. If a factory passes the test, we have fconfidence 65% that the factory is good on each item
taken one at a time. Any reasonable intuitive understanding of “confidence” would require
that our confidence that the factory is simultaneously good on both items be not 65% but
0.652 = 0.4225 or 42.25%. This is illustrated in Figure 1.

2. However, if we consider the combined simultaneous frequentist test of both items, with the
alternate hypothesis being “the factory is simultaneously good on both items” and the null
hypothesis therefore being “the factory is not good on at least one item”, then the null
hypothesis is the shaded area, i.e. everything apart from the top right small square of Figure
2. But now P (x ∈ C | h0) is maximized over h0 ∈ H0 not by taking h0 = (0.9, 0.9), but by
taking h0 to be either of the points (0.9, 1) or (1, 0.9) (indicated by the red stars), which
makes that probability 0.910 × 110 = 0.35 approximately, so again we have 65% fconfidence,
not 42.25% fconfidence as we would expect from 1 above. Thus to think of fconfidence as
similar to the intuitive concept of “confidence” is misleading.

3. Similarly, doing a test according to ISO 20072 with 224 items and the null hypothesis “the
factory is bad on at least one item”, given that the factory passes all items, the fconfidence
that the factory is simultaneously good for all items is still 95%, where any reasonable person
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Figure 1: How the intuitive idea of “confidence” behaves when two independent items are combined.
If we are 65% confident that a point chosen yesterday from the unit square uniform randomly is to
the left of the red line, and 65% confident that it is below the blue line, then the confidence that
it is both to the left of the red line and below the blue line should be not 65% but 42.25%.

p1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Illustration of the hypothesis space for the simplified 2-item test discussed in subsection
5.4. The null hypothesis H0 is the shaded area, i.e. everything except for the small square at the
top right. The two values of h0 maximizing P (x ∈ C|h0) are indicated by the red stars.

would expect it to be 0.95224, which is approximately zero. Thus frequentist hypothesis tests
seem unable to distinguish being, for each of N independent items, fconfident that the factory
is good for that item, and being fconfident that the factory is simultaneously good for all N
items.

4. Given a factory design that intends to make the factory conform to the limits in the DFP as
interpreted by the probability content specifications in ISO 20072, the frequentist approach
is overwhelmingly likely to reject such a factory. It will do so not because the factory is bad,
but because of “bad luck”, i.e. the data not falling in the critical region. Indeed, rather than
calling this “bad luck”, we would consider it to be “bad statistics”.
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5.4.2 Frequentist testing considers the wrong denominator

When we use a phrase such as “We are 90% confident that the factory satisfies property Z” we
are implicitly considering some population L of factories and saying that 90% of that population
satisfies Z. We need to consider what population is relevant for us to be thinking of.

Once we have collected our data, we would argue that the population L of interest is the subpop-
ulation of all possible factories that would have yielded that data - as that is the subpopulation to
which we have managed to determine our factory belongs.

A frequentist test, however, instead considers the subpopulation of factories that has one of the
most difficult to detect non-compliances and is perfect on all other items. Even if a manufacturer
wanted to produce such a factory, it would be impossibly difficult. No reasonable person would
believe it remotely likely that the factory in question was such a factory. However, any reasonable
person would believe that the factory we are dealing with is one that has produced the data we
have observed - indeed this is a tautology.

This, above all other reasons, is why we believe that a frequentist test is inappropriate for this
purpose. However, for yet another way in which fconfidence does not correspond to the intuitive
understanding of confidence, see theorem A.2 in the appendix.
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6 Bayesian testing

When designing a better testing protocol, the issues to be dealt with are:

1. The current protocol depends on an assumption of Gaussianity, which is very likely to be in-
appropriate. The protocol’s statistical assertions are incorrect for non-Gaussian distributions.
This assumption needs to be replaced.

2. The current protocol has a high chance of rejecting factories that are actually compliant.
A satisfactory protocol must have at most a small probability of rejecting factories that are
compliant. Of course, it must also be the case that, after testing, for each item, the probability
that a passed factory is good for that item is high. One might also hope that the probability
that a passed factory is good for all items is high, but this is not realistic; achieving e.g.
0.95 probability that a factory is good for all items would require achieving, for each item, a
0.9998 probability that the factory was good for that item, which would take a truly immense
amount of testing.

3. The current protocol employs sample sizes that are fixed in advance, as we have seen in
section 5, and for the protocol to have a good chance of accepting a superlative factory (let
alone an arbitrary compliant factory), those sample sizes have to be very large. To reduce
the expected cost of the testing process, it would be desirable to use sample sizes that are
not fixed in advance, that to be able to stop the test when the evidence for one hypothesis
or another is sufficiently strong.

4. The current protocol is designed around knowing that the factory is superlative (and any
protocol on the same lines is designed around some assumption on the quality of the factory
that is much more restrictive than that the factory is good for all items). It is desirable that
the protocol is completely automatically adaptive, and that the design does not depend on
any stronger assumption than that any factory that is good for all items should have a high
probability of passing.

Now, we note that there exist methods of frequentist testing that design critical regions spanning
a range of different sample sizes, and that if the precise properties of the factory under test are
known, then it is possible to somewhat reduce the required sample size, at the expense of reducing
still further the probability that a factory will pass the test that has different but still compliant
true properties. However, we have chosen not to explore this route, as the fundamental issue is
that true properties of the factory are not known before it is tested.

6.1 Sequential Bayesian testing

We propose a Bayesian iterative method, since Bayesian inference makes full use of all the data,
given the assumptions; sequential hypothesis testing is particularly straightforward when a Bayesian
approach is taken. We will first describe the general method, then explain in section 6.1.2 why it
is valid — as this situation is so unlike that in a frequentist analysis, where repeated analysis and
decision to stop when that analysis is favourable in general biases the results.
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For both description and validity we will take a simpler example, that of determining whether the
probability p that a biased coin lands on heads is at least p0. The same principles apply to the ISO
20072 case.

6.1.1 Description of the method

If a fixed number N tosses are made, the number r of heads is expected, given p, to be binomially
distributed with mean Np. The likelihood function is:

P (r | N, p) =

(
N

r

)
pr(1− p)N−r (1)

In a sequential approach, the number of tosses N is not fixed, but, whatever the stopping rule, the
likelihood function’s dependence on p still has the same form as the binomial distribution (1) given
N .

We will determine in advance a prior probability distribution on p. For simplicity, we will assume
that this distribution has a density function P (p).

Let s be the actual sequence of head/tail outcomes s1, s2, . . . sN , with sn = 1 denoting heads and
sn = 0 denoting tails. Let S be the number of tosses we make before we decide to stop collecting
data, and let SN denote the event that S takes the value N .

Whatever the stopping rule, the likelihood function given N is:

P (s | p,N) =
(
ps1(1− p)1−s1

) (
ps2(1− p)1−s2

)
. . .
(
psS (1− p)1−sS

)
= pr(1− p)(N−r)

Suppose we decide to analyse the data after N tosses, where N is chosen independently of the data
and of the unknown p, but that we have not necessarily decided to stop collecting data at that
point. For example, we might decide to analyse the data after every new toss. Then the posterior
probability density of the probability p is:

P (p | s, N) =
P (s | p,N)P (p | N)

P (s | N)
=

P (s | p,N)P (p)

P (s | N)

where P (s | N) is the normalising constant

P (s | N) =

∫ 1

0
P (s | p,N)P (p) dp.
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However, if our stopping rule has also decided to stop at this point, we instead need

P (p | s, SN , N) =
P (s, SN | p,N)P (p)

P (s, SN | N)
,

where P (s, SN |N) is the normalising constant

P (s, SN | N) =

∫ 1

0
P (s, SN | p,N)P (p) dp.

Note, however, that we have seen an equation for P (s | p,N) but that we need to use P (s, SN | p,N).
If S = N is fixed in advance, these two quantities are the same, but otherwise we will need to
consider how these two quantities are related.

Let us next define the proposed sequential protocol, that is, the rule for deciding whether to stop
or continuing testing.

At arbitrary intervals during data collection (for example after each new toss or measurement), we
compute two posterior probabilities, based only on the sequence of tosses we have seen so far:

aN =

∫ 1

p0

P (p | s) dp

which is the probability, given the data gathered thus far, that the probability p exceeds the required
probability content p0; and

bN =

∫ p0

0
P (p | s) dp

which is the probability that p is smaller than p0.

We stop testing and declare the item to have passed with (Bayesian) confidence aN if and when
aN > α, and it stops testing and declares the item to have failed with confidence bN , if bN > β,
where α and β are protocol parameters. Thus SN occurs if and only if N is the smallest integer
such that aN > α or bN > β.

If neither aN > α nor bN > β then the protocol continues testing.

The protocol parameter α controls the required confidence level to pass, and in this application
will always be 0.95 as prescribed by ISO 20072. If an item passes, then the probability that the
factory is bad for that item is 1− a, which is less than 1− α.
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On the other hand, β specifies how sure the manufacturer has to be that the factory is bad before
he gives up on it. It is usually catastrophic financially to give up on a factory and reject it, and
the manufacturer is likely to set β very close to 1. In the following we will assume that it is set at
exactly 1; in other words, that the manufacturer will continue testing until such time as the factory
passes, or otherwise for ever.

6.1.2 Validity of the Bayesian sequential method

We now consider why the Bayesian sequential method is valid. This essentially involves a con-
sideration of the relationship between P (s | p,N) and P (s, SN | p,N), and hence that between
P (p | s, SN , N) and P (p | s, N).

But these are actually a very simple relationships. Consider

P (s, SN | p,N) = P (s | p,N)P (SN |s, p,N)

by the chain rule of probability. Now, P (SN |s, p,N) is either 0 or 1 depending on whether (aN > α)
or bN > β) or not — and the formula for aN , bN do not involve p (except as a dummy variable of
integration). They do, of course, involve s. Thus P (SN |s, p,N) = P (SN |s, N), and we have

P (s, SN | p,N) = P (s | p,N)P (SN |s, N),

and hence

P (p | s, SN , N) =
P (s, SN | p,N)P (p)∫
P (s, SN | p,N)P (p) dp

=
P (SN | s, N)P (s | p,N)P (p)∫
P (SN | s, N)P (s | p,N)P (p) dp

=
P (s | p,N)P (p)∫
P (s | p,N)P (p) dp

= P (p | s, N),

so that the decision to stop, made in this way, does not affect the inference we draw about whether
or not p > p0.

Thus as we have seen, the key point is that the stopping rule is conditionally independent of the
unknown parameters given the data.

In exactly the same way, this sequential testing and analysis protocol does not influence in any
way the inference about whether an item is good or not — in total contrast to the effects of either
repeated analysis or repeated data collection under the frequentist paradigm.

It is, however, not impossible to make a stopping rule which is not conditionally independent of
the unknown parameters given the data, and with such a stopping rule a Bayesian analysis would
be invalid without modification. Two examples of such a stopping rule are:

1. Suppose we take a peek at each new data item before including it in our data, and decide to
stop if the next data item doesn’t look good, but without including it in the data considered.
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Correct calculation of the effect of such a stopping rule would unsurprisingly show that the
inference resulting would be the same as if the data item had been included. Thus data
censoring (which this would be a form of) is illegal under the Bayesian paradigm just as
much as under the frequentist paradigm.

2. Suppose we hear that our rival up the road has stopped their data collection on exactly the
same subject, and decide to stop ours as a result and rush to publication. Such an event is
clearly dependent on our rival’s data, and hence on the unknown parameters, but not via
our own data, and stopping on this basis would therefore invalidate our analysis. (In this
situation it should be obvious that the right thing to do is likely to be to cooperate with our
rival and merge data sets.)

6.1.3 Further useful properties of the sequential Bayesian approach

In addition to giving us the ability to repeatedly analyse the data and automatically assess whether
we have yet achieved the desired confidence level, such Bayesian testing also yields an additional
advantage: as shown in appendix B, the probability of passing a good factory for a finite number
of items now approaches 1 as the number of measurements approaches infinity (at least, so long as
β = 1). Of course, that is no guarantee that the necessary number of measurements will be feasible
- but it turns out that it is vastly smaller than the corresponding number of measurements needed
under the frequentist paradigm.

Thus the sequential Bayesian approach solves issues 2, 3, and 4 of the list at the start of section 6.
As we will see shortly, it is also able to address issue 1.

6.2 Mixture models

Before actually reporting the number of measurements needed using this method, we need to
address some issues connected with issue 1 of the list at the start of section 6.

As motivation, we note that most ADDDs are made of plastic, and that in a factory it is typical
to use not just one mould for any particular plastic part, but several, in order to increase the rate
of production. In consequence, the population of ADDDs produced is often a mixture of several
closely related but non-identical populations. This situation can be modelled using mixtures of
distributions, as follows.

We will denote the number of data points by N , the data points themselves by xn for n = 1, 2 . . . N ,
and the (unknown) number of mixture components by K (we will also call them “clusters”). Each
such component has its own set of parameters θk; depending on which item is being considered, θk
may be a vector of several scalar parameters.

We denote by q the weights of the components, where qk is the weight of component k. Hence

qk ≥ 0 for k = 1, 2 . . .K and
K∑
k=1

qk = 1.
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Figure 3: Probability mass function for K

Therefore P (xn) =
K∑
k=1

qkP (xn | θk).

We also denote by kn the mixture component from which xn is taken, for n = 1, 2 . . . N , and by k
the vector of these indices.

Thus P (xn | kn) = P (xn | θkn).

We will denote by N = (n1, . . . , nK) the number of data points coming from each cluster, i.e.
Nk = |{n : kn = k}|.

6.3 Priors on K and q

We choose as prior for the number of clustersK the geometric distribution, i.e. P (K) = (1−λ)λK−1

with λ = 0.5. A plot of the probability mass function can be found in figure 3.

Because the distribution P (N | N,q) is the Multinomial, we will use its conjugate prior, that is
the Dirichlet Distribution, for q, with support on the K-simplex.

Therefore, P (q | α,K) =
Γ(

K∑
k=1

αk)

√
K

K∏
k=1

Γ(αk)

K∏
k=1

qαk−1
k . For simplicity, we choose to make αk = 1

K for all

k = 1, 2 . . .K.

6.4 Markov Chain and Gibbs Sampling

Using the data and the priors, we will perform Markov Chain Monte Carlo to assess whether the
population of devices tested is compliant with the restriction of a particular item. In this section,
we will discuss the Gibbs sampling rules of the mixture model variables and how to sample the
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next element of the Markov Chain.

For general information on Markov Chain Monte Carlo and Gibbs Sampling, we recommend the
review by Neal in [3] (the Gibbs Sampling method is discussed in section 4.4).

We do Gibbs sampling as follows. Starting from:

P (x,k,q,K,θ) = P (K)P (q | K,α)P (k | q,K,N)P (x | θ,k)P (θ)

1. First sample K. Before this, we need to rearrange the empty clusters to be at the end
of the list of clusters. Then the probability mass function of K will be P (K | x,θ,k) ∝
P (K)Γ(

K∑
k=1

αk)

√
K

K∏
k=1

αk

√
K

K∏
k=1

(αk+Nk)

Γ(
K∑

k=1

(αk+Nk))

if K is greater than or equal to the old number of nonempty

clusters, and P (K) = 0 otherwise.

Then, we have three possible situations:

(a) The new sampled K is the same as the old one. In this case nothing special needs to be
done.

(b) The new sampled K is less than the old K. In this case, we randomly select from the
empty clusters which ones to discard.

(c) The new sampled K is greater than the old K. In this case, we form extra clusters by
taking their corresponding θ parameters from the priors on θ, which depend on the item.

2. Sample q from P (q | x,k,K,θ) ∝ P (q | K,α)P (k | q,K,N). This is again a Dirichlet
distribution with new parameters ak = αk +Nk for k = 1, 2 . . .K.

3. Sample k from P (k | x,q,K,θ) ∝ P (k | q,K,N)P (x | k,θ) =
N∏

n=1
qknP (xn | θkn). Evaluate

this for each possible value of kn, then draw from the discrete distribution, for n = 1, 2 . . . N .

4. Sample θ from P (θ | x,k,q,K) ∝ P (θ)P (x | k,θ) =
K∏
k=1

P (θk)
N∏

n=1
P (xn | θkn).

5. Then to ensure that detailed balance holds for the combination of moves, we make the se-
quence palindromic, by repeating all but the last step in reverse order.

6.5 Sampling and code

In the previous subsection, we have seen that our code samples from several types of distributions:

1. From a discrete (possibly unnormalised) distribution: our code normalises the probability
mass function then uses an uniform random variable u in the classical way, i.e. if u < p1, the
sample is 1, if p1 + . . .+ pk−1 ≤ u < p1 + . . .+ pk, the sample is k etc.
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Figure 4: Behaviour of code when data is sampled from a true distribution with 5 mixture compo-
nents (the dotted lines). Note that the magenta and cyan components are almost negligible, and
that there is insufficient data to determine for definite whether some of the data points belong to
the magenta, cyan, blue, or red clusters.

2. From a Dirichlet distribution, say with parameters α1, α2, . . . , αK we want to sample q. Then
sample rk from the Gamma distribution Gamma(αk, 1) using the standard Matlab function
gamrnd() and set qk = rk

K∑
j=1

rj

for k = 1, 2 . . .K.

3. From a continuous distribution on (0,+∞): here our code transforms the variables from the
interval (0,+∞) to (0, 1) using the map x → x

x+1 , then performs “Slice Sampling” according
to Neal in [4], before transforming the sample back using x → x

1−x . Similarly for other ranges
of support using different transformations.

When monitoring the performance of the MCMC algorithm on synthetic data, there is an iden-
tification problem on the clusters; there is no hope of the algorithm determining which cluster it
has found corresponds to which cluster number in the synthesis (and of course it may currently be
considering more or fewer clusters than the true number). In order to ensure that the true and dis-
covered clusters were colored with (as far as possible) the correct colors, the Hungarian algorithm
[5] was used to associate true cluster numbers with clusters in a fashion maximizing the number
of correct assignments of data points to true cluster numbers. A description of the Hungarian (or
Munkres) Algorithm can be found in Harold Kuhn’s article in [6].

A plot of the sample trajectory of q from the Markov Chain is shown in figure 4. Convergence was
established by constructing synthetic data with a variety of true parameter values and ensuring that
the duration of sampling run was sufficient that all these had converged to distributions covering
the correct values.

6.6 Sample sizes needed for each type of DFP item

In this section, we will detail the method of determining the number of measurements likely to be
needed using the Bayesian approach. Note that we report the median of 20 example runs rather
than the mean, as when the distribution of something is unknown and we have only a small number
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of samples to estimate it from it is much easier to estimate the median than the mean. Clearly
when summing these various numbers we must then caution the reader that the sum of medians is
not usually equal to the median of the sum of the variables.

6.6.1 Continuous variable with two-sided constraint

As we discussed before, our approach will be able to simulate reality better by not relying on the
assumption of Gaussianity. Our Bayesian software will take into account the possibility of the data
coming from a Student distribution, which is a generalisation of a Gaussian. Clearly this generalises
to a log-Student instead of a log-Gaussian by taking the log of the data, and of course we will be
considering mixtures of these distributions. In combination this makes the Bayesian method vastly
more powerful and realistic than one assuming Gaussianity which ISO 20072 tempts the user to
do.

The Student distribution with shape m (or with “2m degrees of freedom”) is the marginal distri-

bution obtained by integrating out s from the following two: P (x | µ, s, σ) =
√

s
2πσ2 e

− s
2σ2 (x−µ)2

where s is Gamma distributed P (s | m, r = m) = mm

Γ(m)s
m−1e−ms. Then the Student distribution

has the form

P (x | µ, σ,m) =
Γ(m+ 1

2)

Γ(m)

1√
2πmσ2

(1 +
1

2m

(x− µ)2

σ2
)−(m+ 1

2
)

We will also denote 1
σ2 by τ .

We consider only items that contain DFP basic item 1. As the distributions can be scaled, we will
get the same numbers for other items that contain a two-sided constraint.

In section 5.1.1 we already saw the parameters for a superlative factory: µ = 2.2822, σ = 0.0722
when the content is 0.95, and σ = 0.0671 when content is 0.975. Also, we set the true m = 1000
because the Student distribution tends to the Normal as m → +∞.

The acceptable region of µ and σ is plotted in figure 5.

We now set reasonable dependent priors on µ, τ and m and plot them in figures 6, 7 and 8.

We choose the prior for τ to be a Gamma distribution with shape and scale parameters k0 = 0.9
and t0 = 140. This can be found in figure 6 with some comments.

We choose the prior for µ given τ to be Normal(µ0,
1√
α0τ

) with parameters µ0 = 2.2822 and

α0 = 0.02. This is actually a conjugate prior to the Gaussian. See the contours of the prior on µ, σ
in figure 7.

The conjugate prior on m takes the form of a so-called “Pro-Gamma” with parameters a0, b0 > 0:
P (m | a0, b0) ∝ mb0m

Γ(m)b0
e−(a0+b0)m with a0 = 0.2 and b0 = 0.8. See the plot in figure 8.

Therefore in this DFP basic item, the parameters of clusters are θk = (µk, τk,mk) for k = 1, 2 . . .K.
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Figure 5: The acceptable region for µ and σ for DFP 1, in the special case that m = ∞ (i.e.
distribution is (log-)Gaussian), wanting probability content of 0.975 lies below the curve, bearing
in mind that the upper and lower limits are log(12) and log(8).
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Figure 6: Plot of the cumulative distribution function on τ . It was taken such that the probability
of τ being the in acceptable region in figure 5 to be about 0.2, so as not to bias the Bayesian approach
towards what we know to be the true distribution.
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Figure 7: Plot of the contours of the prior on µ, σ. If we look at the acceptable region in figure 5,
we can see that there is enough probability both inside and outside the acceptable region, so again
the prior is not prejudiced in favour of H1.
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Figure 8: Plot of the selected conjugate prior for m.

Next we describe the Gibbs sampling updates which take the place of step 4 of section 6.4, for
which we reintroduce s = (sn)n=1,...,N in order to be able to sample more easily, so that (taking the
case that there is only a single cluster for simplicity) P (x,m, µ, τ, s) = P (x | m,µ, τ, s)P (m)P (µ |
τ)P (τ)P (s | m):

1. Sample s from Gamma distributions with shape and scale parameters for sn being Gamma(
m+ 1

2 ,m+ τ
2 (xn − µ)2 ).

2. Sample m from the new Pro-Gamma with parameters b1 = b0 + N and a1 = a0 +
N∑

n=1
(sn −

log(sn)) − N . Remark that this is valid since a1, b1 > 0 as a result of the inequality u ≥
1 + log(u) for u > 0.

3. Sample τ from the new Gamma distribution with the new shape and scale parameters k1 =

k0 +
N+1
2 and t1 = t0 +

α0(µ−µ0)2

2 +

N∑
n=1

sn(xn−µ)2

2 .

4. Sample µ from the Normal(µ1,
1√
τα1

) with the new parameters α1 = α0 +
N∑

n=1
sn and µ1 =

N∑
n=1

snxn+α0µ0

N∑
i=n

sn+α0

.

5. Repeat all but the last step above in reverse order, to ensure palindromicity and thus detailed
balance.

An example of the sample trajectories of µ and σ for a 5-cluster example can be found in figures 9
and 10.

Finally, we report the number of measurements needed as the median over 20 runs.

1. For content p = 0.95, we found that 37 devices are needed.

2. For content p = 0.975, we found that 41 devices are needed.
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Figure 9: Markov Chain of µ when the data is taken from a true distribution with 5 mixture
components (the dotted lines). Note that the blue, magenta and cyan components are negligible
by figure 4, so the Markov Chain is focused on the red and green.
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Figure 10: Markov Chain of σ when the data is taken from a true distribution with 5 mixture
components (the dotted lines). Note that the blue, magenta and cyan components are negligible
by figure 4, so the Markov Chain is focused on the red and green.
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Figure 11: The acceptable region of µ, σ in DFP basic item 3 lies below the line.

Therefore, as there are 3 basic DFP items with a two-sided constraint, and as there are 8 environ-
mental conditions for content 0.95 and another 6 for content 0.975 in ISO 20072, the total number of
measurements needed to pass items that contain a two-sided constraint is 3×(37×8+41×6) = 1626.
We note that this is smaller than the corresponding frequentist number, even though we have al-
lowed for both Student non-Gaussianity and for mixtures of distributions.

6.6.2 Continuous parameter with one-sided constraint

The only difference from the two-sided problem is that we will draw superlative data from a Normal
distribution with µ = 1.3540 and σ = 0.5257 for 0.95 content, respectively σ = 0.4824 for 0.975
content.

The corresponding acceptable region is in figure 11. The priors on τ, µ will scale accordingly.

Again, we report the median number of measurements needed over 20 runs:

1. For content p = 0.95, we found that 20 devices are needed.

2. For content p = 0.975, we found that 25 devices are needed.

Therefore, as there are 5 basic DFP items with a one-sided constraint, and as there are 8 environ-
mental conditions for content 0.95 and another 6 for content 0.975 in ISO 20072, the total number of
measurements needed to pass items that contain a one-sided constraint is 5×(20×8+25×6) = 1550.

6.6.3 Probability parameter

We will consider the DFP basic items with the target probability 0.99, as the ones with target
0.93 are treated similarly. (Superlative test data will then be generated using a true probability
parameter of 0.999 as in section 3.1.)
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Figure 12: The acceptable region of α, β in DFP basic item 2, target 0.99, lies below the curve and
is unbounded on the right.

We then assume a model in which each cluster in a mixture has parameter distributed Beta(α, β),
then find the posterior distribution on α and β given some data and a suitable prior. Therefore
the parameters of the clusters will be θk = (αk, βk).

The acceptable region of α and β is plotted in figure 12.

We choose a prior on α and β from the “ProBeta” family, the conjugate distribution to the Beta
distribution with respect to the joint parameters (α, β), whose probability density function is given
by

P (α, β | p1, p2, N0) ∝
(
Γ (α+ β)

Γ(α)Γ(β)

)N0

· pN0(α−1)
1 · pN0(β−1)

2 ,

where p1, p2, and N0 are independent parameters, constrained by p1, p2, N0 > 0 and p1 + p2 < 1 so
the expression has finite integral.

The values we take for p1, p2, N0 affect the shapes of the resulting Beta distributions. To avoid
prejudicing the outcome, we would like to get all intuitive types of Beta distributions when drawing
from the selected prior. We found the prior with p1 = p2 = 0.4525 and N0 = 0.01 satisfactory. See
figure 13 of the contour plot and figure 14 of Beta distributions drawn from the prior.

We note that the closure of the space of mixture distributions so modelled includes the frequentist
critical distribution for this item.

In this protocol, we measure the responses of N devices, testing the nth device Nn times and
obtaining nn successes. We obtain two N -dimensional vectors, N and n. Since

P (N,n | α, β) =

∫
P (N,n,p | α, β) dp

=

∫
P (N,n | p)P (p | α, β) dp
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Figure 13: Contour plot of the unnormalised prior on α, β. Looking at the acceptable region in
figure 12, we can see that there is a reasonable amount of probability both inside and outside of
the acceptable region.
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Figure 14: Sample Beta distributions drawn from the prior. They have various shapes and sizes,
covering both narrow and broad and both those internal to the interval and those jammed up at
one end. The values of α, β are specified in the top-right key.
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Figure 15: Example of the sample trajectories of the Markov chain for the cluster weights q, when
data is sampled from a true distribution with 5 mixture components (the dotted lines). Note
that the magenta and red components are almost negligible, and that there is insufficient data to
determine whether some of the data points belong to the magenta or red clusters.

our posterior probability distribution subsequently takes the following form:

P (α, β |N,n) =
P (N,n |α, β) · P (α, β)

P (N,n)

∝
(

Γ(α+β)
Γ(α)Γ(β)

)N0+N
p
N0(α−1)
1 p

N0(β−1)
2

N∏
n=1

Γ(α+nn)·Γ(β+Nn−nn)
Γ(α+β+Nn)

This also tells us how to do the Gibbs Sampling step of the new element in the Markov Chain.

Plots of example Markov chain sample trajectories along with some comments can be found in
figures 15, 16 and 17.

We considered only designs where the value of Nn was the same for all n, although exactly the same
analysis would apply if one were to choose a variety of values for the various Nns beforehand, or,
by a similar analysis to that in section 6.1.2 above, even if one were to decide which device to test
next based on the results obtained from the various devices so far. We considered various possible
common values for the Nns, and chose the considered value which gave smallest overall number of
measurements.

Reporting as usual the median of the sample sizes required in 20 runs, we found the following.

For DFP basic item 2 with lower constraint 0.99 we needed, per item:

1. For content p = 0.95, testing each device 100 times, we needed to test a median of 45 devices,
for a total of 4500 measurements needed.

2. For content p = 0.975, testing each device 200 times, we needed to test a median of 67 devices,
for a total of 13400 measurements needed.
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Figure 16: Example of the sample trajectories of the Markov Chain for the parameter α. Note
that, according to figure 15, the most accurate are again green, blue and cyan, because there is not
enough data to represent the almost negligible red and magenta. Note also that there is considerable
uncertainty about the precise values of the green and blue cluster parameters, all of which represent
quite narrow clusters; a 2-d plot with β would show trajectories of (αk, βk) moving in and out along
radial lines through the origin, representing Beta distributions all of approximately the same mean,
but of slightly varying widths. A corresponding plot of β is in Figure 17.
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Figure 17: Markov Chain of β. Note that the most accurate are again green, blue and cyan, because
as seen in figure 15, there is not enough data to represent the almost negligible red and magenta.
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Figure 18: The acceptable region of (m, r) is above the line in DFP basic item 8 with upper
constraint on the Poisson rate of 1 per hour.

As in ISO 20072 there are 8 environmental conditions that require content 0.95, and another 6 that
require content 0.975, and there are 2 basic items in the DFP with target 0.99, a total number of
2× (4500× 8 + 13400× 6) = 232800 measurements needed.

For DFP basic item 6 with lower constraint 0.93 we needed, per item:

1. For content p = 0.95, testing each device 7 times, we needed to test a median of 20 devices,
for a total of 140 measurements.

2. For content p = 0.975, testing each device 10 times, we needed to test a median of 21 devices,
for a total of 210 measurements needed.

As in ISO 20072 there are 8 environmental conditions that require content 0.95, and another 6 that
require content 0.975, and there are 4 basic items in the DFP with target 0.99, a total number of
4× (140× 8 + 210× 6) = 9520 measurements needed.

6.6.4 Poisson rate

We next consider the two DFP basic items with the Poisson rate constrained to be below 1 per
hour. Superlative data will be generated from simulated devices with rate 0.1 per hour, as in section
3.1 above.

We then assume a model in which each cluster in a mixture has rate parameter distributed
Gamma(m, r), then find the posterior distribution on m, r given some data and a suitable prior.
Therefore the parameters of the clusters with be θk = (mk, rk).

The acceptable region of (m, r) is plotted in figure 18.

We choose a prior on (m, r) from the “ProGamma” distribution family, the conjugate distribution
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Figure 19: Contour plot of the prior on (m, r). Looking at the acceptable region in figure 18, we
can see that there is a reasonable amount of probability both inside and outside of the acceptable
region.

x
0 1 2 3 4 5 6 7 8 9 10

P
(x

)

0

0.5

1

1.5

2

2.5

3

3.5

m = 69, r = 14
 m = 47, r = 27
 m = 8, r = 23
 m = 12, r = 11
m = 4, r = 1

Figure 20: Sample Gamma distributions drawn from the prior. They have various shapes and sizes.
The values of (m, r) are specified in the top-right key.

to the Gamma with respect to the joint parameters (m, r), whose probability density function is
given by

P (m, r |α, β,N0) ∝
(

rm

Γ(m)

)N0

βmN0e−βr e
−αm

NmN0
0

,

where α, β, and N0 are independent parameters, constrained by α, β,N0 > 0 so that the expression
has finite integral.

The values we take for α, β,N0 affect the shapes of the resulting Gamma distributions. To avoid
prejudicing the outcome, we would like to get all intuitive types of Gamma distributions from the
selected prior. We found the prior with α = 0.03, β = 0.1 and N0 = 0.01 satisfactory. See figure
19 for the contour plot and figure 20 for Gamma distributions drawn from the prior.

In this protocol, we measure the responses of N devices, testing the nth device for Tn hours and
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Figure 21: Example Markov chain sample trajectories of q when data is sampled from a true
distribution with 5 mixture components (the dotted lines). Note that the blue and green clusters
are virtually identical in all parameters (see also Figures 22 and 23), and it is therefore entirely
reasonable for them to be interpreted as a single cluster in most samples from the chain. The red
and magenta components are almost negligible, and there is insufficient data to determine whether
some of the data points might belong to the red or magenta clusters.

observing nn failures. We obtain two N -dimensional vectors, T and n. Since

P (N,n | α, β) =

∫
P (N,n,λ | α, β) dλ

=

∫
P (N,n | λ)P (λ | α, β) dλ

our posterior probability distribution subsequently takes the following form:

P (m, r | T,n) ∝
(

rm

Γ(m)

)N+N0
(

N∏
n=1

1

(r + Tn)m+nn

)(
N∏

n=1

Γ(m+ nn)

)
βmN0e−βr e

−αm

NmN0
0

This also tells us how to do the Gibbs Sampling step of the new element in the Markov Chain.

Plots of example Markov chain sample trajectories along with some comments can be found in
figures 21, 22 and 23.

We considered only designs where the value of Tn was the same for all n, although exactly the same
analysis would apply if one were to choose a variety of values for the various Tns beforehand, or, by
a similar analysis to that in section 6.1.2 above, even if one were to decide which device to observe
next based on the results obtained from the various devices so far. We considered various possible
common values for the Tns, and chose the considered value which gave the smallest overall number
of device-hours of observation needed.

Reporting as usual the median of the sample sizes required in 20 runs, we found the following.
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Figure 22: Example Markov chain sample trajectories of m. Note that the blue and green clusters
are virtually identical in all parameters, and it is therefore entirely reasonable for them to be
interpreted as a single cluster in most samples from the chain. As we see in Figure 21, the red and
magenta clusters are almost negligible in weight, and there is in consequence not enough data to
be sure of their existence.
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Figure 23: Example Markov chain sample trajectories of r. Note that the blue and green clusters
are virtually identical in all parameters, and it is therefore entirely reasonable for them to be
interpreted as a single cluster in most samples from the chain. As we see in Figure 21, the red and
magenta clusters are almost negligible in weight, and there is in consequence not enough data to
be sure of their existence.
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For DFP basic item 8 with Poisson rate constrained to be below 1 per hour we obtained, per item:

1. For content p = 0.95, observing each device for 0.1 hours, we needed 60 devices, for a total
of 6 device-hours of observation.

2. For content p = 0.975, observing each device for 0.1 hours, we needed 110 devices, for a total
of 11 device-hours of observation.

As in ISO 20072 there are 8 environmental conditions that require content 0.95, and another 6 that
require content 0.975, and there are 2 basic items in the DFP constraining a Poisson rate to be
below 1 per hour, a total number of 2× (6× 8 + 11× 6) = 228 device-hours needed.

6.7 Summary of effort needed in the Bayesian approach

We now have all the necessary information to assess how much testing needs to be done, in order to
have a probability at least 95% that a superlative factory passes the whole test, that is passes all
items. Note that a superlative factory is an almost perfect one, and in reality such a factory may
be almost impossible to design. Therefore, in reality, these numbers may be higher — but equally,
it is likely that for some items the factory will turn out to be better than superlative, while for
others it is worse, and the Bayesian test will automatically increase the amount of testing only for
those items that are worse than superlative, while it equally will reduce the amount of testing for
those that turn out to be better than superlative.

Summing the number of measurements needed for each category of items, we get that 232800 +
9520 + 1550 + 1626 = 245496 measurements are required plus 228 device-hours of observation. If
we reckon that a robot could perform one measurement per minute, this gives a total of almost 180
days of robot time. This looks entirely feasible, in contrast with the frequentist result.

To be even-handed, we make some comments about safety and cheating.

The most important feature of the Bayesian approach is, in our opinion, the possibility of improving
the quality control of the devices without massively increasing the required amount of testing. That
is, a manufacturer may reasonably add several additional basic items to the DFP, thus making its
device better and providing a safer product for its customers.

It is of course also possible to cheat in a Bayesian approach by censoring data just as in a frequentist
approach. The question is whether the method provides an incentive to cheat or not. In section 7.2
below we argue that the incentives to cheat provided by the frequentist approach are not present
in the Bayesian approach.
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7 Comparison of the frequentist and Bayesian approaches

7.1 Workload required

We now compare the numbers of measurements needed when testing with the frequentist method
according to ISO 20072 with the number needed with the Bayesian approach we proposed. We
have also calculated the approximate time needed to test a factory. See the table in Figure 24 for
a summary of these results.

type of item cont. 0.95 cont. 0.975 no of items in DFP total measurements total time

Probability parameter p = 0.99 B 4500 13400 2 232800 160 days

Probability parameter p = 0.99 F 83141 168072 2 3347120 6.3 years

Probability parameter p = 0.93 B 140 210 4 9520 7 days

Probability parameter p = 0.93 F 12920 26128 4 1040512 2 years

One-sided B 20 25 5 1550 1 day

One-sided F 93 135 5 7770 5 days

Two-sided B 37 41 3 1626 1 day

Two-sided F 108 154 3 5364 4 days

Total measurements B 245496 169 days

Total measurements F 4400766 8.3 years

Poisson rate lambda = 1 B 6 11 2 228 hours 10 days

Poisson rate lambda = 1 F 843 1801 2 35100 hours 4 years

Total time B 180 days

Total time F 12.3 years

Figure 24: Table comparing the numbers in the frequentist vs Bayesian methods. The total number
of measurements was calculated considering that there are 8 items in ISO 20072 that require 0.95
content, and another 6 that require 0.975 content. The total time required was computed assuming
a robot that does one measurement per minute is available.

It is immediately obvious that the Bayesian method requires vastly fewer measurements, and overall
approximately 25 times less robot-time, than the frequentist method. One of the facts which
contributes to the enormous difference in workload required for the two methods is that

• When testing with the Bayesian approach, the number of measurements needed grows as
the sum of the numbers of measurements needed for each item in the DFP, each of which is
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independent of the existence of other items.

• On the other hand, when testing with the frequentist approach, increasing the number of
items in the DFP massively increases the number of measurements needed because of the
need to increase the pass probability of individual items.

7.2 Comparison of incentives to cheat

There are some ways in which the phenomenon of cheating is independent of the testing method,
as the urge to cheat varies with personality, and it is possible to cheat in a Bayesian approach by
censoring data just as in a frequentist approach. However, we think that the Bayesian method we
described lacks the incentive to cheat observed with the frequentist approach for several reasons:

1. The amount of testing needed in the Bayesian approach is much lower than what was needed
in the frequentist method. Thus, it is feasible to do the testing honestly, without censoring
or manipulating the data.

2. The Bayesian method accurately reports the probability, given the data observed so far, that
a factory is compliant (or isn’t). Hence if a manufacturer tests a compliant factory, the
design will pass with probability 1, while if a factory has not yet passed a test in progress, the
manufacturer is continually aware of the probability that the factory is nonetheless compliant,
and can make an informed decision on whether to continue testing.

3. Moreover, if the Bayesian method passes a factory, then for each item the probability that
that factory is good is high (0.95 under the ISO 20072 conventions). Thus patients are
protected under a Bayesian analysis just as under an honestly executed frequentist one —
but in addition, they get the benefits that

(a) Worthwhile treatments do actually become available to them, rather than be rejected
by the minuscule pass probabilities of the frequentist approach, and

(b) The probability that the manufacturer has cheated when “passing” their product is no
longer close to 1.

7.3 Comparison of the incentives to produce a high quality factory

We now address an argument frequently raised by some regulatory authorities as justification of
the use of frequentist methods. That argument is that a low pass probability for e.g. a superlative
factory should incentivize the manufacturer to only design perfect factories. However, there are in
our view a number of difficulties with this reasoning:

1. It is usually impossible to design a perfect factory.

2. The manufacturer has no way of knowing whether or not his factory is perfect before embark-
ing on testing it. If it fails, he has then no recourse; he cannot retest it from scratch, and in
the frequentist paradigm he cannot extend the test to handle the imperfections that he now
knows must be present.
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3. The Bayesian approach we have described also provides incentives to design better factories,
as the number of measurements that will be needed for any item will automatically rise as
the factory gets closer to the specified constraint. Given that it is thus possible to design
tests that both provide an incentive to design better factories, and which will eventually pass
good factories, such an approach is surely preferable.

7.4 Pseudo-Bayesian approaches

A “compromise” approach has also been described in [7], wherein such an approach is described
as “Bayesian”. However, as seen in section 4.8 of [7], this approach actually wants to handicap
a Bayesian approach by considering also the Bayesianly-irrelevant probability that a factory for
which all items but one are perfect but one is exactly borderline will pass the Bayesian test.

We have explained in section 5.4.2 above why we believe such probabilities to be irrelevant to
the discussion. A Bayesian test as described in section 6 above will never satisfy restrictions on
such a probability other than in rare special cases. Modification of a Bayesian test to satisfy such
restrictions in fact turns it into a frequentist test, albeit one somewhat more complicated that the
ones we have considered above, and in doing so sacrifices the most important properties of the
Bayesian approach discussed above, and in particular sacrifices the probability of one of passing a
good factory.

7.5 Discussion of choice of prior

The favourite argument of frequentists and institutions that advocate frequentist methods against
the Bayesian approach is that the results of the Bayesian method depend on “the choice of prior”
(see section 3.9 of [8]). To illustrate this, we compare the median of the number of measurements
needed when testing the Poisson rate in section 6.6.4 for a range of priors. We choose this DFP item
because the data consists mainly of periods where no events are observed, and consequently the
results are more influenced by the prior than in other cases. Here we will vary only the parameter
β in the prior, and will consider the case of the desired probability content being 0.975 and the
number of hours of observation per device still being 0.1 .

1. As we have seen in section 6.6.4, with β = 0.1 the prior puts a reasonable amount of probability
both inside and outside the acceptable region; in fact the prior probability that a single cluster
factory is good for that item is 0.004, and the MCMC runs showed a median of 110 devices
are needed.

2. When we take β = 0.05, the prior again puts a reasonable amount of probability both inside
and outside the acceptable region, with the prior probability that the factory is good now
being about 0.012, as seen in figure 25. Here we obtained a median of 104 devices needed.

3. When we take β = 0.01, the prior probability that the factory is good is now 0.12, as seen in
figure 26. Here we obtained a median of 70 devices needed.

4. When we take β = 0.0001, the prior now puts more than 98% of the probability inside the
acceptable region, as seen in figure 27. The prior is now totally prejudiced in favour of the
factory being good for this item, and we need collect no data at all (since 0.98 > 0.95).
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Figure 25: Prior on m, r when β = 0.05. The prior probability that the factory is good for this
item is about 0.012 .
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Figure 26: Prior on m, r when β = 0.01. The prior probabilty that the factory is good for this item
is about 0.12 .

5. On the other hand, when we take β = 1, the prior probability that the factory is good is
about 0.0004, as seen in figure 28. Here we obtained a median of 3000 devices.

Therefore, from the above analysis, we can conclude that indeed the Bayesian method depends on
the selected prior. However, the important point is that when choosing reasonable priors that put
between 0.1% and 5% of the probability inside the acceptable region and are generally well spread
out, the required number of measurements is almost constant. The big differences arise when the
priors are prejudiced either towards accepting or rejecting the design, but in practice this should
never happen, if the intention is to test honestly. Moreover, it is entirely feasible for a regulator
and manufacturer to come to agreement on an appropriate prior for each problem before embarking
on data collection or finalising the design of the test plan.
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Figure 27: Prior on m, r when β = 0.0001. Looking at figure 18, we see that this prior puts more
than 98% of the probability inside the acceptable region, and is so prejudiced that the factory is
good for this item that we need collect no data at all.
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Figure 28: Prior on m, r when β = 1. The prior probability that the factory is good for this item
is now 0.0004, so the prior is heavily prejudiced against the factory being good, and a lot of data
is now needed before one can conclude otherwise.
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8 Comments made in review by others

We note that the Independent Institute, a not for profit, non-partisan, scholarly research organisa-
tion, has assessed the actions of one regulator, the U.S. Food and Drug Administration (FDA), as
follows [9]:

Defining type I and type II errors by

1. “Type I errors occur when the FDA approves a drug that ends up being a net bad for society.”

2. “Type II errors occur when the FDA rejects a drug that would be a net good for society.”

they find that the FDA cares more about type I errors mainly because they cause “major media
attention, public concern, and congressional action”; their proposed testing procedures aim not to
minimize the harm done by both types of errors, but only the harm done by type I error.

This supports our concern that better testing protocol is needed, preferably one that deals with
both error types. The current protocol, as stated by the FDA, does not take into account the harm
done to people that suffered because although a good treatment was produced, it failed a faulty
testing procedure.

A further comparison is made in [10] by a so-called “whistle-blower” Henry Miller: a type I error
attracts much attention and harms both patients and designers. However, a type II error only harms
patients and is less vulnerable to attention, because “doctors, journalists and patients are usually
unaware that a drug has been delayed or suppressed and that it would have saved individuals” [9].

Another testimonial from Vincent Kleinfeld, a Washington, D.C., attorney who worked on drug
approval affairs in [10], wrote “the courts in this area of the law tend to equate the Food and Drug
Administration with God, motherhood, and country”. This status of “untouchable” achieved by
institutions are another reason for a better protocol to be implemented, as there is no compensation
for the defects of the current protocol.
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9 Conclusion

In conclusion, our opinion is that in its current form, ISO 20072 is dangerous to patients because of
both the frequentist protocol proposed, the way it encourages cheating when carrying out testing,
and the risk of not passing good factories which would benefit patients. Instead, a sequential
Bayesian protocol should be used.

We note that there are many analogies to this situation in the area of testing new drugs and medical
devices. In [11] we see for example that in order to get a new drug accredited, drug companies typ-
ically run clinical trials with the intention of demonstrating a “statistically significant” benefit, but
because frequentist statistical tests use data inefficiently, it is unnecessarily difficult to demonstrate
statistical significance, and consequently:

1. It is in the drug company’s interest to compare their new drug to a suboptimal treatment
such as a placebo, rather than to the best available treatment - this is not in the interests of
the patients in the trial.

2. Unnecessarily large numbers of patients are subjected to trials.

3. It is likely that many good drugs are failing to pass their tests (because frequentist “fconfi-
dence” values and p-values do not actually control the probabilities we care about). Examples
are also given in [11] of drugs that achieve “statistical significance” in test comparisons with
placebos but which are not actually good for patients.

Unfortunately, many aspects of medicine are still dominated by classical frequentist statistical
methods, so ISO 20072 is not an isolated example [11] of bad statistics driving organisations to
behave in a way that is not in the public interest.
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A Ways in which the behaviour of frequentist confidence fails to
match the intuitive behaviour expected

We give two theorems.

The first deals with the simultaneous occurrence of a number of hypotheses, each of which is the
alternative hypothesis to some null hypothesis. It shows that whereas with the intuitive under-
standing of confidence the confidence of the intersection of multiple uncertain events is (usually
much) smaller than the confidence of any of the individual events, the fconfidence of the intersection
is always equal to the infimum of the fconfidence of the individual events - in other words it is far
too large.

The second deals with the complementary situation that we are considering the union of a number
of hypotheses, each of which is the alternative hypothesis to some null hypothesis. The situation
here, though not relevant to the body of the work in this paper, is even worse. Whereas the intuitive
confidence that at least one of a number of events has occurred must be at least as large as that
of any one of the events, the fconfidence that at least one of multiple events has occurred can be
strictly smaller than the fconfidence that a particular one of the events has occurred. In other
words we can be less fconfident that a larger event occurred than that a small subset of that event
occurred - totally contrary to any reasonable intuition.

In the following F (A) denotes the fconfidence that an event A has occurred, it being understood
that some particular critical region evident from the context is in use.

Theorem A.1 (Intersection of events). Suppose that (H0,ι)ι∈I is a family of events to be treated
as null hypotheses, that H0 =

∪
ι∈I

H0,ι, and that H1,ι and H1 are respectively the complements of

H0,ι and H0, so that H1 =
∩
ι∈I

H1,ι. Let C be a critical region in some data space for all the H0,ι

(for example, C might be
∏
ι∈I

Cι if the data space is the product of one independent data space for

each ι, or C might be
∩
ι∈I

Cι). Then F (H1) = F (
∩
ι∈I

H1,ι) = inf
ι∈I

F (H1,ι).

Note that there is no requirement for I to be finite or even countable.

Proof. By definition, F (H1,ι) = 1− sup
h∈H0,ι

P (x ∈ C | h), while F (H1) = 1− sup
h∈H0

P (x ∈ C | h). But

since H0 =
∪
ι∈I

H0,ι, it follows that 1 − F (H1) = sup
h∈H0

P (x ∈ C | h) = sup
ι∈I

sup
h∈H0,ι

P (x ∈ C | h) =

sup
ι∈I

(1− F (H1,ι)), whence the result.

Theorem A.2 (Union of events). There exist events H1,1 and H1,2 such that the fconfidence
F (H1) that H1 = H1,1 ∪H1,2 has occurred is strictly smaller than min

ι∈{1,2}
F (H1,ι), where H1,ι is the

alternative hypothesis to (and complement of) H0,ι, and critical regions Cι are in effect for testing
H0,ι for ι ∈ {1, 2}, so that C = C1 ∪ C2 is in effect for testing H0 = H0,1 ∩H0,2.

58



Comment: Any reasonable intuitive understanding of fconfidence as confidence would require that
F (H1) = F (

∪
ι∈{1,2}

H1,ι) ≥ max
ι∈{1,2}

F (H1,ι).

Proof. It suffices, of course, to simply provide an example.

We take our hypothesis space to be a four point space, H = {h0,1, h1,1}×{h0,2, h1,2}, with the null
hypotheses being H0,1 = {h0,1}×{h0,2, h1,2}, H0,2 = {h0,1, h1,1}×{h0,2}, so that H0 = {(h0,1, h0,2)}
and H1 = {(h0,1, h1,2), (h1,1, h0,2), (h1,1, h1,2)}.

Similarly we take our dataspace to be a four point space, X = {x0,1, x1,1} × {x0,2, x1,2}, with the
two factors independent, P (x0,1 | h) = 0.95 for all h ∈ H0,1, and P (x0,2 | h) = 0.95 for all h ∈ H0,2.
(Note that the frequentist paradigm bizarrely puts no requirement on us to specify P (x | h) for
h = (h1,1, h1,2).) Thus for example P ((x1,1, x1,2) | (h0,1, h0,2)) = 0.052 = 0.0025.

Our critical regions will be C1 = {x1,1} × {x0,2, x1,2} and C2 = {x0,1, x1,1} × {x1,2}, so that
C = {(x0,1, x1,2), (x1,1, x0,2), (x1,1, x1,2)}.

Then P (x ∈ C1 | h) = 0.05 for all h ∈ H0,1, and similarly P (x ∈ C2 | h) = 0.05 for all h ∈ H0,2, so
that C1 and C2 are respectively 95% critical regions for H0,1 and H0,2.

However, somewhat unexpectedly, for h = (h0,1, h0,2), we have P (x ∈ C | h) = 1− 0.952 = 0.0975,
so that C is only a 90.25% critical region for H1, and 0.9025 = F (H1) < min

ι∈{1,2}
F (H1,ι) = 0.95 even

though H1 ⊃ H1,ι for all ι.
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B Proof that Bayesian pass probability of a good factory ap-
proaches 1 as the amount of data increases

We consider a single item only, noting that since the number of items is finite showing the desired
result for a single item suffices to prove it for all 224 items.

Our proof will use the uniform strong law of large numbers [12], the proof of which carries over
to the following more general statement with negligible modification and without invoking the
separability condition subsumed in the assumption of regularity in [12]: If

• X is a measure space;

• K is a compact metric space;

• ϕ is a function from X ×K to R;

• for all k ∈ K, x 7→ ϕ(x, k) is measurable on X;

• there exists an integrable function b : X → R such that for all k ∈ K and x ∈ X, |ϕ(x, k)| ≤
b(x);

• for all k ∈ K, for almost all x ∈ X, ϕ is continuous in k at k;

• x1, x2, . . . is a sequence of independent identically distributed random variables taking values
in X;

then

• for all k ∈ K, the expectation of ϕ(x1, k) exists and is finite, and

• with probability 1, ( 1
N

N∑
n=1

ϕ(xn, k) → Eϕ(x1, k) uniformly in k as N → ∞).

We assume throughout that H = H0 ∪H1, H0 ∩H1 = ∅.

Theorem B.1. Suppose that:

1. X is a measure space;

2. H is a locally compact metric space carrying a measure denoted µ on its Borel sets, compact
subsets having finite measure, and non-empty open sets of H having positive measure;

3. H0 is compact;

4. h, x are random variables on the probability space Ω taking values in H,X respectively pos-
sessing respectively a density function and a conditional density given h;

5. for almost all x ∈ X, P (x|h) is a continuous function of h;

6. P (x|h) is bounded on X locally uniformly in h, while P (h) is locally bounded;
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7. for all h′ ∈ H, (P (x|h1)
a.s.
= P (x|h′) =⇒ h′ = h1);

8. there exists an open subset U1 ∋ h1 of H1 such that P(h) is bounded away from zero on U1;
and

9. there exists a measurable and almost surely positive function a : X → R and a neighbourhood
U2 of h1 such that both Ex|h1

log a(x) exists and is finite and also for all x ∈ X and h ∈ H0∪U2,
P (x|h) ≥ a(x).

Under these conditions if x1, x2, . . . , xN are independently distributed according to P (x|h1), then
P (h ∈ H1|x1, . . . , xN ) → 1 x-almost surely as N → ∞.

Before proving this result, we make a few remarks on the conditions.

The basic conditions 1 and 2 on H and X are standard, and are fulfilled in particular by any
finite-dimensional real vector spaces. They are also fulfilled by discrete spaces with H0 finite, in
which case the continuity and boundedness conditions 5 and 6 become vacuous.

The local boundedness conditions 6 can usually be achieved by continuous transformations of H
or X if they do not already apply.

The compactness condition 3 on H0 can usually be achieved, if does not already apply, either by
adjoining a point at infinity or by deleting part of H0 that is extremely unlikely. For example, if h
is the standard deviation of a Gaussian likelihood, and H0 is [1,∞), then replacing H by (0, 10100]
and H0 by [1, 10100] achieves compactness of H0 without materially altering the problem.

However, note that the result specifically does not cover the case that h1 is on the boundary of H1,
for which the theorem does not hold.

Without the continuity condition 5 it is very hard to control the union of the uncountable number
of zero probability subsets of the underlying probability space Ω that arise as a result of the strong
law of large numbers.

Condition 7 is required because otherwise the likelihood provides insufficient information to dis-
tinguish h1 from other possibilities, while condition 8 is needed to ensure that the prior has not
prejudicially excluded the right answer.

The remaining condition 9 can usually be achieved if not already present by replacing P (x|h) by
(1− γ)P (x|h) + γb(x), where b is a bounded probability density onX such that

∫
X (b(x) + P (x|h1)) log b(x)dx

exists and is finite and γ > 0 is a small positive constant. This is intuitively bizarre, as doing so
makes the resulting random variable x contain less information about h. We therefore feel that
some more able mathematician might be able to manage without this condition.

Proof. In the following we assume that xN = (x1, x2, . . . , xN ), that x means xN , and that x and
all xn are distributed according to P (x|h1). Thus for a fixed value h ∈ H, P (x|h) is a random
variable calculated by letting x be distributed according to P (x|h1) then calculating P (x|h). We
exclude the null subset of Ω on which P (x|h1) = 0.
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For any h ∈ H, let us define q(h) = Ex|h1
logP (x|h).

From Jensen’s inequality we note that for any h ∈ H \ {h1} the given conditions then imply
q(h1) > q(h), with strict inequality.

Conditions 5, 6, and 9, and the dominated convergence theorem give us that for some neighbourhood
U of h1 in H1, q is continuous on H0 ∪ U . Now the compactness of H0 implies that q attains a
maximum M on H0, and we then have that q(h1) > M . Indeed, for some compact neighbourhood
V ⊆ U ⊆ H1 of h1 on which P (x|h) is uniformly bounded and for some δ > 0 and ϵ > 0, we have
P (h) > ϵ and q(h) > M + δ and P (x|h) > 0 on V a.s. (by conditions 5 and 9). We note that then
on V we also have P (x|h) > 0 a.s. for all N .

Applying the uniform strong law of large numbers with K equal to H0 or V and ϕ(x, k) equal to
logP (x|k), we find that almost surely, uniformly in h ∈ V and h0 ∈ H0, P (x|h0)1/N → eq(h0) and

P (x|h)1/N → eq(h), so (P (x|h0)
P (x|h) )

1/N → eq(h0)−q(h) < e−δ < 1, and hence almost surely (P (x|h0)
P (x|h) → 0

uniformly in h0 and h as N → ∞).

We now fix any ω ∈ Ω for which this uniform convergence occurs.

It suffices now to show that for that ω,

∫
H0

P (h0)P (x|h0)dh0∫
V P (h)P (x|h)dh → 0. Now P (h0) and supx∈X P (x|h0)

are locally uniformly bounded on the compact set H0 and therefore uniformly bounded on H0. By
rescaling the measures on H and X we may assume that that bound is 1, in which case P (x|h0) is
likewise bounded by 1 for all N . Since also P (h) is bounded away from zero on V , it even suffices

to show that

∫
H0

P (x|h0)dh0∫
V P (x|h)dh → 0. We already know that the integrand in the denominator is never

zero.

Now fix h ∈ V . Since the integrand in the numerator is uniformly bounded and µ(H0) is finite, by

the dominated convergence theorem we have

∫
H0

P (x|h0)dh0

P (x|h) → 0. Let FN =
∫
H0

P (x|h0)dh0. Then

FN/P (x|h) → 0, so P (x|h)/FN → +∞. But F−1
N

∫
V P (x|h)dh ≥

∫
V infN ′≥N (F−1

N ′ P (xN ′ |h))dh →
+∞ by the monotone convergence theorem.

Therefore
∫
V P (x|h)dh∫

H0
P (x|h0)dh0

→ +∞, and hence

∫
H0

P (x|h0)dh0∫
V P (x|h)dh → 0 as N → ∞.

Thus almost surely

∫
H0

P (h0)P (x|h0)dh0∫
V P (h)P (x|h)dh → 0, and hence P (h ∈ H0|x) → 0, so P (h ∈ H1|x) → 1.
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C Correct values of k to replace those in ISO 20072 table D1

We have computed the correct values for the two-sided tolerance factors k in the tables in figures
29, 30, 31 and 32.
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N p = 0.75 p = 0.9 p = 0.95 p = 0.975 p = 0.99 p = 0.995 p = 0.999

2 11.759 20.571 26.249 31.247 37.083 41.066 49.295

3 3.805 6.159 7.66 8.996 10.559 11.632 13.869

4 2.619 4.164 5.146 6.02 7.045 7.752 9.223

5 2.151 3.409 4.205 4.913 5.744 6.316 7.507

6 1.904 3.006 3.707 4.33 5.062 5.565 6.614

7 1.775 2.757 3.402 3.973 4.646 5.107 6.068

8 1.695 2.584 3.187 3.724 4.353 4.787 5.688

9 1.637 2.464 3.032 3.543 4.144 4.557 5.417

10 1.592 2.377 2.914 3.404 3.982 4.379 5.205

11 1.557 2.316 2.822 3.292 3.852 4.237 5.037

12 1.528 2.268 2.752 3.204 3.748 4.123 4.903

13 1.504 2.228 2.696 3.131 3.66 4.025 4.787

14 1.483 2.194 2.653 3.073 3.587 3.946 4.693

15 1.466 2.166 2.616 3.023 3.524 3.875 4.61

16 1.45 2.14 2.584 2.982 3.471 3.814 4.536

17 1.437 2.117 2.555 2.948 3.425 3.762 4.473

18 1.425 2.098 2.531 2.919 3.385 3.716 4.416

19 1.415 2.08 2.509 2.893 3.352 3.677 4.367

20 1.405 2.065 2.489 2.869 3.323 3.641 4.321

21 1.396 2.05 2.47 2.847 3.296 3.609 4.279

22 1.388 2.037 2.454 2.827 3.273 3.582 4.243

23 1.381 2.025 2.438 2.809 3.252 3.558 4.21

24 1.374 2.014 2.424 2.793 3.232 3.536 4.18

25 1.368 2.004 2.412 2.778 3.214 3.516 4.153

26 1.362 1.994 2.399 2.763 3.196 3.496 4.128

27 1.356 1.984 2.388 2.749 3.18 3.478 4.104

28 1.352 1.976 2.378 2.737 3.165 3.462 4.084

29 1.347 1.969 2.368 2.726 3.152 3.447 4.065

30 1.343 1.962 2.359 2.715 3.139 3.433 4.048

31 1.339 1.955 2.35 2.705 3.127 3.419 4.031

32 1.335 1.948 2.342 2.695 3.115 3.406 4.016

33 1.331 1.942 2.335 2.686 3.105 3.394 4.001

34 1.328 1.937 2.327 2.677 3.094 3.383 3.988

35 1.324 1.931 2.32 2.669 3.085 3.372 3.974

36 1.321 1.926 2.314 2.661 3.075 3.362 3.962

37 1.318 1.921 2.308 2.654 3.067 3.352 3.951

38 1.315 1.916 2.302 2.647 3.058 3.343 3.939

39 1.313 1.912 2.296 2.64 3.05 3.334 3.929

40 1.31 1.908 2.291 2.634 3.043 3.326 3.918

41 1.307 1.903 2.285 2.628 3.035 3.317 3.908

42 1.305 1.899 2.281 2.622 3.029 3.31 3.899

43 1.303 1.896 2.276 2.617 3.022 3.303 3.891

44 1.301 1.892 2.272 2.611 3.016 3.296 3.882

45 1.299 1.889 2.267 2.606 3.009 3.288 3.873

46 1.296 1.885 2.263 2.601 3.003 3.282 3.865

47 1.294 1.882 2.259 2.596 2.998 3.276 3.858

48 1.293 1.879 2.255 2.592 2.992 3.27 3.85

49 1.291 1.876 2.251 2.587 2.987 3.264 3.843

50 1.289 1.873 2.248 2.583 2.982 3.258 3.837

Figure 29: Part 1 of corrected k table.
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N p = 0.75 p = 0.9 p = 0.95 p = 0.975 p = 0.99 p = 0.995 p = 0.999

51 1.288 1.871 2.244 2.579 2.977 3.253 3.83

52 1.286 1.868 2.241 2.574 2.972 3.247 3.823

53 1.284 1.865 2.237 2.571 2.967 3.242 3.817

54 1.283 1.863 2.234 2.567 2.963 3.237 3.811

55 1.281 1.86 2.231 2.563 2.958 3.232 3.805

56 1.28 1.858 2.228 2.56 2.955 3.228 3.8

57 1.278 1.856 2.226 2.557 2.951 3.223 3.794

58 1.277 1.854 2.223 2.553 2.947 3.219 3.789

59 1.276 1.851 2.22 2.55 2.943 3.215 3.784

60 1.275 1.849 2.217 2.547 2.939 3.21 3.779

61 1.273 1.847 2.215 2.544 2.936 3.207 3.774

62 1.272 1.845 2.212 2.541 2.932 3.203 3.769

63 1.271 1.843 2.21 2.538 2.929 3.199 3.765

64 1.27 1.841 2.207 2.535 2.925 3.195 3.76

65 1.269 1.84 2.205 2.532 2.922 3.191 3.755

66 1.268 1.838 2.203 2.53 2.919 3.188 3.752

67 1.267 1.836 2.201 2.527 2.916 3.184 3.747

68 1.266 1.835 2.199 2.525 2.913 3.181 3.744

69 1.265 1.833 2.197 2.522 2.91 3.178 3.739

70 1.264 1.831 2.195 2.52 2.907 3.175 3.736

71 1.263 1.83 2.193 2.517 2.904 3.172 3.732

72 1.262 1.828 2.191 2.515 2.901 3.169 3.728

73 1.261 1.827 2.189 2.513 2.899 3.166 3.725

74 1.26 1.825 2.187 2.511 2.896 3.163 3.721

75 1.259 1.824 2.185 2.508 2.893 3.16 3.718

76 1.258 1.822 2.184 2.507 2.891 3.158 3.715

77 1.257 1.821 2.182 2.505 2.889 3.155 3.711

78 1.257 1.82 2.18 2.503 2.886 3.152 3.708

79 1.256 1.818 2.179 2.501 2.884 3.15 3.705

80 1.255 1.817 2.177 2.499 2.882 3.147 3.702

81 1.254 1.816 2.175 2.497 2.88 3.145 3.699

82 1.253 1.815 2.174 2.495 2.877 3.142 3.696

83 1.253 1.813 2.172 2.493 2.875 3.139 3.693

84 1.252 1.812 2.171 2.492 2.873 3.138 3.69

85 1.251 1.811 2.169 2.49 2.871 3.135 3.687

86 1.251 1.81 2.168 2.488 2.869 3.133 3.685

87 1.25 1.809 2.167 2.487 2.867 3.131 3.682

88 1.249 1.808 2.165 2.485 2.865 3.128 3.679

89 1.249 1.807 2.164 2.483 2.864 3.127 3.677

90 1.248 1.805 2.162 2.481 2.861 3.124 3.674

91 1.247 1.805 2.161 2.48 2.86 3.122 3.672

92 1.247 1.804 2.16 2.478 2.858 3.12 3.669

93 1.246 1.802 2.158 2.477 2.856 3.118 3.667

94 1.246 1.802 2.157 2.476 2.854 3.116 3.665

95 1.245 1.801 2.156 2.474 2.853 3.114 3.663

96 1.244 1.8 2.155 2.473 2.851 3.112 3.66

97 1.244 1.799 2.154 2.471 2.849 3.111 3.658

98 1.243 1.798 2.153 2.47 2.848 3.109 3.656

99 1.243 1.797 2.151 2.469 2.846 3.107 3.654

Figure 30: Part 2 of corrected k table.
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N p = 0.75 p = 0.9 p = 0.95 p = 0.975 p = 0.99 p = 0.995 p = 0.999

100 1.242 1.796 2.151 2.468 2.845 3.106 3.652

102 1.241 1.794 2.148 2.465 2.841 3.102 3.648

104 1.24 1.793 2.146 2.463 2.839 3.099 3.644

106 1.239 1.791 2.144 2.46 2.836 3.096 3.64

108 1.238 1.79 2.142 2.458 2.833 3.093 3.636

110 1.237 1.788 2.14 2.456 2.83 3.09 3.633

112 1.237 1.787 2.138 2.453 2.828 3.087 3.629

114 1.236 1.785 2.137 2.451 2.825 3.084 3.626

116 1.235 1.784 2.135 2.449 2.823 3.081 3.622

118 1.234 1.782 2.133 2.447 2.82 3.079 3.619

120 1.233 1.781 2.131 2.445 2.818 3.076 3.616

122 1.232 1.78 2.13 2.443 2.816 3.074 3.613

124 1.232 1.779 2.128 2.441 2.813 3.071 3.61

126 1.231 1.777 2.127 2.439 2.811 3.068 3.607

128 1.23 1.776 2.125 2.438 2.809 3.066 3.604

130 1.23 1.775 2.124 2.436 2.807 3.064 3.602

132 1.229 1.774 2.123 2.434 2.805 3.062 3.599

134 1.228 1.773 2.121 2.433 2.803 3.06 3.596

136 1.227 1.772 2.12 2.431 2.801 3.057 3.593

138 1.227 1.771 2.118 2.429 2.799 3.055 3.591

140 1.226 1.77 2.117 2.428 2.798 3.054 3.589

142 1.226 1.769 2.116 2.426 2.796 3.051 3.586

144 1.225 1.768 2.115 2.425 2.794 3.05 3.584

146 1.224 1.767 2.113 2.423 2.792 3.047 3.581

148 1.224 1.766 2.112 2.422 2.791 3.046 3.58

150 1.223 1.765 2.111 2.421 2.789 3.044 3.578

152 1.223 1.764 2.11 2.42 2.788 3.042 3.575

154 1.222 1.763 2.109 2.418 2.786 3.041 3.573

156 1.222 1.763 2.108 2.417 2.785 3.039 3.571

158 1.221 1.762 2.107 2.416 2.783 3.037 3.569

160 1.221 1.761 2.106 2.415 2.782 3.036 3.567

162 1.22 1.76 2.105 2.413 2.78 3.034 3.565

164 1.22 1.759 2.104 2.412 2.779 3.033 3.564

166 1.219 1.758 2.103 2.411 2.778 3.031 3.562

168 1.219 1.758 2.102 2.41 2.776 3.03 3.56

170 1.218 1.757 2.101 2.409 2.775 3.028 3.558

172 1.218 1.756 2.1 2.408 2.774 3.027 3.556

174 1.218 1.756 2.099 2.407 2.772 3.025 3.555

176 1.217 1.755 2.098 2.405 2.771 3.024 3.553

178 1.217 1.754 2.097 2.405 2.77 3.022 3.551

180 1.216 1.753 2.097 2.404 2.769 3.021 3.55

185 1.215 1.752 2.094 2.401 2.766 3.018 3.546

190 1.214 1.75 2.093 2.399 2.763 3.015 3.542

195 1.214 1.749 2.091 2.397 2.76 3.012 3.539

200 1.213 1.747 2.089 2.394 2.758 3.009 3.535

205 1.212 1.746 2.087 2.393 2.756 3.007 3.532

210 1.211 1.745 2.086 2.39 2.753 3.004 3.529

215 1.21 1.743 2.084 2.388 2.751 3.001 3.525

220 1.209 1.742 2.082 2.387 2.748 2.999 3.522

Figure 31: Part 3 of corrected k table.
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N p = 0.75 p = 0.9 p = 0.95 p = 0.975 p = 0.99 p = 0.995 p = 0.999

225 1.209 1.741 2.081 2.385 2.746 2.996 3.52

230 1.208 1.74 2.08 2.383 2.744 2.994 3.517

235 1.207 1.739 2.078 2.381 2.742 2.992 3.514

240 1.207 1.738 2.077 2.38 2.74 2.99 3.512

245 1.206 1.737 2.075 2.378 2.739 2.988 3.509

250 1.205 1.735 2.074 2.377 2.737 2.986 3.507

255 1.205 1.735 2.073 2.375 2.735 2.984 3.505

260 1.204 1.734 2.072 2.374 2.733 2.982 3.502

265 1.204 1.733 2.071 2.373 2.732 2.98 3.5

270 1.203 1.732 2.069 2.371 2.73 2.978 3.498

275 1.203 1.731 2.068 2.37 2.729 2.977 3.496

280 1.202 1.73 2.067 2.369 2.727 2.975 3.494

285 1.202 1.729 2.066 2.368 2.726 2.974 3.492

290 1.201 1.729 2.065 2.366 2.724 2.972 3.49

295 1.201 1.728 2.064 2.365 2.723 2.971 3.488

300 1.2 1.727 2.063 2.364 2.722 2.969 3.487

310 1.199 1.725 2.061 2.362 2.719 2.966 3.483

320 1.199 1.724 2.06 2.36 2.717 2.963 3.48

330 1.198 1.723 2.058 2.358 2.714 2.961 3.477

340 1.197 1.722 2.057 2.356 2.712 2.958 3.474

350 1.196 1.72 2.055 2.354 2.71 2.956 3.471

360 1.196 1.719 2.054 2.353 2.708 2.954 3.468

370 1.195 1.718 2.052 2.351 2.706 2.952 3.465

380 1.194 1.717 2.051 2.35 2.704 2.95 3.463

390 1.194 1.716 2.05 2.348 2.703 2.948 3.461

400 1.193 1.715 2.049 2.347 2.701 2.946 3.458

425 1.192 1.713 2.046 2.343 2.697 2.941 3.453

450 1.191 1.711 2.043 2.34 2.693 2.937 3.448

475 1.189 1.709 2.041 2.337 2.69 2.934 3.444

500 1.188 1.707 2.039 2.335 2.687 2.93 3.44

525 1.187 1.706 2.037 2.332 2.684 2.927 3.436

550 1.187 1.704 2.035 2.33 2.681 2.924 3.432

575 1.186 1.703 2.033 2.328 2.679 2.922 3.429

600 1.185 1.702 2.031 2.326 2.677 2.919 3.426

625 1.184 1.7 2.03 2.324 2.674 2.916 3.423

650 1.183 1.699 2.028 2.323 2.672 2.914 3.42

700 1.182 1.697 2.026 2.32 2.669 2.91 3.415

750 1.181 1.695 2.024 2.317 2.665 2.907 3.411

800 1.18 1.694 2.021 2.314 2.662 2.903 3.407

850 1.179 1.692 2.02 2.312 2.66 2.9 3.403

900 1.178 1.691 2.018 2.31 2.657 2.898 3.4

950 1.177 1.689 2.016 2.308 2.655 2.895 3.397

1000 1.177 1.688 2.015 2.306 2.653 2.893 3.394

1500 1.172 1.68 2.004 2.294 2.638 2.876 3.374

Figure 32: Part 4 of corrected k table.
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