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Abstract. I study a multi-period model of limit pricing under one-sided incomplete
information. I characterize pooling and separating equilibria and their existence, and
determine when these involve limit pricing. For some parameter constellations, the unique
equilibrium surviving a D1 type refinement involves immediate separation on monopoly
prices. For others, there are limit price equilibria surviving the refinement in which
different types may initially pool and then (possibly) separate. Separation involves setting
prices such that the ineffi cient incumbent’s profits from mimicking are negative. As the
horizon increases or as firms become more patient, limit pricing becomes increasingly
diffi cult to sustain in equilibrium.
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1. Introduction
Since Bain’s (1949) pioneering work, limit pricing has been a staple of industrial economics. In
a nutshell, limit pricing is the practice by which an incumbent firm (or cartel) deters potential
entry to an industry by pricing below the profit maximizing price level. Early work on the
subject took its cue from the casual observation that in some industries, firms price below
the myopic profit maximizing price level on a persistent basis. This observation lead to the
notion that by doing so, incumbent firms could somehow discourage potential entry which
would otherwise have occurred, in effect by sacrificing profits in the short run in return for a
maintenance of the monopoly position in the long run.
Bain (1949) noted that “[...] established sellers persistently or “in the long run” forego

prices high enough to maximize the industry profit for fear of thereby attracting new entry to
the industry and thus reducing the demands for their outputs and their own profits”.
The present work revisits received wisdom on equilibrium limit pricing in dynamic contexts,

by way of a dynamic extension of a simple static model of one-sided incomplete information
in the spirit of Milgrom and Roberts (1982). I demonstrate that whereas some aspects of the
standard (static) analysis may be preserved qualitatively when moving to dynamic contexts,
the quantitative results may radically differ. The analysis shows that when the horizon is
suffi ciently long and the players suffi ciently patient, limit pricing becomes infeasible altogether.
In this article, I analyze a model of limit pricing with one-sided incomplete information

in which a simple entry game is repeated as long as entry has not occurred. In this model,
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I identify two distinct regimes, a monopoly price regime and a limit price regime. In the
monopoly price regime, limit price equilibria may exist but all such equilibria are ruled out
by using a combination of equilibrium dominance and Cho and Kreps’(1987) criterion D1 at
all information sets off the equilibrium path, as compared to a natural benchmark equilibrium
in which the uninformed player makes use of all available information (in a sense that will be
made precise). The unique equilibrium, using this notion, is one of immediate separation on
monopoly prices. In the limit price regime, both pooling and separating equilibria may exist and
all these involve limit pricing. I find that in the limit price regime, the basic logic of separating
equilibria of a static single-round setting carries over to the separating equilibria of the dynamic
setting. In particular, I find that by sacrificing enough at some (single) stage of the game, the
effi cient incumbent may credibly convey his identity to the entrant. Whether this signaling
effectively precludes entry, and is thus worthwhile from the perspective of the incumbent firm,
in turn depends on entrant’s incentives to enter. In the dynamic setting, as the future becomes
more important, the relevant conditions needed to deter entry are increasingly unlikely to be
satisfied. Specifically, I show that as the horizon becomes longer, it becomes more diffi cult to
deter entry simply because the entrant’s one-off cost of entry may not outweigh a long sequence
of post-entry profits, even if discounted. Similarly, I show that for a suffi ciently patient entrant
firm, an infinite sequence of discounted future profits will outweigh any bounded entry fee and
thus make entry inevitable. In both cases, adding dynamics to a static limit pricing model
makes entry deterrence through limit pricing more diffi cult (or impossible) to sustain as an
equilibrium outcome. Thus immediate entry is likely to result, with each firm settings its
respective monopoly price (regardless of the prevailing regime).
Although these results cast serious doubt on the viability of limit pricing, it should be

mentioned that the basic tradeoff found in the static analysis can be recovered in the dynamic
setting, if one disregards the caveats above and assume all incentive constraints to be satisfied.
Even in this case, the dynamics of the model make somewhat unrealistic predictions. Specif-
ically, one important difference with a static setting is that in the static setting, the benefits
from deterring entry are bounded, whereas this is no longer the case in the dynamic setting,
if the players are suffi ciently patient. For a large enough discount factor and a suffi ciently
long horizon, the effi cient incumbent needs to press the ineffi cient incumbent to make strictly
negative profits from mimicking (e.g. by pricing below marginal cost). When the players are
very patient, the short-term losses necessary to credibly signal to be a low-cost incumbent are
unbounded.
Assuming that all the relevant feasibility constraints are satisfied, in the limit price regime

all equilibria satisfying the D1 type refinement (anchored D1) belong to a single class, consisting
of (i) a (possibly non-zero and possibly infinite) number of periods during which the two types
of incumbent pool, (ii) a period in which the effi cient type engages in costly signaling whereas
the ineffi cient type reveals himself and invites entry and (iii) continuation play in which the
effi cient type charges monopoly prices in all subsequent periods and deters entry whereas the
ineffi cient type competes against the entrant.
The welfare properties of these equilibria are not straightforward. It is true, as is the case

in the static benchmark model, that in the period where separation takes place, welfare is
unambiguously higher than it would be under symmetric information. This is because entry
occurs under the same states of nature as under symmetric information, but the effi cient
type sets lower prices than would a monopolist. But if separation is preceded by periods
with pooling, the conclusion is less clear cut. This is because pooling deters entry, which
counterweights the benefits of lower prices set by the incumbent.1 In the special case where the
static pooling equilibrium yields lower welfare than under complete information, social welfare
is unambiguously higher the earlier separation occurs. This is because immediate separation

1For a nice discussion of the welfare properties of such equilibria, see Tirole (1988).
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(which has good welfare properties) precludes periods with pooling (which have bad welfare
properties). But if instead welfare under the static pooling equilibrium is higher than under
complete information, then the welfare comparison of equilibria that differ in their timing of
separation becomes impossible, without making explicit assumptions about parameters and
the nature of post-entry competition. This is because one must then compare magnitudes of
positive payoffs rather than comparing signs of payoffs.2

Empirical Evidence of Limit Pricing. Direct evidence of limit pricing is diffi cult to come
by, for several reasons. First, limit pricing is a response to the threat of entry rather than to
actual entry, as emphasized by Goolsbee and Syverson (2008). The threat of entry is typically
not observed, but must instead be inferred from context, as the few existing empirical articles
on limit pricing do. Second, if successfully carried out, limit pricing causes potential entrants
to stay out of the industry. Again, it is not straightforward to identify the “absence of entry”,
whereas in instances of predatory pricing, an active firm is easily identified as leaving the
industry. Third, even pricing patterns that are broadly consistent with the basic idea of limit
pricing may be the result of other types of dynamic demand linkages, such as the building up
of a loyal customer base (see e.g. Bain, 1949 and Gedge et al., 2013).3

More recently, the literature has identified two industries in which the threat of entry can
be inferred from context, namely the airline industry and the cable TV industry. Entry into
the airline industry has been analyzed by Goolsbee and Syverson (2008), Morrison (2001) and
Gedge et al. (2013). In this literature, the threat of entry on a route between two airports A
and B is identified with the presence of an entrant airline in airports A and B separately. That
is, if an entrant airline is already serving the route A-C and now starts operating on route
B-D, then the presence of the entrant on both endpoints of the route A-B is taken as a threat
that it will start operating on this route as well. The results of Goolsbee and Syverson (2008),
although suggestive (or at least consistent with) limit pricing, are inconclusive. Gedge et al.
(2013) also study the airline industry to conclude that strategic considerations are in play.
In the cable TV industry, Seamans (2013) uses a similar approach, by exploiting the fact

that entering (and offering cable TV services to) a geographical area, is significantly more
appealing for a company that already serves an adjacent area (because fixed costs can be
shared). Thus the threat of entry of an entrant can be identified as the physical proximity
of the entrant’s existing foothold to the market in question. The analysis of Seamans (2013)
concludes that the evidence from the cable TV industry is consistent with limit pricing.
Although the analysis of these industries seems to lend some credence to the practice of

limit pricing, one has to be cautious in interpreting this evidence. The reason is that in both
cases, both entrant and incumbent firms are engaged in multi-market contact. In other words,
each entry scenario is but a small part of a larger game played by the firms across different
geographical locations and markets. This type of competitive environment does not fit neatly
into the standard entry deterrence framework, as exemplified by the Milgrom and Roberts
(1982) model. For example, if an incumbent signals strength via limit pricing on a given
route, what does that imply for the entrant’s entry decisions on other routes? Similarly, if
simultaneous entry into multiple markets is attempted, should signaling on these markets by
a multi-market incumbent be coordinated? If so, how? It quickly becomes clear that the full
analysis of such markets goes well beyond the simple single incumbent/single entrant model.
A third industry in which the threat of entry can be identified clearly is the pharmaceuticals

2Saloner (1984) also finds that the welfare properties of equilibria in an alternative dynamic model of limit
pricing are ambiguous.

3Several articles, such as Harrington (1986) and Jun and Park (2010), construct models in which the weak
incumbent wants to price higher than the strong incumbent, either to signal to the entrant that it may have
high costs or to encourage weak entrants to enter at the expense of stronger entrants.
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industry.4 Producers of patented medicines are, by definition, not exposed to potential entry,
but when patents expire, the possibility of entry and competition by producers of generic
alternatives materializes. Because the expiry dates of patents is known, one may fruitfully
analyze the pricing behavior of incumbent firms close to the expiration date of their patents
and try to ascertain whether limit pricing is taking place. Interestingly, both advocacy groups
and regulators have taken an active interest in this industry and its pricing behavior, but the
academic literature on pre-expiry pricing behavior is sparse. The Rx Price Watch Report (2011)
from the AARP Public Policy Institute finds evidence that for a number of blockbuster drugs,
firms significantly increase their prices prior to patent expiry. This type of pricing behavior is
noteworthy, because an ostensibly profit maximizing incumbent monopolist would not wish to
increase its price in the face of entry. In fact, an increase in price is prima facie evidence that
the firm was not charging its monopoly price till that point. This type of pricing turns out
to be consistent with a type of equilibrium described in this article, namely an equilibrium in
which the informed firm sets an uninformative price for a while (i.e. pools) and then separates
by setting a high monopoly price that subsequently prompts entry into the industry. Although
suggestive, this phenomenon should be contrasted with another common practice which casts
doubt on the limit pricing story, namely the adoption of so-called pay-for-delay agreements. As
noted by the Federal Trade Commission (2012), there is an increasing trend of incumbent firms
engaging in this type of arrangement with potential generic competitors. Under a pay-for-delay
agreement, the entrant delays its introduction of a competing generic drug, in return for the
incumbent’s promise not to introduce an authorized generic (i.e. a non-branded version of the
incumbent’s drug that competes with the entrant’s generic drug). To appreciate that this type
of arrangement is incompatible with limit pricing, note that the incumbent firm is essentially
forgoing future profits from the introduction of an authorized generic, in return for a short
term gain (i.e. that it will remain a monopolist in the short term). But the basic mechanics of
limit pricing are the exact opposite, namely that the firm makes a short term loss in order to
secure a long term gain.
To conclude, the extent to which limit pricing is helpful in explaining pre-expiry pricing

behavior in the pharmaceuticals industry is unclear.
Overall, the empirical literature does not allow one to confidently assert that limit pricing is

a successful strategy for deterring entry (to the extent that the strategy is used at all, something
that is also not clear). Being careful not to overstate the conclusions based on a theoretical
analysis, the present article may suggest additional reasons why clear actual examples of limit
pricing are hard to come by.

The Theoretical Literature on Limit Pricing. In his analysis, Bain (1949) identified
two possible channels through which current prices may deter entry: (i) a low current price
may signal to potential entrants that existing and future market conditions are unfavorable to
entry and that (ii) a low current price may signal to potential entrants something about the
incumbent’s response to entry. The first generation of contributions focused almost exclusively
on explanation (ii) and featured models that were fully dynamic in nature, an approach which
is suitable for the study of ongoing relationships between competing firms. This literature
expounded a number of interesting characterizations of equilibrium limit price paths that could
in principle be confronted with the data (see Carlton and Perloff, 2004). Nonetheless, most
contributions had the unsatisfactory feature that entrants’decisions were not the outcome of
rational deliberations, but rather mechanistic (assumed) responses to the incumbent’s pricing
behavior.5 Furthermore, incumbents in these models were endowed with perfect ability to

4I thank an anonymous referee for directing my attention to this industry.
5Gaskins (1971) assumes that entry is a deterministic function of pre-entry price and Berck and Perloff

(1988) that it is proportional to future profitability. Stochastic entry is assumed by Kamien and Schwartz
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commit to future (i.e. post-entry) pricing behavior. This critique, first articulated by Friedman
(1979), cast serious doubt on the received wisdom from Bain’s insights. Milgrom and Roberts
(1982) confronted this challenge by reformulating the situation as one of incomplete information
and drew on both explanations (i) and (ii). In doing so, they succeeded in validating Bain’s
insights. Unlike the early theory on limit pricing, the Milgrom-Roberts analysis is essentially
static in nature (because signaling through prices occurs once and for all and the potential
entrant only has one opportunity to enter). This raises the question as to how robust their
findings are to dynamic extensions and to what extent their predictions are reconcilable with
those of the previous literature.
The second generation of models (distinguished by featuring incomplete information as

initiated by Milgrom and Roberts), has greatly shaped the way economists think about limit
pricing. As such, it is important to determine to what extent the lessons are robust to variations
in the modeling approach. Matthews and Mirman (1983) consider the possibility that the
incumbent’s price only provide noisy information to the entrant about the profitability of
entry. Under certain conditions, they find that limit pricing can be successfully employed by
the incumbent to limit entry. Harrington (1986) considers a variation of the basic model in
which the entrant is uncertain of his own costs, which are in turn correlated with those of
the incumbent. This modeling approach means that a high pre-entry price may signal that
the entrant’s costs are likely to be high, thereby making entry less appealing. In turn, this
may imply that in equilibrium, the incumbent charges a price higher than the monopoly price
and also deters entry. Jun and Park (2010) consider a dynamic setup where the incumbent
faces a sequence of entrants that can be either weak or strong, of which only the former
can be deterred. Rather than having a strong opponent enter, the incumbent may wish to
appear weak by charging a price higher than the monopoly price, thereby encouraging entry by
weak entrants. This conclusion should be contrasted to that gained from the Milgrom-Roberts
analysis.
The third generation of work on limit pricing seeks to come full circle by integrating the

dynamic nature of first generation models with a careful treatment of informational issues
as emphasized in second generation models. The present article is a contribution to this
branch of the literature. Closest to my analysis is the work of Kaya (2009), who studies
repeated signaling in a reduced form setup. She assumes one-sided asymmetric information
and focuses on separating equilibria. Her work complements the current analysis, focusing on
somewhat different issues. In particular, she does not select between equilibria and focuses
on the least cost separating equilibrium which allows the informed party to smooth costly
signaling intertemporally.6 In unpublished work, Saloner (1984) extends the Matthews and
Mirman (1983) setup of noisy signaling to multi-period settings. He assumes that not only
is signaling noisy, but that market conditions evolve randomly over time. This introduces a
real-options dimension to the entrant’s entry problem which may give it a strategic motive to
delay entry. The evolving market approach is also taken by Roddie (2010), who treats signaling
games with a particular monotone structure. A recent article by Gryglewicz (2009) treats a
continuous-time signaling model in which the informed party’s type is constant across time. His
analysis focuses on pooling equilibria in which the incumbent’s type is never revealed. Sorenson
(2004) treats a dynamic model of limit pricing similar to the present one, but implicitly assumes
that the informed party is unable to credibly signal his type in a single period. This gives rise
to repeated signaling over time.
In contrast to static models and to the existing dynamic models in the literature, my

modeling approach allows me to study dynamic limit pricing behavior in which there is delayed
revelation of information (i.e. separation may occur immediately, with a delay or not at all).

(1971) and others.
6This approach to repeated signaling was first adopted by Cho (1990).



6 F. Toxvaerd

Furthermore, my analysis shows that once dynamic considerations are introduced, limit pricing
may no longer be viable as an equilibrium phenomenon.
The remainder of the article is structured as follows. In Section 2, I introduce the benchmark

static model that will constitute the building block of the dynamic analysis and then extend it
to a fully dynamic model. A detailed analysis of the benchmark model is available as an Online
Appendix. I then analyze the dynamic setting and compare the outcomes of this analysis to the
static setting. Furthermore, in Section 3, I perform comparative statics analysis and discuss
sensitivity of equilibrium existence with respect to the length of the horizon and the discount
factor. Section 4 concludes. Most proofs are relegated to the Appendix whereas additional
analysis and worked examples can be found in the Online Appendix.

2. The Model
In this section, I set out a dynamic model of limit pricing played between an incumbent firm
and a potential entrant. The overall game consists of a number of rounds of pricing and entry
decisions, with each round sub-divided into three stages. For the sake of clarity, I will first
describe a single round of the overall game.

The Benchmark Setting. Consider an incumbent monopolist I and a potential entrant E.
The monopolist serves a market with demand Q(p) and the entrant can enter the market at
cost F > 0 to compete with the incumbent. The monopolist can be one of two types, high cost
(H) or low cost (L), with probability µ and (1 − µ) respectively. The incumbent knows his
type, but his type is unknown to the entrant (who only knows the probability µ). Let CH(q)
and CL(q) be the cost functions of H and L respectively. Denote by πi(p) the profit function
of the incumbent of type i = H,L when he sets price p. These profits are given by

πi(p) = pQ(p)− Ci(Q(p)), i = H,L (1)

Let Di be the duopoly profit of the incumbent of type i = H,L when competing against
E and let DE(i) be the duopoly profits of E when competing against the incumbent of type
i = H,L. Denote by pMH and pML the monopoly prices under the technologies CH(·) and CL(·)
respectively.
In the benchmark single-round setting, I make the following assumptions:

Assumptions

1 Ci(q), i = H,L and Q(p) are differentiable, for q > 0 and p > 0 respectively.

2 C ′H(q) > C ′L(q),∀q ∈ R+, with CH(0) ≥ CL(0).

3 Q′(p) < 0,∀p ≥ 0.

4 DE(L)− F < 0.

5 DE(H)− F > 0.

6 πi(p) is strictly increasing for p < pMi and strictly decreasing for p > pMi , i = H,L.

7 πi(p
M
i ) > Di, i = H,L.

8 µDE(H) + (1− µ)DE(L)− F < 0.

Assumption 2 makes precise the sense in which type L is more effi cient than type H.
Assumption 3 simply states that demand is downward sloping. Assumptions (4)-(5) imply
that E will not enter in the benchmark setting if he knows that I is of type L, whereas he will
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enter if he knows that I is of type H. Thus these conditions are necessary for a separating limit
price equilibrium to exist. Assumption 6 means that the incumbent’s profit function is single
peaked, whereas Assumption 7 ensures that entry deterrence is desirable for the incumbent,
ceteris paribus. Under Assumption 8, the entrant expects to make negative profits against the
incumbent in the benchmark setting if he cannot distinguish between the two types and thus
stays out. This is a necessary condition for a pooling limit price equilibrium to exist. Once
the game is extended to a multiple round interaction, Assumptions 4, 5 and 8 will have to be
suitably modified, whereas the remaining assumptions will remain in place throughout.
Each round of the game between I and E is played in three stages.7 At the first stage, I

sets a price that will serve as a signal for E of I’s type. After observing the price set by I, E
decides at the second stage whether or not to enter (incurring the entry fee F ). Denote E’s
entry decision by sE ∈ {0, 1}, where sE = 0 stands for stay out and sE = 1 stands for enter.
At the third stage, if E enters he will learn I’s type and compete against him in complete
information fashion. Both incumbent and entrant discount the future by a factor δ ∈ [0, 1].
A strategy for I is a price for each of his two types, pH or pL, at the first stage, a price at

the second stage if the entrant stays out and a quantity or price to set at the third stage if
the entrant enters (depending on the mode of competition), both as functions of his type and
the decisions made at the first stage. A strategy for E is a decision rule to enter or not as a
function of the price set by I at the first stage and a quantity or price to set at the third stage
in case he enters (again, depending on the mode of competition).
In a single round, strategies are defined as follows. Let σ ≡ (pL, pH , p) denote a triple of pure

strategies of the game, i.e. a price charged by each type of I and a threshold price governing
E’s entry decision. Throughout this article, attention will be restricted to pure strategy perfect
Bayesian equilibria. Denote by p∗H and p

∗
L the equilibrium prices charged by the H type and

the L type respectively.

Definition 1 The triple σ is a separating equilibrium if p∗H 6= p∗L and a pooling equilibrium if
p∗H = p∗L. Furthermore, σ is a limit price equilibrium if p∗H < pMH or p∗L < pML or both.

Note that under the maintained assumptions, ceteris paribus, the high cost incumbent will
wish to set a higher monopoly price than the low cost incumbent. An implication of this fact
is that an ineffi cient incumbent would only set lower prices than an ineffi cient incumbent’s
monopoly price, in order to convince the entrant that it is in fact an effi cient incumbent.

Summary of the Benchmark Setting. The analysis of the single-round model is well
understood and the details are therefore omitted (see Online Appendix for a complete analysis
with the present notation). If the game admits equilibria, there are typically a continuum of
such equilibria within each class, i.e. a continuum of separating equilibria and a continuum
of pooling equilibria. The multiplicity relies on choosing different beliefs off the equilibrium
path. Using standard equilibrium selection techniques, such as equilibrium dominance, a unique
equilibrium can be selected within each class.
In addition, after performing equilibrium selection, the set of equilibria can, if non-empty,

be divided into two distinct regimes, namely a limit price regime and a monopoly price regime.
These regimes will reappear in an important way in the dynamic game. In the monopoly
price regime, the unique equilibrium satisfying equilibrium dominance is characterized by firms
separating by setting their respective monopoly prices, whereas in the limit price regime, both
pooling and separating limit price equilibria coexist, both satisfying equilibrium dominance.
Which regime obtains, depends on the parameter constellation and on the specifics of the mode
of competition.

7In the dynamic version of the model, stages one and two will together constitute a period and stage three
will be a separate period.
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For later reference, the monopoly price regime obtains if and only if

πH(pMH ) +
δDH

1− δ ≥
πH(pML )

1− δ (2)

This inequality has an interesting interpretation. The left-hand side is the profit for the H type
of revealing his type by earning monopoly profits in the first period and then earning discounted
duopoly profits in perpetuity thereafter. The right-hand side is the discounted profit stream
for the H type from mimicking the L type’s monopoly price in perpetuity.

The Dynamic Setting. To introduce proper dynamics to the model, the benchmark model
is repeated T − 1 times as long as entry has not occurred (so that period T < ∞ is the last
period and period T − 1 is the last period in which signaling and/or entry may occur).8 Note
that this is not a repeated game, as entry can only occur once and thus the stage game is not
unvarying across periods; hence the use of the term rounds.
Next, I formally define what is meant by a separating and a pooling equilibrium in this

dynamic setting. Let σT ≡ {pt,L, pt,H , pt}T−1t=1 denote a triple of pure strategies of the game.
Denote by

{
p∗t,L
}T−1
t=1

and
{
p∗t,H

}T−1
t=1

the equilibrium price sequences for the two types of in-
cumbent.

Definition 2 The triple σT is a separating equilibrium if
{
p∗t,H

}T−1
t=1
6=
{
p∗t,L
}T−1
t=1

and a pooling

equilibrium if
{
p∗t,H

}T−1
t=1

=
{
p∗t,L
}T−1
t=1
.

These definitions are the natural generalizations of their static counterparts. In essence,
they extend the notion that upon observing the incumbent’s equilibrium strategy, the entrant
can infer the incumbent’s type. Importantly though, it is quite possible that such an inference
can only be made upon observing the entire strategy. One reason for adopting this definition
is that if the incumbent’s type has to be recognizable after all partial (i.e. non-terminal)
histories, as is the case in Kaya (2009) and Noldeke and van Damme (1990), then there cannot
by assumption be any delay in separation. I shall not impose such a restriction as it may rule
out interesting equilibria with delayed information revelation. In what follows, it is useful to
distinguish between immediate separation equilibria and delayed separation equilibria (of which
a special case is the pooling equilibrium).
As in any signaling game, out of equilibrium beliefs must be assigned. An optimal decision

rule for the entrant will prescribe entry if the incumbent is believed to be of the H type and no
entry otherwise, that is if either the incumbent is believed to be of the L type or the two types
cannot be distinguished.9 I will assume for simplicity that the incumbent will be interpreted to
be of the H type for any observed price above the L type’s equilibrium price (either separating
or pooling) and to be the L type otherwise. These beliefs amount to the following (optimal)
monotone decision rule as a function of the observed price pt for t = 1, ..., T − 1, if entry has
not occurred by time t:

sE(pt) =

{
1 if pt > pt
0 if pt ≤ pt

(3)

for an appropriately chosen sequence {pt}
T−1
t=1 (determined by E).

10 Note that although the
dependence of the decision rule on past price observations has been suppressed in the notation,
the entrant is allowed to condition his entry decision on all available information, including the
exact history of prices set by the incumbent.

8Although the benchmark model has two periods, it is static in the sense that signaling and entry can take
place only once.

9Assumptions on the primitives of the model that ensure the optimality of this decision rule will be introduced
below.
10This type of monotone strategy is similar to the trigger strategies considered by Saloner (1984).
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Equilibrium Selection in the Dynamic Model. Rather than characterizing the entire set
of equilibria of the dynamic game, I will argue that only a subset of the equilibria are reasonable
in a sense to be made precise.11 Note that ex post separation, the sequence (pML , p

M
L , ..., p

M
L )

yields the highest possible payoff to the L type incumbent (as long as the entrant’s beliefs that
he is facing the L type are not disturbed). In other words, as long as the L type sticks to this
price sequence, there is no possible deviation that can yield a higher payoffto him for any beliefs
that a deviation could feasibly induce. On the other hand, there are deviations that would
make the H type strictly better off. For example, consider the sequence (pMH , p

M
L , ..., p

M
L ). If the

entrant gives the incumbent the benefit of the doubt and ignores the out of equilibrium price
pMH (which he is entitled to do because there are no restrictions on beliefs off the equilibrium
path), then the H type is strictly better off under this price sequence than under the sequence
(pML , p

M
L , ..., p

M
L ) in which he mimics the strategy of the L type incumbent. But this means that

the set of best responses of the entrant that makes the H type want to deviate is strictly larger
than the set of best responses that would induce the L type to deviate (because this latter set is
empty). This line of reasoning implies that the entrant should actually conclude that it was the
high-cost incumbent who deviated, thus justifying the removal of this potential Bayesian Nash
equilibrium. This is very similar to the heuristic embodied in criterion D1. The reason that this
is not simply an application of the standard D1 refinement, is that the deviation is compared
to the equilibrium under complete information rather than to an arbitrary equilibrium. In
what follows, the analysis will be confined to equilibria that are selected using this approach.
This anchored D1 criterion is used in all post-separation periods. In the separation period
itself, where beliefs are not degenerate, I will apply standard equilibrium dominance to select
equilibria.12

This approach to equilibrium selection may have applicability to a larger class of dynamic
signaling models. For that reason, I will now formally define the anchored D1 criterion. The
D1 criterion is usually defined for static signaling games, typically by making use of reduced-
form payoff functions for the sender and the receiver (i.e. the informed and the uninformed
party, respectively). In what follows, the reduced-form payoff functions will be composed of
two separate parts, namely the payoff in the current period and the discounted expected payoffs
from future equilibrium play. Using continuation equilibrium play in this way, allows one to
make use of the D1 criterion period by period, like in Roddie (2010) and Gedge et al. (2013).
First, define the reduced-form payoff to the type i = H,L incumbent as

Πt
i(p, sE) ≡ πt,i(p) + δV t

i (p, sE, µ
′) (4)

In this definition, V t
i (p, sE, µ

′) is the expected equilibrium continuation value (for some given
equilibrium) for the incumbent when setting price p in the current period, the entrant’s entry
decision is sE and the entrant’s beliefs upon observing p are given by µ′.
For any period t = 1, ..., T − 1 for which beliefs are non-degenerate, the usual equilibrium

dominance criterion is applied. To define D1, let S be a non-empty subset of the type space
{H,L} and define the entrant’s best response

BR(S, p) ≡ ∪µ′:µ(S|p)=1BR(µ′, p) (5)

where
BR(µ′, p) ≡ arg max

sE∈{0,1}

∑
i∈{H,L}

µ(i|p)ΠE(p, sE, i) (6)

11A more complete discussion of this concept and its relation to the existing literature can be found in the
Online Appendix.
12An alternative to this approach would be to employ the standard D1 criterion to pre-separation periods.

This would effectively rule out delayed-entry equilibria.
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and µ(i|p) is the entrant’s belief assigned to type i upon observing price p set by the incum-
bent. The term ΠE(p, sE, i) is simply the entrant’s discounted, expected payoff in the given
equilibrium. Pick an equilibrium in which the type i incumbent’s payoff is Π∗i and define the
sets

D(i, S, p) ≡ ∪µ:µ(S|p)=1
{
pE ∈ BR(µ, p) : Π∗i < Πt

i(p, sE)
}

(7)

D0(i, S, p) ≡ ∪µ:µ(S|p)=1
{
pE ∈ BR(µ, p) : Π∗i = Πt

i(p, sE)
}

(8)

The set D(i, S, p) is simply the best responses for the entrant that make the incumbent want to
deviate from the equilibrium action, whereas D0(i, S, p) is the set of best responses for which
the incumbent is indifferent between deviating and taking the equilibrium action.
The standard definition of D1 (in the formulation of Fudenberg and Tirole, 1991) is then

as follows:
Prune the type-strategy pair (i, p) under criterion D1 if there exists some type j ∈ {H,L}

such that {
D(i, {H,L}, p) ∪ D0(i, {H,L}, p)

}
⊂ D(j, {H,L}, p) (9)

This definition means that if the set of entry decisions for the entrant that makes type
i = H,L willing to deviate to some price p is strictly smaller than the set of of entry decisions
that makes type j willing to deviate, then the entrant should believe it to be infinitely more
likely that the deviation to price p came from type j rather than from type i.
Next, for any period t = 1, ..., T − 1 for which beliefs are degenerate, apply criterion D1 as

above but replacing the equilibrium payoffΠ∗i to the incumbent by Π
∗
i , which is the discounted

equilibrium payoff to the incumbent under complete information (given the degenerate beliefs).
In what follows, I will make use of the following definition:

Definition 3 An equilibrium price sequence
{
p∗t,i
}T−1
t=1
, i = H,L satisfies the anchored D1

criterion, if the anchored D1 criterion is applied separately to each pre-entry period in
which beliefs are degenerate.

In the present model, once beliefs are centered on the H type, entry occurs and no further
learning can take place (because the incumbent’s type is then perfectly revealed). In more
general settings, further rounds of equilibrium selection may be necessary and thus somewhat
more delicate arguments would be needed to select between equilibria.

Separating Limit Price Equilibria. To make limit pricing with separation feasible, it must
be the case that the entrant would find it optimal to enter against the H type incumbent but
to stay out against the L type incumbent. A necessary condition for a separating limit price
equilibrium with separation in any period t = 1, ..., T − 1 to exist is that

DE(L) <

(
1− δ

1− δT−t+1
)
F < DE(H), t = 1, ..., T (10)

As the coeffi cient on the entry fee F in this condition is decreasing in the number of remaining
periods, the condition may fail to hold for some t.13 In order to avoid time varying necessary
conditions at this stage of the analysis, I instead impose the following restrictions, which ensure
that separation is feasible in an arbitrary period t = 1, ..., T :

Assumptions

13In particular, it may be the case that the necessary condition for a separating limit price equilibrium to be
feasible is that the remaining number of periods be small. This case will be considered in the next section.
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4′ DE(L) <
(
1−δ
1−δT

)
F .

5′ DE(H) > F .

It should be pointed out that although Assumption A5’coincides with Assumption A5,
Assumption A4’ is stronger than Assumption 4. In Section 3, I will explicitly analyze the
dependence of these conditions on the discount factor and the length of the interaction.

Characterization. The characterization of equilibria of the dynamic model follows sim-
ilar steps as that of the single-round model, although the analysis is complicated by the dy-
namic nature of the problem. Based on the discussion above, a separating equilibrium price
sequence

{
p∗t,L
}T−1
t=1

for the L type satisfying the anchored D1 refinement is of the general form
(p∗1, ..., p

∗
t−1, p

∗
t,L, p

M
L , ..., p

M
L ), with separation occurring in period t = 1, ..., T − 1 ≤ ∞.14

Next, the entrant’s strategy can be characterized as follows:

Lemma 1. (entrant’s optimal decisions)
Consider the equilibrium price sequence (p∗1, ..., p

∗
t−1, p

∗
t,L, p

M
L , ..., p

M
L ) in which separation

occurs in period t = 1, ..., T − 1. Then (i) ps = p∗s and ps ≤ pML , s = 1, ..., t− 1, (ii) pt = p∗t,L
and pt < pML and (iii) ps = p∗s,L = pML , s = t+ 1, ..., T − 1.

Proof: The proofs of (i) and (ii) parallel those in the single-round setting (see Online Ap-
pendix) and are omitted, whereas that of (iii) follows from the equilibrium selection approach
discussed above �
It should be emphasized that I do not make any use of support restrictions in the post sep-

aration game. With a support restriction and assuming that prices have revealed that the in-
cumbent is of type L, the two different sequences of post-separation prices (pML , p

M
L , p

M
L , p

M
H , ...)

and (pML , p
M
L , p

M
L , p

M
L , ...) would be treated equivalently in terms of beliefs and entry decisions,

whereas with the equilibrium selection procedure I use, the former sequence would prompt the
entrant to update his beliefs and subsequently enter.
I now proceed by first analyzing the incentive compatibility constraints of each type of

incumbent and then move on to the issues of equilibrium existence and selection. Although
matters are complicated somewhat by the dynamic nature of the model (there are in each
case two regimes to consider, which depend on parameter values), the basic progression of the
analysis is straightforward.

The Incentive Compatibility Constraints. As is the case in the single-round setting,
the best alternative for the L type to setting the separating equilibrium price, is to set his
monopoly price. In contrast, the best alternative for the H type to setting the separating
equilibrium price, i.e. his monopoly price, is to mimic the L type’s equilibrium price. With
this in mind, the following partial characterization of the separating equilibrium price can be
given, using the L type’s incentive compatibility constraints:

Lemma 2. (effi cient incumbent’s incentive constraints)
For the price sequence (p∗1, ..., p

∗
t−1, p

∗
t,L, p

M
L , ..., p

M
L ) to constitute a separating limit price

equilibrium, it must satisfy

πL(p∗s) ≥ (1− δ)πL(pML ) + δDL, p∗s < pML , s = 1, ..., t− 1 (11)

πL(p∗t,L) ≥
(

1− δ − δT−t+1

1− δ

)
πL(pML ) +

(
δ − δT−t+1

1− δ

)
DL (12)

14In fact, in a separating equilibrium satisfying the anchored D1 criterion, it must also be the case that
p∗s = p

M
L for s = 1, ..., t− 1 as will be shown below.
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Proof: See Appendix �
To write the incentive compatibility constraint for the separation period in terms of prices,

define the following set:

AL(T, t) ≡
{
p : πL(p) =

(
1− δ − δT−t+1

1− δ

)
πL(pML ) +

(
δ − δT−t+1

1− δ

)
DL

}
(13)

As πL(p) = DL for some p, then by Assumptions 6 and 7 it follows that the set AL(T, t) is
non-empty and contains at most two points. Let

α0(T, t) ≡ minAL(T, t), β0(T, t) ≡ maxAL(T, t) (14)

where α0(T, t) <∞ and β0(T, t) ≤ ∞. Let the single-round cutoffs be denoted by α0 and β0,
i.e. α0 ≡ α0(2, 1) and β0 ≡ β0(2, 1).

In terms of prices, the L type’s incentive compatibility constraint for the separation period
can then be written as

p∗t,L ∈ [α0(T, t), β0(T, t)] (15)

For later use, note that by definition it is the case that

πL(α0(T, t)) =

(
1− δ − δT−t+1

1− δ

)
πL(pML ) +

(
δ − δT−t+1

1− δ

)
DL = πL(β0(T, t)) (16)

I next consider the incentive compatibility constraints for the H type. These are slightly more
complicated than those of the L type, due to the fact that the H type may in general wish
to mimic the behavior of the L type for an arbitrary number of periods after the L type has
chosen to separate. To see this more clearly, consider an equilibrium price sequence for the
L type given by (p∗1, ..., p

∗
t−1, p

∗
t,L, p

M
L , ..., p

M
L ) for t = 1, ..., T − 1. In equilibrium, the H type’s

strategy is given by a sequence (p∗1, ..., p
∗
t−1, p

M
H , xt+1, ..., xT ) where xs is shorthand for H’s post

entry equilibrium strategy in period s = t+ 1, ..., T .

Consider possible deviations for the H type. First, H may wish to deviate during peri-
ods with pooling and so these pooling prices must respect appropriate incentive compatibility
constraints. Next, the H type incumbent may deviate in the period where separation is pre-
scribed, by mimicking the L type’s strategy. Last, H may deviate by not only mimicking the L
type’s separating price, but also by mimicking L’s post-separation strategy pML for an arbitrary
number of periods. It turns out that the optimal amount of mimicking undertaken by the H
type out of equilibrium depends in a simple way on parameter values, as the following results
show:

Lemma 3. (ineffi cient incumbent’s incentive constraints)

(i) In the monopoly price regime, mimicking only once is the optimal off-equilibrium path
strategy. Furthermore, for the price sequence (p∗1, ..., p

∗
t−1, p

∗
t,L, p

M
L , ..., p

M
L ) for t = 1, ..., T − 1 to

constitute a separating limit price equilibrium, it must satisfy

πH(p∗s) ≥ (1− δ)πH(pMH ) + δDH , p∗s < pML , s = 1, ..., t− 1 (17)

πH(p∗t,L) ≤ (1− δ)πH(pMH ) + δDH (18)

(ii) In the limit price regime, mimicking perpetually is the optimal off-equilibrium path
strategy. Furthermore, for the price sequence (p∗1, ..., p

∗
t−1, p

∗
t,L, p

M
L , ..., p

M
L ) for t = 1, ..., T − 1 to
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constitute a separating limit price equilibrium, it must satisfy

πH(p∗s) ≥ (1− δ)πH(pMH ) + δDH , p∗s < pML , s = 1, ..., t− 1 (19)

πH(p∗t,L) ≤ (1− δT−t)πH(pMH ) +

(
δ − δT−t+1

1− δ

)
DH −

(
δ − δT−t

1− δ

)
πH(pML ) (20)

Proof: See Appendix �
To express these incentive compatibility constraints in terms of prices, define the following

set:

AH(T, t) ≡
{
p : πH(p) = (1− δT−t)πH(pMH ) +

(
δ − δT−t+1

1− δ

)
DH −

(
δ − δT−t

1− δ

)
πH(pML )

}
(21)

Note that the coeffi cients on πH(pMH ), DH and πH(pML ) in the definition of AH(T, t) sum to
one. It then follows from Assumptions 6 and 7 and the fact that πH(pMH ) > πH(pML ) that the
set AH(T, t) contains at most two points. Let

α̂(T, t) ≡ minAH(T, t), β̂(T, t) ≡ maxAH(T, t) (22)

where α̂(T, t) <∞ and β̂(T, t) ≤ ∞. Let the single-round cutoffs be denoted by α̂ and β̂, i.e.
α̂ ≡ α̂(2, 1) and β̂ ≡ β̂(2, 1).
For periods with pooling, the price sequence must thus satisfy

max {α0, α̂} ≤ p∗s ≤ pML < pMH , s = 1, ..., t− 1 (23)

For the period in which separation is prescribed, theH type’s incentive compatibility constraint
when condition (2) is satisfied is that

p∗t,L /∈ [α̂, β̂] (24)

which is as in the single-round setting. In this case, only the inequality p∗t,L ≤ α̂ is relevant,

because p∗t,L < pML < pMH < β̂.
For the period in which separation is prescribed, the H type’s incentive compatibility con-

straint when condition (2) is violated is that

p∗t,L /∈ [α̂(T, t), β̂(T, t)] (25)

In this case, only the inequality p∗t,L ≤ α̂(T, t) is relevant, because p∗t,L < pML < pMH < β̂(T, t).
For later use, note that by definition it is the case that

πH(α̂(T, t)) = (1− δT−t)πH(pMH ) +

(
δ − δT−t+1

1− δ

)
DH −

(
δ − δT−t

1− δ

)
πH(pML ) = πH(β̂(T, t))

(26)
Before summarizing the analysis of the dynamic limit price equilibria, I will briefly discuss

the issue of equilibrium existence.

Existence of Separating Limit Price Equilibria. When (2) is satisfied, the existence
of separating limit price equilibria is ensured if α̂ > α0(T, t) whereas if (2) is violated, then
existence is ensured if α̂(T, t) > α0(T, t).
The relevant suffi cient conditions for the existence of separating limit price equilibria are

as follows:
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Proposition 4. (existence of separating limit price equilibria)
(i) In the monopoly price regime, if

πL(pML )−DL >

(
1− δ

1− δT−t
)[

πH(pMH )−DH

]
, t = 1, ..., T − 1 (27)

then α̂ > α0(T, t) and the set of separating limit price equilibria is non-empty.
(ii) In the limit price regime, if

πL(pML )−DL >

[
(1− δ)δT−t−1

1− δT−t
]
πH(pMH )−DH +

[
δ − δT−2

1− δT−t
]
πH(pML ), t = 1, ..., T − 1 (28)

then α̂(T, t) > α0(T, t) and the set of separating limit price equilibria is non-empty.

Proof. See Appendix �
Note that in both regimes, the relevant suffi cient condition for existence becomes easier to

satisfy as the horizon recedes, i.e. equilibrium may exist in the dynamic setting even if none
exist in the static setting.

Equilibrium Selection. I now determine which of the equilibria in the dynamic game
satisfy the anchored D1 criterion after separation has taken place. I do this explicitly for the
case where (2) is violated. The case where (2) is satisfied follows similar steps, with α̂(T, t)
replaced by α̂.

Proposition 5. (uniqueness of separating limit price equilibrium satisfying anchored D1)
(i) In the limit price regime, only p∗t,L = α̂(T, t) satisfies the anchored D1 criterion.
(ii) In the monopoly price regime, only p∗t,L = pML satisfies the anchored D1 criterion.

Proof: See Appendix �
Before turning to the comparative statics analysis, the following result is shown:

Proposition 6. (characterization of separating limit price equilibrium satisfying anchored D1)
(i) In the monopoly price regime, all equilibria satisfying the anchored D1 refinement are

immediate separation equilibria.
(ii) In the limit price regime, all equilibria satisfying the anchored D1 refinement are of a

formwhere, for t = 1, ..., T−1, the L type’s strategy is given by a sequence (pML , ..., p
M
L , p

∗
t,L, p

M
L , ..., p

M
L )

and the H type’s strategy is given by a sequence (pML , ..., p
M
L , p

M
H , xt+1, ..., xT ) where xs is the

H type’s post entry strategy at time s = t+ 1, ..., T .

Proof: (i) It can be shown in the single-round setting that in the monopoly price regime,
i.e. when (2) is satisfied, no pooling equilibria surviving equilibrium dominance exist (see
Online Appendix). The result then follows immediately from observing that the incentive
compatibility constraint of the H type in periods of pre-separation pooling are identical to the
incentive compatibility constraint in the single-round setting. (ii) The proof follows directly
from the lemmas proved above �
This result means that in the monopoly price regime, the unique prediction is that each

type of incumbent will set its corresponding monopoly price in the first period and deter entry
in case of type L and invite entry in case of type H. That is, the equilibrium is necessarily
an immediate separation equilibrium. In the limit price regime, equilibria are possibly of the
delayed separation variety.
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Pooling Limit Price Equilibria. In the dynamic setting, a pooling equilibrium consists
of a price sequence σT = {p∗t}

T−1
t=1 set by both types of incumbent. This means that in every

period, the entrant cannot distinguish the two types. For pooling to be feasible in period
t = 1, ..., T − 1, the following conditions need to be imposed:

µDE(H) + (1− µ)DE(L) <

(
1− δ

1− δT−t+1
)
F, t = 1, ..., T (29)

These constraints are more diffi cult to satisfy the farther away the final period is. In order
to avoid time varying necessary conditions at this stage of the analysis, I instead impose the
following condition that ensures that pooling is feasible in any arbitrary period t = 1, ..., T −1:

Assumption 8’µDE(H) + (1− µ)DE(L)− (1− δ)F < 0.

Interestingly, this condition is more diffi cult to satisfy than that in Assumption 8, pertain-
ing to the benchmark setting. In other words, once dynamics are introduced, the necessary
condition for a pooling equilibrium to be feasible is more diffi cult to satisfy. Furthermore, it
becomes increasingly diffi cult the more patient the entrant becomes, i.e. the larger the discount
factor δ becomes. This feature will be further explored in the next section.
The following characterization of the entrant’s decision rule holds:

Lemma 7. (entrant’s optimal decisions)
pt = p∗t and p

∗
t ≤ pML , t = 1, ...T − 1.

Proof: Omitted �

The Incentive Compatibility Constraints. As is the case in the single-round setting,
the best alternative for each type to setting the pooling price, is to set the monopoly price and
thus invite entry. With this in mind, the following can be shown to hold:

Lemma 8. (incumbent’s incentive constraints)
For the price sequence {p∗t}

T−1
t=1 to constitute a pooling limit price equilibrium, it must

satisfy

πL(p∗t ) ≥ (1− δ)π(pML ) + δDL, p∗t < pML , t = 1, ..., T − 1 (30)

πH(p∗t ) ≥ (1− δ)π(pMH ) + δDH , t = 1, ..., T − 1 (31)

Proof: See Appendix �
These results can be collected as follows:

Proposition 9. (characterization of pooling limit price equilibria)
In any pooling limit price equilibrium, it must be the case that

max {α0, α̂} ≤ p∗t ≤ pML < pMH , t = 1, ..., T − 1 (32)

Equilibrium Selection. The incentive compatibility constraints in the dynamic pooling
equilibrium are in fact equivalent to their static counterparts. It then follows from the same
arguments as in the static analysis that only p∗t = pML satisfies equilibrium dominance (see
Online Appendix for details).
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Existence of Limit Price Equilibria Satisfying Anchored D1 Criterion. As is the
case in the analysis of the single-round setting, one may characterize two distinct regimes,
namely a monopoly price regime and a limit price regime. In the monopoly price regime, the
only outcome consistent with the anchored D1 refinement is separation on monopoly prices
in the first period, whereas in the limit price regime, both pooling and separating equilibria
coexist, both satisfying the anchored D1 refinement. In the pooling equilibrium, both types
of incumbent set the effi cient type’s monopoly price and thus the equilibrium involves limit
pricing. In the separating limit price equilibrium however, because the benefits from entry
deterrence increase with the horizon and the patience of the players, credibly signaling to be of
the effi cient type may involve incurring arbitrarily large losses in the period in which separation
is prescribed. Depending on the model specification and mode of competition in the market
game, this may actually involve setting negative prices.15

The equilibrium price paths of the dynamic model should be contrasted to those of the
early limit pricing literature. As Carlton and Perloff (2004) nicely show, some models predict
that equilibrium prices will increase over time, others that they will decrease and yet others
that price paths are not necessarily monotone. Because of the relatively weak restrictions on
equilibrium behavior imposed by the incentive compatibility constraints, many different price
profiles can be sustained in equilibrium. But not all such profiles are consistent with the
refinements used in the present analysis.
In the monopoly price regime, the analysis predicts immediate separation on monopoly

prices, with resulting entry against the H type incumbent and no entry against the L type
incumbent (who will subsequently charge monopoly prices indefinitely). In the limit price
regime, all equilibria share the same overall structure. Namely, they are characterized by a
non-negative and possibly infinite number N = 0, 1, ... of periods in which the two types of
incumbent pool on the effi cient type’s monopoly price pML , followed by a period N + 1 in which
the firms separate. In case the incumbent is of type L, prices will dip in order to signal strength,
after which prices will return to the pre-separation level pML . In case the incumbent is of type
H, prices will jump to pMH and then fall to some level p < pMH (because of the ensuing entry
and competition that will drive down prices).
Interestingly, in this model the timing of separation is indeterminate in the sense that in

equilibrium, signaling can happen in any period, if ever. In other words, equilibrium does not
pin down if and when signaling will take place. Note that this result is entirely unrelated to
the equilibrium multiplicity created by choosing different off-equilibrium path beliefs in usual
signaling games. Instead, the multiplicity is related to the coexistence of different classes of
equilibria, i.e. pooling and separating equilibria. In the static benchmark setting, if both
types of equilibria exist, there is no way to determine which of such different equilibria will be
played. A similar situation arises in the dynamic setting, where separation may be preceded
by multiple rounds of pooling. This indeterminacy effectively means that there are multiple
equilibria (among which we cannot select) which differ in their predictions on the timing of
separation and possible entry. It should be emphasized that timing indeterminacy is not
inherently because of the dynamics of the model. Even in a static framework in which pooling
and separating equilibria coexist, there is indeterminacy in this sense.16

Note that both types of incumbent are better off the later separation occurs. The effi cient
type earns monopoly profits as long as entry does not occur and is not called upon to engage
in costly signaling. In turn, the ineffi cient type effectively deters entry as long as pooling

15This will be the case, e.g., in a model with constant marginal costs and linear demand as that considered
by Tirole (1988). In fact, the effi cient incumbent would have to give its customers infinitely large subsidies to
credibly convey his identity.
16One can then think of the separating equilibrium as an immediate separation equilibrium and of the pooling

equilibrium as a delayed separation equilibrium.
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takes place. Although pooling is indeed costly for the ineffi cient type, it still dominates entry.
Therefore, it is not possible to use separation date as a screening device.

3. Comparative Analysis
To fully explore the differences between the static and dynamic settings, I will now consider
the effects of changing the main distinguishing features of the dynamic setting, namely the
length of the interaction T and the discount factor δ. I will in turn analyze the effects on
the necessary conditions for the entrant and the incumbent respectively. For the former, the
relevant conditions are A4’-A5’, which ensure that E wishes to enter against H and to stay
out against L and (29) (or A8’), which ensures that an uninformed entrant wishes to stay out.
For the latter, the relevant conditions are the incentive compatibility constraints (12) and (20).
Last, I will also analyze the effects on the necessary condition for a separating equilibrium to
exist.
It is immediately clear that the constraints in pre-separation periods are unaffected by the

length of the horizon. In periods where separation is prescribed however, the constraints do
explicitly depend on the remaining number of periods (if T <∞). First, consider the L type’s
incentive compatibility constraint p∗t,L ≥ α0(T, t). The cutoff α0(T, t) is decreasing in T as
α0(T, t) ≤ pML and the right-hand side of the equality defining the set AL(T, t) is decreasing in
T . In the limit T →∞, α0(T, t) is implicitly given by

lim
T→∞

πL(α0(T, t)) =

(
1− δ

1− δ

)
πL(pML ) +

(
δ

1− δ

)
DL (33)

This means that as the horizon recedes, the L type’s incentive compatibility constraint becomes
easier to satisfy.
Now turn to theH type. In the monopoly price regime, theH type’s incentive compatibility

constraints are unaffected by changes in T . In the limit price regime however, the appropriate
constraint is p∗t,L ≤ α̂(T, t). The cutoff α̂(T, t) is decreasing in T as α̂(T, t) ≤ pMH and the right-
hand side of the equality defining the set AH(T, t) is decreasing in T . In the limit T → ∞,
α̂(T, t) is implicitly given by

lim
T→∞

πH(α̂(T, t)) = πH(pMH ) +

(
δ

1− δ

)(
DH − πH(pML )

)
(34)

As the horizon recedes, the H type’s incentive compatibility constraint becomes more diffi cult
to satisfy.
These observations mean that, in the monopoly price regime, the set of separating limit

price equilibria expands with the length of the horizon, but the only equilibrium satisfying the
anchored D1 refinement remains unchanged, namely immediate separation on monopoly prices.
In the limit price regime, both critical cutoffs α̂(T, t) and α0(T, t) decrease in the length of the
horizon T and so both the largest and the smallest separating (and limiting) equilibrium prices
decrease. Although the effect of an increase in T on the set of equilibrium prices is ambiguous,
the unique equilibrium limit price satisfying the anchored D1 refinement is unambiguously
decreasing. I gather these results in the following proposition (the following results implicitly
assume that the relevant entry constraints A4’and A5’are satisfied for the entrant):

Proposition 10. (dependence of equilibrium on length of interaction)
(i) In the monopoly price regime, the unique equilibrium price satisfying the anchored D1

refinement is invariant in the length of the interaction.
(ii) In the limit price regime, the unique separating equilibrium limit price satisfying the

anchored D1 refinement is decreasing in the length of the interaction.
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Effects on the Cost of Signaling. In this subsection, I consider how the incumbent’s
cost of signaling changes when dynamics are introduced. In the single-round setting, the H
type’s profits from mimicking the L type’s separating equilibrium strategy may be positive.
Interestingly, this is no longer necessarily the case in the dynamic version of the game. In
particular, I have the following result:

Proposition 11. (cost of signaling with infinite horizon)
In the limit price regime,

lim
T→∞

πH(α̂(T, t)) < 0 (35)

Proof: See Appendix �
In fact, the result becomes even stronger as the future becomes increasingly important, as

the next result demonstrates:

Corollary 12. (cost of signaling with high discount factor)
In the limit price regime,

lim
δ→1

lim
T→∞

πH(α̂(T, t)) = −∞

Proof: The result follows from taking the limit δ → 1 of (34) and again noting that πH(pML ) >
DH when (2) is violated �
The consequences of these results are worth emphasizing. They are that in the infinite

horizon limit of the limit price regime, as the discount factor approaches one, the effi cient type
must force the ineffi cient type to make arbitrarily large losses in order to credibly signal that he
is indeed effi cient. This is because in this scenario, the benefits to H of perpetual incumbency
approach infinity. This gives a very lopsided intertemporal profile of costs and benefits. The
costs of signaling are all borne in a single period, whereas the benefits of effectively deterring
entry accrue over an infinite number of periods.
For T and δ suffi ciently large, it may well be that the set

A+H(T, t) ≡ {p ∈ AH(T, t) ∩ R+}

is empty. In other words, depending on the details of the product market, it may be that there
are no positive prices that satisfy the H type’s incentive compatibility constraint. As T →∞
and δ → 1, positive prices can only be secured if demand has a vertical asymptote at p = 0,
i.e. if limp→0Q(p) = ∞. Even in this case, the equilibrium separating price may run afoul of
the Areeda and Turner (1975) rule, requiring pricing above marginal cost.
Pooling: As is the case in pre-separation periods in the separating equilibria, the con-

straints for the pooling equilibria do not depend explicitly on the remaining number of periods.
It follows that the pooling equilibria are in fact not affected by the dynamic extension of the
model (if they exist).

Effects on the Entry Decisions. In this subsection, I consider how the entrant’s incentive
to enter or stay our change when dynamics are introduced. I consider the necessary conditions
for separation and pooling in turn.

Separating Equilibrium. Recall that in the single-round setting, the necessary condi-
tions for a separating limit price equilibrium are that DE(L) < F < DE(H). The equivalent
conditions in the T -period problem are that for t = 1, ..., T − 1, it is the case that

DE(L) < F

(
1− δ

1− δT−t+1
)
< DE(H) (36)
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As the expression in parentheses is decreasing in the horizon T , the right-hand side inequality
in (36) is trivially satisfied for any T > 1, if it is satisfied in the single-round setting. I
therefore concentrate on the left-hand side inequality. There are two cases to consider. For
DE(L) > (1 − δ)F , there exists some period T ∗S such that for t > T − T ∗S , the necessary
condition is violated and thus there can be no separating limit price equilibrium. Note that
an implication of this finding is that if one imposes conditions for a separating limit price
equilibrium to be feasible for a long time horizon, a separating limit price equilibrium may not
be feasible in the static setting.
For the case DE(L) < (1−δ)F , a long time horizon is not enough to rule out the possibility

of separation with limit pricing. But for suffi ciently patient players, entry cannot be deterred
through separation because the necessary condition is violated. Define the the following critical
value of the discount factor:

δ∗S ≡ 1− DE(L)

F
(37)

The following result then follows:

Proposition 13. For δ > δ∗S, there can be no separation with limit pricing in the infinite
horizon game.

In conclusion, when the future is suffi ciently important (either because the horizon is very
long or because the players are very patient), limit pricing may become infeasible altogether
because the discounted post-entry payoffs to the entrant are large enough to offset the entry
fee F , even when competing against the effi cient incumbent L. In this case, the only possible
outcome is that of an immediate separation equilibrium with each type of incumbent setting
its monopoly price and the entrant entering against the ineffi cient incumbent (and staying out
against the effi cient incumbent).

Pooling Equilibrium. For simplicity, define

R ≡ µDE(H) + (1− µ)DE(L) (38)

and recall that in the single-round setting, a necessary condition for the existence of a pooling
limit price equilibrium is that R < F . In contrast, in the T -period setting, the equivalent
necessary condition for a pooling equilibrium to be feasible in an arbitrary period t = 1, ..., T−1
is that

R

(
1− δT−t+1

1− δ

)
< F (39)

There are two cases to consider, depending on the magnitude of the left-hand side in the limit
as the horizon becomes very distant. First, consider the case in which R > (1 − δ)F . In this
case, there exists some period T ∗P such that for t > T − T ∗P , the necessary condition (29) for
pooling is violated. In other words, if the remaining game is suffi ciently long, then there can
be no pooling equilibria. The reason for this result is simply that if the remaining number of
periods is very large, then the prospect of earning R per period upon entry (even if discounted)
is suffi cient to offset the entry fee F . It is therefore not possible to discourage entry, even if
pooling is feasible in the benchmark setting.
Next, consider the case in which R < (1−δ)F . In this case, pooling may be feasible even for

very long horizons, for some values of the discount factor δ. But for suffi ciently high patience,
pooling can be ruled out even in this case. This is because the expected discounted post-entry
profits are so large that entry is attractive even for an entrant who cannot distinguish the two
types of incumbent. Define the the following critical value of the discount factor:

δ∗P ≡ 1− R

F
(40)
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The following result can then be established:

Proposition 14. For δ > δ∗P , there can be no pooling in equilibrium in the infinite horizon
game.

For completeness, note that δ∗P < δ∗S. This implies that for some intermediate values of the
discount factor, it may be possible to rule out pooling (and thus delayed separation equilibria)
and therefore conclude that the outcome will be that of an immediate separation equilibrium
with limit pricing (if feasible).

4. Discussion
In this article, I analyzed a dynamic model of limit pricing and compared it with the outcome
of a static single-round model. I showed that there are two regimes of interest. In one, the
monopoly price regime, the only equilibrium satisfying the anchored D1 refinement involves
separation in the first period on monopoly prices, i.e. it is an immediate separation equilibrium.
In the other, the limit price regime, pooling limit price equilibria and separating limit price
equilibria (both satisfying the anchored D1 refinement) coexist, which leads to the possibility
of delayed separation equilibria.17 Although the dynamic pooling equilibrium is essentially a
repetition of the static outcome, with both types of incumbent pooling on the effi cient type’s
monopoly price, the latter may differ quantitatively from the separating limit price equilibrium
in the static setting.
The dynamic nature of the game changes the incentives of the incumbent and the entrant

in important ways. First, a long time horizon and patient players may significantly increase
the cost of signaling, to the point that the firms must set negative prices (and incur arbitrarily
large losses). Second, the prospect of large discounted sums of post-entry profits (which are
relevant when the horizon is long and the players are very patient) may make entry deterrence
impossible to achieve. Last, in the infinite horizon version of the game, the incumbent and
the entrant may choose to collude upon entry. Such collusion in turn makes entry deterrence
less attractive ex ante (for the incumbent) and less deterring (for the potential entrant).18 In
summary, the analysis shows that for a number of different reasons, when moving from a static
setting to a dynamic setting, the practice of entry deterrence through limit pricing seems to
become less viable. This suggests that the issue of potential limit pricing should perhaps not
be a main concern for competition authorities. Also, it should be noted that only some of these
results depend on the equilibrium selection approach adopted in this article and would remain
valid across a number of different environments.19

The basic model I have considered consisted of a single incumbent firm and a single potential
entrant. As is true in most models of limit pricing, the incumbent can be interpreted as a profit
maximizing cartel rather than as a single firm. As regards the entrant, the assumption that
there is only a single such firm makes the problem tractable. As surveyed by Carlton and
Perloff (2004), the early literature on limit pricing did indeed consider a number (and often a
continuum) of potential entrants. Two assumptions made this tractable. First, it was typically
assumed that there was no coordination problem between entrants (i.e. they would enter in an
orderly and continuous fashion if price was suffi ciently high). Second, it was assumed that there
was no signaling taking place. In the signaling based limit pricing literature, the assumption

17Note that in Saloner (1984), delayed entry is the outcome of a strategic choice by the entrant, whereas in
the present article it is the outcome of the parties coordinating on a particular equilibrium amongst many.
18For further discussion of the effects of post-entry collusion, see the Online Appendix.
19In related work (available upon request), I show that in an infinite-horizon version of the model in which the

incumbent’s type evolves stochastically over time, when the players become suffi ciently patient, entry cannot
be deterred. Similar results are also likely to hold in the setting considered by Saloner (1984).
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of a single entrant is ubiquitous. I have chosen to keep with this modeling assumption in order
to make my contribution directly comparable to this strand of the literature.20

Last, the model has been solved under the important assumption that upon entry, the
firms compete under complete information, i.e. there is no residual uncertainty about the
incumbent’s type. This is an assumption that it would be interesting to relax, as it would open
up the possibility of post-entry predatory pricing, in the spirit of Benoit (1984). Nonetheless,
a full analysis of such a setting seems very diffi cult to achieve, as one would have to consider
repeated entry and exit both on and off the equilibrium path.

Appendix

A. Main Proofs

This appendix contains the main proofs that have been omitted in the text.

Proof of Lemma 2 (effi cient incumbent’s incentive constraints). I first derive the
condition for the separating equilibrium price. The incentive compatibility constraints for the
L type are given by

πL(p∗1,L) +
T∑
i=2

δi−1πL(pML ) ≥ πL(pML ) +
T∑
i=2

δi−1DL (41)

K+1∑
i=1

δi−1πL(p∗i ) + δK+1πL(p∗K+2,L) +

T∑
i=K+3

δi−1πL(pML ) (42)

≥
M+1∑
i=1

δi−1πL(p∗i ) + δM+1πL(pML ) +
T∑

i=M+3

δi−1DL

for 0 ≤M ≤ K = 0, 1, ..., T − 3. The first constraint (41) reduces to

πL(p∗1,L) ≥
(

1− δ − δT

1− δ

)
πL(pML ) +

(
δ − δT

1− δ

)
DL (43)

Next, evaluate (42) at M = K and rearrange to get

πL(p∗K+2,L) ≥
(

1− δ − δT−K−1

1− δ

)
πL(pML ) +

(
δ − δT−K−1

1− δ

)
DL (44)

20Kalish et al. (1978) and references therein study some of the complications of the presence of multiple
(mutually aware) entrants.
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which determines the separating prices. Next, evaluate (42) at two arbitrary consecutive peri-
ods M = K − j and M = K − j − 1 respectively, with j = 1, ..., K − 1. These yield

δK−j+1πL(p∗K−j+2)−
(
δK−j+1 −

T∑
i=K+3

δi−1

)
πL(pML ) ≥ (45)

T∑
i=K−j+3

δi−1DL − δK+1πL(p∗K+2,L)−
K+1∑

i=K−j+3
δi−1πL(p∗i )

δK−jπL(p∗K−j+1)−
(
δK−j −

T∑
i=K+3

δi−1

)
πL(pML ) ≥ (46)

T∑
i=K−j+2

δi−1DL − δK+1πL(p∗K+2,L)−
K+1∑

i=K−j+3
δi−1πL(p∗i )− δK−j+1πL(p∗K−ji+2)

Substituting (45) in (46), rearranging and reducing yields

πL(p∗K−j+1) ≥ (1− δ)πL(pML ) + δDL (47)

Last, if the equilibrium requires pooling in only the first period, then it must be that

πL(p∗1) ≥
(

1−
T∑
i=3

δi−1

)
πL(pML ) +

T∑
i=2

δi−1DL − δπL(p∗K+2,L) (48)

Substituting for the value of πL(p∗K+2,L) given by (44) and rearranging, yields

πL(p∗1) ≥ (1− δ)πL(pML ) + δDL (49)

This completes the proof �
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Proof of Lemma 3 (ineffi cient incumbent’s incentive constraints). The constraints
are as follows:

K+1∑
i=1

δi−1πH(p∗i ) + δK+1πH(pMH ) +

T∑
i=K+3

δi−1DH ≥

M+1∑
i=1

δi−1πH(p∗i ) + δM+1πH(pMH ) +

T∑
i=M+3

δi−1DH , 0 ≤M < K = 0, ..., T − 3 (50)

πH(pMH ) +

T∑
i=2

δi−1DH ≥ πH(p∗1,L) + δπH(pMH ) +

T∑
i=3

δi−1DH (51)

K+1∑
i=1

δi−1πH(p∗i ) + δK+1πH(pMH ) +

T∑
i=K+3

δi−1DH ≥

K+1∑
i=1

δi−1πH(p∗i ) + δK+1πH(p∗K+2,L) + δK+2πH(pMH ) +

T∑
i=K+4

δi−1DH , K = 0, ..., T − 4 (52)

πH(pMH ) +
T∑

i=K+2

δi−1DH ≥ πH(p∗1,L) +

K+2∑
i=2

δi−1πH(pML ) + δK+2πH(pMH ) +

T∑
i=K+4

δi−1DH ,

K = 0, ..., T − 4 (53)
K+1∑
i=1

δi−1πH(p∗i ) + δK+1πH(pMH ) +
T∑

i=K+3

δi−1DH ≥

K+1∑
i=1

δi−1πH(p∗i ) + δK+1πH(p∗K+2,L) +
M+2∑
i=K+3

δi−1πH(pML ) + δM+2πH(pMH ) +
T∑

i=M+4

δi−1DH ,

0 ≤ K < M = 0, ..., T − 4 (54)

πH(pMH ) +
T∑
i=2

δi−1DH ≥ πH(p∗1,L) +
T−1∑
i=2

δi−1πH(pML ) + δT−1πH(pMH ) (55)

K+1∑
i=1

δj−1πH(p∗i ) + δK+1πH(pMH ) +
T∑

i=K+3

δi−1DH ≥

K+1∑
i=1

δi−1πH(p∗i ) + δK+1πH(p∗K+2,L) +

T−1∑
i=K+3

δi−1πH(pML ) + δT−1πH(pMH ),

K = 0, ..., T − 4 (56)

These sets of constraints will be explained in turn. Roughly, the H type’s off equilibrium
behavior can be described by the sequence pool-mimic-reveal. That is, first H pools whenever
the L type pools, then the H type mimics L’s behavior for some number of periods and then
he reveal his type, subsequently earning duopoly profits following entry by E. The first set
(50) considers the possibility of the H type revealing his type, by setting the monopoly price
earlier than the period in which the L type separates. These constraints will determine the
pooling constraints for the H type. Next, the constraints (51) and (52) consider the H type
mimicking the L type for a single period, in the cases of no prior pooling and an arbitrary
number of prior periods with pooling, respectively. Constraints (53) and (54) consider the H
type mimicking the L type for a number of periods, in the cases of no prior pooling and an
arbitrary number of prior periods with pooling, respectively. Last, constraints (55) and (56)
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consider the possibility of the H type perpetually mimicking the L type, again in the cases of
no prior pooling and an arbitrary number of prior periods with pooling, respectively.
The first equations in parts (i) and (ii) of the Lemma follow from the constraints (50) and

the same steps as those leading to the incentive compatibility constraints for the L type.
The next step is to order the magnitudes of the right-hand sides of constraints (51)-(56).

Straightforward comparison shows that the order depends on whether or not

(1− δ)πH(pMH ) + δDH ≥ πH(pML ) (57)

If (57) is satisfied, then (51)-(52) imply (53)-(56), whereas if (57) is violated, then (51)-(54)
are implied by (55)-(56). Note that condition (57) is in fact just a restatement of condition
(2), i.e. the condition that delineates the monopoly price regime and the limit price regime,
respectively.
The incentive compatibility constraints if (57) is satisfied are thus (52), which reduce to

πH(p∗K+2,L) ≤ (1− δ)πH(pMH ) + δDH (58)

for K = 0, ..., T − 4, whereas the equivalent constraint for the first period follows from (51). If
(57) is violated, then the relevant incentive compatibility constraints are (56), which reduce to

πH(p∗K+2,L) ≤
(
1− δT−K−2

)
πH(pMH ) +

(
δ − δT−K−1

1− δ

)
DH −

(
δ − δT−K−2

1− δ

)
πH(pML ) (59)

for K = 0, ..., T − 4, whereas the equivalent constraint for the first period follows from (55) �

Proof of Proposition 4 (existence of separating limit price equilibrium). To prove
the proposition, some preliminary notation and results are needed. As DH = πH(p) for some p,
then by Assumptions 6 and 7 the set AH is non-empty and contains at most two points given
by α̂ and β̂, where α̂ <∞ and β̂ ≤ ∞. For later use, note that by definition,

πH(α̂) = δDH + (1− δ)πH(pMH ) = πH(β̂) (60)

Observe that p∗L < pML < pMH < β̂. In conclusion, for the H type’s incentive compatibility
constraint to hold, it must be that

p∗L ≤ α̂ (61)

In other words, in order for the high cost incumbent to be willing to tell the truth, the low cost
incumbent’s strategy must be suffi ciently low.
Next, as DL = πL(p) for some p, then by Assumptions 6 and 7 the set AL is non-empty and

contains at most two points, given by α0 and β0, where α0 < ∞ and β0 ≤ ∞. By definition,
it is the case that

πL(α0) = δDL + (1− δ)πL(pML ) = πL(β0) (62)

This means that for the low cost incumbent to be willing to engage in costly signaling, the
separating equilibrium price must be high enough.
Last, the following result is needed:

Lemma 15. (relative effi ciency of types)
(i) πL(p)− πH(p) is strictly decreasing in p and (ii) pMH > pML .

Proof: See Online Appendix �
Next, I turn to the proof of the proposition:
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(i) Solving (16) and (60) forDL andDH respectively, substituting into (27) and rearranging,
yields

πL(pML )− πH(pMH ) > πL(α0(T, t))− πH(α̂) (63)

Adding and subtracting πH(pML ) yields

πL(pML ) + πH(pML ) +
[
πH(pML )− πH(pMH )

]
> πL(α0(T, t))− πH(α̂) (64)

By the definition of pMH , it follows that πH(pML )− πH(pMH ) ≤ 0. It thus follows from (64) that

πL(pML ) + πH(pML ) > πL(α0(T, t))− πH(α̂) (65)

As α0(T, t) ≤ pML , it follows by Lemma 15 that

πL(α0(T, t))− πH(α0(T, t)) ≥ πL(pML )− πH(pML ) (66)

Combined with (65), this implies that πH(α0(T, t)) < πH(α̂). Finally, α0(T, t) ≤ pMH and
α̂ ≤ pMH and therefore it follows by Assumption 6 that α0(T, t) < α̂.

(ii) Solving (16) and (26) forDL andDH respectively, substituting into (28) and rearranging,
yields

πL(pML )− πH(pMH ) > πL(α0(T, t))− πH(α̂(T, t)) (67)

Similar steps as in (i) then complete the proof �

Proof of Proposition 5 (uniqueness of separating limit price equilibrium). First,
condition (2), which delineates the two regimes, holds if and only if α̂(T, t) ≥ pML . To see this,
note that from (26), it follows that

δDH =

(
1− δ

1− δT−t
)[

πH(α̂(T, t))− (1− δT−t)πH(pMH ) +

(
δ − δT−t

1− δ

)
πH(pML )

]
(68)

Substituting this in (2) yields
πH(α̂(T, t)) ≤ πH(pML ) (69)

As α̂(T, t) < pMH and pML < pMH , the result follows from the inequality and Assumption 6. Next,
I make use of this result to prove the proposition. (i) Suppose that α0(T, t) < α̂(T, t) ≤ pML and
let p′ satisfy p∗L < p′ < α̂(T, t). Whichever strategy E picks, it is a strictly dominated strategy
for H to choose p′. If sE(p′) = 1, then because p′ < α̂(T, t) ≤ pML ≤ pMH , Assumption 6 implies
that the H type can benefit from switching to pMH , thereby earning πH(pMH )−πH(p′) > 0. Next,
suppose that sE(p′) = 0. In equilibrium, the H type should set the price pMH and can never
earn more out of equilibrium than by playing his optimal off equilibrium strategy. But the first
element of this strategy is precisely given by α̂(T, t). It follows that the H type is better off by
switching from p′ to α̂(T, t). After deleting the price p′ from the H type’s strategy set, E must
set sE(p′) = 0, as p′ could only have been set by the L type. But because p′ < α̂(T, t) ≤ pML , it
follows from Assumption 6 that the L type is better off by increasing his price to α̂(T, t). The
proof of (ii) follows similar steps as that of (i) �
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Proof of Lemma 8 (incumbents’incentive constraints). The incentive compatibility
constraints for the L type are given by21

T−1∑
i=1

δi−1πL(p∗i ) + δT−1πL(pML ) ≥ πL(pML ) +
T∑
i=2

δi−1DL (70)

T−1∑
i=1

δi−1πL(p∗i ) + δT−1πL(pML ) ≥
K+1∑
i=1

δi−1πL(p∗i ) + δK+1πL(pML ) +

T∑
i=K+3

δi−1DL (71)

for K = 0, 1, ..., T − 3. The set of constraints (71), (one for each K) compares the equilibrium
strategy with a strategy that pools until (and including) period K + 1 and deviates in period
K + 2. Solving (70) for πL(p∗1), yields

πL(p∗1) ≥ (1− δT−1)πL(pML ) +

T∑
i=2

δi−1DL −
T−1∑
i=3

δi−1πL(p∗i )− δπL(p∗2) (72)

Evaluating (71) at K = 0 and rearranging, yields

δπL(p∗2) ≥
T∑

i=K+3

δi−1DL + δπL(pML )−
T−1∑
i=3

δi−1πL(p∗i ) (73)

Substituting this in (72) and rearranging, gives

πL(p∗1) ≥ (1− δ)πL(pML ) + δDL

For arbitrary K, (71) reduces to

T−1∑
i=K+2

δi−1πL(p∗i ) + δT−1πL(pML ) ≥ δK+1πL(pML ) +
T∑

i=K+3

δi−tDL (74)

Straightforward manipulation yields that this inequality can be rewritten as

T−K−3∑
i=0

δiπL(p∗i+K+2) + δT−K−2πL(pML ) ≥ πL(pML ) +
T−K−3∑
i=0

δi+1DL (75)

In particular, this implies that

πL(p∗K+2) ≥
(
1− δT−K−2

)
πL(pML ) +

T−K−3∑
i=0

δi+1DL −
T−K−3∑
i=2

δiπL(p∗i+K+2)− δπL(p∗K+3) (76)

But the constraint on πL(p∗K+3) is in turn given by

δπL(p∗K+3) ≥
(
δ − δT−K−2

)
πL(pML ) +

T−K−3∑
i=1

δi+1DL −
T−K−3∑
i=2

δiπL(p∗i+K+2) (77)

21It is without loss of generality to consider a deviation in period 1, because if there is pooling in periods
s = 1, ..., t− 1, then the period t problem is essentially the same as that faced in period 1.
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Substituting this back in (76) and rearranging, yields the following constraints:

πL(p∗K+2) ≥ (1− δ)πL(pML ) + δDL (78)

for K = 0, 1, ..., T − 3. Similar steps yield the equivalent constraints for the H type �

Proof of Proposition 11 (cost of signaling with infinite horizon). For limT→∞ πH(α̂(T, t)) ≤
0 to hold, it follows from (34) that the inequality

πH(pML )−DH ≥
(

1− δ
δ

)
πH(pMH ) (79)

must hold. This inequality can be rewritten as

δ ≥ πH(pMH )

πH(pMH )−DH + πH(pML )
≡ δ∗∗ (80)

Next, note that if πH(pML ) > DH , then (2) can be rewritten as

δ ≤ πH(pMH )− πH(pML )

πH(pMH )−DH

≡ δ∗ (81)

From Assumption 7 it follows that the violation of (2) is a suffi cient (but not necessary)
condition for πH(pML ) > DH to hold. Last, note that δ∗ ≥ δ∗∗ if and only if πH(pML ) > DH ,
which is implied by the assumption that (2) is violated �
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Abstract. This appendix offers a detailed and self-contained analysis of the
benchmark single-round version of the dynamic model presented in DYNAMIC LIMIT
PRICING. In addition, the appendix offers a worked example and detailed discussion
of different aspects of the dynamic extension omitted from the main article, such as
equilibrium selection and post-entry collusion. Note that there is some overlap between
this text and that in the article and that the equation numbering is independent from
that of the main manuscript.

1. The Static Model
The following model is a simple version of the model of Milgrom and Roberts (1982). Consider
an incumbent monopolist I and a potential entrant E. The monopolist serves a market with
demand Q(p) and the entrant can enter the market at cost F > 0 to compete with the incum-
bent. The monopolist can be one of two types, high cost (H) or low cost (L), with probability
µ and (1 − µ) respectively. The incumbent knows his type, but his type is unknown to the
entrant (who only knows the probability µ). Let CH(q) and CL(q) be the cost functions of
H and L respectively. Denote by πi(p) the profit function of the incumbent of type i = H,L
when he sets price p. These profits are given by

πi(p) = pQ(p)− Ci(Q(p)), i = H,L (1)

Let Di be the duopoly profit of the incumbent of type i = H,L when competing against
E and let DE(i) be the duopoly profits of E when competing against the incumbent of type
i = H,L. Denote by pMH and pML the monopoly prices under the technologies CH(·) and CL(·)
respectively.
Throughout, I make the following assumptions:

Assumptions

1 Ci(q), i = H,L and Q(p) are differentiable, for q > 0 and p > 0 respectively.

2 C ′H(q) > C ′L(q),∀q ∈ R+, with CH(0) ≥ CL(0).

3 Q′(p) < 0,∀p ≥ 0.

4 DE(L)− F < 0.

5 DE(H)− F > 0.

6 πi(p) is strictly increasing for p < pMi and strictly decreasing for p > pMi , i = H,L.

7 πi(p
M
i ) > Di, i = H,L.

8 µDE(H) + (1− µ)DE(L)− F < 0.

∗Faculty of Economics, University of Cambridge.
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Assumption 2 makes precise the sense in which type L is more effi cient than type H.
Assumption 3 simply states that demand is downward sloping. Assumptions (4)-(5) imply
that E will not enter if he knows that I is of type L, whereas he will enter if he knows that
I is of type H. Thus these conditions are necessary for a separating limit price equilibrium
to exist. Assumption 6 means that the incumbent’s profit function is single peaked, whereas
Assumption 7 ensures that entry deterrence is desirable for the incumbent, ceteris paribus.
Under Assumption 8, the entrant expects to make negative profits against the incumbent if he
cannot distinguish between the two types and thus stays out. This is a necessary condition for
a pooling limit price equilibrium to exist.
The game between I and E is played in three stages. At the first stage, I sets a price that

will serve as a signal for E of I’s type. After observing the price set by I, E decides at the
second stage whether or not to enter (incurring the entry fee F ). Denote E’s entry decision by
sE ∈ {0, 1}, where sE = 0 stands for stay out and sE = 1 stands for enter. At the third stage,
if E enters he will learn I’s type and compete against him in complete information fashion.
Both incumbent and entrant discount the future by a factor δ ∈ [0, 1]. The payoff to E is given
by

ΠE(p) ≡


0 if sE = 0

DE(H)− F if sE = 1, i = H
DE(L)− F if sE = 1, i = L

(2)

A strategy for I is a price for each of his two types, pH or pL, at the first stage, a price at
the second stage if the entrant stays out and a quantity or price to set at the third stage if
the entrant enters (depending on the mode of competition), both as functions of his type and
the decisions made at the first stage. A strategy for E is a decision rule to enter or not as a
function of the price set by I at the first stage and a quantity or price to set at the third stage
in case he enters (again, depending on the mode of competition).
If E enters at the second stage, then at the third stage I and E play a duopoly game of

complete information. Hence in any subgame perfect equilibria of the game after E’s entry,
I’s equilibrium payoffs in the third stage are DH or DL. If E stays out, then I’s equilibrium
payoffs at the third stage are πH(pMH ) or πL(pML ), depending on his type.1 That is, the payoffs
to the incumbent of type i = H,L are given by

Πi(p) ≡


πH(p) + δπH(pMH ) if sE = 0, i = H
πH(p) + δDH if sE = 1, i = H
πL(p) + δπL(pML ) if sE = 0, i = L
πL(p) + δDL if sE = 1, i = L

(3)

Next, I state some key definitions that will be used throughout this section. Let σ ≡ (pL, pH , p)
denote a triple of pure strategies of the game, i.e. a price charged by each type of I and a
threshold price governing E’s entry decision (details are given below). Throughout this article,
attention will be restricted to pure strategy perfect Bayesian equilibria. Denote by p∗H and p

∗
L

the equilibrium prices charged by the H type and the L type respectively.

Definition 1. σ is a separating equilibrium if p∗H 6= p∗L and a pooling equilibrium if p∗H = p∗L.
σ is a limit price equilibrium if p∗H < pMH or p∗L < pML or both.

The aim of the analysis that follows is to characterize separating and pooling limit price
equilibria of the game. Note that under the maintained assumptions, ceteris paribus, the high
cost incumbent will wish to set a higher monopoly price than the low cost incumbent. Formally,
the following result obtains:

1In the dynamic version of the model, stages one and two will together constitute a period and stage three
will be a separate period.
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Lemma 2. (relative effi ciency of types)
(i) πL(p)− πH(p) is strictly decreasing in p and (ii) pMH > pML .

Proof. (i) First, note that πL(p)− πH(p) = CH(Q(p))− CL(Q(p)) and thus

∂

∂p
[πL(p)− πH(p)] = Q′(p) [C ′H(Q(p))− C ′L(Q(p))] (4)

By Assumption 3, Q′(p) < 0. Thus, by Assumption 2 it follows that ∂
∂p

[πL(p)− πH(p)] < 0.
(ii) By the definition of monopoly prices and Assumption 6, it follows that

pML Q
M
L − CL(QML ) > pMHQ

M
H − CL(QMH ) (5)

pMHQ
M
H − CH(QMH ) > pML Q

M
L − CH(QML ) (6)

Adding these inequalities, I obtain

CH(QML )− CL(QML ) > CH(QMH )− CL(QMH ) (7)

Hence, by Assumption 2, QML > QMH and by Assumption 3, pML < pMH �
An implication of this fact is that an ineffi cient incumbent would only set lower prices than

an ineffi cient incumbent’s monopoly price, in order to convince the entrant that it is in fact an
effi cient incumbent.
Perfect Bayesian equilibrium requires that beliefs be derived from Bayes’ rule whenever

possible. This means that one must assign beliefs after out of equilibrium (i.e. probability
zero) events have been observed. For simplicity, the out of equilibrium beliefs of E will be
assumed to have the following monotone structure:

µ′(p) =

{
1 if p ≤ p′

0 if p > p′

where µ′ is the probability assigned to the incumbent being of type L and p′ is the L type’s
equilibrium strategy (i.e. either the separating price in a separating equilibrium or the common
price in a pooling equilibrium).2 That is, for any observed price above the L type’s equilibrium
price, the entrant will assign probability one to the incumbent being of type H. For prices
below the L type’s equilibrium price, the entrant will assign probability one to the incumbent
being of type L.
This structure on beliefs is equivalent to a monotone decision rule for the entrant of the

form

sE(p) =

{
1 if p > p
0 if p ≤ p

(8)

for some appropriately chosen threshold price p (determined by the entrant). The equivalence
is straightforward (it follows from Assumptions 3 and 4) and is shown below for each of the
two types of equilibria respectively. The restriction to such monotone entry rules is routine in
the literature.

1.1. Separating Limit Price Equilibria.

Characterization. In a separating equilibrium, the entrant can, by definition, infer the
incumbent’s type merely by observing its chosen equilibrium price. Hence assume that p∗H 6= p∗L.
The best reply strategy of E in this case is to enter if p = p∗H and to stay out if p = p∗L, i.e.
sE(p∗H) = 1 and sE(p∗L) = 0. Therefore the H type incumbent is best off setting p = pMH ,

2This is for simplicity only. Any off equilibrium beliefs that favor entry would do.
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knowing that entry will occur in the second period, so sE(pMH ) = 1. Hence the high cost
incumbent’s equilibrium price is given by

p∗H = pMH (9)

To obtain a limit price equilibrium, it is thus required that

p∗L 6= pML (10)

Next, the entrant’s cutoff price can be characterized as follows:

Lemma 3. (entrant’s optimal decision)
p = p∗L and p < pML .

Proof. Suppose to the contrary that p ≥ pML . Then sE(pML ) = 0 and L is therefore best off
switching from p∗L to p

M
L , contradicting (10). Next, observe that in a separating equilibrium,

sE(p∗L) = 0 (E knows that L set p∗L) and hence p
∗
L ≤ p. Suppose that p∗L < p. Since p < pML ,

it follows by Assumption 6 that L is better off by increasing his price from p∗L to p, which is a
contradiction. Thus, p = p∗L �
The characterization so far of the separating equilibrium prices may be summarized in the

following way:

Corollary 4. (characterization of separating equilibria)
(i) In any separating limit price equilibrium, p∗L < pML and (ii) in any separating equilibrium,

either p∗L = pML ≤ p or p∗L = p < pML .

These results completely characterize the entrant’s equilibrium behavior. I proceed by
further analyzing the incumbent’s equilibrium strategy.

The Incentive Compatibility Constraints. Since p∗H = pMH , the following incentive
compatibility constraint for H should hold:

ΠH(pMH ) ≥ ΠH(p), ∀p (11)

This simply means that the H type’s equilibrium strategy is globally optimal. Clearly, (11)
holds for p > p because in this case, E enters and I can do no better than to set the monopoly
price. Consider p such that p ≤ p. By Lemma 2, in a separating limit pricing equilibrium
p = p∗L and hence by Assumption 6 and Lemma 1 (ii) (which can be found in Appendix), it
follows that p ≤ p = p∗L < pML < pMH and thus it is suffi cient to consider the following inequality:

ΠH(pMH ) ≥ ΠH(p∗L) (12)

By the definition of ΠH given in (3), (12) is equivalent to

πH(p∗L) ≤ (1− δ)πH(pMH ) + δDH (13)

For later reference, note that the right-hand side of (13) is strictly positive. This means that
for the incentive compatibility constraint (13) to be satisfied, it is not necessarily the case that
the H type’s profits from mimicking the L type are negative. As shall be shown in Section 3,
this result does not carry over to the dynamic setting.
To write (13) in terms of prices, first define the set

AH ≡
{
p : πH(p) = (1− δ)πH(pMH ) + δDH

}
(14)
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This set is simply the set of prices for which the H type’s incentive compatibility constraint is
binding. Since DH = πH(p) for some p, then by Assumptions 6 and 7 the set AH is non-empty
and contains at most two points. Next, define

α̂ ≡ minAH , β̂ ≡ maxAH (15)

where α̂ <∞ and β̂ ≤ ∞. Hence, according to (13), p∗L must satisfy

p∗L /∈ [α̂, β̂] (16)

For later use, note that by definition,

πH(α̂) = δDH + (1− δ)πH(pMH ) = πH(β̂) (17)

Observe that p∗L < pML < pMH < β̂. In conclusion, for the H type’s incentive compatibility
constraint to hold, it must be that

p∗L ≤ α̂ (18)

In other words, in order for the high cost incumbent to be willing to tell the truth, the low cost
incumbent’s strategy must be suffi ciently low.

I now turn to the L type. The incentive compatibility constraint for L is given by

ΠL(p∗L) ≥ ΠL(p), ∀p (19)

Again, this inequality simply states that the L type’s equilibrium strategy is globally optimal.
But the relevant alternative strategy p is only p = pML (because deterring entry is only optimal if
it yields higher payoffs than setting the monopoly price in the first period and accommodating
entry). Hence (19) becomes

ΠL(p∗L) ≥ ΠL(pML ) (20)

By the definition of ΠL given by (3), inequality (20) is equivalent to

πL(p∗L) + δπL(pML ) ≥ πL(pML ) + δDL (21)

Consequently,
πL(p∗L) ≥ (1− δ)πL(pML ) + δDL (22)

is the relevant incentive compatibility constraint for L. Define the set

AL ≡
{
p : πL(p) = (1− δ)πL(pML ) + δDL

}
(23)

Again, this set is the set of prices for which the L type’s incentive compatibility constraint is
binding. Since DL = πL(p) for some p, then by Assumptions 6 and 7 the set AL is non-empty
and contains at most two points. Let

α0 ≡ minAL, β0 ≡ maxAL (24)

where α0 <∞ and β0 ≤ ∞.

In terms of prices, the L type’s incentive compatibility (22) can then be written as

p∗L ∈ [α0, β0] (25)
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where, by definition, it is the case that

πL(α0) = δDL + (1− δ)πL(pML ) = πL(β0) (26)

This means that for the low cost incumbent to be willing to engage in costly signaling, the
separating equilibrium price must be high enough. The previous results can be summarized as
follows:

Proposition 5. (characterization of separating limit price equilibria)
Any separating limit price equilibrium is a triple (p∗H , p

∗
L, p) such that (i) p

∗
H = pMH , (ii)

p = p∗L, (iii) α0 ≤ p∗L ≤ α̂ and (iv) p∗L < pML .

Hence, to show existence of a separating limit price equilibrium, I need to show that α0 < α̂.3

Existence of Separating Limit Price Equilibria. The existence of separating limit
price equilibria is now considered. Fortuitously, existence is secured under very mild conditions
on the primitives of the model, as the following result shows:

Proposition 6. (existence of separating limit price equilibria)
Suppose that

πL(pML )−DL > πH(pMH )−DH (27)

Then α̂ > α0 and the set of separating limit pricing equilibria is non-empty.

Proof. From (27), (17) and (26), it follows that

πL(pML )− πH(pMH ) > πL(α0)− πH(α̂) (28)

Adding and subtracting πH(pML ) yields

πL(pML ) + πH(pML ) +
[
πH(pML )− πH(pMH )

]
> πL(α0)− πH(α̂) (29)

By the definition of pMH , it follows that πH(pML )− πH(pMH ) ≤ 0. It thus follows from (29) that

πL(pML ) + πH(pML ) > πL(α0)− πH(α̂) (30)

Since α0 ≤ pML , it follows by Lemma 1 that

πL(α0)− πH(α0) ≥ πL(pML )− πH(pML ) (31)

Combined with (30), this implies that πH(α0) < πH(α̂). Finally, α0 ≤ pMH and α̂ ≤ pMH and
therefore it follows by Assumption 6 that α0 < α̂ �
Condition (27) holds for the cases of Cournot competition with linear demand and fixed

marginal costs (for suffi ciently high demand intercept) and Bertrand competition with or with-
out product differentiation (see Tirole, 1988).

Equilibrium Selection. As seen above, the solution concept perfect Bayesian equilib-
rium fails to uniquely determine L’s equilibrium price p∗L. The reason for this lies in the
arbitrariness of off-equilibrium path beliefs, which are not pinned down by Bayes’ rule and
on which the notion of perfectness imposes no restrictions. To get a sharp characterization of

3If one eliminates the limit pricing requirement, then in addition to the set
{(p∗H , p∗L, p) : (i), (ii), (iii), (iv) satisfied} there are other separating equilibrium points if α̂ ≥ pML . In
particular, any separating equilibrium is a triple (p∗H , p

∗
L, p) such that (i) p

∗
H = pMH , (ii) p = p∗L and (iii) p

∗
L

satisfies the inequality p0 ≤ p∗L ≤ min{α̂, pML }.
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equilibrium behavior, I therefore make use of the notion of equilibrium dominance. This entails
using notions of both backward and forward induction. Specifically, it requires that the incum-
bent’s equilibrium strategy (at the signaling stage) form part of a perfect Bayesian equilibrium
of the game obtained after deletion of strategies that are not a weak best response to any of the
entrant’s possible equilibrium strategies (at the entry stage). In other words, a deviation from
an equilibrium price will be interpreted as coming from the L type whenever the H type cannot
possibly benefit from such a deviation (for any best response of the entrant) whereas the L type
incumbent would stand to benefit from such a deviation. The reasonableness of this criterion
lies in the fact that it requires the entrant to assign probability zero to a type of incumbent
who would find the observed action to be dominated by the equilibrium action, irrespective of
the entrant’s response to such a deviation from equilibrium play. In other words, if irrespective
of the entrant’s response to a non-equilibrium price, one type of incumbent could not possibly
benefit from such a deviation and thus earn lower payoff than by setting its equilibrium price,
the entrant will disregard the possibility that the incumbent is of that type. As the following
proposition shows, this refinement yields a unique equilibrium:

Proposition 7. (uniqueness of separating limit price equilibrium satisfying dominance)
(i) Suppose that α0 < α̂ ≤ pML . Then only p

∗
L = α̂ satisfies equilibrium dominance. (ii)

Suppose that α0 < pML ≤ α̂. Then only p∗L = pML satisfies equilibrium dominance.

Proof. (i) Suppose that α0 < α̂ ≤ pML and let p′ satisfy p∗L < p′ < α̂. Whichever strategy
E picks, it is a strictly dominated strategy for H to choose p′. If sE(p′) = 1, then because
p′ < α̂ ≤ pML ≤ pMH it follows that

πH(p′) + δDH < πH(α̂) + δDH (32)

If in turn sE(p′) = 0, then

πH(p′) + δπH(pMH ) < πH(α̂) + δπH(pMH ) = πH(pMH ) + δDH (33)

Hence, even ifH fools E to believe that he is L, he will obtain less than πH(pMH )+δDH which he
would obtain under the equilibrium strategy p∗H = pMH . In the game obtained after eliminating
the strategy p′ from H’s strategy set, E must play sE(p′) = 0 because p′ can have been set only
by L and thus by backward induction staying out at the price p′ is a best response for E. But in
the new reduced game, L can profitably deviate from p∗L to p

′ and obtain πL(p′)− πL(p∗L) > 0,
which follows from Assumption 6 and the fact that p′ ≤ pML . For completeness, note that no
type of incumbent can benefit from deviations to prices such that p′ ∈ [α0, p

∗
L]. The proof of

(ii) follows similar steps as that of (i) �
The price selected by the equilibrium dominance approach is known as the least-cost sep-

arating equilibrium price, as it is the equilibrium price which involves the lowest possible cost
for the L type in terms of foregone profits. In other words, it is the highest price (lower than
the monopoly price) consistent with the incentive compatibility constraints. This outcome is
known in the literature as the Riley outcome.

1.2. Pooling Limit Price Equilibria. In a pooling equilibrium, it is by definition the
case that

p∗L = p∗H = p∗ (34)

This means that the entrant cannot infer the incumbent’s type merely by observing his chosen
equilibrium price. Observe first that if

µDE(H) + (1− µ)DE(L)− F > 0 (35)
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then pooling equilibria cannot exist, because the expected profit of E when he cannot dis-
tinguish between the incumbent’s types is positive and he thus enters regardless of p∗. By
backward induction, each type of incumbent is better off setting his monopoly price. Since
pMH > pML , I thus have that p

∗
L 6= p∗H , contradicting the supposition that the two types pool.

Assumption 8 rules out this case, thus ensuring that a pooling equilibrium is feasible.

Characterization. Before characterizing the incumbent’s equilibrium price, the entrant’s
cutoff rule can be characterized in the following way:

Lemma 8. (entrant’s optimal decision)
p = p∗ and p∗ ≤ pML .

Proof. Clearly p ≥ p∗. Otherwise, E’s decision rule dictates entry if p∗ is charged. That is,
sE(p∗) = 1 if p∗ > p and thus each type of incumbent would benefit from deviating to their
respective monopoly prices, contradicting (34). Next observe that if p∗ > pML , then L is best off
setting the price pML and entry will still be deterred (i.e. sE(pML ) = 0). Consequently, p∗ ≤ pML
as claimed. Finally, suppose to the contrary that p > p∗. Since p∗ ≤ pML < pMH , it follows by
Assumption 6 that the H type is better off increasing his price slightly above p∗ to increase
profits while still deterring E’s entry. Therefore p = p∗ must hold as claimed �

The Incentive Compatibility Constraints. The incentive compatibility constraints
for the H type and the L type are given by

πH(p∗) + δπH(pMH ) ≥ πH(pMH ) + δDH (36)

πL(p∗) + δπL(pML ) ≥ πL(pML ) + δDL, p∗ < pML (37)

Note that for each type, the best alternative strategy to choosing the entry deterring pooling
price is to set the monopoly price and inviting entry. Also note that if p∗ = pML , then there is no
incentive compatibility constraint for the L type.4 The two incentive compatibility constraints
(36)-(37) can be rewritten as

πH(p∗) ≥ (1− δ)πH(pMH ) + δDH (38)

πL(p∗) ≥ (1− δ)πL(pML ) + δDL, p∗ < pML (39)

Using (15) and (24), inequality (38) holds if and only if α̂ ≤ p∗ ≤ β̂ whereas (39) holds for
p∗ ≥ α0 as long as p∗ < pML . Combining these constraints, I obtain:

Proposition 9. (characterization of pooling limit price equilibria)
Any pooling equilibrium is a tuple (p∗, p) such that (i) p = p∗ and (ii) p∗ satisfies

max {α0, α̂} ≤ p∗ ≤ pML < pMH (40)

It should be noted that a pooling equilibrium necessarily involves limit pricing, because at
least the H type (and potentially the L type) charges below his monopoly price.

Equilibrium Selection. As was the case with the set of separating limit price equilibria,
there is a continuum of pooling limit price equilibria. Again, equilibrium dominance can be
used to select a unique equilibrium satisfying equilibrium dominance as follows:

4Throughout the article, the qualifier p∗ < pML will reappear in connection with constraints on pooling
prices. It will henceforth be implicit that if p∗t = pML in some period t, then there is no incentive compatibility
constraint for the L type in that period.
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Proposition 10. (uniqueness of pooling limit price equilibrium satisfying dominance)
The only pooling equilibrium limit price satisfying equilibrium dominance is p∗ = pML .

Proof. The set of pooling equilibrium prices is the set{
p∗ : max {α0, α̂} ≤ p∗ ≤ pML

}
(41)

Suppose that p∗ < pML . First note that sE(pML ) = 1, for otherwise the L type is better off
switching from p∗ to pML . Thus it is a strictly inferior strategy for H to select pML or pMH .
Indeed, by H’s incentive compatibility constraint (36) I have

πH(p∗) + δπH(pMH ) ≥ πH(pMH ) + δDH > πH(pML ) + δDH (42)

Consider the new reduced game, which is obtained from the original game by eliminating pML
from H’s strategy set. In the equilibrium of the new game, sE(pML ) = 0, because this price can
only have been set by the L type. Hence L, in the new game, is better off deviating from p∗ to
pML �
As was the case with the selected separating limit price equilibrium, equilibrium dominance

selects the least-cost pooling limit price equilibrium.
Last, note the following result, which further reduces the set of pooling limit price equilibria

satisfying equilibrium dominance:

Proposition 11. (possible non-existence of pooling limit price equilibrium satisfying domi-
nance)
If α̂ > pML , then no pooling equilibrium satisfying equilibrium dominance exists.

Proof: First, note that α̂ ≥ pML if and only if

(1− δ)πH(pMH ) + δDH ≥ πH(pML ) (43)

To see this, note that from (17) it follows that

δDH = πH(α̂)− (1− δ)πH(pMH ) (44)

Substituting this in (43) yields
πH(α̂) ≤ πH(pML ) (45)

Since α̂ < pMH and pML < pMH , the result then follows from Assumption 6. Next, recall that for
pooling on p∗ = pML to be incentive compatible, inequality (38) must hold, i.e.

πH(pML ) ≥ (1− δ)πH(pMH ) + δDH (46)

The result then follows immediately. For the knife’s edge case πH(pML ) = (1− δ)πH(pMH ) +
δDH , pooling on p∗ = pML is incentive compatible �

1.3. Existence of Limit Price Equilibria Satisfying Equilibrium Dominance. Be-
fore continuing the analysis, some comments on the existence of limit price equilibria satisfying
equilibrium dominance are in order. Note that the above existence result concerns itself only
with the existence of limit price equilibria and not with the existence of limit price equilibria
satisfying equilibrium dominance. After performing equilibrium selection, the set of equilibria
can, if non-empty, be divided into two distinct regimes, namely a limit price regime and a
monopoly price regime. The former obtains if α̂ < pML and the latter if α̂ ≥ pML . These regimes
will reappear in an important way in the dynamic game. In the monopoly price regime, the
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Figure 1: Profits and Incentive Compatibility Constraints in Static Setting.

unique selected equilibrium is characterized by firms separating by setting their respective
monopoly prices, whereas in the limit price regime, both pooling and separating limit price
equilibria satisfying equilibrium dominance coexist. Which regime obtains, depends on the
parameter constellation and on the specifics of the mode of competition.

For later reference, it should be reiterated that the condition determining the regimes is
given by (43). That is, the monopoly price regime obtains if and only if

πH(pMH ) +
δDH

1− δ ≥
πH(pML )

1− δ (47)

This inequality has an interesting interpretation. The left-hand side is the profit for the H type
of revealing his type by earning monopoly profits in the first period and then earning discounted
duopoly profits in perpetuity thereafter. The right-hand side is the discounted profit stream
for the H type from mimicking the L type’s monopoly price in perpetuity.

The profit functions and the incentive compatibility constraints are illustrated in Figure 1.5

1.4. Worked Example. In order to illustrate the analysis so far, I will next analyze a
concrete functional form example. Consider the case in which the post-entry game takes the
form of homogeneous goods Cournot competition. Production involves incurring fixed marginal
costs but no fixed costs, so C ′H(q) = cH > cL = C ′L(q) and CH(0) = CL(0) = 0. The entrant
has fixed marginal costs C ′E(q) = cE, but no fixed costs (other than the entry fee F ). Market
demand is given by the function p = a− bQ, where a, b > 0 and Q = qI + qE is total quantity

5The graphs are based on the worked example below.
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produced. With this specification, it is straightforward to verify that

DE(L) =
(a+ cL − 2cE)2

9b
(48)

DE(H) =
(a+ cH − 2cE)2

9b
(49)

DL =
(a+ cE − 2cL)2

9b
(50)

DH =
(a+ cE − 2cH)2

9b
(51)

πL(pML ) =
(a− cL)2

4b
(52)

πH(pMH ) =
(a− cH)2

4b
(53)

πL(pMH ) =
(a− cH)(a+ cH − 2cL)

4b
(54)

πH(pML ) =
(a− cL)(a+ cL − 2cH)

4b
(55)

The suffi cient condition for a separating limit price equilibrium to exist, i.e. inequality (23),
reduces to the requirement that

2a+ 7cH + 7cL − 16cE ≥ 0 (56)

This condition holds provided that the demand intercept is suffi ciently high or that the entrant
is not too ineffi cient relative to the incumbent.

Parametric Example. Consider the following benchmark parameter constellation:

a b cH cL cE F µ δ
10 1 3 2 2 8 0.5 0.7

It is easily verified that for this choice of parameters, both separating and pooling limit price
equilibria exist (i.e. assumptions A4 and A5 and conditions (13), (22) and (35) are satis-
fied). Furthermore, the relevant regime is the limit price regime (because condition (43) is
violated). The monopoly prices are given by pML = 6 and pMH = 6.5 respectively. The incentive
compatibility constraints are given by

ICH : p∗L /∈ [4.1, 8.9] (57)

ICL : p∗L ∈ [3.5, 8.5] (58)

It follows that the set of separating limit price equilibria are given by pairs of prices (p∗L, p
∗
H)

with

p∗H = 6.5 (59)

p∗L ∈ [3.5, 4.1] (60)

The least cost separating equilibrium limit price is given by p∗L = 4.1. Last, the least cost
pooling limit price equilibrium is given by p∗ = 6.
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2. Worked Example in Dynamic Model
To illustrate the results of the dynamic analysis, I now return to the example considered earlier.
For ease of reference, the two relevant incentive compatibility constraints for the dynamic
setting are reproduced below:

πL(p∗t,L) ≥
(

1− δ − δT−t+1

1− δ

)
πL(pML ) +

(
δ − δT−t+1

1− δ

)
DL (61)

πH(p∗t,L) ≤ (1− δT−t)πH(pMH ) +

(
δ − δT−t+1

1− δ

)
DH −

(
δ − δT−t

1− δ

)
πH(pML ) (62)

Now consider the case T = 4, i.e. where the static game is repeated once (as long as
entry has not occurred). In this case, the incentive compatibility constraints (62) and (61) for
separation at t = 1 are given by

ICH : p∗L /∈ [3, 10] (63)

ICL : p∗L ∈ [2.3, 9.7] (64)

The set of separating equilibria (with separation in the first period) is in this case given by
(p∗L, p

∗
H) with

p∗H = 6.5 (65)

p∗L ∈ [2.3, 3] (66)

It follows that when moving from T = 2 to T = 4, the range of possible limit price equilibria
increases.6 More importantly, the least cost separating equilibrium has decreased, from p = 4.1
to p = 3, in accordance with the results in the previous section.
For the purpose of illustration, I will also consider the case T = 100. For this long horizon,

the set of separating equilibria is given by (p∗L, p
∗
H) with

p∗H = 6.5 (67)

p∗L ∈ [−2.9,−2] (68)

so even the least cost separating equilibrium (if it exists), will involve negative prices.
I next turn to the necessary conditions in Assumptions A4’and A8’for limit price equilibria

to exist. As already noted above, these conditions hold at t = 2, at which point the remainder
of the game coincides with the static game. But at t = 1 (when T = 4), the constraints in As-
sumptions A4’and A8’are in fact violated. This means that the entrant’s expected, discounted
post-entry profits are now so large, that no amount of signaling can make entry unprofitable and
neither pooling nor separating limit price equilibria exist. Thus in this case, the unique equilib-
rium involves immediate separation on the monopoly prices (p∗L, p

∗
H) = (pML , p

M
H ) = (6, 6.5) and

it is in fact immaterial whether the prevailing regime is the limit price regime or the monopoly
price regime. The important point to take from this example is that with this specification
of post-entry competition and for this parameterization, limit pricing is feasible in the static
setting, whereas under a minimal dynamic extension, it is not.
From the above analysis, it is clear that for a given set of product market parameters (in the

parametric example, a, b, cH , cL, cE) and parameters F, δ, µ, each of the incentive compatibility
constraints and each of the many feasibility constraints deliver values of T for which the con-
straints hold (or do not hold, as the case may be). It is therefore tempting to try to rank such

6To be precise, the measure of the interval of possible prices increases, but neither interval is contained in
the other.
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Figure 2: Profits and Incentive Compatibility Constraints in Dynamic Setting.

thresholds in a clean manner and draw general conclusions about existence of different types of
equilibria for different horizons T . Unfortunately, doing this is an uphill battle, because (i) the
ranking of thresholds may change depending on the choice of parameters a, b, cH , cL, cE, F, δ, µ
and (ii) the constraints depend on these parameters in different and complicated ways. But
as a practical matter, for a given choice of parameters, it is relatively straightforward to eval-
uate the different constraints and determine the existence and nature of the equilibria of the
dynamic model.

3. Discussion on Equilibrium Selection in Dynamic Model

Rather than characterizing the entire set of equilibria of the dynamic game, I will argue that
only a subset of the equilibria are ‘reasonable’in a specific sense to be developed in further
detail below. Because the literature on signaling in dynamic settings is still in its infancy, I
will start by giving a brief review of it and emphasize the distinct contribution of the present
analysis to that literature. In the vast majority of signaling models, there is only one instance
of signaling, even if the model is otherwise dynamic. When there are multiple opportunities
for the informed party to engage in signaling, the details of how (and if) private information
changes over time and its observability by the uninformed party become crucial. The most
conventional analyses are those of models in which private information is regenerated each
period or in which the uninformed party’s observations are imperfect signals of the informed
party’s actions. In either case, updating on the equilibrium path can always be achieved by
application of Bayes’rule. articles of this type include Mester (1992) and Vincent (1998) as
well as Saloner (1984), Roddie (2010) and Gedge et al. (2013) in the context of limit pricing.
When private information is perfectly persistent over time and the informed party’s actions

are perfectly observable, then the modeler must confront the issue of assigning out of equilib-
rium beliefs. There have been two different approaches to deal with such beliefs in the existing
literature, namely (i) support restrictions and (ii) belief resetting. Both approaches rely on
the fact that the solution concept perfect Bayesian equilibrium does not impose any restric-
tions on beliefs after probability zero events. In the former approach, once posterior beliefs
are concentrated entirely on some state of nature, no possible observation will prompt a shift
of probability towards alternative states of nature. In other words, once posterior beliefs are
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degenerate, the game is treated as one of perfect information regardless of how it subsequently
unfolds. In the latter approach, posteriors are allowed to fluctuate over time. In particular, this
approach allows beliefs that assign positive probability to events that previously were assigned
zero probability.
Support restrictions have been used in different contexts by Rubinstein (1985), Grossman

and Perry (1986) and LeBlanc (1992) and in a limit pricing context by Gryglewicz (2009).
Although such restrictions may be perfectly appropriate for some analyses, there are instances
in which they are clearly inappropriate. Madrigal et al. (1987), Noldeke and van Damme
(1990a) and Vincent (1998) discuss the treatment of degenerate posteriors in depth and show
that such support restricted equilibria may fail to exist.
As an alternative to support restrictions, some authors have resorted to repeated resetting of

beliefs. In actual fact, beliefs are degenerate along the entire equilibrium path when employing
this approach, but the equilibria are constructed as if beliefs are reset to their prior values.7

This is the avenue taken by Cho (1990), Noldeke and van Damme (1990b), by Kaya (2009) in
a limit pricing context and discussed by Vincent (1998). The equilibria studied in Kaya (2009)
and Noldeke and van Damme (1990b) exploit the fact that the players may simply disregard
the public information contained in past play and proceed “as if”they had not observed past
play at all. The point here is not that the equilibria studied by these authors are not equilibria
(which they clearly are). Rather, I argue that the reliance of such equilibria on the players
ignoring past evidence can serve as a useful feature to help choose between different kinds of
equilibria in this type of setting.
In terms of applications to economic modeling such as limit pricing, these two approaches

differ radically in their predictions in that support restrictions effectively make repeated sig-
naling impossible (by definition), whereas belief resetting allows for a potentially very rich
set of equilibria, in which signaling occurs repeatedly. The precise assumptions adopted by
the modeler therefore have profound implications for the analysis at hand and therefore merit
scrutiny.
What support restrictions and belief resetting have in common, is that with neither ap-

proach does the observation of out of equilibrium play prompt the uninformed party to make
sense of the deviation. This is at odds with the way that static signaling models are habitually
analyzed. In such settings, out of equilibrium beliefs are not all treated equally, some being
deemed more reasonable than others. In this way, equilibrium selection techniques are useful
in that they reduce the equilibrium set significantly, sometimes even to a unique equilibrium.
Hitherto, equilibrium selection techniques have not been widely applied to dynamic settings
of signaling. This is unfortunate, because equilibrium selection obviates the need to choose
between support restrictions and belief resetting. Furthermore, it is entirely consistent with
the way that static signaling models are analyzed. The approach I adopt in the present article,
is to make use of equilibrium selection reasoning in the dynamic game. Specifically, I make use
of reasoning along the lines of criterion D1 against a natural benchmark equilibrium in which
post separation beliefs are degenerate.
Last, it should be mentioned that some articles do feature repeated signaling without relying

on the arbitrariness of out of equilibrium beliefs. These articles include Noldeke and van Damme
(1990b), Bar-Isaac (2003) and Sorenson (2004). In these articles, the informed party is unable
to effectively separate in a single period and is hence forced to distribute costly signaling over
several periods.8 ,9

7This distinction is immaterial since under this approach, beliefs are not fully incorporated into subsequent
behavior.

8In the present article, all signaling takes place in (at most) a single period, for reasons mirroring those
articulated by Weiss (1983) and Noldeke and Van Damme (1990b).

9Note that whereas many equilibrium selection approaches rely on the arbitrariness of off-equilibrium path
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To be more specific about the differences between the approaches taken in the existing
literature, suppose that the incumbent’s past actions have convinced the entrant that its type
is L and that the incumbent subsequently charges price pMH . This sequence of events should
confound the entrant, because an L type could have set the preferred price pML without suffering
adverse consequences. There are different ways to interpret the situation. One is to insist on
the informational content of past behavior and to simply ascribe pMH to a “mistake”by the L
type incumbent (which echoes the approach prescribed by the notion of subgame perfection
in complete information games). This type of obstinacy in updating is the essence of support
restrictions. A second way to proceed is to suppose that past behavior was in fact “mistaken”
and to infer from the observation of pMH that the incumbent is in fact not an L type after all.
But if such past behavior is ignored, then the L type incumbent should set his price such as to
(again) credibly convey the information that he is in fact an L type incumbent and thus deter
entry, despite the fact that it is already “known”(or has already been inferred) that he is an
L type. This is exactly the way in which belief resetting makes repeated signaling possible. In
the former approach, the informational content of past actions is given all weight whereas in
the latter, the informational content in the incumbent’s current action is given all weight.
A third approach, is to consider the two pieces of conflicting evidence together and to make

sense of the conflict by using heuristics familiar to the equilibrium refinement literature. This
approach consists of asking which type of incumbent, given the belief that he is type L, would
stand to gain from setting price pMH ? It turns out that answering this question gives a very
natural prediction in this game. The key is to observe that given that the entrant already
assigns probability one to the incumbent being an L type, the L type cannot possibly benefit
from setting any price different from pML , as long as observing p

M
L does not prompt the entrant

to revise his belief that the incumbent is of type L. On the other hand, an H type incumbent
would benefit from this price if E disregards this piece of confounding evidence (which he is
entitled to do as out of equilibrium beliefs are arbitrary in a perfect Bayesian equilibrium).
Extending this reasoning to the dynamic game, the natural benchmark equilibrium price

sequence after separation has occurred is (pML , p
M
L , ..., p

M
L ). Next, given this benchmark equi-

librium price sequence, all deviations can be dealt with by using reasoning similar to that
inherent in criterion D1 of Cho and Kreps (1987). The D1 criterion works as follows. Fix
some perfect Bayesian equilibrium of the game under consideration and consider a deviation
by the informed party from its equilibrium strategy. Criterion D1 then dictates that if the
set of responses by the entrant that makes the type i = H,L incumbent willing to deviate to
the observed deviation price is strictly smaller than for type j 6= i, then the entrant should
assign infinitely larger probability to incumbent j having deviated than to incumbent i. In the
reasoning above, the benchmark equilibrium was simply that in which after separation, the
L type sets its monopoly price pML whereas the H type, off the equilibrium path, chooses to
mimic the behavior of the L type by also setting the price pML in periods after separation.10

Note that the procedure I make use of is not quite a direct application of D1, as I do not
consider an arbitrary equilibrium. Rather, the present approach accords special significance
to the equilibrium in which the uninformed party at each information set makes full use of
all available information (i.e. acts without ignoring available evidence). The reason that this
is sensible is that in the static setting, there is no sense in which prior information “favors”
any equilibrium over the other. In the dynamic setting however, prior information “suggests”
or “indicates”one particular equilibrium over all other equilibria. In contrast, belief resetting
amounts to actively disregarding the most focal equilibrium, on which beliefs are naturally

beliefs, some, such as those introduced in Fudenberg, Kreps and Levine (1988) are explicitly constructed to
avoid this issue.
10That this is indeed the optimal deviation for the ineffi cient incumbent in the limit price regime, will be

verified below.
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anchored because of past play and application of Bayes’rule.
It should be noted that the equilibrium chosen by the anchored D1 criterion has a very

nice property, namely that it is the equilibrium satisfying D1 which is preferred by both the
incumbent and the entrant. That it satisfies D1 and is preferred by the incumbent follows
from the arguments above. That it is also preferred by the entrant, can be seen by considering
an alternative equilibrium which also satisfies D1. Assume that the game is in the limit price
regime. In the benchmark equilibrium, the equilibrium strategies are given by (pML , p

M
L ) in the

period after separation has occurred. If these prices do not form part of the highest payoff
equilibrium satisfying D1, then there exists some other D1 equilibrium such that the H type
would have strictly higher payoffs from setting an alternative price p 6= pML . But by D1, in this
alternative equilibrium it must be that p∗L = pML (or else it would be better for the L type to
switch to this price, as he would still be believed to be type L). But by D1, upon observing
p 6= p∗L = pML , the entrant must assign probability one to the incumbent being type H, and
thereby enter. As will be shown below, in the limit price regime, the optimal deviation has the
H type incumbent set pML and avoid entry (rather than setting the next best alternative pMH
and inviting entry). In conclusion, there is no equilibrium satisfying D1 which is preferred by
either the incumbent or the entrant, a feature which lends added support to the one selected
by the anchored D1 criterion.

4. Infinite Horizon and the Effects of Post-Entry Collusion
In the infinite horizon setting, the possibility of post-entry cooperation (which is absent in the
static setting) affects the desirability and feasibility of limit pricing in interesting ways. Before
exploring these effects more systematically, it is worth recalling the tradeoffs involved for the
incumbent and the entrant respectively. The reason that the incumbent may wish to engage
in costly limit pricing in order to deter entry, is that post-entry competition reduces its profits.
Similarly, the logic of limit pricing is that for a suffi ciently low price, the incumbent convinces
the entrant that its post-entry profits would be too low to offset the entry fee F . In short,
the magnitude of post-entry profits for the two market participants directly affect the different
incentive constraints necessary for limit pricing to be viable.
In any dynamic setting in which the final period T is finite, the post-entry payoffs (Di, DE(i)),

i = H,L to the incumbent and the entrant are given by the Nash equilibrium duopoly payoffs.
This fact turns out to make entry deterrence through limit pricing much easier to achieve in the
static setting than in the a setting with an infinite horizon. To see this, note that in the infinite
horizon game, the set of payoffs that E and I can achieve in equilibrium is bounded below by
the payoffs (Di, DE(i)), i = H,L in the static setting. From the Folk Theorem, it is known that
for a suffi ciently high discount factor, any feasible and individually rational payoff vector can
be sustained in equilibrium. In other words, the competing firms may be able to coordinate on
payoffs that are above the levels achieved in the static setting. In turn, this directly influences
the two firms’incentives to deter entry and to stay out respectively. To be specific, the higher
the incumbent’s (per-period) post-entry payoffDi, the weaker is the incumbent’s incentive to
engage in costly signaling in the short term in order to maintain incumbency. This is seen most
clearly in the L type’s incentive compatibility constraint (61). As DL increases, it becomes
increasingly diffi cult to satisfy the constraint.11

Turning to the entrant, recall that the basic tradeoff influencing the entry decision is that
of entry fees versus post-entry payoffs DE(i) from duopoly competition. But the higher these
latter payoffs are, the more diffi cult is it to discourage entry, even under complete information.
To see this, consider the constraint A4’, which ensures that the entrant will choose to stay
out against an effi cient incumbent. As DE(L) increases, the constraint becomes increasingly
diffi cult to satisfy.

11When Di reaches πL(pML ), the incentive compatibility constraint can only be satisfied with equality.
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In conclusion, the prospect of less than cut-throat post-entry competition, makes the in-
cumbent more reluctant to engage in costly entry deterrence. By the same token, the prospect
of higher post-entry duopoly profits enjoyed by engaging in collusion with the incumbent makes
it more diffi cult to discourage the potential entrant from entering the industry and competing
with the incumbent.
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