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Ultrafine aerosol particles are electrically charged in a range of devices to enable their detection, capture and
control. Direct ultraviolet (UV) photoionization enables increased charging of some nanoparticle materials
over alternative charging mechanisms such as diffusion charging, particularly in size ranges below 50 nm
diameter. The aim of this work is to provide modelling and simulation of ion and particle charge and
discharge processes, transport and collection in a continuous flow. A non-dimensional analysis indicates
regimes under which the photocharging process is dominated by diffusion, electric field transport, convection,
photoionization, or recombination. The computational fluid dynamics (CFD) model developed in this work
is the first to include equations capturing UV photoionization and detailed ion and particle recombination
theory. The validity of assumptions made for diffusional wall losses and external electric field action are
evaluated by comparison with 0D Numerical and 3D CFD models. Regimes are identified to distinguish the
level of detail required for aerosol transport and charging models.

I. INTRODUCTION

The study of aerosol particle photoionization has de-
veloped over the past several decades after it was discov-
ered that ultraviolet light could provide high efficiency
electric charging of aerosol particles1. Direct ultraviolet
(UV) photoionization enables increased charging of some
nanoparticle materials over alternative charging mecha-
nisms such as diffusion charging2–4. By directly charging
particles using sufficiently high energy photons, higher
particle charge states can be reached which are not lim-
ited by electrostatic repulsion with like-charged ions2,4.
The higher states of particle charging and collision free
charging mechanism provide opportunities for improve-
ments in sensing5–7, capture8 and control of aerosol par-
ticles.

After the initial development of particle photocharg-
ing theory9–12, aerosol photocharging studies to date
have largely focused on the experimental development
of polyaromatic hydrocarbon (PAH) sensors for indus-
trial hygiene or combustion control5,6,13–17 or to study
and enhance charging of nanoparticles below 20 nm
diameter2,4,8,18–21. Modelling of the photoionization pro-
cess has not seen significant improvement since the ap-
plication of the Fowler-Nordheim equation in a 0D case
with recombination by Maisels et al. in 200322–24.

In this work we model the behaviour of UV particle
charging and subsequent charge transport and collection
in a continuous flow, as a means to evaluate photoioniza-
tion theory and provide tools for quantitative evaluation
of ultrafine particle charge states. This work aims to
quantify the effect of a low-strength electric field which
is commonly employed to remove ions and thereby re-
duce particle-ion recombination after the photoionization
process. Non-dimensional analysis is used to indicate
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regimes under which the photocharging process is dom-
inated by diffusion, electric field transport, convection,
photoionization, or recombination. In particular, the ra-
tio of characteristic irradiation to recombination time de-
fines the regime when charge saturation is reached, which
is a function of particle size, concentration, material, and
radiation wavelength and intensity. The physical pro-
cesses of photoionization and recombination of ions and
particles are modelled in 3D computational fluid dynam-
ics (CFD) for the first time. The detailed terms obtained
in the 3D model in the charge balance equation are anal-
ysed to understand the range of validity of assumptions
made for diffusional wall losses and external electric field
in 0D analytical models. Recommendations are made
regarding the level of detail required for the prediction
of aerosol charging and capture methods over a range of
conditions used in experiments or the predictive design
of photocharging-based devices.

II. ANALYTICAL AND NUMERICAL MODELLING

A. Particle Charging Theory and Governing Equations

Particles are charged directly by absorbing incoming
UV photons and emitting electrons, which differs from
diffusive charging that relies on the process of ion-to-
particle collision or recombination. When photons of
sufficient energy are absorbed, the particles emit elec-
trons, which in turn collide with the surrounding air and
form gaseous ions. The remaining particle develops a
positively charged electrostatic field which increases the
photon energy required to release additional electrons.
Photoelectric emissions occur when the energy of an ir-
radiating photon is higher than the work function of the
particle surface. The original Fowler-Nordheim equation
for flat surfaces is extended to solve for the probability
of for photocharging spherical particles from charge level
q to q + 1, called a combination coefficient9,22, αq→q+1,
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NOMENCLATURE

c mean molecular velocity, m/s

D diffusion coefficient, m2/s

dp particle diameter, nm

~E electric field intensity, V/m

e electron charge, 1.602×1019 C

hν light energy, eV

I irradiation intensity, W/m2

i charge number and combination polarity

kB Boltzmann constant, 1.38e-23 m2kg s−2 K−1

Kc photoemission constant, J−2

L length of irradiated region, m

m empirically determined constant

N particle concentration, cm−3

n ion concentration, cm−3

Q volumetric flow rate, std L/min

q particle charge level

R tube radius, m

r distance to particle centre, m

S ion/particle source term

T temperature, K

U bulk flow speed, m/s

V chamber volume, m3, voltage, V

Ve elementary electron potential

~u velocity, m/s

Y quantum yield

Z particle electric mobility, m2V−1s−1

αq→q+1 combination coefficient for photoionization, s−1

β collision kernel for recombination, cm3/s

αC collision probability

δ limiting sphere radius, m

Φ work function, eV

τ characteristic time, s

θp photon flux absorbed by particle, s−1

ε0 vacuum dielectric constant, F/m

ϕ particle intermolecular potential

ˆ dimensionless parameter

c convection

d diffusional wall loss

e electric field

i ion

∞ flat surface

j ion charge level

o outlet

p particle, photocharging

r recombination, chamber radius, m

S source/sink

s charge saturation

CFD Computational Fluid Dynamics

NTP Normal Temperature and Pressure

RAM Random Access Memory

UV Ultraviolet

αq→q+1 = Kc

(
hν − Φq→q+1

)m︸ ︷︷ ︸
quantum yield

Iπd2
p

hν
.︸ ︷︷ ︸

photon
flux

(s−1)

(1)

The probability αq→q+1 is proportional to the product
of the photon flux, given by the ratio of the intensity
of UV irradiation, I, to specific photon energy, hν, and
the photoelectrically active area of the particle, πd2

p/4.
The specific photon energy, hν, must be greater than the
particle surface work function, Φ, to result in a positive
emission probability, and the proportionality function in-
creases with the excess specific energy raised to a power
m 7. The value of the exponent m has been determined
as around 2 for metals and a few non-metals12,18,25, while
one study has shown that m = 3 for diesel particles26.
The proportionality constant Kc is a material dependent
and empirically determined. Equation 1 is valid within
the Fowler-Nordheim regime (hν −Φ <∼ 1.5 eV). Outside
the Fowler-Nordheim regime, increasing photon energy
decreases photoelectric yield, a phenomenon which has
not yet been explained by physical principles27.

Once an electron is emitted, the work function, Φ, in-
creases according to:

Φq→q+1 = Φ∞ +
2Ve
dp

(
q + 1− 5

8

)
Ve =

e2

4πε0

(2)

where Φ∞ is the work function of a flat surface of the
same material and Ve is the elementary electron poten-
tial. The q+1 term represents the Coulomb force between
a released electron and the remaining charged particle
which must be overcome by the photon energy to emit
the electron. After each electron is released, the Coulomb

force increases and opposes further release. The
5

8
term

represents the difference in image force between a flat sur-
face and a spherical particle, to account for the fact that
the spherical particle has less attraction to the released
electron11.

As long as the incident photon energy, hν, is greater
than the work function, the particle continues to charge
to a maximum level of charges per particle, qmax, given
by:

qmax =
2dp

Ve
(hν − Φ∞)− 3

8
. (3)

The
3

8
term represents the image charge effect on qmax

and may be neglected for qmax � 1. The real maximum
charging is limited by recombination effects, deglomera-
tion or in extreme cases, Coulomb explosion2.
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Ion-particle Recombination

The emitted electrons from photoionization attach to
gas molecules (e.g. oxygen) or impurities within ∼10−5 s,
creating gaseous ions, referred to henceforth as ions1,28.
The electric mobility of the resulting ions is on the order
of 100 times greater than the remaining charged particles
in the size range of interest (10-300 nm), depending on
particle size and charge level. The gaseous ions may dif-
fuse back to and transfer charge to the charged particles,
thereby neutralizing them, as illustrated in Fig. 1. If ions
are removed due to diffusional wall losses or by capture
in a low-strength electric field, ions are less likely recom-
bine with the charged particles, thereby increasing the
particle charge level. In an irradiated region, both pho-
toionization and recombination take place, whereas in a
UV irradiation free region, only recombination is possi-
ble.

FIG. 1. Photoionization and recombination of particles en-
trained in flow.

Recombination proceeds according to the same col-
lision processes between ions and particles associated
with diffusion charging or neutralization. The collision
kernel, β, calculated using the method of Hoppel and
Frick29,30, accounts for diffusive and electrostatic forces
to quantify the rate of recombination. Efforts have been
made to develop improved collision kernel expressions to
supplant or extend the range of validity of the Hoppel
and Frick method31,32, sometimes including ion mobility
distributions33. These methods may be readily employed
in this model if required by the application. For details
of the collision kernel calculation used in this work, see
Reischl et al.34 which contains a useful summary of the
Hoppel and Frick29 method which is summarized as

β =
πδ2c αC(q)

exp(
ϕ(i(q), δ)

kBT
) +

δc αC(q)

4Di

∫ 1

0
exp(

ϕ(i(q), δ/x)

kBT
) dx

ϕ(i, r) = Ve

(
i

r
−K (dp/2)3

2r2(r2 − (dp/2)2)

)
(4)

where the limiting sphere radius, δ, is a function of the
mean free path of the ions34, c is the mean molecular
velocity, and αC is the ion-particle collision probability
which depends on charge and distance. The potential ϕ
is a function of the material and particle diameter, where
K = 1 for a perfectly conducting particle, r is the dis-
tance from the centre of the particle and i is the number
and polarity of particle charges such that i is positive if
the ion and particle are of the same polarity. A collision
of an ion with a particle assumes that the ion transfers
its charge to the particle so that the population balance
for either leads to a source term in the concentration
equations.

Governing Equations

Photoionization changes ion and particle charge states,
acting as a source term for ions and charged particles,
which can be recombined or transported by convection,
diffusion or electric forces. The steady state conservation
equations for the number of particles of a given charge
q, and ions of charge j in a differential control volume is
given as:

∇ · (~uNq) = ∇ · (Dp∇Nq) +∇ ·
(
Zq ~ENq

)
+ Sq,α + Sq,β

(5a)

∇ · (~unj) = ∇ · (Di∇nj) +∇ ·
(
Zj ~Enj

)
+ Sj,α + Sj,β

(5b)

where Nq is the concentration of particles of a given size
and material at q charge level, nj is the concentration
of ions with j charge level, ~u is the velocity of the sur-
rounding fluid, D is the ion or particle or ion diffusivity,
and S are the source/sink terms for photocharging, α,
and recombination, β. The contribution to the particle
balance due to the applied electric field transport is rep-
resented by particle electric mobility, Z, subject to the

electric field, ~E (Eq. 5a).
The source/sink terms S represent the rate of increase

or decrease in the number concentration of the particles
or ions owing to either photoionization or recombination
via particle to ion collisions. For example, if a nega-
tive ion, n−1, attaches to a particle with a single posi-
tive charge, N+1, the particle reduces to a neutral charge
level, N0, and the ion returns to a neutral gas molecule.
Here we assume that the concentrations of neutral gas
molecules greatly exceed those of ions or charged par-
ticles, so that their concentrations remain unchanged.
Only singly, negative ionized gas molecules of monodis-
perse mobility represented by the number concentration
n−1 are considered: the photoionisation process causes
the emission of (negative) electrons, which are assumed
to immediately collide with a gaseous molecule, generat-
ing a negative ion. Assuming a monodisperse aerosol of
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diameter dp and a single material type, the source terms
in Eq. 5 are given as follows:

Sq,α = αq−1→qNq−1 − αq→q+1Nq

Sq,β = βq+1→qNq+1n−1 − βq→q−1Nqn−1

(6a)

S−1,α =

qmax∑
q=qmin

αq→q+1Nq

S−1,β = −
qmax∑
q=qmin

βq→q−1Nqn−1

(6b)

where αq→q+1 is the photoionization-related combination
coefficient for photoionization calculated from Eq. 1, and
βq→q−1, is the so-called collision kernel for the recombi-
nation of an ion with a particle of charge q. The collision
kernel is a function of particle diffusivity and interparti-
cle potential, and is calculated using Eqn 4. Equations 5
and 6 are solved for all charge levels, q, between a min-
imum and maximum, where the minimum charge is set
sufficiently negative to include the minimum expected
charge level and neutral particles. The full governing
equations may be solved using 3D numerical methods,
as described in section II C, but a simplified model sug-
gested by Maisels et al.22 is considered below as a refer-
ence case, as it can be solved analytically.

B. Simplified Analytical Model

Part of the difficulty in solving the conservation equa-
tions comes from the non-linearity in the source terms.
In the present paper, we take a limit case considered by
Maisels et al. by assuming that the charges per particle
are large and positive22. In that case, it is possible to ne-
glect the image terms, and the combination coefficients
can be expressed as:

αq→q+1 =
KcI

hν

πd2
p

4

(
hν − Φ∞ −

2qVe
dp

)m
(7)

βq→q−1 = 4πDi
Ve
kBT

q (8)

Further, the source terms of Eqns. 6 can be approx-
imated as moments in the charge distribution, in the
limit of large number of charges per particle, so that the
sums are replaced by a function of mean charge per par-
ticle q, and total number of particles N , that is, Sα =∑
q α

q→q+1Nq = αN , and Sβ = −
∑
q β

q→q−1Nqn−1 =

−βNn−1. An analytical solution can be obtained for the
mean charge qN =

∑
q qNq = n−1 for steady plug flow

conditions with a constant total number concentration of
particles N , where ~u = U~ex:

U
dn−1

dz
= Sα + Sβ . (9)

Maisels et al. considered the limits to Eq. 9 for (a) zero
recombination losses, so that Sβ = 0, and (b) steady
state conditions after a sufficient convection length (or

time) under irradiation, where
dn−1

dz
= 0. For the zero

recombination case we have:

qz→0 =
z

Uτα
=

t

τα

τα =

[
KcI

hν

πd2
p

4
(hν − Φ∞)

m

]−1 (10)

where the residence time is defined as t = z/U . The ir-
radiation time, τα = (Sα,z→0)−1, is the inverse of the
characteristic rate of photon generation, which is the
product of the the photon rate absorbed by the parti-

cles,
1

τν
=

Iπd2
p

4hν
, and the quantum yield at zero mean

charge, Y = Kc (hν − Φ∞)
m

, where τα = τν/Y . After
a sufficient residence time under irradiation, τs, a steady
state level of charges per particle, qs, is found when either
the extent of recombination equals that of photocharg-
ing, as obtained from setting the left hand side of Eq. 9
to zero, so that Sα +Sα = 0, or when the Coulomb limit
is reached. Using m = 2 and expanding the brackets in
Eq. 7, the mean steady state charge can be obtained as:

qt→∞ = qs = qmax

(
1 +

√
Âv

)−1

Âv =
4hνDiN

KcIVekBT

(11)

where Âv represents the ratio of recombination over pho-
toionization and recombination must be considered when
Âv � 0. The full equation for the mean charge has been
derived by Maisels et al.22 as:

q = qmax

tanh

( √
Âv

qmaxτα
t

)

tanh

( √
Âv

qmaxτα
t

)
+
√
Âv

. (12)

The square root term arises due to the factor m = 2,
which leads to an expansion of the quadratic term in the
solution of the differential equation.

Characteristic Saturation Time

By equating Eqs. 10 and 11 with each other, we define
a characteristic charge saturation time, τs, after which
the photoionization rate matches the recombination rate
and maximum charging occurs:
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TABLE I. Characteristic times

Characteristic Characteristic

times times

(ions) (particles)

Photocharging τp,i =
n−1/N

α

Recombination τr,i =
1

βN

Diffusion τd,i =
R2

4Di
τd,p =

R2

4Dp

Electric field τe,i =
R

ZiE
τe,p =

R

ZpE

Convection τc,i =
L

U
τc,p =

L

U

τs =
qmaxτα(

1 +
√
Âv

) . (13)

The characteristic time, τs, therefore represents a min-
imum residence time to reach maximum particle charg-
ing. In a steady plug flow situation with volumetric flow
rate across an area, Q = UA, this implies a minimum
volume Vmin = Qτs to reach maximum particle charg-
ing. The dimensionless average charge per particle, q, of
Eq. 12 relative to the steady state level, qs, of Eq. 11 is
shown as a function of the relative charging time, t/τs,
in Fig. 2, along with the limits from Eqs. 10 and 11. The
dimensionless average charge level during the transition
to steady state does not differ significantly for concentra-
tions 104 − 107 cm−3, when recombination is significant.

The mean charge is shown as a function of dimensional
time and particle concentration in Fig. 3 for typical at-
mospheric particle concentrations. The average charge
per particle decreases with increasing concentration due
to the increased likelihood of recombination. The dashed
lines in Figs. 2 and 3 are from Eqns. 10 and 11.

Characteristic Times and Dimensionless Parameters

In the present paper, we consider the effects not only of
convection, charging and recombination, but also electric
field transport and wall loss via diffusion. Therefore, it is
useful to consider the characteristic times associated with
the effect of each of the charging and transport mecha-
nisms to identify which mechanisms are fast or slow for
any given set of parameters. Characteristic times are
defined for convection, τc, photocharging, τp, recombi-
nation, τr, wall loss, τw, and electric field transport, τe,
and are summarized in Table I. For example, the ratio of
characteristic times for ion wall loss due to electric field
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FIG. 2. Dimensionless average charge per particle, q/qs, as
a function of dimensionless time, τc/τs for a range of concen-
trations.
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for a range of concentrations using Eqs. 10 and 11. Char-
acteristic time to charge saturation, τs, is indicated by the
vertical lines. The curved lines are generated from Eq. 12.
Concentrations N given in [cm−3].

relative to the diffusional wall loss is:

τ̂ed,i =
τd,i

τe,i
=
ZiER

4Di
. (14)

For τ̂ed,i � 1, ion capture at the walls due to electric
field transport is slow relative to diffusional ion loss. For
τ̂ed,i � 1, electric field transport is fastest and dominant.
Similar relations can be used to determine the relative
effect of diffusional loss of ions and particles, for example,
crucial in determining operating conditions of a given
device.

The total charge flow can be estimated by ratios of
the different characteristic times at the limits of, for ex-
ample, full charging, where τc > τs. The number rates
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and electric currents are shown in Table II. For exam-
ple, io,p = QNqe gives the analytical limit estimate of
the electric current available due to the flux of particles
through the outlet, useful for a particle measurement de-

vice, while ie,i = QqNe
τc,i

τe,i
gives the corresponding mag-

nitude of current due to the flux of trapped ions in an
electric field during the photoionization process. The ef-
fect of electric field strength on both currents io,p and ie,i

are discussed in Section III using 0D numerical and 3D
CFD models.

The dimensionless parameters give insight into the rel-
ative effects of particle and ion charging and transport
mechanisms. They allow a simple estimation of particle
and ion flux and electrical current due to the relative ef-
fects of convection, diffusional wall loss, and capture in
an electric field. However, these estimates do not directly
give the exact solutions for a given flow situation.

Effect of Ion Loss on Particle Charge State

Ions are less likely to recombine with particles if they
are removed due to diffusional wall losses or electric field
capture. Removing ions can significantly enhance parti-
cle charging. The following describes a simplified analyt-
ical method for calculating diffusional wall loss or electric
field capture of ions to determine if ion loss has a signif-
icant effect on particle charge state.

Equations 5a and 5b may be rearranged assuming no
particle wall losses and plug flow conditions, where ~u =
U~ex:

U
d

dz
(qN − n−1) = +

4Di

R2
n−1 +

ZjE

R
n−1. (15)

Integration of Eq. 15 followed by linearization due to the

small terms yields qN = n−1

(
1 + B̂v + Ĉv

)
, where the

terms B̂v and Ĉv are given as

B̂v =
τc
τd,i

=
4Di

R2
τc, (16a)

Ĉv =
τc
τe,i

=
Z−1E

R
τc (16b)

where τd,i and τe,i are the characteristic times for diffu-
sional wall loss and electric field loss, respectively. Pa-
rameters B̂v and Ĉv represent the fraction of ions lost
due to diffusion and electric field transport over time,
respectively, valid for Pouiseuille flow in a cylindrical ge-
ometry. The diffusion and electric field loss terms are
assumed to be small, so that n−1 is taken as identical to
that of the steady state solution n−1,0 = q0N obtained in
Eq. 11. The corrected mean particle charge is obtained
for τc > τs, assuming τs is small:

q = qmax

1 +

√
Âv

1 + B̂v + Ĉv

−1

. (17)

The assumption of small ion losses and no particle losses
is valid for low levels of wall loss relative to the number
of remaining ions, n−1.

If diffusional loss or electric field capture of ions is sig-
nificant, that is B̂v � 0 or Ĉv � 0, a numerical model
is recommended. If B̂v ≈ 1 or Ĉv ≈ 1 or higher, ion
capture is of the same order as the remaining ion flux,
therefore the present linear approximation breaks down
and a numerical or CFD model must be implemented.
To determine if wall loss has a significant effect on the
particle charge level, Eq. 17 may be solved with and with-
out the effect of wall loss. For example, the ratio of mean
particle charge with wall losses relative to recombination,
B̂r, is defined as follows:

B̂r =
1 +

√
Âv

1 +

√
Âv

1 + B̂v

=
q (recomb + wall loss)

q (recomb)
(18)

where the total residence time is function of flow rate and
geometry. Analogous parameters are summarized in Ta-
ble III for the effect electric field loss and photoionization
on the mean particle charge level, q. For Âr ≈ 1, recom-
bination may be neglected, for B̂r ≈ 1, wall loss may be
neglected, and for Ĉr ≈ 1, electric field losses may be
neglected. The effect of recombination, diffusional wall
loss, and electric field capture relative to photoionization
can be estimated by the ratio of B̂r or Ĉr to Âr.

A comparison of the the analytical model described
above with the solution of the numerical, 0D equations is
shown in Figure 4. The average steady state charge per
particle in Eq. 17 decreases with increasing concentration
owing to an increase in recombination. The 0D numer-
ical model follows the work by Maisels et al.22,23 and
from Appendix B, and does not require the assumption
of large charges for the mean charge approximation, in-
stead solving for the concentration of each class of charge
q. The analytical model described in section II B begins
to deviate from the 0D numerical model when recombina-
tion is high enough to reduce average charge per particle
to +1 average charger per particle. However, for charge
levels above +1 average charge per particle, the analyt-
ical and numerical models agree. Recombination must
be included at concentrations above around N = 1× 102

cm−3. Figure 4 also shows an increase in steady state
charges per particle with logarithmically increasing elec-
tric field strength (0.008 < E < 0.8 V/cm) according to
Eq. 17. While Fig. 4 shows the increasing effect of electric
field on q, the assumptions in the analytical solution for
electric field are no longer valid at electric field greater
than E ≈ 0.15 V/cm which corresponds with Ĉv = 0.75
in this case.
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TABLE II. Analytical estimates of ion and particle number flow rate and electrical current

Ion Particle

Number Rate [#
s

] Electric Current [A] Number Rate [#
s

] Electric Current [A]

Outlet jo,i = Qq̄N io,i = jo,ie jo,p = QN io,p = jo,pqe

Diffusion jd,i = jo,i
τc,i
τd,i

id,i = io,i
τc,i
τd,i

jd,p = jo,p
τc,p
τd,p

id,p = io,p
τc,p
τd,p

Electric field je,i = jo,i
τc,i
τe,i

ie,i = io,i
τc,i
τe,i

je,p = jo,p
τc,p
τe,p

ie,p = io,p
τc,p
τe,p

TABLE III. Dimensionless parameters

Parameter Effect on charge

state relative

to recombination

Photocharging Âv =
4hνDiN

KcIVekBT
Âr = 1 +

√
Âv

Diffusion B̂v =
τc,i
τd,i

B̂r =
1 +

√
Âv

1 +

√
Âv

1 + B̂v

Electric field Ĉv =
τc,i
τe,i

Ĉr =
1 +

√
Âv

1 +

√
Âv

1 + Ĉv

10
−1

10
1

10
3

10
5

10
7

10
9

10
−1

10
0

10
1

10
2

Particle concentration,  N (cm−3)

A
ve

ra
ge

 c
ha

rg
e 

pe
r 

pa
rt

ic
le

, q
s

 

 

Analytical
No recombination
Analytical (no E)
0D Numerical

Increasing E

FIG. 4. Steady state charge for a monodisperse, single-
component aerosol as a function of concentration. Logarith-
mically increasing electric field strength (0.008 < E < 0.8
V/cm)

Limitations of Analytical Model

The formulations of the analytical equations and di-
mensionless parameters assume a large, positive number
of charges per particle and low ion wall losses relative
to ion concentration. The main assumption within the
charging equation (Eq. 7) is that the image charge has

a negligible effect, which is true during the low charging
regime q � 1, otherwise the effect of image charge is
significant and must be included. The main assumption
in the recombination equation (Eq. 8) is that the charge
level of the particle dominates the electrostatic attrac-
tion and the image force can be neglected, true for q > 1.
In reducing the governing equations of Eq. 5 to the ion
conservation in Eq. 9, large, postive charges per particle
must be assumed. The assumptions that n−1 is constant
in the integration of Eq. 15 and that the ion losses are
small in the formulation of Eq. 17 are no longer valid at
high levels of wall loss relative to the remaining ions.

Although the analytical model is useful in thinking
through the processes involved, and in quick calculations
for sizing and field intensity for particle charging, numer-
ical models are necessary to solve the conservation equa-
tions whenever the assumptions used in its derivation are
violated, and losses are no longer linear.

C. 3D Computational Fluid Dynamics Model

Equations for UV photoionization and ion/particle re-
combination are coupled with ion/particle advection and
diffusion and electric field transport in three-dimensional
CFD for the first time. Upwards of fifty simultaneous
species transport equations can be solved if necessary to
allow the resolution of local charge distribution and av-
erage charges per particle for multiple charge states. Re-
sults from the CFD model are verified using data from
existing literature29 and a 0D numerical model described
in Maisels et al.22,23 and Appendix B. Verification results
are shown in Appendix B.

3D CFD Equations

The velocity and pressure fields are solved in the form
of the steady-state Navier Stokes equations in three di-
mensions. In this case, the carrier gas is considered to be
air at NTP. The charged particles and ions are assumed
not to affect the conservation equations of the carrier gas,
that is, constant air density and viscosity, and negligible
electro-hydrodynamic effects. The calculated flow field is
imposed on the local particles and ions. The steady con-
servation equations for particle and ion concentrations is
solved, as shown in Eqns. 5 and 6 for negatively charged
ions and all particle charge levels, q, between qmin and
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qmax. The iteration of the concentration equations is en-
abled by the objected-oriented nature of C++ and user
access to the source code and solvers of the CFD pack-
age used, OpenFOAM. The minimum charge level, qmin,
is set as -5 charges per particle, which is sufficiently low
such that the concentrations of all neutral and negatively
charged particles in this system are calculated. The max-
imum possible charge level from Eq. 3. is calculated at
runtime to determine qmax from Eq. 6b and the necessary
number of simultaneous, coupled concentration transport
equations is solved for each charge level, an approach
which has not previously been reported.

A Laplacian equation is applied to calculate the po-
tential field based on the voltage, V , at the boundaries.

The low intensity electric field, ~E, is calculated as the
gradient of the potential field, as follows, and applied to
Eq. 5.

∇2 (ε0V ) = 0

~E = ∇ · V
(19)

Geometry and Mesh

The geometry under consideration for a particle
charger and detector is a 20 cm long cylinder of 25 mm
diameter. The outer cylinder makes up one electrode
and the second is a concentric rod of 1.5 mm in diam-
eter and the full length of the cylinder. The computa-
tional mesh consists of a 1/8th of a cylinder due to the
axisymmetric nature of the solution. Figure 5 shows a
distribution of charges per particle and illustrates the
geometry of the case under consideration. The flow pro-
ceeds from the circular inlet to the outlet, along the ax-
ial direction. The photoionization process is assumed
to take place as a uniform volumetric source throughout
the cylinder, increasing the charges per particle. The as-
sumption of uniform light intensity is an idealisation of
a chamber without geometric effects or attenuation, such
as by application of collimated light with negligible volu-
metric absorption. The light intensity properties can be
tailored to specific geometric configurations or operating
conditions. An electric field is applied which transports
charged particles towards the centre rod, thereby increas-
ing the concentration of highly charged particles near the
rod. The bias voltage may be reversed to drive particles
towards the outer cylinder and attract ions towards the
center rod. The geometry under consideration yields 2D
axisymmetric results. Therefore, although the governing
equations are solved in 3D, they could be optimized for
an axisymmetric solution. However, by solving in 3D,
the model may be readily adapted to geometries with 3D
effects.

The governing equations are converted to steady-state
linear algebraic equations using OpenFOAM v.4. Based
on a test of grid independence, the computational mesh
consists of 230,400 cells which are graded near walls

FIG. 5. Sample distribution of charges per particle during
convective flow under irradiation. The charge level increases
in the axial flow direction due to photoionization.

where the highest concentration gradients occur. The so-
lution time depends on the number of coupled transport
equations and charge level per particle. For a maximum
charge of 14 charges per particle, a solution is computed
in 11.5 minutes on a single core of an 8 core processor
(Intel R© CoreTM i7 3.40 GHz) with 16GB of RAM run-
ning on openSUSE 13.1. The computational mesh is not
yet optimized and parallel processing can readily be in-
corporated if necessary.

Boundary and Operating Conditions

Initially neutral, monodisperse particles are entrained
in a flow of air at NTP. A uniform velocity profile and
fixed, neutral nanoparticle concentration is selected at
runtime and prescribed at the inlet. Boundary conditions
of zero gradient are applied for velocity and concentration
of air at the outlet and set to zero (or no-slip) at the
walls. The boundary conditions for momentum, particle,
ion and carrier concentration and voltage equations are
summarized in A1.

The effect of UV light is represented by intensity, I
(coupled with Kc), light energy, hν, particle work func-
tion, Φ∞, and particle size as defined by Eqns. 1 and 2
applied as uniformly distributed source terms. The ra-
diation is modeled as from a 185 nm (6.69 eV) wave-
length source, greater than the work function of most
solids. The particle diffusion coefficient is calculated as
a function of particle diameter using the mechanical mo-
bility and Cunningham slip correction factor as outlined
in Ref.35 for air at NTP. The particle electrical mobil-
ity is a linear function of the diffusion coefficients for a
given temperature35. A uniform ion mobility distribution
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is assumed as using properties gathered from Wieden-
sohler et al.36 (1.6×10−4 m2Vs−1) which is within the
range of more recent ion mobility distribution measure-
ments from Maißer et al.28(1.5-1.9×10−4 m2Vs−1) and
Steiner & Reischl37 (0.9-2.5×10−4 m2Vs−1). The model
parameters and operating conditions are summarized in
Table IV.

TABLE IV. Model parameters and operating conditions

Ion diffusivity36, Di 4.04×10−6 m2/s

Ion electrical mobility36, Z−1 1.6×10−4 m2Vs−1

Mean particle diameter, dp 20 nm

Particle concentration, N 106 cm−3

Flow rate, Q 1 std L/min

Mean velocity, U 3.45×10−2 m/s

Convection time, τc 5.8 s

Empirical constant, m 2

Photoemission constant, KcI 1.9×1035 J−1m−2s−1

Light energy, hv 6.69 eV (185 nm)

Work function, Φ∞ 4.95 eV

III. DISCUSSION

Equations for photocharging, recombination and trans-
port of ultrafine particles are solved for continuous flow
through a cylindrical chamber using 0D numerical and
CFD models. For the conditions outlined in Table IV,
with no electric field, the particles are clearly saturated
with charge as τc = 5.8 s > τs = 1 s, and recombination
is a dominant flux, as Âr = 10.9. Diffusional ion wall loss
is significant, as B̂r = 1.24 at zero bias voltage. Above
around 0.25 V (0.2 V/cm), the electric field capture of
ions is of the same order as the remaining ions, since at
that voltage, Ĉv = 0.9. This regime requires a numerical
or CFD model to quantify the effects of ion capture on
particle charging.

Figure 6 shows a 2D slice of the computational domain
where particles are flowing in the positive z-direction and
a voltage of 1 V (0.8 V/cm) is applied between the top
and bottom electrodes. The concentration of ions of -1
charge and total particle concentration are shown for an
inlet concentration of 106 cm−3 neutral particles of 20 nm
diameter. The ions generated during the photocharging
process are transported and captured at the top, posi-
tive electrode and the charged particles are transported
towards the bottom, negative electrode. Each remaining
2D slice shows the concentration of particles at a given
mean charge, q, from 0 to 6 charges per particle. Particles
are charged to higher charge levels as the flow proceeds
in the z-direction while the particles are simultaneously
transported to the bottom, negative electrode. The par-
ticles near the inlet are held at lower charge levels at 1
or 2 charges per particle due to the presence of ions in
those areas.

FIG. 6. (Top two panels) Steady-state concentration of to-
tal ions, n−1, generated from photoionization of particles, N ,
across half-symmetry plane for the domain. (Bottom seven
panels) Corresponding number concentration of particles with
charge levels from 0 to 6. Operating conditions are: inlet ve-
locity of 0.0345 m/s in the +z direction, particle inlet concen-
tration of N =106 cm−3, neutral particles with a monodis-
perse diameter of 20 nm. A voltage of 1 V is applied between
the top (cylinder) and bottom (rod) electrode.

A positive bias voltage indicates that the outer cylin-
der has a positive potential relative to the rod, and the
reverse is true for a negative bias voltage. For a range
of bias voltages, the total current, ie, is calculated from
the total (diffusive) flux of ions and particles integrated
at the interface of the rod and outer cylinder walls. The
outlet current, io, is also calculated from the total (dif-
fusive plus convective) flux of positively plus negatively
charged ions passing through the outlet, multiplied by
their respective charges.

The results for the 0D numerical model and 3D CFD
model with positive and negative biases are shown in
Fig. 7. At bias voltages around 1 V (0.8 V/cm), only
the highly mobile ions are transported to either the rod
or cylinder leaving less opportunity to recombine with
the charged particles, and resulting in higher currents
for both ie and io. Every positive charge on a particle
creates an equal and opposite charge on a negative ion,
therefore at voltages around 1 V (0.8 V/cm), ie and io are
of equal magnitude. As the bias voltage increases above
approximately 2.5 V (2 V/cm), the flux of charged par-
ticles near the rod or outer cylinder begins to dominate,
thereby decreasing the outlet current, io. The current,
ie, continues to increase as the negatively charged ions
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are collected at the rod and positively charged particles
are collected at the outer cylinder, both contributing to
current ie as shown in Fig. 8. The numerical model does
not capture the differences between a positive and neg-
ative bias. At low, negative bias voltage, below around
1 V (0.8 V/cm), ions preferentially diffuse to the outer
cylinder rather than the centre rod due to the difference
in electrode surface area creating an effective current. At
low bias voltage, ion diffusion is faster than the electric
field flux. At 0.05 V (0.04 V/cm), the calculated ratio of
characteristic times in Eq. 14, τ̂ed,i = 0.5, whereas at 1
V τ̂ed,i = 10 and the electric field flux dominates.

The average charge per particle and charge distribution
at the outlet are shown in Fig. 9 and Fig. 10, respectively,
as a function of bias voltage. Particle charge levels can
be controlled by changing the bias voltage, thus inducing
more or less direct removal of ions from the control vol-
ume, resulting in correspondingly different opportunity
for recombination. At high voltages, charged particles
as well as ions can be removed, thereby changing the
charge distribution and mean charge at the outlet. In
these cases, the mean charges can be controlled between
2 and 7 charges per particle. At low bias voltages, be-
low around 1 V (0.8 V/cm), the calculated local charge
per particle using the 3D CFD model increases signifi-
cantly nearest the walls where the highest diffusion loss
of ions occurs as shown in Figs. 10a and b. As a re-
sult, the rate term of the 0D numerical model does not
adequately capture the effect of diffusional ion loss on
average charge per particle at low bias voltages. At bias
voltages from 1 V (0.8 V/cm) to 10 V (8 V/cm), ions
are captured quickly, particles reach higher charge states
and are transported towards the the negative electrodes
as seen in Figs. 10b and c. At high bias voltages, above
around 10 V (8 V/cm), highly charged particles local-
ized near the negative electrode are captured more read-
ily by the applied electric field as seen in Fig. 10d, leading
to a lower average charge per particle at the outlet and
higher current, ie, relative to the 0D numerical model.
The latter does not solve local charge levels, but rather
a rate term for the electric field capture as described in
Table B1 of Appendix B. Without a local resolution of
charge levels, the 0D numerical model cannot adequately
capture the current or particle charging at low and high
bias voltage conditions.

IV. CONCLUSIONS

The present work introduces the first analysis of
simultaneous photoionization, recombination, advec-
tion/diffusion and electrical field transport of multiply-
charged particles through a steady state control volume
using analytical and numerical techniques. Analytical
equations are used to define characteristic times for pho-
toionization, recombination, convection, diffusion, and
electric field transport mechanisms allowing the formula-
tion of a range of dimensionless parameters to understand
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lines mark the voltages at which the charge distributions are
presented in Fig. 10.
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FIG. 10. Charge distribution of discrete particle charges at the chamber outlet as a function of radial distance from the
centerline at four different voltages; (a) 0 V, (b) 1 V, (c) 10 V, and (d) 40 V between the rod (I.D., positive electrode) and
cylinder (O.D., negative electrode).

the relative contributions to the particle flux balance. Di-
mensionless parameters are defined to determine when
the effects of electric field or diffusional ion or particle
loss require a more computationally expensive numeri-
cal model or when the effects may be neglected. The
assumptions for the analytical model are shown to be
valid for a range of simple conditions of interest, as well
as for system dimensioning. However, a more detailed
numerical model including detailed charge accounting is
required for average levels of charge per particle at or
below +1 charges, as well as high ion losses. The compu-
tational fluid dynamics (CFD) model developed in this
work is the first to include equations capturing UV pho-
toionization and detailed ion and particle recombination
theory. The 0D numerical and 3D CFD models agree
well for a large range of electric field strengths for the
simple geometry of concentric cylinders, but differences
appear at both high (above ≈8 V/cm) and low (below
≈0.8 V/cm) electric field strengths, where the detailed
spatial resolution rather than a simple linear 0D model
becomes necessary. The 0D numerical and 3D CFD re-
sults both demonstrate that the average particle charge
level, and the resulting charges at the electrodes and ends
of the system can be controlled by changing the bias volt-
age. These features can be used in the development of
a particle discrimination and measurement system, and
will be explored in future papers.
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Appendix A: CFD Model Boundary Conditions
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TABLE A1. Boundary conditions for the conservation equations

Type Momentum Concentration Voltage

Inlet u = U ,
∂p

∂n
= 0 N0 = N0,in, Nq 6=0 = 0, ni = 0

∂V

∂n
= 0

Outlet
∂u

∂n
= 0, p = 1.01325 bar

∂Nq

∂n
= 0,

∂ni

∂n
= 0

∂V

∂n
= 0

Rod u = 0,
∂p

∂n
= 0 Nq = 0, ni = 0 V = Vr

Outer cylinder u = 0,
∂p

∂n
= 0 Nq = 0, ni = 0 V = Vh

Angular Symmetry cyclic cyclic cyclic
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Appendix B: Model Verification

The 0D numerical model is verified against existing nu-
merical models from Hoppel and Frick38, and Maisels et
al.22. In the 0D numerical model, the divergence terms
for advection, diffusion and electric field transport in
Eq. 5 are replaced by rate terms as shown in Table B1.

TABLE B1. Terms in governing equations

3D CFD 0D numerical

Particles ∇ · (~uNq)
dNq

dt

∇ · (Dp∇Nq) −4Dp

R2
Nq

∇ ·
(
Zq
~ENq

)
−ZpE

R
Nq

Ions ∇ · (~unj)
dnj

dt

∇ · (Di∇nj) −4Di

R2
nj

∇ ·
(
Zj
~Enj

)
−ZjE

R
nj

0D NUMERICAL MODEL

The 0D numerical model is compared against a nu-
merical model from Hoppel and Frick38 for the concen-
tration of ions and charged particles over time and shown
in Fig. A.1. There is a constant generation rate of posi-
tive (n+) and negative ions (n−) in a 0D case. The ions
transfer charge to the particles through a diffusion charg-
ing process. The differences in results at the steady state
values relate to the assumptions made in the collision
kernels of Hoppel and Frick38. The 0D numerical model
contains a more detailed calculation of mean free path
(Reischl et al. 199634) and other properties.

An analytical equation from Wiedensohler39 estimates
the Fuchs distribution found after the recombination pro-
cess reaches an equilibrium. The fractions of multiply
charged particles are calculated using the 0D numerical
model with ion mobilities from Wiedensohler39. Fig. A.2
shows the 0D numerical model matches Fuchs equilib-
rium charge distribution after a sufficient charging time.
The differences relate to the assumptions made in the
analytical equation of Wiedensohler39.

Charge level per particle is shown as a function of time
for a range of concentrations in Fig A.3. The aerosol
particles are irradiated with UV light which causes an
increase in charges per particle. At high concentra-
tions, recombination is more likely, thereby decreasing
the charging per particle. An equilibrium state is reached
in which photoionization rate matches the recombination
rate. The aerosol is no longer irradiated beyond t=0.71s,

FIG. A.1. Asymmetric diffusion charging of particles (Dp =
200nm) for ionization rate 105 ion pairs cm−1 s−1.

FIG. A.2. 0D numerical - Asymmetric diffusion charging of
particles (Dp = 200 nm) for ionization rate 105 ion pairs cm−1

s−1. Photoionization is turned off in this case. The fraction
of multiply charged particles in a Fuchs distribution are esti-
mated using an analytical equation from Wiedensohler, 1988
(dotted lines)39.

therefore recombination dominates. The present 0D nu-
merical model shows excellent agreement with the nu-
merical model of Maisels et al.22.

COMPUTATIONAL FLUID DYNAMICS

Equations for photoionization and recombination the-
ory are applied in 3D CFD and verified against existing
numerical models from Hoppel and Frick38 and the 0D
numerical model. The equations were first applied in a
1-D CFD model in which boundary effects were neglected
for comparison.

Results from the numerical model from Hoppel and
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FIG. A.3. Photoionization is combined with the diffusion
charging process. The 0D numerical model corresponds to the
dots of Maisels et al. which represent the numerical model.
The solid lines in et al.22 represent an analytical model which
is only valid for high charging levels. The aerosol flow leaves
the irradiated region at t=0.71s.

Frick38 are compared against the CFD model for the con-
centration of ions and charged particles over time and
shown in Figure A.4. There is a constant generation rate
of positive (n+) and negative ions (n−) in a 1-D case.
The ions transfer charge to the particles through a diffu-
sion charging process. The charging is asymmetric due
to the increased mobility of the negative ions over the
positive ions. Photoionization is turned off in this case.

The 0D numerical and CFD models are compared for
photoionization and recombination processes and results
are shown in Figures A.5. Negative ions and positively
charged particles are produced due to photoionization.
Concentrations of particles at higher charge levels be-
come more significant as photocharging proceeds until
an equilibrium state is reached. The agreement between
models is excellent.

(a)1D CFD

(b)1D CFD

FIG. A.4. Asymmetric diffusion charging of particles of di-
ameter for ionization rate 105 ion pairs cm−1 s−1. Photoion-
ization is turned off in this case. Results match Hoppel and
Frick38.
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(a)0D numerical

(b)1D CFD

FIG. A.5. Photoionization and recombination of particles (Dp

= 10 nm).
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