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Abstract

Background: Multiple imputation is frequently used to deal with missing data in healthcare research. Although it is
known that the outcome should be included in the imputation model when imputing missing covariate values, it is
not known whether it should be imputed. Similarly no clear recommendations exist on: the utility of incorporating
a secondary outcome, if available, in the imputation model; the level of protection offered when data are missing
not-at-random; the implications of the dataset size and missingness levels.

Methods: We used realistic assumptions to generate thousands of datasets across a broad spectrum of contexts:
three mechanisms of missingness (completely at random; at random; not at random); varying extents of missingness
(20–80% missing data); and different sample sizes (1,000 or 10,000 cases). For each context we quantified the
performance of a complete case analysis and seven multiple imputation methods which deleted cases with
missing outcome before imputation, after imputation or not at all; included or did not include the outcome in the
imputation models; and included or did not include a secondary outcome in the imputation models. Methods were
compared on mean absolute error, bias, coverage and power over 1,000 datasets for each scenario.

Results: Overall, there was very little to separate multiple imputation methods which included the outcome in the
imputation model. Even when missingness was quite extensive, all multiple imputation approaches performed well.
Incorporating a secondary outcome, moderately correlated with the outcome of interest, made very little difference.
The dataset size and the extent of missingness affected performance, as expected. Multiple imputation methods
protected less well against missingness not at random, but did offer some protection.

Conclusions: As long as the outcome is included in the imputation model, there are very small performance
differences between the possible multiple imputation approaches: no outcome imputation, imputation or imputation
and deletion. All informative covariates, even with very high levels of missingness, should be included in the multiple
imputation model. Multiple imputation offers some protection against a simple missing not at random mechanism.
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Background
Missing data is a common obstacle to observational
health science and its pitfalls are well known [1]. To
exclude study subjects with any missing covariate observa-
tions, so called complete case analysis, is at best of low
statistical power and at worst provides biased estimates.
The complexity of the missing data problem, or

obtaining accurate inferential estimates in the presence

of missing data, depends on the nature of the mechan-
ism by which data are missing [2]. The less problematic
scenario occurs when the probability of an observable
data point being missing (the missingness probability)
does not depend on any observed or unobserved param-
eters, and this missingness mechanism is known as
Missing Completely at Random (MCAR). However,
MCAR mechanisms are considered rare in practice, es-
pecially for surveys [3]. More commonly, the missing-
ness probability depends on observed variables, and
hence it can be accounted for by the information con-
tained in the dataset. This missing data mechanism has
been labelled Missing at Random (MAR). Finally, the
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most challenging missingness mechanism occurs when
the missingness probability depends on unobserved
values, and called Missing Not at Random (MNAR).
Using self-reporting of sexual activity we can explore
MAR and MNAR examples. A MAR scenario would
arise if girls are less likely than boys to report whether
they are sexually active, but sexually active teenagers are
no more likely to report than those non-active. However,
if sexually active girls are less likely to report than non-
active girls, this would be an MNAR scenario.
Although suboptimal approaches to imputation are

still routinely used [4], multiple imputation has been ac-
cepted by methodologists as the most appropriate
framework for dealing with MCAR and MAR mecha-
nisms [5]. Multiple imputation can be described in three
steps: (a) drawing the missing data from their posterior
predictive distribution under a posited Bayesian model,
across N datasets; (b) analysing each dataset separately
with a chosen method, usually a regression model; and
(c) pooling the estimates and their standard errors across
the N analyses using Rubin’s rules [2], allowing for the
use of the within-imputation and between-estimation
variation components in the calculations. Multiple im-
putation has a largely Bayesian rationale but it also
works well in frequentist applications by providing nom-
inal coverage levels and unbiased point estimates [2].
When the analysis model (Step 2) is Bayesian the result-
ing framework is fully Bayesian; alternatively, frequentist
maximum-likelihood estimates can be used in the model
to draw missing values [6, 7]. An interesting trait of mul-
tiple imputation is that it performs better at imputing
missing predictors when outcome information is in-
cluded in the models [8]. Although standard applications
of multiple imputation do not deal with MNAR mecha-
nisms, they can offer some protection against them [9].
Furthermore, multiple imputation can accommodate
MNAR scenarios flexibly and is thus well-suited to sen-
sitivity analyses [10].
This paper tackles five outstanding issues about mul-

tiple imputation. von Hippel argued that researchers
should impute values for the outcome, but exclude cases
with imputed outcomes when fitting the substantive
model [11]. It is unclear when this is the best strategy
compared with not imputing the outcome on the one
hand, and using imputed outcomes in the analysis on
the other hand.
Another question of practical interest is how much

missingness should be considered manageable within a
multiple imputation framework, i.e. is the performance
of multiple imputation consistent as missingness in-
creases and is there a level above which performance de-
teriorates to such an extent that it makes the method
and data of little practical use? Although this has been
answered for multiple imputation that does not impute

the outcome, which was found to perform consistently
across all missingness levels [12], the question remains
for outcome imputations.
Also unknown is the role of multiple correlated out-

comes in the imputation models. It is not uncommon
for studies to collect information on two or more corre-
lated outcomes. However, these outcomes are often ana-
lysed through separate multiple imputation models,
which do not utilise the association of the outcome of
interest with a second (or more) available outcome.
Would the inclusion of a second outcome lead to an im-
proved multiple imputation model?
In addition, as far as we know, the level of protection,

if any, offered by current multiple imputation methods
(i.e. methods that assume MAR) against MNAR mecha-
nisms has not been quantified within a simulations
framework. Although there are technical challenges and
numerous assumptions when developing such a frame-
work, a high level of protection would make researchers
more confident when reporting results from analyses
with missing data—especially since MNAR mechanisms
cannot be identified without additional external data or
prior knowledge.
Finally, the size of the investigated dataset could be an

important parameter and the performance of multiple
imputation has largely been assessed in small or moder-
ate datasets [8, 13], mainly for computational reasons.
We have chosen scenarios of 1000 cases, which would
be relevant to small and moderate studies, and more or
less in agreement with previous investigations. However,
it is now common to analyse data from many thousands
or even millions of people, for example using Electronic
Health Records (EHRs), and for this reason we also ana-
lysed scenarios of 10,000 cases.
In this paper we address all of the questions above

using simulations. We simulate a wide range of scenarios
which are not uncommon in observational studies with
databases of routinely collected data, where hundreds of
variables may be available and often have varying levels
of missingness [14]. Although our motivation stems
from our experiences with observational data, our find-
ings are also relevant to clinical trials data, which are
usually less variable (e.g. levels of missingness across var-
iables are uniform, when someone is lost to follow-up).

Methods
Obtaining algebraic answers to the questions we have
posed is challenging due to: the large number of para-
meters often involved; and the asymptotic estimation
approaches commonly employed. Arguably the most
reasonable approach is to use realistically simulated data,
where the true associations between predictors and the
outcome are known, and can be used reliably to quantify
method performance. The processes described below
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were repeated 1,000 times, to obtain different datasets
under the specified parameters and to analyse them.

Data generation
We assumed two dataset sizes of 1,000 and 10,000 patients
for which we originally had complete information on a pri-
mary binary outcome Y, a secondary binary outcome Y’, a
binary exposure variable E and a continuous covariate X
confounding the relationship between exposure and out-
comes. The whole process was implemented in Stata v14.1
[15], and the code is provided in Online Additional file 1.
We used the drawnorm command to draw observations
from multivariate normal distributions, allowing for a ≈ 0.4
Pearson’s correlation between X and E. Covariate X had
mean 0 and variance 1, while we set Pr (E = 1) = 0.5. Out-
come Y’ was generated last, correlated with primary out-
come Y (tetrachoric ρ ≈ 0.49), but independent of X and E
given Y. Writing π = p(Y = 1|X, E), we assumed the logistic
regression model logit(π) = β0 + β1E + β2X + β3E ⋅X with
parameters: exp (β0) ≈ 0.091, exp (β1) = 2, exp (β2) = 1.5 and
exp (β3) = 1.2. These parameters lead to conditional
probabilities for the outcome of Pr (Y = 1|E = 0) = 0.091
and Pr (Y = 1|E = 1) = 0.232. Weaker associations exist be-
tween Y’ and E, Y’ and X, Y’ and X * E, but are not of inter-
est. The data structure is displayed in Fig. 1.

Missingness mechanisms
We implemented three missing data mechanisms
(MCAR, MAR and MNAR) and four levels of overall
missingness for each variable (20%, 40%, 60% and 80%).
In each case, covariate X and outcomes Y and Y’ all had
the same level of missingness but information for expos-
ure E was always complete. In the MCAR setting, values
for X, Y and Y’ were independently set to be missing. In
the MAR setting, the probability to be missing for each
of X, Y or Y’ was independently set to be conditional on
the exposure E with OR = 5. In other words, the odds of
a missing value for X, Y or Y’ were five times as high in

the presence of the exposure (i.e. when E = 1). In the
final setting, a relatively simple MNAR scenario, the
probabilities of missing data for X, Y or Y’ were condi-
tional on the true values of X, Y or Y’ respectively, with
OR = 5 used across each of the associations. Information
for exposure E was always complete. However, the
MNAR scenario is of course not exhaustive and alterna-
tive MNAR mechanisms could vary across exposure
groups [16]. It should also be noted that although the
missingness mechanism we modelled is rather extreme,
it was a conscious decision to make it more likely to ob-
serve performance variability across models. We antici-
pate our findings to be relevant to weaker associations,
where model performances are expected be less variable.

Alternative data structures
We also considered two alternative structures, as sensi-
tivity analyses, which we do not present in detail in this
paper but the code for which is available from the
authors. In the first sensitivity analysis we simulated a
continuous rather than a binary outcome, and in the sec-
ond sensitivity analysis we included a second covariate X’
to which we applied the same missingness mechanisms.

Analysis
Across each missingness mechanism we followed the
same seven logistic regression analyses, seven of which
were multiple imputation approaches (Table 1). The first
analysis (A) was the simplest, a complete cases analysis,
with the sole purpose of providing a benchmark against
which to compare the multiple imputation approaches.
In the remaining seven analyses we used the mi family
of commands in Stata, with mi impute chained for the
imputation and mi estimate with a multiple logistic re-
gression (logit command) for the analysis. Analyses B, C,
D and E all ignored the secondary outcome Y’. In the
second analysis (B), which is known to give biased esti-
mates [11], we excluded cases where the outcome was
missing and the outcome was not included in the

Fig. 1 Data structure

Table 1 Analysis methods

A complete case analysis (no multiple imputation [mi])

B no outcome imputation, not included in mi model

Ca no outcome imputation, outcome imputed in mi model

Da outcome imputed and included in mi model

Ea outcome imputed and included in mi model but then cases where
it was imputed are deleted

Fa as in C but also including a second correlated outcome in the
mi model

Ga as in D but also including a second correlated outcome in the
mi model

H as in D but the mi and analysis models do not include the covariate
aMain models of interest, other models provided for comparison purposes

Kontopantelis et al. BMC Medical Research Methodology  (2017) 17:2 Page 3 of 13



imputation model. In the third analysis (C), we again
dropped missing outcome cases but included the out-
come in the imputation model for the missing covariate
X. In the fourth analysis (D) we included the outcome in
the imputation model and imputed its missing values as
well as missing values for X. An alternative approach
suggested by von Hippel [11] was our analysis E, which
followed D and included the outcome in the multiple
imputation model and imputing it, but deleted cases
where the outcome was imputed. Analyses F and G,
followed C and D respectively but also included the sec-
ond outcome in the imputation models and imputed
their missing values. Finally, analysis H followed the
setup of D, except it did not include the covariate X in
the multiple imputation or analysis models. This aimed
to assess whether the covariate should be included, even
when its missingness levels were very high.
The analysis approaches and the data setup were se-

lected to fit our research questions. Comparing analysis
models C and D, which are the commonly recom-
mended best practice models, will provide information
on whether imputing an incomplete outcome is prefera-
ble to excluding the relevant cases. Model E, which
deletes cases where the outcome is imputed, will be
assessed as a best practice alternative to C and D. Com-
parisons between C and F, as well as D and G will
inform us whether the inclusion of a second outcome
which is correlated to our outcome of interest leads to a
better multiple imputation model. Comparing models
that have included the covariate (e.g. C and D) with
model H, across various levels of missingness, will an-
swer whether it is preferable to exclude a covariate from
a multiple imputation model when most of its values are
missing. Simulating different missingness mechanisms
will allow us to quantify the performance of multiple im-
putation approaches vs complete case analyses in the
most problematic MNAR scenario, compared to the
known protection it offers for the most common MCAR
and MCAR scenarios [13]. Finally, repeating the analyses
in datasets of different sizes will shed light to whether
our conclusions are sample-size dependent or not.

Performance measures
We aimed to measure the performance of all multiple
imputation and analysis approaches with logistic regres-
sion, across the scenarios of missingness described above
and over 1,000 iterations, in the estimation of the three
true association of interest: E→ OR=2Y (our main focus),
X→ OR=1.5Y and X * E→ OR=1.2Y. There are numerous
performance measures that can be used in simulation
studies [17], but we considered mean absolute error,
mean bias, coverage probability and power of the ana-
lyses in relation to the three parameters of interest to be
adequate for our investigation. Mean absolute error was

calculated as 1
1000

X
i¼1

1000jz−zbij where z is one of the three

parameters of interest, expressed as a log-odds ratio.
Analogously mean bias is the mean difference in the
estimate to the true parameter, and was calculated as
1

1000

X
i¼1

1000ðz−zbiÞ. Therefore, assuming the used exposure

effect of log[2], a reported mean bias of 0.1 or −0.1
would mean that the returned estimate was on aver-
age ≈ log(1.81) or ≈ log(2.21), respectively. The coverage
probability, is the proportion of 95% confidence inter-
vals for the estimate that contain the true parameter
across the 1,000 iterations. Theoretically this should be
close to 95% but the bias introduced through the MAR
and MNAR mechanisms can affect coverage levels. Fi-
nally, we calculated the power to detect that the param-
eter is different from zero by computing the proportion
of the 1,000 95% confidence intervals for each param-
eter that did not include zero. However, power needs to
be carefully interpreted in the presence of bias since
bias will move the estimate closer or further away from
the alternative hypothesis on which power is calculated,
and in the latter case higher bias will lead to higher
power. Nevertheless, provided bias is similar across the
methods to compare, power can be used for compari-
sons, even if bias is not zero, and we felt it was an im-
portant metric that would complement the study.

Results
Results for the coefficient of the exposure β1 are pre-
sented in Table 2 and Table 3 for datasets of 1,000 and
10,000 cases, respectively. Figures 2, 3, 4 and 5 present
the exposure performance metrics with their respective
error bars. Although all methods successfully converged
for the larger datasets, there was some variation in the
smaller datasets for very high levels of missingness
(Online Additional file 2: Table S5). Results for the
coefficients of the covariate and the exposure-covariate
interaction are also presented in Online Additional file 2:
Table S1, S2, S3 and S4).

Mean bias
In smaller datasets and for MCAR and MAR data, levels
of bias were low across most models, except in B
(outcome not included in the imputation model) and H
(covariate not included in the multiple imputation
model). Complete case analysis (model A) was often the
best performer, especially for low levels of missingness
but results could only be obtained for a subsample of
less problematic datasets, due to perfect prediction or
non-convergence (Online Additional file 2: Table S5).
Bias levels increased for MNAR data. In larger datasets
bias levels were lower for all methods and complete case
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Table 2 Performance results for exposure E, datasets of 1,000 observationsa

% miss A B Cb Db Eb Fb Gb H

MCAR Mean biasc 20 −0.019 −0.107 −0.020 −0.025 −0.030 −0.021 −0.023 −0.427

40 −0.038 −0.209 −0.041 −0.045 −0.020 −0.041 −0.045 −0.437

60 −0.084 −0.301 −0.064 −0.056 −0.060 −0.067 −0.055 −0.440

80 0.134 −0.409 −0.109 −0.092 −0.145 −0.126 −0.097 −0.458

Mean errorc 20 0.218 0.208 0.200 0.201 0.199 0.199 0.199 0.430

40 0.290 0.268 0.232 0.231 0.229 0.232 0.233 0.444

60 0.475 0.361 0.306 0.313 0.308 0.309 0.301 0.466

80 1.016 0.503 0.584 0.503 0.543 0.560 0.489 0.525

Coverage 20 0.950 0.941 0.943 0.945 0.949 0.947 0.943 0.489

40 0.962 0.913 0.963 0.957 0.959 0.962 0.949 0.605

60 0.965 0.907 0.959 0.939 0.955 0.960 0.943 0.718

80 0.992 0.957 0.989 0.956 0.986 0.988 0.965 0.823

Power 20 0.720 0.688 0.771 0.761 0.777 0.769 0.770 0.274

40 0.462 0.425 0.604 0.593 0.644 0.610 0.597 0.181

60 0.228 0.213 0.367 0.413 0.394 0.373 0.433 0.163

80 0.065 0.062 0.068 0.180 0.098 0.074 0.169 0.124

MAR Mean biasc 20 −0.019 −0.125 −0.030 −0.035 −0.030 −0.030 −0.035 −0.425

40 −0.014 −0.227 −0.046 −0.065 −0.044 −0.050 −0.062 −0.441

60 −0.046 −0.308 −0.063 −0.064 −0.049 −0.059 −0.062 −0.446

80 −0.054 −0.350 −0.069 −0.119 −0.080 −0.073 −0.128 −0.408

Mean errorc 20 0.224 0.215 0.200 0.200 0.203 0.198 0.197 0.428

40 0.290 0.282 0.228 0.227 0.234 0.229 0.229 0.448

60 0.491 0.367 0.314 0.312 0.303 0.314 0.305 0.467

80 1.070 0.463 0.593 0.501 0.546 0.601 0.502 0.494

Coverage 20 0.941 0.925 0.955 0.954 0.956 0.955 0.953 0.504

40 0.958 0.896 0.953 0.956 0.950 0.958 0.948 0.561

60 0.955 0.889 0.963 0.948 0.971 0.964 0.946 0.706

80 0.994 0.943 0.978 0.954 0.978 0.978 0.946 0.836

Power 20 0.708 0.678 0.779 0.763 0.771 0.774 0.779 0.271

40 0.448 0.372 0.583 0.564 0.606 0.587 0.593 0.193

60 0.224 0.195 0.350 0.391 0.373 0.360 0.404 0.161

80 0.010 0.052 0.050 0.147 0.077 0.045 0.143 0.123

MNAR Mean biasc 20 −0.026 −0.150 −0.047 −0.044 −0.054 −0.047 −0.046 −0.425

40 −0.092 −0.302 −0.135 −0.113 −0.097 −0.139 −0.121 −0.454

60 −0.086 −0.334 −0.050 −0.022 −0.027 −0.052 −0.021 −0.450

80 0.038 −0.478 −0.253 −0.283 −0.314 −0.316 −0.275 −0.484

Mean errorc 20 0.227 0.228 0.207 0.207 0.209 0.208 0.207 0.431

40 0.375 0.371 0.302 0.293 0.292 0.304 0.293 0.472

60 0.590 0.411 0.366 0.368 0.361 0.371 0.355 0.479

80 1.283 0.741 0.841 0.737 0.773 0.881 0.711 0.654

Coverage 20 0.954 0.923 0.940 0.945 0.941 0.944 0.943 0.554

40 0.957 0.927 0.958 0.950 0.961 0.954 0.949 0.708

60 0.973 0.962 0.967 0.951 0.964 0.968 0.946 0.746

80 0.997 1.000 0.993 0.990 0.999 0.995 0.986 0.921
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analysis appeared to be by the best performer with very
low bias in every simulation scenario.

Mean absolute error
In both smaller and larger datasets, the best performing
models were: C (no outcome imputation, outcome in-
cluded in mi model); D (outcome imputed and included
in mi model); E (outcome imputed and included in mi
model and then deleted); F (no outcome imputation, both
outcomes included in mi model); and G (both outcomes
included in mi model, outcome of interest imputed). For
the smaller datasets, the models that imputed the out-
come (D, E and G) generally performed only slightly better
for very high levels of missingness in MCAR data, and for
MAR data (and especially for higher rates of missingness).
Error increased with increasing missingness but was not
too dissimilar across the three missingness mechanisms.
In the larger datasets, levels of mean absolute error were
much lower and there was no benefit in using the second
outcome, with models C, D and E performing the best,
with variations in different settings. Overall, the best
model was E but only slightly better than C and D.

Coverage
Again, at both dataset sizes, models C, D, E, F and G per-
formed best. There was very little to separate them, how-
ever, the models that imputed the outcome (D and G)
tended to be closer to the nominal 95%. There were rela-
tively small differences across missingness mechanisms and
coverage levels were good in all scenarios, with the lowest
rates amongst the five top performing models observed for
D and G in MAR data and high missingness levels. Simi-
larly, coverage rates were consistently high across all levels
of missingness. In larger datasets, there was no benefit to
using a second outcome, with models C, D and E equiva-
lent in almost all missingness scenarios. Overall, differences
between models C, D and E are small but E had better
coverage in the larger datasets for extensive missingness.

Power
Results for power were consistent with error and coverage,
with models C, D, E, F and G again performing best. In

the smaller datasets, there were small differences between
these models, except for very high levels of missingness,
and especially for MCAR and MAR mechanisms, where
imputing the outcome (models D and G) returned higher
power level, albeit still very low. However, for lower levels
of missingness, model C performed well and, more often
than not, slightly better than D. The nature of the missing-
ness mechanism had some effect on power, with lower
levels observed for MNAR data, especially as levels of
missingness increased. As expected, the more data are
missing the lower the power, and all models performed
very poorly for high or very high levels of missingness
(60% or above). In larger datasets, the picture did not
change with models C, D, E, F and G being almost
equivalent, but model D performed better for extensive
missingness (60% or above) in MNAR data. Overall, E out-
performed C is all settings and D for low and moderate
levels of missingness, while D performed better for very
high levels of missingness.

Sensitivity analyses
Patterns of results in the two sets of sensitivity simula-
tions broadly agreed with what we observed for the main
simulations and further supported our findings. When
analysing a continuous outcome, differences between
multiple imputation models were again very small. Fo-
cusing on datasets of 1000 observations and the multiple
imputation models of main interest (C to G), mean bias
was very similar for all missingness mechanisms and
levels. Mean bias was very close to zero for all MCAR
and MAR settings, except for 80% levels of missingness.
For MNAR data, mean bias was very close to zero for
20% missingness and linearly increased with missingness.
Mean absolute error was again similar in these methods
across all missingness mechanisms, with some variability
being observed for 80% missingness and method G (out-
come imputed and included in mi model, including sec-
ondary outcome) performing slightly better in those
scenarios (Online Additional file 2: Figure S1). Coverage
was similar in all scenarios, except for high levels of
missingness where the outcome imputation models (G
and especially D) slightly underperformed. However, that

Table 2 Performance results for exposure E, datasets of 1,000 observationsa (Continued)

Power 20 0.652 0.592 0.714 0.712 0.694 0.706 0.713 0.237

40 0.307 0.223 0.383 0.398 0.420 0.389 0.399 0.153

60 0.209 0.148 0.330 0.368 0.366 0.327 0.382 0.152

80 0.015 0.010 0.041 0.088 0.039 0.030 0.096 0.092
aAnalysis model A: complete case analysis (no multiple imputation [mi]); B: no outcome imputation, not included in mi model; C: no outcome imputation,
outcome imputed in mi model; D: outcome imputed and included in mi model; E: outcome imputed and included in mi model but then observations where it
was imputed are deleted; F as in C but also including a second correlated outcome in the mi model; G as in D but also including a second correlated outcome in
the mi model; H as in D but the mi and analysis models do not include the covariate
bMain models of interest, other models provided for comparison purposes
cReported on log-odds scale and based on a true effect of log [2]
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Table 3 Performance results for exposure E, datasets of 10,000 observationsa

% miss A B Cb Db Eb Fb Gb H

MCAR Mean biasc 20 0.001 −0.089 −0.003 −0.008 −0.006 −0.003 −0.006 −0.413

40 −0.005 −0.181 −0.016 −0.024 −0.009 −0.016 −0.021 −0.419

60 −0.017 −0.268 −0.027 −0.035 −0.017 −0.028 −0.032 −0.421

80 −0.021 −0.343 −0.023 −0.036 −0.033 −0.027 −0.032 −0.418

Mean errorc 20 0.064 0.094 0.059 0.059 0.060 0.059 0.059 0.413

40 0.088 0.182 0.071 0.072 0.071 0.070 0.071 0.419

60 0.135 0.268 0.094 0.094 0.088 0.094 0.095 0.421

80 0.270 0.343 0.150 0.144 0.148 0.148 0.143 0.418

Coverage 20 0.962 0.792 0.959 0.965 0.948 0.959 0.959 0.000

40 0.946 0.439 0.954 0.946 0.958 0.954 0.952 0.000

60 0.943 0.291 0.956 0.931 0.965 0.958 0.939 0.007

80 0.952 0.394 0.952 0.929 0.950 0.949 0.929 0.137

Power 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.983

40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.935

60 0.974 0.982 1.000 1.000 1.000 1.000 1.000 0.772

80 0.518 0.635 0.949 0.943 0.956 0.946 0.944 0.547

MAR Mean biasc 20 0.005 −0.101 −0.005 −0.012 −0.009 −0.005 −0.013 −0.412

40 0.001 −0.204 −0.031 −0.043 −0.032 −0.031 −0.042 −0.419

60 −0.015 −0.275 −0.038 −0.046 −0.028 −0.037 −0.046 −0.423

80 0.014 −0.349 −0.058 −0.068 −0.058 −0.058 −0.072 −0.415

Mean errorc 20 0.064 0.104 0.059 0.058 0.060 0.058 0.058 0.412

40 0.087 0.204 0.072 0.075 0.074 0.072 0.075 0.419

60 0.135 0.275 0.096 0.098 0.092 0.095 0.097 0.423

80 0.304 0.349 0.160 0.159 0.153 0.158 0.161 0.415

Coverage 20 0.965 0.727 0.963 0.967 0.962 0.965 0.964 0.000

40 0.952 0.334 0.958 0.940 0.947 0.951 0.935 0.000

60 0.948 0.237 0.950 0.924 0.953 0.950 0.918 0.004

80 0.944 0.356 0.935 0.918 0.943 0.941 0.926 0.161

Power 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.987

40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.944

60 0.977 0.982 0.999 1.000 1.000 1.000 1.000 0.792

80 0.486 0.613 0.905 0.897 0.920 0.912 0.902 0.537

MNAR Mean biasc 20 0.003 −0.125 −0.023 −0.021 −0.024 −0.023 −0.024 −0.411

40 −0.006 −0.250 −0.091 −0.072 −0.080 −0.091 −0.081 −0.417

60 −0.003 −0.288 −0.016 0.010 0.005 −0.017 0.003 −0.420

80 −0.026 −0.358 −0.186 −0.161 −0.186 −0.182 −0.176 −0.427

Mean errorc 20 0.067 0.128 0.063 0.063 0.066 0.063 0.063 0.411

40 0.112 0.250 0.113 0.102 0.107 0.113 0.107 0.417

60 0.150 0.288 0.103 0.105 0.106 0.104 0.103 0.420

80 0.456 0.367 0.253 0.237 0.258 0.252 0.241 0.428

Coverage 20 0.952 0.643 0.948 0.947 0.935 0.949 0.947 0.000

40 0.960 0.349 0.893 0.908 0.886 0.887 0.893 0.002

60 0.952 0.394 0.955 0.944 0.937 0.961 0.947 0.017

80 0.967 0.943 0.981 0.916 0.971 0.981 0.916 0.360
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shortcoming was counterbalanced for model G by higher
power in all scenarios except very low levels of missing-
ness, where there was very little variation in perform-
ance (Online Additional file 2: Figure S2).

Discussion
Our results indicate that in general, there are very small
differences between models that impute the outcome
compared with those that do not, when all else is equal
and the outcome is included in the imputation model.
However, in some contexts small differences emerge that
should underpin recommendations as to the choice of
model. The von Hippel approach [11], our model E,
where the outcome is included in the imputation model
and imputed but cases where the outcome is imputed
are later dropped performed well. However, the differ-
ences between this approach and alternative models,
where the outcome is not imputed or imputed and not
dropped, were generally very small if any (error bars for
all performance metrics overlapped substantially). Fur-
thermore, the von Hippel approach was not consistently
better in all scenarios. Another consideration is the pres-
ence of an “auxiliary” variable, a variable that in not part
of the analysis model but is used in the multiple imput-
ation to improve the prediction of missing values. If
such a variable is associated with missingness in the out-
come, model E is known to produce biased parameter
estimates and should be avoided [18].
The level of missingness naturally affects the perform-

ance of the multiple imputation models, especially with
regards to power (primarily) and error (secondarily).
However, in agreement with Janssen et al. [12], we rec-
ommend using all available data even when missingness
among covariates of interest is extensive. Multiple im-
putation models that exclude such covariates seem to
perform much worse. For very high levels of missingness
and moderately sized datasets we recommend the use of
simulation-based platforms to estimate the power to de-
tect effects (19). Convergence was not an issue with any
models when the datasets contained 10,000 observa-
tions, but it was a factor to consider in the 1,000

observations datasets as the level of missingness in-
creased. Multiple imputation models that did not impute
the outcome and were only modestly affected, while
complete case analysis was severely affected.
The size of the datasets (1,000 or 10,000) did not sub-

stantially affect how the models ranked within each group.
Interestingly, in the larger datasets, a complete case ana-
lysis approach was generally only slightly worse than the
best performing multiple imputation models for low levels
of missingness. Therefore, existing multiple imputation
approaches may be less relevant to large health informat-
ics databases than to randomised clinical trials.
Surprisingly the inclusion of a second outcome in the

multiple imputation model, moderately correlated to the
primary outcome, made very little difference to perform-
ance. Since for the imputation model there is no real
distinction between predictors and outcomes, we would
expect the inclusion of the secondary outcome to lead to
improved performance. However, our findings could be
explained by the associations between the predictors and
the secondary outcome. In other words, the secondary
outcome has little independent information to add to
the model. A weaker association between predictors and
secondary outcomes and a stronger correlation between
outcomes would make the secondary outcome a useful
addition to the multiple imputation model. However, we
did observe slightly better performance for the model in
the continuous outcome sensitivity analysis, for some
scenarios, mainly in terms of power but also mean abso-
lute error. Hence a more complete multiple imputation
model that includes all outcomes is recommended.
Finally, although all models performed worse when

data were MNAR, multiple imputation models can offer
some protection, in terms of mean absolute error, even
in this relatively extreme missingness scenario we simu-
lated (OR = 5 for the missingness mechanism). Multiple
imputation models outperformed complete case analyses
in both smaller and larger datasets. However, the bene-
fits of using multiple imputation methods were not as
high for MNAR as for MCAR or MAR data, and were
more obvious in the smaller datasets.

Table 3 Performance results for exposure E, datasets of 10,000 observationsa (Continued)

Power 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.973

40 0.998 0.985 1.000 1.000 1.000 1.000 1.000 0.826

60 0.942 0.898 0.999 0.997 1.000 0.996 0.999 0.738

80 0.256 0.094 0.358 0.527 0.394 0.364 0.519 0.331
aAnalysis model A: complete case analysis (no multiple imputation [mi]); B: no outcome imputation, not included in mi model; C: no outcome imputation,
outcome imputed in mi model; D: outcome imputed and included in mi model; E: outcome imputed and included in mi model but then observations where it
was imputed are deleted; F as in C but also including a second correlated outcome in the mi model; G as in D but also including a second correlated outcome in
the mi model; H as in D but the mi and analysis models do not include the covariate
bMain models of interest, other models provided for comparison purposes
cReported on log-odds scale and based on a true effect of log [2]
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Strengths and limitations
We have evaluated the performance of commonly used
imputation approaches in realistic simulated data
scenarios. Nevertheless, some limitations exist. First,
although realistic, our simulated scenarios cannot be
exhaustive and results may vary in alternative scenarios
with different hypothesised associations between expos-
ure, covariate and outcome and different distributions.
However, we would expect the methods to perform

similarly, at least relatively to each other, and our conclu-
sions not to be affected—at least in MCAR settings. Our
MAR settings made complete cases analysis (method A)
unbiased because missingness depended only on exposure;
if missingness of covariates had also depended on outcome
then bias would have arisen in complete cases analysis.
Regarding MNAR, we investigated common scenarios but
there are many other possible mechanisms and our
findings are not generalisable to them. In particular, our
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Fig. 2 Mean Bias and 95% Confidence Intervals for exposure E in datasets of 1000 (top) and 10,000 observations (bottom)
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MNAR mechanism for Y was akin to case–control sam-
pling and hence caused no bias. A different missing data
mechanism that depended on both Y and E could cause
large bias in the coefficient of E, especially if the association
between missingness and Y differed across exposure
groups [16]. Second, the precision obtained with simula-
tions of 1,000 iterations is not ideal but the models we exe-
cuted are complex and require considerable computational
time. Third, a sample of 1,000 might seem too large if

compared against trial data, but it was a necessity if we
were to investigate very highc rates of missingness. Fourth,
the substantive model was not entirely consistent with the
imputation model because of the interaction term –we felt
it was important to reflect this approach because it is often
seen in practice. Fifth, we only considered one strength of
association between the outcome Y and the secondary out-
come Y’: although we modelled a rather strong association,
probably stronger to what would be observed in practice in
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Fig. 3 Mean absolute Error and 95% Confidence Intervals for exposure E in datasets of 1000 (top) and 10,000 observations (bottom)
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most cases, even stronger associations are likely to increase
the value of including the secondary outcome in imput-
ation models. Finally, the computational time led us to se-
lect our largest simulated dataset to include 10,000 cases.
Unfortunately, this is not necessarily representative of a
contemporary electronic health records dataset which can
hold hundreds of thousands or millions of cases. However,
even that limited size is very different to the size of a clin-
ical trial, on which multiple imputation methods have been

routinely evaluated in the past. Therefore, we argue that
we manage to provide an incomplete view on the relevance
of these methods in larger datasets.

Conclusions
There was very little to separate the multiple imputation
methods of interest. Although the method that imputes
the outcome of interest and then removes observations
where the outcome is imputed performed slightly better
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Fig. 4 Coverage and 95% Confidence Intervals for exposure E in datasets of 1000 (top) and 10,000 observations (bottom)
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in some scenarios, especially for low and moderate levels
of missingness, it was not always better and it is known
to be biased in the presence of auxiliary variables. For
very high levels of missingness, the higher power ob-
tained when imputing the outcome (and not dropping
observations) might make this approach somewhat more
appealing. However, as long as the outcome is included
in the imputation model, the choice of the multiple im-
putation approach makes no practical difference.

Important covariates need to be included in the imput-
ation models even when their levels of missingness are
very high. Although the use of secondary outcomes did
not lead to substantially better models in our simula-
tions, some improvements were observed in the sen-
sitivity analysis, and we recommend their inclusion.
Multiple imputation is the best approach across all miss-
ingness mechanisms and offers some protection in some
simple missing not at random contexts.
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Fig. 5 Power and 95% Confidence Intervals for exposure E in datasets of 1000 (top) and 10,000 observations (bottom)
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Additional files

Additional file 1: Simulation code file 1 of 4. Generate data and obtain
true estimates (making sure the simulations work as they should before
incorporating the missing data mechanisms). Simulation code file 2 of 4.
Main data generation file across missingness mechanisms (1 of 2).
Simulation code file 3 of 4. Main data generation file across missingness
mechanisms (2 of 2). Simulation code file 4 of 4. Summarise the simulation
results in a data file. (ZIP 10 kb)

Additional file 2: Supplementary file for “Outcome-sensitive Multiple
Imputation: a Simulation Study”. Additional results for the covariate and
the interaction term for the main analyses, but also all results from
sensitivity analyses. (PDF 480 kb)
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