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Abstract 

Molecular and epidemiological differences have been described between TMPRSS2:ERG 

fusion-positive and fusion-negative prostate cancer (PrCa). Assuming two molecularly 

distinct subtypes, we have examined 27 common PrCa risk variants, previously identified in 

genome-wide association studies, for subtype specific associations in a total of 1,221 

TMPRSS2:ERG phenotyped PrCa cases. In meta-analyses of a discovery set of 552 cases with 

TMPRSS2:ERG data and 7,650 unaffected men from five centers we have found support for 

the hypothesis that several common risk variants are associated with one particular subtype 

rather than with PrCa in general. Risk variants were analyzed in case-case comparisons (296 

TMPRSS2:ERG fusion-positive versus 256 fusion-negative cases) and an independent set of 

669 cases with TMPRSS2:ERG data was established to replicate the top five candidates. 

Significant differences (p < 0.00185) between the two subtypes were observed for 

rs16901979 (8q24) and rs1859962 (17q24), which were enriched in TMPRSS2:ERG fusion-

negative (OR = 0.53, p = 0.0007) and TMPRSS2:ERG fusion-positive PrCa (OR = 1.30, p = 

0.0016), respectively. Expression quantitative trait locus analysis was performed to 

investigate mechanistic links between risk variants, fusion status and target gene mRNA 

levels. For rs1859962 at 17q24, genotype dependent expression was observed for the 

candidate target gene SOX9 in TMPRSS2:ERG fusion-positive PrCa, which was not evident in 

TMPRSS2:ERG negative tumors. The present study established evidence for the first two 

common PrCa risk variants differentially associated with TMPRSS2:ERG fusion status. 

TMPRSS2:ERG phenotyping of larger studies is required to determine comprehensive sets of 

variants with subtype-specific roles in PrCa. 
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Introduction 

Prostate cancer (PrCa) is a complex disease with a considerable degree of heritability 

involved in its etiology (1). While high-risk gene discovery has proven difficult against a 

background of disease and locus heterogeneity, genome-wide association studies (GWAS) 

and substantial validation efforts have identified more than 100 common variants with weak 

to moderate contributions to PrCa risk (2-11). These common risk variants are postulated to 

explain about 33% of the familial risk of PrCa (12). 

 

Somatically, PrCa can be classified into two major molecular subtypes, where the presence or 

absence of oncogenic E-twenty-six (ETS) gene fusions is the crucial distinctive feature. ETS 

rearrangements are present in approximately 50% of PrCa tissues (13) and their occurrence is 

considered an early event in PrCa tumorigenesis (14). In over 90% of ETS fusion-positive 

cases, the fusion partners are the androgen-regulated gene TMPRSS2 (transmembrane 

protease, serine 2), which is highly expressed in the prostate, and the oncogene ERG (v-ets 

avian erythroblastosis virus E26 oncogene homolog), both located on the long arm of 

chromosome 21 (13).  

 

Since the discovery of ETS gene fusions in PrCa multiple studies have provided evidence for 

the molecular and epidemiological distinctness of TMPRSS2:ERG fusion-positive and 

negative tumors. Epigenetic profiling has revealed distinct DNA methylation patterns for 

TMPRSS2:ERG fusion-positive and negative PrCa tissues (15-17) and analyses of benign and 

tumor tissues suggest that hypermethylation is more pronounced in TMPRSS2:ERG fusion-

negative PrCa compared to TMPRSS2:ERG fusion-positive tumors, which mostly show 

moderately elevated DNA methylation (16,17). During tumor evolution of fusion-positive 

PrCa interdependent complex rearrangements (chromoplexy) occur at transcriptionally active 

- predominantly androgen regulated - loci of multiple chromosomes, while fusion-negative 
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tumors tend to undergo single fatal genetic restructuring events (chromothripsis) (18,19). In 

addition to tumor architecture, differences in clinical and epidemiological characteristics have 

also been investigated for TMPRSS2:ERG positive and negative PrCa. While a correlation of 

more aggressive PrCa with fusion status has not been reported consistently (20), 

TMPRSS2:ERG fusions have been found more frequently in early onset prostate cancer 

(21,22). Interestingly, the frequency of TMPRSS2:ERG fusions varies among ethnicities with 

the highest prevalence in cases of European ancestry (23). Moreover, individual physiologic 

and metabolic factors appear to have different risk modifying effects for TMPRSS2:ERG 

positive and negative PrCa (24,25). 

 

Based on their distinctness, we hypothesized that there may also be differences between 

TMPRSS2:ERG fusion-positive and negative PrCa at the underlying germline level. Within 

the framework of the PRACTICAL consortium, we have investigated the first confirmed 27 

common risk variants, which were identified in PrCa GWAS studies (4), for fusion-specific 

associations. For this purpose, we have analyzed a set of 296 TMPRSS2:ERG positive and 

256 negative cases for differences in variant allele frequencies between these subtypes, and 

additionally, both subgroups were compared to controls without prostate cancer (n = 7,650). 

The five top-ranked candidate variants were then genotyped in an independent sample of 669 

PrCa cases with known TMPRSS2:ERG status for replication purposes. For the highlighted 

risk regions, we considered mRNA expression analysis of candidate target genes in fusion-

positive and negative tumor tissues, to investigate the mechanistic interplay between the 

somatic TMPRSS2:ERG phenotype and the germline genotype of associated risk variants. 
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Results 

Quality control and eligibility of the hypothesis generating discovery dataset 

The five participating studies (FHCRC, IPO-PORTO, TAMPERE, UKGPCS, and ULM) 

consisted of a total number of 7,650 controls and 8,681 cases previously genotyped for the 

iCOGS study (7). From the available iCOGS array genotype data, we selected 27 variants, 

representing the initial set of confirmed common PrCa risk variants, for analyzing potential 

associations with TMPRSS2:ERG fusion status. None of these variants showed deviation from 

Hardy-Weinberg equilibrium (threshold p = 0.001) in any of the study populations.  

 

A subgroup of 552 cases genotyped as part of the iCOGS dataset was somatically phenotyped 

for the TMPRSS2:ERG gene fusion with a mean TMPRSS2:ERG positive frequency of 54% 

(range 44 - 60%) across the study groups (Table 1). Since the patients with TMPRSS2:ERG 

data represented only a fraction of the total cases from each collaborating center, two validity 

issues were considered in supplemental analyses. First, we checked for potential bias that may 

have occurred in the course of subsampling tumor materials. For this question, risk allele 

frequencies for all 27 loci were compared between somatically phenotyped cases (n = 552) 

and the 8,129 non-phenotyped cases from the same contributing sites by Mantel-Haenszel 

analysis (under a fixed-effects model). Using this approach, sampling bias was observed for 

one variant (rs7127900 at 11p15.5; p = 0.0056), which was consequently omitted from further 

analyses. For all other 26 variants, the phenotyped cases did not differ significantly from the 

untyped cases (p > 0.12; data not shown), and were therefore considered as representative of 

the entire case groups. Of note, no significant cancer-related sampling bias was indicated by 

clinical features, such as tumor stage (organ confined vs. advanced: p = 0.11) or tumor grade 

(Gleason Score ≤ 7 vs. > 7: p = 0.39). 

A second issue of validity was examined with respect to the relatively small effect sizes of 

common risk variants, questioning if subsampling may reduce our power for detecting any 
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associations with overall risk of PrCa, or risk in the two PrCa subgroups stratified by fusion 

status. Using all 8,681 unselected cases in case-control comparisons, 20 out of the 26 “bona 

fide” PrCa risk variants replicated at a threshold of p < 0.00185 (corresponding to Bonferroni 

correction for the 27 variants included in this study). However, after reduction to 552 

TMPRSS2:ERG phenotyped cases, only six variants remained significantly associated with 

PrCa risk (Supplementary Table S1), suggesting that larger sample sizes are likely required 

for the remaining variants to achieve adequate power for subset analyses. 

 

Case-control comparisons according to TMPRSS2:ERG fusion status suggest common risk 

variants with subtype preference 

Potential subtype preference for the 26 candidate variants were examined by comparing the 

groups of TMPRSS2:ERG fusion-positive (n = 296) and fusion-negative cases (n = 256) to the 

7,650 controls (Supplementary Table S1). The six risk variants that were associated with PrCa 

by comparing all 552 TMPRSS2:ERG phenotyped cases to controls and two additional 

variants appeared to be associated with either TMPRSS2:ERG fusion-positive or fusion-

negative PrCa. Four variants were associated with TMPRSS2:ERG positive PrCa and four 

with TMPRSS2:ERG negative PrCa at the study-wide significance threshold of p = 0.00185 

(Supplementary Table S1). The strongest associations were observed between 

TMPRSS2:ERG negative PrCa and two independent risk variants at 8q24 (rs16901979, region 

2 (R2), p = 1.2 × 10
-6

; and rs1447295, region 1 (R1), p = 2.0 × 10
-6

). Fig. 1 displays all 

variants with their significance in the total phenotyped sample (color codes), in fusion-

positive cases (x-axis) and in fusion-negative cases (y-axis) as compared to controls, 

respectively. Variants with stronger effect sizes (as ranked in Supplementary Table S1) tended 

towards having associations with one somatic subtype, but not with both. This view supports 

the hypothesis that subtype specific common germline variants most likely exist. 
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TMPRSS2:ERG fusion-positive PrCa versus fusion-negative PrCa revealed differentially 

associated loci at 8q24 and 17q24 

We then assessed differences in risk allele frequencies between the two somatic subtypes by 

case-case comparisons of the 296 TMPRSS2:ERG positive and the 256 TMPRSS2:ERG 

negative cases. Mantel-Haenszel results for all variants are presented in Supplementary Table 

S2. No strong evidence for heterogeneity between study centers was observed. Nominally 

significant differences between TMPRSS2:ERG positive and negative cases were present for 

four variants. These include three variants with a higher risk allele frequency in 

TMPRSS2:ERG positive cases: rs10993994 at 10q11 (p = 0.015), rs2735839 at 19q13 (p = 

0.0035) and rs1859962 at 17q24 (p = 0.038). One risk variant at 8q24 (rs16901979, R2) was 

more frequent in fusion-negative cases (p = 0.021). The second variant at 8q24 (rs1447295, 

R1), which was strongly associated with TMPRSS2:ERG negative PrCa when compared to 

controls, showed a similar tendency towards enrichment of the risk allele in TMPRSS2:ERG 

negative versus positive PrCa, although this result was not significant (p = 0.0891). 

 

To substantiate findings of differential associations from the hypothesis generating dataset, an 

additional 669 independent cases with TMPRSS2:ERG phenotype data were used for case-

case comparisons. The patients from four different study centers, FHCRC, IPO-PORTO, 

ULM and BERLIN, contained similar proportions of TMPRSS2:ERG positive (n = 388; 58%) 

and negative cases (n = 281; 42%) as the initial discovery set (Table 1). For genotyping, the 

top five candidate variants were selected based on results from the initial TMPRSS2:ERG 

subgroup case-control analyses (Supplementary Table S1) and from case-case comparisons as 

ranked in Supplementary Table S2. In this independent patient dataset, case-case comparisons 

found nominally significant associations between three variants and TMPRSS2:ERG subtype , 

each in the same direction as observed in the discovery sample (Table 2 and Supplementary 

Figure S1). The strongest associations were seen for rs1447295 (8q24, R1; p = 0.0085) and 
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rs16901979 (8q24, R2; p = 0.012), where the risk alleles were enriched in TMPRSS2:ERG 

negative cases, and rs1859962 (17q24), where the risk allele was enriched in TMPRSS2:ERG 

positive cases (p = 0.018). The results for variants rs10993994 (10q11) and rs2735839 

(19q13) were not confirmed in the independent dataset. In combined analyses of all 1,221 

phenotyped cases from the discovery and the replication sets, rs16901979 (8q24 R2; p = 

0.0007) and rs1859962 (17q24; p = 0.0016) reached study significance (p < 0.00185), while 

rs1447295 (8q24 R1; p = 0.0025) was close to this threshold. 

 

The main analysis addressed allelic association only, regardless of genetic models on 

genotypes. However, the crude TMPRSS2:ERG fusion frequencies in cases displayed by 

genotypes revealed additive effect tendencies (Supplementary Figure S2). This observation is 

particularly striking for the 8q24 variants associated with fusion-negative PrCa, where 

homozygous carriers showed a TMPRSS2:ERG frequency of only one third, in contrast to the 

overall frequency of 56%. 

 

Potential confounders 

As previous studies have reported that TMPRSS2:ERG fusions have a higher prevalence in 

cases with early-onset PrCa, we investigated whether age at diagnosis was potentially 

confounding the observed results of our confirmed variants, rs16901979 and rs1859962. In 

our dataset, age at diagnosis was significantly associated with TMPRSS2:ERG status (crude 

OR = 0.96 per year, p = 4.7 × 10
-5

; Supplementary Table S3). Of note, the two variants at 

8q24 and 17q24 were not associated with age at diagnosis (rs16901979: p = 0.38; rs1859962: 

p = 0.88). In multivariable logistic regression analyses, the association between age at 

diagnosis and TMPRSS2:ERG status did not change when adjusted for each variant 

(Supplementary Table S3). Similarly, the associations between fusion status and the variants 

rs16901979 and rs1859962 were not modified when age at diagnosis was included in the 
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model. In conclusion, age at diagnosis and the risk variants, 16901979 and rs1859962, are 

independent predictors of TMPRSS2:ERG status.  

 

As a potential technical confounder, we considered differences in TMPRSS2:ERG detection 

methods among study samples. The inclusion of different TMPRSS2:ERG detection methods 

(i.e. fluorescence in situ hybridization (FISH) or RT-PCR) as a covariable, in addition to 

study center, revealed little differences in the associations between TMPRSS2:ERG subtype 

and the variants, rs16901979 and rs1859962 (Supplementary Table S3). 

 

EQTL analyses suggest subtype and genotype specific SOX9 mRNA expression at 17q24 

The variants rs16901979 (8q24) and rs1859962 (17q24) are both located within gene deserts, 

where long-range interactions have been assumed between transcriptional regulatory elements 

and distant genes, such as MYC at 8q24 and SOX9 at 17q24. Expression levels of target genes 

could provide useful insights into how germline risk variants exert their effects, in particular 

in tumor subtypes according to TMPRSS2:ERG fusion status. From three cohorts, 262 fresh-

frozen tumor samples were available for expression quantitative trait locus (eQTL) analysis 

and 70 matched sample pairs for comparing gene expression between tumor and adjacent 

benign tissue. With regards to the 8q24 variant, rs16901979, the rarity of the risk allele 

(frequency 0.04 in TMPRSS2:ERG fusion-positive and 0.07 in fusion-negative cases) resulted 

in insufficient genotype counts for generating adequate eQTL categories in the two subtypes, 

thus, this locus could not be investigated. For the 17q24 locus, we chose SOX9 as a candidate 

target gene based on previous studies (26) and assessed whether the observed differential 

association between rs1859962 and TMPRSS2:ERG status is reflected in subtype- and 

genotype-specific mRNA expression levels. 
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Comparison of adjacent benign and tumor tissue revealed a significant increase in SOX9 

mRNA expression in TMPRSS2:ERG fusion-positive tumors (p = 0.0012), while the 

expression of SOX9 in fusion-negative tumors resembled that of benign tissue (p = 0.60, 

Figure 2A). Regarding the hypothesized eQTL manifestation of rs1859962 (Figure 2B), linear 

regression analysis showed a significant association between SOX9 mRNA levels and the 

presence of the risk allele G (effect per G allele = 0.21, p = 0.0019). When split by fusion 

status, the genotype dependency was evident in the TMPRSS2:ERG positive subset (effect per 

G allele = 0.23, p = 0.014). No significant association was observed in TMPRSS2:ERG 

negative tumors (effect per G allele = 0.09, p = 0.39). To further investigate, whether the 

correlation structure between rs1859962 and SOX9 mRNA levels statistically differ between 

TMPRSS2:ERG fusion-positive and negative tumors, we added an interaction term for 

genotype and TMPRSS2:ERG fusion status to the linear regression model with these two main 

factors. Though underpowered, this extended model demonstrated a significant impact of 

rs1859962 genotype (p = 0.021) and fusion status (p = 0.036) on SOX9 mRNA levels, but 

could not formally prove their interrelationship (p = 0.31). 
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Discussion 

Since the discovery of ETS gene rearrangements in PrCa, numerous efforts have sought to 

determine whether fusion-positive and fusion-negative tumors differ with respect to clinical 

significance, pathology and tumorigenesis itself. While comprehensive analyses of genomic 

and epigenomic alterations provide supportive evidence for distinct molecular mechanisms in 

the pathogenesis of fusion-positive and negative tumors (15,16,18), little is known to what 

extent these molecular subtypes are linked to the apparent heritable background of PrCa. 

Nevertheless, several previous reports have supported the hypothesis of genetically distinct 

tumor entities. In familial prostate cancer pedigrees, we have observed that relatives are more 

likely to share the same TMPRSS2:ERG subtype (27), and have found rare variants in DNA 

repair genes to be associated with fusion status (28). Intriguingly, after the recent 

identification of the hereditary PrCa gene HOXB13 (29), in-depth pathology examination 

subsequently revealed subtype specific predisposition, as 83% of HOXB13 germline mutation 

carriers had TMPRSS2:ERG negative tumors (30). With respect to common risk-modifying 

variants, the Physicians’ Health Study (PHS) and Health Professionals Follow-up Study 

(HPFS) recently examined 39 variants for subtype preference in a cohort of 227 fusion-

positive and 260 negative cases (31). The authors found nominally significant associations 

between TMPRSS2:ERG fusion status and PrCa risk variants at 4q24, 5p15, 8p21, 17q24, 

19q13 and 22q13. Although not withstanding correction for multiple testing, these six variants 

exceeded the number of associations expected by chance. In the present study, consisting of a 

large sample of cases with TMPRSS2:ERG fusion data, we have substantiated the hypothesis 

that common risk variants are involved in particular molecular subtypes of PrCa, rather than 

in PrCa risk in general, and have found significant evidence that variants at 8q24 and 17q24 

are differentially associated with TMPRSS2:ERG fusion status. 
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To date, associations between common risk variants and TMPRSS2:ERG subtypes have been 

investigated by the PHS/HPFS study (31) and our present work, resulting in more than 1,700 

PrCa cases with somatic fusion status. As these two studies used different sets of candidate 

SNPs, several interesting loci cannot be checked for independent confirmation between the 

studies, such as 5p15 (rs12653946), 19q13 (rs11672691) and 22q13 (rs11704416), which 

were associated with nominal significance in the PHS/HPFS dataset, but were not genotyped 

directly or by a proxy SNP in our study. Two further findings in the PHS/HPFS cohorts, 4q24 

(rs7679673) and 8p21 (rs1512268), were genotyped in the discovery dataset of the present 

work, but no significant associations were observed (p = 0.86 and p = 0.45, respectively). 

Notably, rs1859962 at 17q24 was included in both studies, and was identified in the 

PHS/HPFS dataset to be nominally associated with TMPRSS2:ERG fusion-positive PrCa (OR 

= 1.32; p = 0.04). We observed a similar association in both of our independent datasets 

(discovery: OR = 1.29; p = 0.04 and replication OR = 1.30; p = 0.02) with a study-wide 

significance in our combined analysis (OR = 1.30; p = 0.0016), providing strong evidence that 

the 17q24 variant is preferentially associated with TMPRSS2:ERG fusion-positive PrCa risk. 

Variant rs16901979 at 8q24 was found to be associated with TMPRSS2:ERG negative PrCa, 

in both the discovery and replication datasets in our study (OR = 0.53; p = 0.02 and OR = 

0.53, p = 0.01, respectively; p = 0.0007 combined), however this was not the case in the 

PHS/HPFS cohorts (OR = 0.78; p = 0.48). Variant rs16901979 maps to the known 8q24 PrCa 

risk region 2, where a variant, rs1016343, with a more frequent risk allele was genotyped in 

the PHS/HPFS cohort. This variant shows linkage disequilibrium to rs16901979 (r
2
 = 0.11; D’ 

= 1) and was over-represented in the PHS/HPFS TMPRSS2:ERG negative PrCa cases (OR = 

0.75) with borderline significance (p = 0.06). Also of interest was the fact that the risk alleles 

in the independent 8q24 risk regions 3 (rs6983267, OR = 0.85, p = 0.19; PHS/HPFS study) 

and 1 (rs1447295, OR = 0.70, p = 0.0025; present study) were also over-represented in 

TMPRSS2:ERG negative PrCa, although with different levels of significance. In summary, the 
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consistent tendency of multiple 8q24 risk loci to be over-represented in TMPRSS2:ERG 

fusion-negative PrCa is intriguing, and requires the study of larger cohorts to confirm or 

disprove the involvement of 8q24 in the fusion-negative subtype. 

 

The association found between TMPRSS2:ERG positive PrCa and rs1859962 at 17q24 

suggests a molecular mechanism linking the risk region to the ERG pathway. For eQTL 

analysis, we considered SOX9 (SRY (sex determining region Y)-box 9), which is located in 

relatively close proximity (1 Mb) to the rs1859962 risk variant. SOX9 acts as a transcription 

factor in the development of prostate epithelia and its over-expression evidently plays a role 

in PrCa tumorigenesis (32,33). Long-range interactions between SOX9 and variants in LD 

with rs1859962 have been proposed previously (26). SOX9 has also been identified as a 

downstream target of ERG (34) and a recent large histopathological study found a strong 

correlation between positive ERG status and moderate and high levels of SOX9 in PrCa tumor 

tissues (35). In line with SOX9 being a downstream target of ERG, we observed SOX9 over-

expression only in fusion-positive tumors, while fusion-negative tumors have transcript levels 

similar to adjacent benign tissue. Remarkably, eQTL analysis stratified by fusion type 

demonstrated a positive correlation between SOX9 gene expression and the rs1859962 risk 

allele in TMPRSS2:ERG positive tumor tissue. In contrast, this correlation was not evident in 

the TMPRSS2:ERG negative subset. Of note, for normal prostate tissue, where ERG should 

not be overexpressed, no eQTL evidence between rs1859962 and SOX9 (p = 0.51) was 

retrieved from the GTex portal (www.http://www.gtexportal.org) (36). Taken together, these 

results suggest that germline risk alleles at 17q24 promote ERG-mediated changes in SOX9 

expression only in TMPRSS2:ERG fusion-positive tumors, and the synergistic effect of these 

factors - risk variants and TMPRSS2:ERG fusion - render advantages to precursor cells in 

tumor formation. 

 

http://www.http/www.gtexportal.org
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Recent independent studies have found that TMPRSS2:ERG positive tumors are more 

frequent in patients with an earlier age at diagnosis of PrCa (21,22). The association with age 

at diagnosis was also present in our study population. Several explanations for the higher 

incidence of TMPRSS2:ERG fusions in early onset patients have been proposed, including a 

crucial role of higher androgen levels at younger ages (21), as well as the notion that 

TMPRSS2:ERG positive tumors may develop faster leading to earlier clinical manifestation, 

as compared to fusion-negative PrCa (22,37). The hypothesis that specific germline variants 

may predispose the development of early onset TMPRSS2:ERG-dependent PrCa is intriguing. 

Of note, the risk variant rs1859962 at 17q24 has been implicated in early onset PrCa 

previously (38). However, regression based analyses of the present study population revealed 

that age at diagnosis and rs1859962 were both associated with TMPRSS2:ERG fusion status, 

but were independent of each other. 

 

With TMPRSS2:ERG status as the main study focus, concerns arose as to whether different 

detection methods used by study groups could have biased results. Each method, i.e. FISH for 

formalin fixed paraffin embedded (FFPE) tissue or quantitative real-time PCR of RNA from 

fresh-frozen tissue, has its own spectrum of false-positive and false-negative outcomes. In 

particular, while the FISH break apart assay manages to detect almost every rearrangement 

involving TMPRSS2 and ERG, including those which do not lead to a functional 

TMPRSS2:ERG isoform (over-estimation of relevant TMPRSS2:ERG), qPCR detection of the 

most prevalent TMPRSS2:ERG transcript may misclassify tumors harboring only rare 

TMPRSS2:ERG isoforms (underestimation of relevant TMPRSS2:ERG). In addition, FISH on 

tissue micro arrays (TMAs) may miss TMPRSS2:ERG positive tumor foci, due to the limited 

area of analyzed tumor tissue, while qPCR on macro-dissected fresh-frozen tumor tissue 

could enable a more comprehensive evaluation. We believe, however, that the different 

detection methods have had little effect on the results of our study. First, the TMPRSS2:ERG 
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fusion frequencies among individual studies were similar to each other and the meta-analyses 

of the present samples revealed little evidence for heterogeneity. Second, adjustment for the 

detection method in multivariable regression analyses had almost no impact on the observed 

associations between TMPRSS2:ERG status and common risk variants. As reported from 

detailed studies of the technical issues (39-41), TMPRSS2:ERG assessment methods yield 

very similar results, and we are therefore confident that our results are robust to 

misclassification. Apart from the detection method, cohort selection is also known to 

influence the detection rate of TMPRSS2:ERG fusions. Of note, the observed TMPRSS2:ERG 

frequency of 56% in the present work is above the consensus of 45 to 50% reported in 

literature (reviewed in (42,43)). This might be in part explained by the remarkably different 

prevalence of TMPRSS2:ERG fusions among ethnicities. Studies, which explicitly addressed 

the population issue, reported 50% or higher TMPRSS2:ERG frequencies in subjects of 

European descent, while significantly less fusions (13%) were observed in non-Europeans 

(44). Lower TMPRSS2:ERG fusion prevalence applied for African Americans (31%) as well 

as for Asians (16%) (23). The present association study was restricted to European ethnicity, 

in order to avoid population stratification within the genotype data sets. Therefore, our study 

only included individuals who have the highest prevalence of TMPRSS2:ERG by ethnic origin 

and in consequence we would expect our TMPRSS2:ERG frequencies to reach higher levels 

as compared to studies with mixed populations. 

 

One important study limitation is the restricted number of cases that had tumor tissue 

available for somatic typing. Even when phenotyped case groups were compared to a 

considerable number of controls (n = 7,650), power was limited for assessing PrCa risk 

variants and, thus, some true associations may have been missed. Conversely, the possibility 

of false-positive results should be considered.  
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Our finding that known PrCa risk variants at 8q24 and 17q24 are differentially associated 

with TMPRSS2:ERG fusion status further strengthens support for the existence of distinct 

molecular subtypes in PrCa development. Importantly, this finding should encourage 

researchers conducting large genetic association studies to ascertain fusion status in order to 

identify comprehensive sets of subtype-specific risk variants. Recently, genetic 

epidemiologists have been considering a multifactorial model of PrCa risk, where genotypes 

of known common variants are converged into polygenic risk scores. While this approach has 

promise, the predictive utility of these models is still limited. The knowledge that some risk 

variants are associated with a particular molecular subtype of PrCa could be incorporated into 

multifactorial models, thereby refining and improving their ability to identify specific PrCa 

risk groups. 
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Materials and methods 

Study sample 

The study samples for each collaborating center are described in detail in the supplementary 

materials. The hypothesis generating discovery sample consisted of PrCa cases and controls 

genotyped in 2011 using the “iCOGS” array (7), including 27 variants previously shown to 

influence PrCa risk. Individuals were pre-selected for European ancestry, which was 

confirmed by principal component analyses of genotyping data. For analyzing the phenotype 

of interest, the TMPRSS2:ERG fusion status, selection criteria for cases were: 1) the 

availability of primary tumor tissue for TMPRSS2:ERG assessment or 2) existing information 

on fusion status. From five eligible study centers in Finland (TAMPERE), Germany (ULM), 

the UK (UKGPCS), USA (FHCRC) and Portugal (IPO-PORTO), a total of 552 cases with 

genotypes (n = 27 variants) and somatic phenotype data were included. An independent 

sample of cases with available tumor tissue or known TMPRSS2:ERG status was used to 

replicate the results for the five highest ranked candidate variants. The sample comprised 669 

cases from Germany (BERLIN and ULM), the UK (UKGPCS), USA (FHCRC) and Portugal 

(IPO-PORTO). Gene expression analysis of tumor materials was performed using fresh-

frozen tissue collections from ULM (35 matched tumor and adjacent benign) and BERLIN 

(194 specimens, tumor only), and one additional center, ERLANGEN (35 tissue pairs), to 

increase simple size. 

 

Genotyping 

Genotyping was performed on DNA from peripheral blood lymphocytes. Initially, 27 PrCa 

risk-associated variants were genotyped by means of the custom Illumina iSelect genotyping 

array (the iCOGS chip), previously generated by the Collaborative Oncological Gene-

Environment Study (COGS). A detailed procedure including genotype calling and quality 

control has been described earlier (7). 
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Genotyping of the replication samples (BERLIN, IPO-PORTO, FHCRC and ULM) was 

performed using predesigned TaqMan Genotyping Assays for rs1447295, rs16901979, 

rs10993994, rs1859962 and rs2735839 (Life Technologies, Carlsbad, USA). 

 

Determination of the TMPRSS2:ERG fusion status 

The study groups used fluorescence in-situ hybridization (FISH) or RT-PCR for the 

assessment of the TMPRSS2:ERG fusion status. FISH was applied to FFPE tumor material. 

Detailed methods of the FISH based TMPRSS2:ERG assessment by break apart assays have 

been described previously for the samples of ULM (14,27), UKGPCS (45), FHCRC (24) and 

TAMPERE (46). Fresh-frozen material, collected by the BERLIN, ERLANGEN, IPO-

PORTO and ULM study groups, was subjected to TMPRSS2:ERG detection via RT-PCR 

using TaqMan primers and probes specific for the most prevalent fusion transcript variant 

(T1G4, TMPRSS2:ERGa), which is found in approximately 90% of TMPRSS2:ERG fusion-

positive tumors (41,47). The IPO-PORTO samples were phenotyped as described by Paulo et 

al. (39). Tissues from BERLIN, ERLANGEN and ULM were macro-dissected, followed by 

RNA isolation using the RNeasy Mini Kit (QIAGEN, Hilden, Germany). The detection of the 

TMPRSS2:ERG fusion transcript was performed using QuantiFast® Multiplex RT-PCR +R 

Kit (QIAGEN, Hilden, Germany) on a VIIA7 Fast Real-Time PCR System (Life 

Technologies, Carlsbad, USA). Reactions were set up in duplicate in a final volume of 20 µl. 

Cycling conditions were as follows: 50 °C for 20 min and 95 °C for 5 min for initial reverse 

transcription and hot start polymerase activation respectively, and subsequently 45 cycles of 

94 °C for 15 sec and 60 °C for 60 sec. Primer and probe sequences are provided in 

Supplementary Table S4. 

 

Determination of SOX9 expression 
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The expression levels of ALAS1 (reference gene) and SOX9 were quantified with the 

QuantiFast® Multiplex RT-PCR +R Kit (QIAGEN, Hilden, Germany) on a VIIA7 Fast Real-

Time PCR System (Life Technologies, Carlsbad, USA). Reaction and cycling set up is 

described above. The primer and probe sequences are provided in Supplementary Table S4. 

 

Statistical analysis 

Statistical analyses were performed with the Review Manager version 5.1.7 (Copenhagen: 

The Nordic Cochrane Centre, The Cochrane Collaboration, 2012) and SAS version 9.3.  

 

As heterogeneity between study centers was of interest, we used a meta-analytic approach to 

assess associations in case-case and case-control comparisons. In detail, for each variant and 

study center, table-based per-allele odds ratios (ORs) were calculated and Mantel-Haenszel 

analyses were used to pool the ORs across centers. Fixed effects meta-analyses were preferred 

over random effect models because the inconsistency of association results across populations 

(as measured by I
2
) was mostly limited.  

 

Discovery and replication analyses were based on comparisons between TMPRSS2:ERG 

fusion-positive and negative cases (case-case comparisons), where nominal thresholds were 

applied (p = 0.05) based on the limited number of cases available for the analyses. The 

candidate variant selection for the replication round was also guided by supplementary 

analysis of the more powerful comparison of case subtypes versus unaffected controls 

(threshold p = 0.00185, according to Bonferroni adjustment for 27 variants). Four variants 

fulfilled both criteria in the discovery sample (rs2735839, rs10993994, rs16901979 and 

rs1859962). The candidate variant list was expanded by one further variant (rs1447295) based 

on the case-case ranking of variants and rankings derived from cancer subtypes vs. controls. 

Formally, these five variants form the smallest subset of variants ranked ≤ n in case-case 



22 

 

comparisons that have also rank ≤ n in cancer subtypes vs. controls. For the combined 

Mantel-Haenszel analyses of the discovery and replication stages the study wide significance 

level of p = 0.00185 was applied. 

 

The relationship between TMPRSS2:ERG fusion status, risk alleles, age at diagnosis and gene 

fusion detection methods was assessed using multivariable logistic regression, adjusting for 

study center effects. For this purpose, TMPRSS2:ERG status was modeled as the dependent 

variable, whereas, in addition to center, either age at diagnosis and genotype, or detection 

method and genotype were included as covariables.  

 

SOX9 expression levels were calculated by the ΔCt method using ALAS1 as reference gene, 

with subsequent log2 transformation to achieve normal distribution of the data for 

downstream analyses. The comparisons of gene expression between tumor and adjacent 

benign tissue were performed using the paired t-test. Genotype specific effects on SOX9 

expression levels were tested using a regression model with genotype as an independent 

variable, adjusted for study center effects. The model was extended for the TMPRSS2:ERG 

status and an interaction term to test for differences between TMPRSS2:ERG fusion-positive 

and negative subsets with regard to the correlation structure of SOX9 mRNA expression levels 

and rs1859962 genotypes. 
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Legends to Figures 

Figure 1: Mantel-Haenszel analysis showing associations between common PrCa risk 

variants and TMPRSS2:ERG (T2E) positive (x-axis) and T2E negative cases (y-axis) 

compared to controls. Analyses included n = 296 T2E fusion-positive and n = 256 T2E 

fusion-negative PrCa cases, which were separately compared to n = 7,650 controls. Threshold 

lines correspond to nominal significance (p = 0.05, inner dashed square) and study 

significance adjusted for 27 variants (p = 0.00185, outer dashed square). Circles are colored 

based on separate analyses, where the variants were pre-checked for overall association with 

PrCa risk in all phenotyped cases (n = 552) versus all controls (Open circles: p > 0.05; gray: p 

< 0.05; black: p < 0.00185; Supplementary Table S1). The majority of common risk variants 

was not associated with PrCa risk in the T2E phenotyped sample as compared to controls, and 

these remain unrelated to molecular subtype. Candidates significantly associated with PrCa 

risk showed stronger or unique associations for either T2E positive or negative PrCa. No 

variant was significantly associated with both subtypes. The highest ranked candidate 

variants, which were later genotyped in a replication dataset, are annotated with variant rs ID 

numbers. 
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Figure 2: Expression levels of SOX9 according to TMPRSS2:ERG fusion status in 

adjacent benign and matched tumor tissues (A) and in eQTL analyses of rs1859962 (B). 

Mean values of log2 expression levels are presented with corresponding 95% confidence 

intervals. Significant p-values are in bold-type. A) SOX9 expression levels in pairs of 70 

tumor and adjacent benign tissues for TMPRSS2:ERG fusion-negative (open circles) and 

fusion-positive cases (black circles). P-values are derived from paired t-tests. B) SOX9 

expression levels according to rs1859962 genotype for all tumor samples (n = 262; gray 

circles), TMPRSS2:ERG fusion-negative samples (n = 122; open circles) and fusion-positive 

samples (n = 140; black circles). P-values correspond to the association between risk alleles 

and expression levels in a linear regression model. 

  



33 

 

 

Table 1: Distribution of prostate cancer cases based on study centers and TMPRSS2:ERG 

(T2E) fusion status. 

 Study 
Total number of cases 

with T2E data 

T2E positive 

cases 

T2E negative 

cases 

T2E positive 

frequency 

D
is

co
v

er
y

 

sa
m

p
le

 

FHCRC I 174 91 83 0.52 

IPO-PORTO I 18 8 10 0.44 

TAMPERE 174 105 69 0.60 

UKGPCS 129 58 71 0.45 

ULM I 57 34 23 0.60 

Subtotal 552 296 256 0.54 

R
ep

li
ca

ti
o

n
 

sa
m

p
le

 

FHCRC II 218 133 85 0.61 

IPO-PORTO II 146 79 67 0.54 

ULM II 107 65 42 0.61 

BERLIN 198 111 87 0.56 

Subtotal 669 388 281 0.58 

 Total 1,221 684 537 0.56 
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Table 2: Association results for the top five PrCa risk variants and TMPRSS2:ERG fusion 

status in the discovery sample, replication sample and both samples combined calculated by 

Mantel-Haenszel analyses
a
. 

Variant 

Discovery sample  Replication sample  Combined analysis 

OR
b
 [95% CI] p-value  OR

b
 [95% CI] p-value  OR

b
 [95% CI] p-value 

rs16901979 0.53 [0.31 - 0.91] 0.0214  0.53 [0.33 - 0.87] 0.0121  0.53 [0.37 - 0.76] 0.0007 

rs1447295 0.76 [0.56 - 1.04] 0.0891  0.63 [0.44 - 0.89] 0.0085  0.70 [0.55 - 0.88] 0.0025 

rs10993994 1.35 [1.06 - 1.72] 0.0151  1.10 [0.89 - 1.37] 0.3789  1.21 [1.03 - 1.42] 0.0226 

rs2735839 1.73 [1.20 - 2.51] 0.0035  1.03 [0.76 - 1.39] 0.8650  1.27 [1.00 - 1.59] 0.0455 

rs1859962 1.29 [1.01 - 1.64] 0.0375  1.30 [1.05 - 1.62] 0.0178  1.30 [1.10 - 1.52] 0.0016 
a
 Sample numbers are given in Table 1, corresponding forest plots and study heterogeneity are 

shown in Supplementary Figure S1. 
b
 Odds ratios less than 1 imply an overrepresentation of PrCa risk alleles in TMPRSS2:ERG fusion-

negative cases, whereas odds ratios above 1 indicate an overrepresentation in TMPRSS2:ERG 

fusion-positive cases. 
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