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Strategies for trailing edge noise control have been inspired by the downy canopy that 

covers the surface of exposed flight feathers of many owl species. Previous wind tunnel 

measurements demonstrate that canopies of similar characteristics can reduce pressure 

fluctuations on the underlying surface by as much as 30dB, and significantly attenuate 

roughness noise generated by that surface. In the present work, surface treatments are 

designed to replicate the effects of the canopy in a form suitable for application to an airfoil. 

These treatments are installed directly upstream of the trailing edge to modify the boundary 

layer turbulence prior to acoustic scattering by the edge. Over 20 variants of these designs 

have been tested by performing aeroacoustic wind tunnel measurements on a tripped DU96-

W180 airfoil at chord Reynolds numbers of up to 3 million. Compared to the unmodified 

airfoil, the treatments provided up to 10dB of broadband attenuation of trailing edge noise. 

The effectiveness of the treatment is not highly dependent on a particular geometry, but there 

appears to be strong potential for optimization. The surface treatments remain effective over 
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an angle of attack range that extends over 9 degrees from zero lift. Aerodynamic impact of the 

treatment appears minimal. 

I. Introduction 
HIS paper describes an experimental study aimed at trailing edge noise control strategies inspired by the unique 

features found on the wings of owls that use acoustic stealth while hunting prey [1, 2, 3]. These features include a 

comb of evenly-spaced bristles along the wing leading-edge, a porous and elastic trailing edge fringe, and fine downy 

hairs that coat the exposed surfaces of the flight feathers.  Geyer et al. [4] sought to relate the fine downy coating to 

porosity of the wing by performing experiments involving aerodynamic and acoustic testing of airfoils manufactured 

entirely of porous material.  Their results showed that porous airfoils can be effective for trailing edge noise reduction.  

However, the amount of noise reduction seemed to be a complex function of the resistivity of the material, and the 

aerodynamic performance suffered as resistivity decreased (i.e., as porosity increased).  Jaworski and Peake [5, 6] 

analyzed the trailing edge condition and found that both porosity and flexibility weaken the well-known fifth-power 

dependency of the radiated acoustics of a trailing edge, with the greatest reduction in edge amplification occurring 

when these characteristics are combined. However, Jaworski and Peake [5, 6] did not consider the effect of the downy 

hairs on the upper-wing surface. The purpose of this study is to investigate the importance of the downy hairs on the 

radiated noise and to develop noise control strategies that are inspired by their features. 

 The work described in this paper follows on from the study of Clark et al. [7], which considered the potential 

of a hairy surface to suppress noise generated by roughness lying underneath. It was shown that the downy hairs of 

the owl grow nearly perpendicular from the feather surface, but then lean over to form a canopy suspended about 0.5 

mm above the feather substrate, with an open area ratio of about 70% (Fig. 1).  Wall-jet wind tunnel experiments were 

performed to examine the aeroacoustic effects of artificial canopies designed to mimic the effects of a canopy of this 

open area ratio on the surface pressure fluctuations and roughness noise generated by an underlying rough surface. 

Efforts included shrouding surfaces using canopies constructed from materials of the type used for wedding veils (Fig. 

2a) and a series of canopies constructed using large numbers of parallel fibers, oriented in the flow direction just above 

the flow surface (Fig. 2b).  

Measurements of surface pressure fluctuations underneath these canopies and of the roughness noise generated by 

surfaces shrouded by these canopies produced some surprising results. Even though the canopies had high open area 
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ratios of about 70% they attenuated surface pressure fluctuations underneath them by as much as 30 dB. The canopies 

were also found to attenuate broadband roughness noise, presumably because roughness noise is caused by the surface 

pressure fluctuations [8]. 

 These unexpected findings spawned a new line of inquiry when it was realized that such a large reduction in 

surface pressure fluctuations might also serve to attenuate trailing edge noise if a treatment replicating the effects of 

the canopy could be designed that was suitable for application to an airfoil. This paper describes an experimental study 

of a series of treatments inspired by this idea. An extensive series of wind tunnel tests have been performed on a wind 

turbine airfoil at Reynolds numbers comparable to full scale. Measurements of the sound radiated by the airfoil trailing 

edge have been made both for the clean airfoil and with an extensive series of trailing edge treatments inspired by the 

owl down and the results of Clark et al. [7]. The effects of a broad range of treatment parameters were studied. We 

find that the treatment produces a broadband reduction in trailing edge noise levels of up to 10 dB. The treatment 

remains surprisingly effective throughout a wide parameter range and is not highly dependent on a particular geometry, 

but there appears to be strong potential for optimization. The treatment is effective over an angle of attack range that 

extends to over 9 degrees from the zero lift condition. 

II. Apparatus and Instrumentation 

A. Stability Wind Tunnel 

All tests were performed in the Virginia Tech Stability Wind Tunnel. This facility is a continuous, single return, 

subsonic wind tunnel with 7.3-m long removable rectangular test sections of square cross section 1.85 m on edge. The 

general layout is illustrated in Fig. 3.   

The tunnel is powered by a 0.45-MW variable speed DC motor driving a 4.3-m diameter propeller that provides a 

maximum speed in the test section (with no blockage) of about 80 m/s. Ahead of the test section, flow is directed into 

a 5.5×5.5-m^2 settling chamber containing 7 turbulence-reducing screens each with an open area ratio of 0.6 and 

separated by 0.15 m. Flow exits this chamber through the 9:1 contraction nozzle which further reduces turbulence 

levels and accelerates the flow to test speed as it enters the test section (Fig. 4).   

Flow through the empty test section is both closely uniform and of very low turbulence intensity. Table 1 shows 

measurements from 2006 of free stream turbulence levels as a function of flow speed. Turbulence levels are as low as 

0.016% at 12 m/s and increase gradually with flow speed. Choi and Simpson [9] measured the lateral integral scales 



of the streamwise velocity in both the horizontal Lz and vertical Ly directions. They found Lz=56 mm for 15 m/s and 

28 mm for 37.5 m/s, and Ly=122 mm for 15 m/s and 25 mm for 37.5 m/s.   

Figures 4 and 5 detail the Stability Wind Tunnel aeroacoustic test section used in the present study. This test 

section has acoustically treated lower and upper walls, consisting primarily of Kevlar-covered metal perforate panels 

backed by 0.45-m sound absorbing foam wedges. The central 4.2-m length of both side walls are made from Kevlar 

panels placed under tension. The Kevlar contains the vast bulk of the flow, and is almost transparent to sound [10]. 

Sound generated by a model placed at the center of the test section can therefore propagate out of the flow and into 

anechoic chambers placed on either side of the test section. These chambers, lined with 0.61-m foam wedges, are 

anechoic down to 190 Hz. The 4.2-m long, 2.6-m deep and 3-m high interior volume of the chambers allows for the 

placement of acoustic instrumentation. This unusual arrangement has a number of advantages over a conventional 

free-jet tunnel. It eliminates the need for a jet catcher, reduces aerodynamic interference corrections by about a factor 

of 4, allows for a long test section that provides a clear separation between model generated sound and the parasitic 

noise of the facility, and permits acoustic instrumentation to be placed close to the model, yet out of the flow. Further 

details of the facility and its calibration are given by [10]. Acoustic and aerodynamic corrections applied to 

measurements made in this test section are also described by [10]. 

B. Airfoil model, boundary-layer tripping, and lift measurement 

The 0.8-m chord airfoil model used for the experiments is illustrated in Fig. 4, as installed in the test section. The 

model has a DU96-W180 section – a standard wind turbine blade profile with a maximum thickness of 18% chord. 

The model was assembled from 50.8-mm thick laminates, each cut with the airfoil profile. The laminate construction 

allows for easy installation of internal instrumentation, while careful alignment and accurate machining of the 

laminates ensures a smooth and continuous airfoil surface.  

Serrated tape (Glasfaser-Flugzeug-Service GmbH 3D Turbulator Tape) of thickness 0.5 mm was used to trip the 

airfoil boundary layers. The tape was applied at the 5% and 10% chord locations of the suction and pressure sides of 

the airfoil, respectively.   

Pressure distributions and lift on the model were measured using some 80 1-mm pressure taps distributed around 

the profile. Pressures were sensed using Esterline 9816/98RK pressure scanners with a range of ±2.5 psi (rated 

accuracy of ±0.05% full scale) connected to the pressure taps through 1.6-mm Tygon tubing. 



C. Measurement of drag and reference conditions 

Tunnel free-stream velocity was monitored using the pressure difference between static taps located in the walls 

of the wind tunnel settling chamber and contraction, sensed using the Esterline 9816/98RK pressure scanner system. 

Temperature in the test section was monitored using an Omega Thermistor type 44004 (accuracy ±0.2°C) and the 

ambient absolute pressure was determined using a Validyne DB-99 Digital Barometer (resolution 0.01" Hg). 

For some conditions a rake of Pitot and static probes was used to measure profiles through the airfoil wakes and 

infer the drag using a momentum balance approach. The rake consists of 113 1.6-mm diameter Pitot probes and 7 

Pitot-static probes distributed over a 1.8-m length. Mounted on the rake system are four DTC Initium ESP-32HD 32-

channel pressure scanners with a range of ±2.5 psi and a rated accuracy of ±0.03% to which the tubes are connected. 

The rake is acoustically noisy and was therefore not used during sound measurements. 

D. Sound measurement 

Airfoil trailing edge noise was measured using a phased array system located in the port-side anechoic chamber 

facing the suction side of the airfoil, Fig. 4a. The array has 117 Panasonic electret microphones type WM-64PNT 

arranged in 9 spiral arms mounted on a solid 1.1-m diameter carbon-fiber disk. These microphones have a flat 

frequency response from 20-16000 Hz. The array was calibrated to within ±5° phase and 0.4 dB amplitude from 500 

Hz to 16000 Hz. The array was mounted in the port side chamber which was the suction side of the airfoil slightly 

upstream of the quarter-chord position. Boundary layer refraction effects, convective effects, pressure doubling due 

to the microphones being mounted on a solid surface, and attenuation through the Kevlar cloth have all been accounted 

for in post-processing. Data were recorded simultaneously at 51200 Hz for 32 seconds with two 64 channel PCI-based 

data acquisition cards. The signals were processed through an anti-aliasing filter with a cut-off frequency of 20 kHz. 

Spectral quantities were computed by averaging the Fourier transform of blocks of 8192 samples. The diagonal of the 

cross-spectrum was removed in order to omit uncorrelated noise in the beamformed maps. Integrated spectra were 

computed by integrating the beamformed results over a selected region. 

E. Trailing edge noise treatments 

Two different treatment designs were developed with the goal of replicating the effects of a canopy on reducing 

surface pressure fluctuations, seen in the wall-jet tunnel measurements of Clark et al. [7], in a form suitable for 

application to an airfoil in external flow. The designs are illustrated in Fig. 6 and are referred to as finlet fences and 



finlet rails. A total of 20 variants on these designs were fabricated using rapid prototyping. All design variants involved 

either the rail or fence treatment beginning 101.6 mm upstream of the trailing edge (87.3% chord), and in all cases the 

treatment was supported on a thin sheet of material (the substrate) glued to the airfoil, with its leading edge placed 

114.3 mm upstream of the airfoil trailing edge (85.7% chord). Only the middle half-span of the airfoil was treated (see 

Fig. 4b). The leading edge of the substrate was, in all cases, faired to the airfoil surface by covering it with 0.1-mm 

thick metal tape. 

The upper edges of finlet fences (Fig. 6a) are designed to present the same geometry to the airfoil boundary layer 

flow as the unidirectional canopy of Fig. 2b. A total of 14 such fence configurations were tested, including variations 

in finlet spacing, height, thickness, extension past the trailing edge, and substrate thickness. The rails (Fig. 6b) more 

explicitly replicate the fiber geometry of the canopy in Fig. 2b, with streamwise cylindrical elements mounted from 

the surface using periodic swept supports. A total of 6 such configurations were tested. Table 2 shows the full test 

matrix for both types of configurations. The table also includes the control cases, including the untreated tripped airfoil 

and two cases in which only substrate layers were applied to the airfoil surfaces. 

As a final point, an important distinction should be emphasized here to differentiate the present treatment from 

“riblets”, which have some shape similarities to finlets used for viscous drag reduction [11, 12]. Riblets act on the 

very near wall boundary layer structure and have a typical height and spacing of 10 to 15 wall units. Finlets are of a 

different scale altogether (10 to 100% of the boundary layer thickness) and are designed to reduce noise by acting on 

the boundary layer turbulence as a whole. 

III. Results and Discussion 

Measurements were made at flow speeds 50 and 60 m/s, corresponding to chord Reynolds numbers of 2.5 and 3.0 

million, respectively. We present here only results for Reynolds number 3.0 million, since those measured at 2.5 

million are almost identical. For all cases the airfoil boundary layers were fully turbulent, having been tripped as 

described in section II.B. For all finlet fence and finlet rail configurations tested, far-field sound and mean surface 

pressure (and therefore lift) measurements were made with the airfoil pitched from -4 to 16 degrees geometric angle 

of attack in approximately two-degree increments.  This range encompasses zero lift (α≈-2.5°) as well as stall (α≈11°). 

Aerodynamic corrections [10] were used to calculate the effective angle of attack corresponding to each geometric 

angle of attack. All data will be presented in terms of these effective angles. In all cases, a measurement sequence 



with a treated condition was immediately followed or preceded by a measurement of the untreated condition to 

minimize the experimental uncertainty between the two and to establish (by comparing the many untreated-condition 

measurements) the repeatability of the results. Thus, the wind tunnel entry included many repeat measurements of 

configuration C0, which will be referred to as the ‘clean condition’. Configuration F8 was also repeated so that drag 

measurements could be made with the rake system without interference of the acoustic measurement.  As the majority 

of noise reduction was observed in the frequency range of 1500 – 5000 Hz, Table 3 shows overall levels in this 

frequency range for each configuration for which spectra are presented. 

A. Noise measurements made with the clean airfoil 

Figures 7 and 8 summarize the trailing edge noise measurements made with the clean airfoil at Re = 3 million. 

Figure 7 shows sample beamform maps at 3 kHz. All acoustic source maps are shown on a dB scale with a 10 dB 

range, using a reference pressure of 20 µPa.  Figure 8 compares noise spectra integrated over the central 25% of the 

blade span, as indicated by the dashed box shown in Fig. 7(a). Starting at the zero lift angle of attack (Fig. 7a) the 

trailing edge noise is clearly detectable at this frequency and is seen to form a clean uniform band along the trailing 

edge. At 3 kHz, as the angle of attack is increased, the trailing edge noise actually decreases slowly (note the change 

in the absolute level of the color scales in Fig. 7) so that, once the quietest angle of attack of 3 degrees is reached, the 

spurious lobes associated with the background noise levels generated by the facility appear more prominently. The 

trailing edge noise is still easily distinguished, however, and remains so through 6.9 degrees angle of attack until the 

airfoil stalls. At stall, airfoil generated noise levels greatly increase (e.g. Fig. 7e) and a stall pattern with two spanwise 

cells is formed, clearly visible in the beamform map. Note that the weak source near the leading edge in Figs. 7(c) and 

7(d) is believed to be background facility noise scattered from the leading edge. 

One-12th octave band integrated spectral levels for angles of attack of -2.5, -0.5, 3.0, 6.9, and 14.8 degrees are 

compared in Fig. 8. The area of integration for this and subsequent similar figures is shown by the black box drawn 

on Fig. 7(a). Results are presented only up to 5 kHz as above this frequency, background noise makes it difficult to 

distinguish trailing edge noise. The difference in trailing edge noise levels for varying angles of attack only becomes 

distinguishable above about 1500 Hz. This difference may be partly due to the beamwidth of the phased array which 

becomes comparable to the integration area at this frequency as will be discussed further below. Above 1500 Hz the 

sound spectra are seen to be broadband in all cases. The sound level variations with angle of attack observed at 3 kHz 



in the beamform maps are seen to be representative of the whole frequency range, with spectral levels lowest at 3 

degrees angle of attack where they are up to 7 dB lower than those seen at zero lift. 

B. Effects of the baseline fence treatment 

We examine first the effects of the baseline airfoil treatment, which we take as configuration F0. The treatment, 

shown in Fig. 9, consists of 0.5 mm thick fences with a maximum height of 4 mm spaced every 4 mm across the span. 

The fences extend by 10 mm past the trailing edge and are attached to the airfoil via a 0.5 mm thick substrate. The 

treatment was placed on both sides of the airfoil and covered the center half-span of the model, so that direct 

comparisons could be drawn with the untreated regions at the ends of the airfoil. Figure 10 shows measurements of 

the lift on the airfoil as a function of angle of attack. There appear to be no detrimental effects of the treatment on the 

lift, and, indeed, it appears that the lift is slightly enhanced post stall. Note that lift measurements were integrated 

using pressure distributions measured over the first 85% of the airfoil chord, extrapolated around the trailing edge 

using the Kutta condition requirement, since the last 15% of the chord was covered by the treatments when they were 

applied. This methodology was checked by comparing integrated lift results from the untreated airfoil using both the 

full set of pressure taps, and the taps on the first 85% of chord (as if the airfoil were treated).  No significant difference 

was found between the results obtained by using the two different sets of pressure taps. 

Figure 11 shows beamform maps for the treated airfoil at Re=3 million for the unstalled angles of attack (the 

treatment had no discernable influence on the airfoil sound, either positive or negative, post-stall). Integrated spectra 

for the treated and untreated airfoil are compared for the zero lift angle of attack in Fig. 12, and for other sample angles 

of attack in Fig. 13. At the zero lift angle of attack (Fig. 11a) the beamform map shows no discernable trailing edge 

noise coming from the treated portion of the airfoil, whereas the untreated portions appear almost unaltered from the 

results shown in Fig. 7(a). This indicates about a 10 dB attenuation at 3 kHz for this condition. It should be noted here 

that, because of the significant attenuation of the noise in the trailing edge region by the finlets, it is possible that some 

remaining noise in this region is actually due to side lobes of other nearby sources, such as the untreated portion of 

the airfoil, or to background noise from the facility. As such, the 10 dB attenuation seen here could be considered a 

conservative estimate. As the angle of attack increases (Fig. 11(b) through (d)) the effectiveness of the treatment 

diminishes but is still substantial at -0.5 and 3 degrees angle of attack and is certainly still detectable at 6.9 degrees. 

Figure 12 shows the effectiveness of the treatment over a broader range of frequencies at the zero lift condition 

(α=-2.5°). The attenuation achieved by the treatment is clearly broadband with reductions between 5 and 10 dB for 



frequencies between 2 kHz and 5 kHz. For frequencies below 2 kHz, the effectiveness of the treatment appears to 

diminish, ultimately disappearing at about 1400 Hz. However, this is at least partly an artificial effect of the 

diminishing ability of the array to focus as the frequency is reduced. To illustrate this, Fig. 12 includes thumbnail 

images showing beamform maps of the treated airfoil sound field at different frequencies. Each thumbnail has been 

centered on the frequency to which it refers. At about 1500 Hz the beamwidth of the array, defined as the width of the 

area 3 dB below the maximum of the main lobe of the point spread function, is approximately 0.5 m.  This is 

comparable to the width of the treated portion of the airfoil span, and thus the lobes associated with the untreated 

portions at the two ends of the airfoil have begun to merge. There still appears to be some attenuation of the sound 

between the untreated regions, but this attenuation is largely obscured by blurring of the beamform map. As the 

frequency is reduced to 1 kHz, the ability of the array to distinguish features on the scale of the treated portion of the 

span has been completely lost. In an effort to reduce the ambiguity of low-frequency results due to the array 

characteristics, the CLEAN-SC deconvolution algorithm [13] was used in an attempt to extract information at low 

frequencies without success. CLEAN-SC works well for incoherent isolated sources, but performs poorly for a 

distributed line source like considered here, therefore, results were obscured by misplaced sources and facility noise.  

The broadband effectiveness of the treatment is illustrated for a set of unstalled angles of attack in Fig. 13. At -0.5 

degrees angle of attack the attenuation achieved with the treatment above 2 kHz is between about 3 and 7 dB. At 3 

degrees, the effectiveness of the treatment is somewhat diminished at frequencies below about 3.5 kHz, but is 

enhanced at higher frequencies, reaching about 12 dB near 4 kHz. At 6.9 degrees angle of attack the effectiveness of 

the treatment is noticeably reduced, but significant reductions in sound, of up to about 3 dB, are still visible at 

frequencies over 2.5 kHz. At no angle of attack is the treatment seen to have any detrimental effect on the radiated 

sound.  

It is important to recognize that the substrate is not an inactive component of the treatment. Figure 14 shows the 

effect on integrated acoustic levels of adding only a 0.5 and a 0.75 mm thick substrate to the airfoil, as compared to 

the clean case. (Note that configuration F0 is mounted on the thin, 0.5 mm substrate.) At α=-2.5° and -0.5° the substrate 

adds to the trailing edge noise at around 1500 Hz and 1800 Hz for the 0.75 mm and 0.5 mm thicknesses respectively, 

quite possibly because of vortex shedding enhanced because of the substrate adding to the trailing edge thickness. At 

the same time, sound levels with the substrates are somewhat lower (by up to 5 dB for the 0.5 mm and 7 dB for the 

0.75 mm) at higher frequencies. This could be because of a nonlinear redistribution of energy into the lower-frequency 



vortex shedding motions. At α=3° and 6.9° the increased levels ascribed to vortex shedding are smaller or absent. At 

the same time the noise reductions are also smaller and do not appear until higher frequencies.  

At the very least, the fences are clearly suppressing the detrimental effects of the substrate at low frequencies while 

enhancing the noise reduction at high frequencies.  One possible explanation is that the finlets suppress the surface 

pressure fluctuations at the airfoil trailing edge, and also coherent vortex shedding here by breaking up the spanwise 

correlation length scale of the boundary layer. One can imagine the unidirectional canopy of [7] reducing wall pressure 

fluctuations by a similar mechanism. 

C. Effects of the fence parameters 

In this section we examine the effects of varying the fence parameters. Note that all the treated cases produced lift 

characteristics that are almost identical to those of configuration F0, i.e. the same as, or slightly better than, the 

untreated airfoil. Figure 15 shows the effects of changing the fence spacing by comparing integrated sound levels from 

configurations F2, F0, F3, and F4 representing spacings of 1, 4, 6 and 10 mm. Photographs showing three of these 

four treatments are shown in Fig. 16. 

Overall, the noise spectra appear to show a clear progression with fence spacing for angles of attack α= -2.5°, -

0.5° and 3°. At these conditions, the 6-mm spacing produces similar noise reductions to the 4-mm spacing described 

above. Reductions with the 10-mm spacing are less, particularly at frequencies over 3.5 kHz. Reductions with the 1-

mm spacing are greater, by 1-4 dB over almost all the frequency range. This dependence appears consistent with the 

fences limiting the spanwise correlation length scale – the smaller the spacing, the smaller the maximum correlation 

scale that can survive to the trailing edge. There is clearly a limit to the beneficial effect though, in the form of the 

intense spike that appears in the spectra for the 1-mm spaced fence at around 650 Hz. At 60 m/s, this frequency 

corresponds to a distance scale of about 18 mm (at a Strouhal number of 0.2), which is of the same order as the sum 

of the trailing edge thickness (2.5 mm), both substrate layers (1 mm) and two fence heights (8 mm). The implication 

is that below a certain minimum spacing, somewhere between 1 and 4 mm in this case, the fences start to behave like 

a solid, much thicker, blunt trailing edge. At α=6.9° the noise reductions are smaller in all cases, and the dependence 

on fence-spacing less apparent. Acoustic levels at this angle of attack are slightly lower at high frequencies with the 

6-mm spaced fence (configuration F3), perhaps because the substrate used with this configuration was slightly thicker 

than for the other cases in this comparison (0.75 versus 0.5 mm). 



The effects of extending the treatment past the trailing edge are examined in Fig. 17. This compares integrated 

noise spectra for case F2 (1-mm spaced, 4-mm high fences extending 10 mm past the trailing edge) to case F1 

(identical geometry but shortened so that the fences end at the trailing edge). At lower angles of attack, α= -2.5° and 

-0.5° both configurations produce almost identical acoustic results, including the intense vortex shedding peak 

associated with the 1-mm spacing. The results are also quite similar at 3° and 6.9° angles of attack except that high 

frequency noise levels (>3 kHz) are noticeably lower without the extension. It appears, therefore, that the extension 

offers little if any benefit and, indeed, comes at a price at higher angles of attack. This implies that the fence ‘finlets’ 

are, as hypothesized, manipulating the boundary layer structure as it reaches the trailing edge, rather than altering the 

scattering efficiency by reshaping the trailing edge, as is accomplished by a trailing edge serration or comb. This 

suggests it may be possible to maximize noise attenuation by combining both control strategies.  

Figure 18 examines the effect of fence height on the acoustic signature of the airfoil. Here results for configuration 

F0 (4-mm high, 4-mm spaced, fences) are compared to those of configuration F8 (8-mm high, 4-mm spaced, fences) 

and the clean airfoil. At all angles of attack and at almost all frequencies, noise levels are reduced by 1 to 2 dB by a 

doubling of the fence height. This effect can be understood in the context of the boundary layer thickness at the trailing 

edge. XFOIL [14] calculations suggest displacement thicknesses, for the tripped DU96 at Re=3 million, of 0.9, 1.2, 

1.8 and 3.1 mm for the suction side and 0.7, 0.5, 0.3, and 0.2 mm for the pressure side at α=-2.5°, -0.5°, 3°, and 6.9° 

respectively. 

Assuming overall boundary layer thicknesses five to ten times these values, it is clear that increasing the fence 

height from 4 to 8 mm would cause the fences to cut substantially more of the boundary layer, particularly on the 

suction side, and thus have a greater impact on the spanwise correlation length scale and thus the radiated noise. This 

conceptual model implies that further noise reductions at high angle of attack could be achieved by increasing the 

height of the suction side fences, in accordance with the increase in boundary layer thickness. 

Unlike other configurations, the 8-mm high fence treatment of configuration F8 was tested twice, the second time 

with the drag rake system in place. Figure 19 compares the drag on the airfoil with this treatment, with that of the 

clean case (configuration C0) and of the corresponding substrate alone case (configuration C1). The clean airfoil 

exhibits a drag bucket with a minimum Cd of about 0.008 near the zero-lift angle of attack of -2.5°. The drag then rises 

gradually with angle of attack through an angle of attack of 8° after which the airfoil stalls resulting in erratic 

fluctuations in the drag curve and overall a sudden rise. (Note that the slight reduction in Cd between 8° and 11° is a 



consequence of basing the drag on a wake measurement at a single spanwise station – three dimensional flow at the 

initiation of stall can result in a local thinning of the wake, despite its overall dramatic growth.) Adding the substrate 

to the airfoil (configuration C1) has no significant impact on the unstalled drag. Adding the 8-mm high fences of 

configuration F8 increases the drag by about 10%. The airfoil has a surface area of some 6400 square millimeters for 

every 4 mm of span. The fences add about 500 square millimeters to this total, or about 8%, indicating that, to the 

accuracy of its measurement, the increase in wetted surface area associated with the fences accounts for the drag 

increase.  

Configuration F9 replicates the fence geometry of configuration F0, but with 2-mm thick fences in place of 0.5-

mm thick fences and with a 0.75-mm thick substrate in place of a 0.5-mm thickness, as shown in Fig. 20. The effects 

of these changes on the sound measured above the suction side of the airfoil are shown in Fig. 21. Above 1.5 kHz the 

effects of these geometry changes is a slight reduction (up to about 3 dB) of acoustic levels. Some fraction of these 

could, perhaps, be ascribed to the substrate effect (Fig. 14), but at the very least we see that the thicker fences are not 

detrimental to the acoustic performance of the treatment. The results below 1.5 kHz are less clear. At the lower angles 

of attack, acoustic levels appear suppressed by the thicker treatment around 1100 Hz, but these levels are increased 

by the treatment at around 700 Hz, perhaps indicating that the fences initiate some organized turbulent motion at these 

low frequencies. 

Figure 22 shows the effects of only using the configuration F8 treatment on the suction side of the airfoil 

(configuration F8S) versus the treatment on both sides (configuration F8). In both cases the treatment is 8-mm high 

fences with a spacing of 8 mm. At angles of attack of -2.5°, -0.5° and 3° the effect of removing the pressure side 

treatment is, to a good approximation, to halve the decibel attenuation produced by the treatment. It is difficult to draw 

a solid quantitative inference from this result, since it is unclear how much of the sound is generated by the suction 

and pressure side boundary layers, and by the interaction between them. However, if we assume equal contributions 

from both boundary layers and no interaction effect, then a complete elimination of the sound from the suction side 

boundary layer would be observed as a broadband 3 dB reduction relative to the clean airfoil.  At 6.9 degrees angle of 

attack the removal of the pressure side treatment has no effect on the sound radiated from the foil. This suggests that 

either the pressure-side treatment is ineffective at large angles of attack or, as seems more probable, the suction-side 

boundary layer is the dominant contributor to the far-field sound at such conditions. 

D. Effects of the rail treatments 



In addition to the finlet designs discussed above, a series of tests were carried out on rails that extend from the 

surface, as shown in Figure 6. These shapes are more like the hairs on the owl wing discussed in section I. Figure 23 

shows the first rail case, configuration R0, installed on the trailing edge portion of the airfoil trailing edge region. This 

configuration uses 1.25-mm diameter rails rising to 4 mm above the airfoil surface and spaced at 2.5-mm intervals 

across its span. The rails extend 10 mm downstream of the trailing edge. In terms of aerodynamic performance, all 

the rail cases produced lift curves almost indistinguishable from those of configuration F0, shown in Fig. 10. Drag 

measurements were not made with the rail cases. 

The geometric parameters of configuration R0 do not exactly match any of the fence cases but fall somewhere 

between configuration F2 (4-mm high fences with 1-mm spacing) and configuration F0 (4-mm high fences with 4-

mm spacing). Noise measurements made with configurations R0, F2 and F0 are compared with those for the clean 

airfoil in Fig. 24. At angles of attack of -2.5°,-0.5°, and 3° the rail treatment produces almost identical noise attenuation 

to the 4-mm spaced fences, and, unlike the 1-mm spaced fences, there is no evidence of low frequency vortex shedding 

associated with an effective increased trailing edge thickness. Close to stall, however, at an angle of attack 6.9° the 

rails perform significantly better than the fences producing detectable attenuation at frequencies down to 2 kHz and 

doubling the dB attenuation at higher frequencies. 

The acoustic performance of a selection of the other rail cases is plotted in Fig. 25. This includes elimination of 

the trailing edge extension (configuration R1), doubling of the maximum rail height to 8 mm (configuration R2) and 

doubling of the diameter and spacing to 2.5 mm and 8 mm respectively (configuration R3). The change that has the 

least effect appears to be the elimination of the trailing edge extension which has no impact on the sound attenuation 

compared to configuration R0 other than, perhaps, a slight reduction in attenuation at the very highest frequencies. As 

with the fence configurations, increasing the spacing (configuration R3), reduces the attenuation achieved by the 

treatment by a few dB above about 2500 Hz. Contrary to what was seen with the fences, doubling the maximum height 

of the rails to 8 mm (compare configurations R0 and R3) is actually counter-productive particularly at the highest 

angle of attack (6.9°) where the additional height might expect to be beneficial in penetrating the thicker suction side 

boundary layer. It may be that, if made too large, the space under the rails may permit reconnection of spanwise 

coherent structures and thus limit the reduction in spanwise correlation length scale that can be achieved. 

 



IV. Concluding Remarks 

Airfoil treatments to reduce trailing edge noise, inspired by the downy canopy found to coat the flight feathers of 

some owls, have been developed. These treatments were designed to replicate the surface-pressure-attenuating effects 

of the canopy in a form suitable for application to an airfoil.  

Over 20 variants of these designs have been tested by performing aeroacoustic wind tunnel measurements on a 

tripped DU96-W180 airfoil at chord Reynolds numbers up to 3 million. Variations include treatment thickness, 

density, length, position relative to the trailing edge, and the effectiveness of treating only one side of the trailing edge. 

Compared to the untreated airfoil, the treatments were found to be effective at providing broadband attenuation of 

trailing edge noise of up to 10 dB. Treatments were found to be effective over an angle of attack range that extends to 

over 9 degrees from the zero lift condition. Airfoil treatments were observed to have no detrimental effect on the lift 

performance of the airfoil. Drag is slightly increased but only by an amount commensurate with the increase in wetted 

surface area associated with the treatment. 

The acoustic level attenuation is found to be robust to changes in non-dimensional flow parameters, and there 

appears to be good potential for tailoring the treatment to suit engineering system design requirements. The changes 

in noise attenuation in response to changes in geometric parameters of the finlet fence treatment provide the best clues 

about how this could be accomplished. From decreased performance with increased finlet spacing, along with 

increased performance with increased finlet height, it is reasonable to conclude that the extent to which the finlets can 

cut, deform, or otherwise decorrelate the turbulent structures in the boundary layer is the primary driver in the noise 

attenuation mechanism. However, it is important to limit the effect of the treatment on the mean flow, as demonstrated 

by the increased low-frequency noise produced by the 1-mm spaced finlets attributed to vortex shedding. The assertion 

that the finlets are acting to modify the scattering edge in a manner similar to serrations or combs is refuted by the 

observation of improved performance when the finlets do not extend past the trailing edge. This observation suggests 

some possibilities for improved performance. One option is to shift the finlets upstream of the trailing edge, in which 

case finlets of a given size will encompass a higher portion of the boundary layer and therefore have a greater effect 

on the turbulence there. Alternatively, the use of smaller finlets upstream could lead to decreased drag compared to 

the use of larger finlets near the trailing edge due to the decreased additional wetted area. It should be noted here that 

this option assumes the decorrelation of spanwise turbulent structures by the finlets persists over a significant portion 

of the chord of the airfoil downstream of the finlets, and that this length is less than that between the end of the finlet 



and the trailing edge. The second possibility is to combine the finlet treatment with modifications to the trailing edge 

geometry, such as the aforementioned serrations or combs, with the intent of combining both boundary layer pre-

treatment and decreased efficiency of the scattering edge.  

The finlet rail performance trends offer additional clues about the relevant flow physics around the treatments. 

Doubling the height of the rails appeared to decrease performance, particularly at higher frequencies where the sound 

is produced by smaller turbulent eddies in the boundary layer. This trend may suggest that the increased open area 

beneath the rails prevents the smaller scale turbulent fluctuations from being decorrelated (one could imagine the open 

space allowing pressure and velocity fluctuations to be communicated or propagated beneath the rails). The additional 

high-frequency noise above that of the untreated case may be caused by increased turbulence levels generated by the 

flow past the rails (which have a cylindrical cross-section).  

 In contrast to the information provided by changing geometric parameters of the treatment, the acoustic effects of 

adding the substrate only serve to complicate and obscure the effects of the treatment itself. However, it can be 

reasonably concluded that, although the substrate has a significant influence on the acoustics when placed on its own, 

the effect of the finlets dominates over this influence when the full treatment is applied. The additional noise 

(compared to the untreated airfoil) observed at some frequencies due to the substrate is completely eliminated by the 

finlets. At frequencies where the substrate showed a noise reduction compared to the untreated airfoil, the finlets 

improved and increased this noise reduction even further. The only remaining concern is whether or not the finlets 

might be somehow dependent on the substrate for most of the noise reduction. One could imagine the upstream step 

of the substrate exerting an influence on the boundary layer such that a certain flow pattern was set up, perhaps 

featuring an additional bias towards larger, more spanwise-oriented turbulent eddies. The finlets might then have a 

greater influence on this new flow than, say, the unmodified boundary layer over the clean airfoil. This seems unlikely, 

however, considering the difference in scales between the substrate thickness (0.5 mm), finlet height (4 or 8 mm), and 

the boundary layer thickness (on the order of 10 to 20 mm on the airfoil’s suction side).  

  

Acknowledgments 

The authors would like to thank the Office of Naval Research, in particular Drs. Ki-Han Kim and Woei-Min Lin, 

for their support under grants N00014-13-1-0244, N00014-14-1-0242, and N62909-12-1-7116 (NICOP). The 



assistance of Prof. Aurelien Borgoltz and Mr. Tim Meyers over the course of the wind tunnel testing, and the support 

of the College of Engineering at Virginia Tech in performing that testing, are gratefully acknowledged. Thanks also 

go to Mr. Daniel Grohol for his assistance in performing computer aided design of the trailing edge treatments, and 

Mr. Scott Patrick for his help with their manufacture. The support of AVEC Incorporated in providing the phased 

array system and related assistance is gratefully acknowledged. 

The authors would like to sincerely acknowledge the late Professor Geoffrey Lilley, whose long-standing interest 

in and insight into the aeroacoustics of the owl has been a source of great inspiration. 

References 

[1] Graham, R. R., “The silent flight of owls,” Journal of the Royal Aeronautical Society, Vol. 38, 1934, pp. 837-843. 

[2] Kroeger, R. A., Gruschka, H. D., and Helvey, T. C., “Low speed aerodynamics for ultra-quiet flight,” Tech. Rep. AFFDL-TR-

71-75, Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, 1972. 

[3] Sarradj, E., Fritzsche, C., Geyer, T., “Silent owl flight: bird flyover noise measurements,” AIAA Journal, Vol. 49(4), 2011, pp. 

769-779. 

[4] Geyer, T., Sarradj, E., Fritzsche, C., “Measurement of the noise generation at the trailing edge of porous airfoils,” Experiments 

in Fluids, Vol. 48(2), 2010, pp. 291-308. 

[5] Jaworski, J. W. and Peake, N., “Aerodynamic noise from a poroelastic edge with implications for the silent flight of owls,” 

Journal of Fluid Mechanics, Vol. 723, 2013, pp. 456-479. 

[6] Jaworski, J. W. and Peake, N., “Parametric guidance for turbulent noise reduction from poroelastic trailing edges and owls,” 

Proceedings of the19th AIAA/CEAS Aeroacoustics Conference, Berlin, Germany, 27-29th May 2013, AIAA-2013-2007. 

[7] Clark, I. A., Devenport, W. J., Jaworski, J. W., Daly, C., Peake, N. and Glegg, S., "The Noise Generating and Suppressing 

Characteristics of Bio-Inspired Rough Surfaces", Proceedings of the AIAA/CEAS 20th Aeroacoustics Conference, Atlanta, GA, 

16-20th June 2014. AIAA-2014-2911. 

[8] Glegg, S. and W. Devenport, "The far-field sound from rough-wall boundary layers." Proceedings of the Royal Society A: 

Mathematical, Physical and Engineering Sciences, Vol. 465, 2009, pp. 1717-1734. 

[9] Choi, K., and Simpson, R.L., "Some Mean Velocity, Turbulence and Unsteadiness Characteristics of the VPI & SU Stability 

Wind Tunnel," Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, 

Blacksburg, Virginia 24061, Report VPI-Aero-161, 1987. 

[10] Devenport, W. J., Burdisso, R. A., Borgoltz, A., Ravetta, P. A., Barone, M. F., Brown, K. A. and Morton, M. A., "The Kevlar-

walled anechoic wind tunnel", Journal of Sound and Vibration, vol. 332(17), 2013, pp. 3971-3991. 

[11] Walsh, M. J., “Riblets as a Viscous Drag Reduction Technique”, AIAA Journal, vol. 21(4), 1983, pp. 485-486. 



[12] Choi, H., Moin, P., and Kim, J., “Direct numerical simulation of turbulent flow over riblets”, Journal of Fluid Mechanics, vol. 

255, 1993, pp. 503-539. 

[13] Sijtsma, P., “CLEAN based on spatial source coherence”, Aeroacoustics, vol. 6(4), 2007, pp. 357-374. 

[14] Drela, M., “XFOIL: An analysis and design system for low Reynolds number airfoils,” 1989. 

 

Tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 Freestream turbulence levels 

Freestream 
Velocity, 
U ∞ (m/s) 

RMS 
Streamwise 

Fluctuations, 
u'/ U ∞ 

12 0.016% 
21 0.021% 
30 0.024% 
48 0.029% 
57 0.031% 

 

 



 

Table 2 List of finlet cases and dimensions in millimeters. 

Config 
No. Height Spacing1 Thickness/Rail 

Diameter 
TE 

Extension Substrate Suction 
Only 

Control Cases 
C0 - - - - - - 
C1 - - - - 0.5 - 
C2 - - - - 0.75 - 

Fence Cases 
F0 4 4 0.5 10 0.5 - 
F1 4 1 0.5 0 0.5 - 
F2 4 1 0.5 10 0.5 - 
F3 4 6 0.5 10 0.75 - 
F4 4 10 0.5 10 0.5 - 
F5 2 1 0.5 10 0.75 - 
F62 4 1 0.5 10 0.5 - 
F73 4 1 0.5 10 0.75 - 
F8 8 4 0.5 10 0.5 - 
F9 4 4 2 10 0.75 - 

F1S 4 1 0.5 0 0.5 Y 
F2S 4 1 0.5 10 0.5 Y 
F8S 8 4 0.5 10 0.5 Y 

F10S 16 4 0.5 0 0.5 Y 
Rail Cases 

R0 4 2.5 1.25 10 0.75 - 
R1 4 2.5 1.25 0 0.75 - 
R2 8 2.5 1.25 10 0.75 - 
R3 4 5 2.5 10 0.75 - 
R4 8 10 1.25 10 0.75 - 
R52 4 2.5 1.25 10 0.75 - 

 
 

 

 

 

                                                           
1 Spacing was measured as the width of the open gaps between the finlets, not as the center-to-center spacing of the 
finlets. This preserves the spacing parameter when varying finlet thickness/diameter. 
 
2 Fence/rail length upstream of the trailing edge varied periodically in the spanwise direction with one period being 
the sequence 101.6mm, 12.7mm, 25.4mm, 12.7mm, 50.8mm, 12.7mm, 25.4mm, and 12.7mm. 
 
3 Fence length upstream of the trailing edge varied periodically as in configuration 6, but with fence height scaled to 
4mm, 2.5mm, 3mm, 2.5mm, 3.5mm, 2.5mm, 3mm, and 2.5mm in the same periodic sequence, respectively.  



 
 
 

Table 3 Overall sound levels (dB) in the frequency range of 1500 – 5000 Hz. 

 Angle of Attack 
Config 

No. -2.5 deg -0.5 deg 3.0 deg 6.9 deg 

Control Cases 
C0 57.3 55.8 53.8 54.6 
C1 58.2 56.5 54.0 54.5 
C2 58.4 57.2 54.4 54.7 

Fence Cases 
F0 53.3 53.0 52.2 54.1 
F1 52.0 51.3 51.6 54.0 
F2 50.3 50.4 51.0 54.0 
F3 54.0 53.6 52.5 53.8 
F4 54.7 54.2 53.2 54.6 
F8 51.9 51.6 51.5 53.6 
F9 52.8 52.4 52.0 53.7 

F8S 54.7 53.3 51.7 53.3 
Rail Cases 

R0 53.4 52.8 51.8 53.3 
R1 53.3 52.6 52.2 53.8 
R2 53.2 52.3 51.6 53.4 
R3 53.4 53.1 52.6 54.5 
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Fig. 1    Close-up view of a flight feather of a great gray owl (Strix nebulosa) showing the canopy structure 

formed by the hairs.

(a) (b)

Fig. 2    Example fabric canopy arrangements studied in the wind tunnel, shown shrouding a sandpaper type 

rough surface. (a) Commercial wedding-veil type fabric with multi-directional fibers. (b) Custom designed 

unidirectional fiber fabric with fibers oriented only in the flow direction.

Figures



Fig. 3 Plan view schematic of the Virginia Tech Stability Wind Tunnel in anechoic configuration.

Fig. 4    (a) The 117-microphone phased array system installed in the port-side anechoic chamber directed at the 

suction side of (b) the 0.8-m chord DU96-W180 airfoil mounted in the anechoic test section.

(a) (b)



Fig. 5    Plan view cross-section of the anechoic system as installed showing the test section flanked by the two 

anechoic chambers. Dimensions in meters.

Fig. 6 Treatment designs tested on the DU96-W180. (a) Finlet fence, (b) finlet rail. Diagrams show finlets

attached to the trailing edge portion of the airfoil. Dimensions in millimeters.

(a) (b)



Fig. 7    Beamform maps showing the trailing edge noise radiated by the untreated DU96-W180 airfoil at 3 kHz 

at angles of attack of (a) -2.5, (b) -0.5, (c) 3.0, (d) 6.9, and (e) 14.8 degrees. Re=3 million.

(a) (b)

(c) (d)

(e)



Fig. 8 Noise spectra for the untreated DU96-W180 at Re=3 million, as a function of angle of attack obtained by 

integrating phased array results over the central 25% of the airfoil span, as indicated by the dashed region in 

Fig. 7a.

Trailing edge

location

(b)

Pressure

side

fences

Suction 

side 

fences

Trailing

edge

Fig. 9    Finlet configuration F0. (a) Before attachment to the airfoil. (b) After attachment to both sides of the 

airfoil (view seen looking upstream at the trailing edge). Note the gap between the fence extensions on either side 

of the trailing edge.

(a) (b)



Fig. 10    Lift coefficient plotted against angle of attack for the untreated (‘Clean’) and baseline treated (‘Config

5’) DU96-W180 at Re=3 million.

(a) (b)

(c) (d)

Fig. 11    Beamform maps showing the trailing edge noise radiated by the DU96-W180 at 3 kHz at angles of 

attack of (a) -2.5, (b) -0.5, (c) 3.0, and (d) 6.9 degrees with the baseline (configuration F0) treatment applied 

across the central half span (as indicated by the dashed rectangle). Re=3 million.



Fig. 12    Noise spectra for configuration F0 treatment compared to results for the clean case. Re=3 million, -2.5 

degrees angle of attack. Inset images show beamform maps of the treated airfoil noise to illustrate the blurring 

effects of the large spot size at frequencies below about 2 kHz.

Fig. 13    Noise spectra (in SPL re 20 𝜇𝑃𝑎) for configuration F0 treatment compared to results for the clean case 

at angles of attack of (a) -2.5 (b) -0.5 (c) 3.0 and (d) 6.9 degrees. Re=3 million. 

(a) (b)

(c) (d)



Fig. 14    Noise spectra (in SPL re 20 𝜇𝑃𝑎) for configurations C1 and C2 showing substrate-alone effects at angles 

of attack of (a) -2.5 (b) -0.5 (c) 3.0 and (d) 6.9 degrees compared to the clean case. Re=3 million.

(a) (b)

(c) (d)

Fig. 15    Noise spectra (in SPL re 20 𝜇𝑃𝑎) for configurations F2, F0, F3 and F4 showing the effects of fence 

spacing on noise radiation at angles of attack of (a) -2.5 (b) -0.5 (c) 3.0 and (d) 6.9 degrees compared to the clean 

case. Re=3 million.

(a) (b)

(c) (d)



Fig. 16    Photographs of treatments F2, F0 and F4, fence treatments with (a) 1mm, (b) 4mm, and (c) 10mm 

spacing respectively, before application to the airfoil.

(a) (b)

(c)

Fig. 17    Noise spectra (in SPL re 20 𝜇𝑃𝑎) for configurations F2 and F1 showing the effects of fence extension 

over the trailing edge on noise radiation at angles of attack of (a) -2.5 (b) -0.5 (c) 3.0 and (d) 6.9 degrees 

compared to the clean case. Re=3 million.

(a) (b)

(c) (d)



Fig. 18    Noise spectra (in SPL re 20 𝜇𝑃𝑎) for configurations F0 and F8 showing the effects of fence height on 

noise radiation at angles of attack of (a) -2.5 (b) -0.5 (c) 3.0 and (d) 6.9 degrees compared to the clean case. Re=3 

million.

(a) (b)

(c) (d)

Fig. 19    Drag coefficient as a function of angle of attack measured for the clean airfoil, with configuration F8, 

and with the substrate alone (configuration C1). Re=3 million.



Fig. 20    Comparison of configurations (a) F0 and (b) F9 illustrating the difference in fence thickness. Pictures 

are looking upstream from the trailing edge.

(a) (b)

Fig. 21    Noise spectra (in SPL re 20 𝜇𝑃𝑎) for configurations F0 and F9 contrasting the effects of fence thickness 

at angles of attack of (a) -2.5 (b) -0.5 (c) 3.0 and (d) 6.9 degrees compared to the clean case. Re=3 million. Note 

that configurations F0 and F9 have different substrate thicknesses of 0.5 mm and 0.75 mm, respectively.

(a) (b)

(c) (d)



Fig. 22    Noise spectra (in SPL re 20 𝜇𝑃𝑎) for configurations F8 and F8S contrasting the effects of applying the 

treatment to both sides of the airfoil (F8) and just the suction side (F8S), at angles of attack of (a) -2.5 (b) -0.5 (c) 

3.0 and (d) 6.9 degrees, compared to the clean case. Re=3 million.

(a) (b)

(c) (d)

Fig. 23    Side view of configuration R0 applied to both sides of the airfoil, showing the rail geometry.



Fig. 24    Noise spectra (in SPL re 20 𝜇𝑃𝑎) for configurations F2, F0 and R0 contrasting the effects of fence and 

rail treatments of similar scale, at angles of attack of (a) -2.5 (b) -0.5 (c) 3.0 and (d) 6.9 degrees, compared to the 

clean case. Re=3 million.

(a) (b)

(c) (d)

Fig. 25    Noise spectra (in SPL re 20 𝜇𝑃𝑎) for configurations R0, R1, R2 and R3 contrasting the effects of 

different rail treatments, at angles of attack of (a) -2.5 (b) -0.5 (c) 3.0 and (d) 6.9 degrees, compared to the clean 

case. Re=3 million.

(a) (b)

(c) (d)
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