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Thin, laterally extensive veneers of framboidal pyrite on fossiliferous bedding planes in 9 

eastern Newfoundland, Canada, provide evidence for post-burial microbially-mediated 10 

pyritization of the seafloor in the late Ediacaran Period (Liu 2016). Pyrite is inferred to have 11 

formed on the external surfaces of soft-bodied organisms and microbial matgrounds as a 12 

result of bacterial sulfate reduction, consistent with the ‘death mask’ taphonomic model for 13 

Ediacaran moldic preservation (Gehling 1999). Retallack (2017) accepts the evidence 14 

presented by Liu (2016) for early diagenetic pyritization of bedding planes in Newfoundland, 15 

and seems to offer at least tacit acceptance of evidence for modern oxidation of that pyrite, its 16 

widespread occurrence in global Ediacaran localities, and the potential influence of 17 

sedimentary pyrite burial on global Ediacaran oxygen concentrations. However, Retallack 18 

questions whether the presence of such pyrite veneers can be taken to demonstrate the ‘death 19 

mask’ taphonomic model, and specifically queries the source of the observed pyrite.  20 

  21 

The data presented by Liu (2016), in addition to geochemical evidence from the same 22 

sections that suggests pyrite formation occurred via microbial sulfate reduction within a 23 

biofilm (Wacey et al. 2015), are entirely consistent with the hypothesized operation of the 24 

‘death mask’ model. Multiple authors have now presented evidence for late Ediacaran pyrite 25 
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veneers (e.g. Dzik 2003), or the oxidized products of such laterally extensive veneers, on 26 

fossiliferous surfaces and fossils (e.g. Gehling 1999; Mapstone and McIlroy 2006; 27 

summarised in Liu 2016). Retallack is correct that none of the original petrographic thin 28 

sections presented by Liu (2016) were taken through macrofossil specimens, but this is 29 

because legislation restricts the collection and destructive analysis of Ediacaran fossil 30 

material in Newfoundland. Identical iron-oxide veneers to those shown in thin sections 31 

through non-fossil-bearing regions of fossiliferous horizons (e.g. Liu 2016, figs 2B, 3, 4A–D) 32 

are observed directly on top of unpyritized positive and negative epirelief fossil impressions 33 

on the same surfaces (e.g. Liu 2016, fig. 3A–B). This strongly suggests that the petrological 34 

evidence presented from non-fossiliferous regions of bedding planes faithfully reflects 35 

conditions immediately above macrofossil specimens. This can reasonably be interpreted as 36 

evidence that the pyrite veneers originally covered both the seafloor and the external surfaces 37 

of macro-organisms. 38 

 39 

No quantitative support is provided for the assertion (Retallack 2017) that <1.5mm-thick 40 

pyrite veneers would have been too thin to preserve impressions of unpyritized Ediacaran 41 

organisms. Tarhan et al. (2016) have similarly questioned whether sufficient pyrite, or sulfide 42 

precursors, could be formed during the early stages of diagenesis to mold an impression of 43 

soft-tissues before their removal by decay processes. Existing data suggest that in the 44 

presence of microbial communities, sulfides are generated within 24 hours around buried 45 

metazoan carcasses, and faithful impressions of external morphology can be obtained even in 46 

freshwater experimental conditions with limited sulfate availability (Darroch et al. 2012). 47 

This aspect of the ‘death mask’ model requires additional experimental constraint, but in 48 

marine conditions, where sulfate concentrations are higher and concomitantly support 49 

increased sulfide production during necrosis, it is considered likely that sulfides would form 50 
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rapidly around buried carcasses. Retallack’s discussion of the thickness of anthropological 51 

death masks is a semantic diversion. 52 

 53 

The alternative taphonomic scenario presented by Retallack (2017) invokes pyrite 54 

permineralization of soft tissues, and relies on both questionable data from thin sections 55 

claimed to be taken through Ediacaran macrofossils (Retallack 2016a), and the model-driven 56 

assumption that Ediacaran fossil-bearing sections in Newfoundland comprise intertidal or 57 

supratidal facies. The thin sections presented by Retallack (2016a) cannot be accepted as 58 

evidence that fossils were pyrite permineralized or preserved as organic material, since that 59 

publication does not provide any quantitative compositional data to confirm the presence of 60 

the mineral phases the author reports. Furthermore, that publication fails to outline how the 61 

structures interpreted as fossils (which remain buried) were identified, rendering claims that 62 

they were compaction resistant, or even that they represent bona fide fossils, ambiguous. As 63 

such, that petrographic data should be considered uninformative with respect to Ediacaran 64 

taphonomy.  65 

 66 

Importantly, the depositional environment of the Newfoundland fossil-bearing sections was, 67 

as with other deposits hosting taxa of the soft-bodied Ediacaran macrobiota, unequivocally 68 

marine. Such taxa are found globally within a broad range of lithologies, interpreted on the 69 

basis of process-based sedimentological observations to include carbonate platforms, storm 70 

wave-base deposits, and deep-marine turbidite-dominated siliciclastic successions (e.g. Wood 71 

et al. 2003; Grazhdankin 2004; Grazhdankin et al. 2008; Gehling and Droser 2012; Chen et 72 

al. 2014). Suggestions that many of these deposits instead comprise terrestrial or intertidal 73 

paleosols (Retallack 2012, 2013, 2014, 2016b) have been refuted by numerous researchers, 74 

who instead reiterate their marine nature (Callow et al. 2013; Xiao et al. 2013; Tarhan et al. 75 
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2015). The fossil-bearing Conception and St. John’s Groups of eastern Newfoundland 76 

comprise normally-graded, water-lain turbidites with partial Bouma sequences (e.g. Liu et al. 77 

2014, fig. 2), as well as hemipelagites, pelagites and volcaniclastic sediments (Wood et al. 78 

2003). Ediacaran macrofossils are found on the top surfaces of hemipelagites that overlie 79 

turbidite beds (Brasier et al. 2013; Liu 2016). Indeed, the macrofossil-bearing BR5 surface 80 

described and figured by Liu (2016) as having a thick pyrite veneer lies on a hemipelagite 81 

within the lower-middle Briscal Formation: a section considered by Retallack prior to the 82 

discovery of fossils in these horizons to reflect beds “compatible with formation by 83 

turbidites,” and interpreted as being deposited in a marine setting (Retallack 2014, fig. 2). 84 

Ediacaran macrofossils are found in abundance in these turbiditic deposits, just as they are in 85 

other Ediacaran turbidite successions worldwide (e.g. the June Beds of the Mackenzie 86 

Mountains, NW Canada [Narbonne et al. 2014] and the Charnian Supergroup of England 87 

[Noble et al. 2015, contra Retallack 2012, 2017]). Since all sedimentary successions with 88 

Ediacaran macrofossils are interpreted as marine, pyrite permineralization in modern and 89 

Phanerozoic intertidal and supratidal settings represents an inappropriate comparison for 90 

discussions of Ediacaran moldic preservation. The original assertion that widespread 91 

pyritization of entire bedding planes in Newfoundland was unique to Ediacaran marine 92 

settings (Liu 2016) therefore remains valid, though it is noted that examples of ‘Ediacaran-93 

type’ cast and mould preservation of individual organisms or areas of limited lateral extent 94 

are documented from Phanerozoic marine settings (see references in Tarhan et al. 2016).  95 

 96 

In summary, the arguments of Retallack (2017) are not sufficiently robust to refute the pyrite 97 

‘death mask’ model for moldic preservation of Ediacaran soft-bodied organisms, and his 98 

alternative taphonomic hypothesis invoking pyrite permineralization lacks sufficient 99 

evidential basis in Newfoundland. Experimental work is now required to confirm the validity 100 
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of the ‘death mask’ model, and to determine ancillary factors such as the thickness of the 101 

pyritic veneer necessary for moldic preservation of soft-bodied organisms, and the potential 102 

role of clay minerals in suppressing decay (McMahon et al. 2016). Only by seeking to 103 

actively resolve these taphonomic questions will we improve our understanding of Ediacaran 104 

preservational processes and the biology of the Ediacaran macrobiota. 105 

 106 
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