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Abstract:  The degree to which the climate change signal can be seen in the 

increasing frequency and/or magnitude of extreme events forms a key part of the 

global environmental change agenda. Geomorphology engages with this debate 

through extending the instrumental record with palaeogeomorphological research; 

studying resilience and recovery of geomorphic systems under extreme disturbance; 

documenting the mediation by catchment organisation of transport processes during 

extreme events; applying new monitoring methods to better understand process-

response systems; and illustrating how process, experimental and modelling insights 

can be used to define the buffering of geomorphic systems and human assets from 

the effects of extremes, providing practical outcomes for practitioners.  

Keywords: climate change; disturbance regime; climate extremes; landscape 

recovery; Intergovernmental Panel on Climate Change 

 

Introduction  

In a previous ESEX Commentary, Lane (2013) reviewed recently published work 

relating to the relationship between climate change and geomorphology. Lane 

argued that, despite the poor representation of geomorphological research in the 4th 

Assessment Report (AR4, 2007) of the Intergovernmental Panel for Climate Change 

(IPCC), geomorphology was making important contributions in disentangling the 

complex linkages between climatically-driven and human-driven impacts of 

environmental variability (e.g. land-use change); in thinking about the challenges of 

modelling geomorphic futures; and in the  appreciation of  the role that geomorphic 



processes play in the flux of carbon and the carbon cycle. In this Commentary, which 

follows the publication of IPCC AR5 (2013-2014), we introduce an ESPL Special 

issue concerned with the relations between geomorphology and another key concern 

in the climate change debate, the potential changes in the frequency and magnitude 

of extreme weather events. Here we use the definition of ‘an extreme weather event’, 

from the IPCC Special Report on Managing the Risks of Extreme Events and 

Disasters to Advance Climate Change Adaptation (SREX; Seneviratne et al., 2012), 

as one that is rare at a particular place and/or time of year. Definitions of ‘rare’ vary, 

but an extreme weather event would normally be as rare as or rarer than the 10th or 

90th percentile of a probability density function estimated from observations. 

 

Climate Means, Weather Extremes and Types of Environmental Change 

 

Climate change includes not only changes in mean climate but also in weather 

extremes. These extremes can be characterised, either singly or in combination, by 

changes in the mean, variance, or shape of probability distributions (IPCC, 2012). 

For example, significant trends in heavy-precipitation and high-temperature extremes 

over the recent decades have been observed (Rahmstorf and Coumou, 2011; 

Perkins et al., 2012) and attributed to human influence, initially in relation to 

particular extreme events (e.g. Pall et al., 2011; Otto et al., 2012; Schaller et al., 

2016) but more recently by application to all globally occurring heavy precipitation 

and hot extremes (Fischer and Knutti, 2015; Stott, 2016). In this context, the IPCC 

AR5 identifies, in particular, the greater risks of flooding at regional scales and 

increases in extreme sea levels post-1970 (IPPC, 2014).  

 



This emphasis on precipitation, temperature and sea level is perhaps not surprising. 

Environmental change can be seen as consisting of two components, systemic and 

cumulative change (Turner et al., 1990). Systemic change refers to occurrences of 

global scale, physically interconnected phenomena, whereas cumulative change 

refers to unconnected, local to intermediate scale processes which have a significant 

net effect on the global system. Hydroclimate and sea level change, a prime focus of 

the IPCC Assessment Reports, are drivers of systemic change which is highly 

amenable to large-scale atmosphere and ocean systems modelling. By contrast, 

cumulative change refers to unconnected, local to intermediate scale processes 

which have a significant net effect on the global system and where the human 

footprint is strong, and often dominant. Topographic relief, and land cover and land 

use changes, are drivers of cumulative change but their spatial and (in the case of 

surface characteristics) temporal variability, and hence the difficulties of both 

definition and spatial resolution, make the incorporation of their effects into Global 

Circulation Models a continuing challenge (Slaymaker et al., 2009). In addition, whilst 

hydrometeorological and sea surface datasets can be described by smooth time 

series distributions, their landscape impacts are decidedly non-linear, with clear 

thresholds to landscape change in the disturbance regime. Any approach, therefore, 

that sees the land surface as a passive vehicle for the transmission of climate 

change, and adaptive strategies as a response to at best continental-scale changes 

in climatic extremes, can only provide a very simplified view of the implications of 

climate change for human lives and livelihoods. Furthermore, it offers few clues as to 

how to explore i) societally acceptable levels of landscape change and variability and 

ii) the extent to which landscapes can recover from extreme weather events and how 



locally-specific management strategies can improve the detailed trajectory of system 

recovery. 

 

Stormy Geomorphology 

 

In 2014, the British Society for Geomorphology (BSG) established a Fixed Term 

Working Group (FTWG) on ‘Stormy Geomorphology’ to help raise awareness of the 

ways in which geomorphological science can critically contribute to understanding, 

measuring and managing the impacts of two aspects of extreme weather events – 

coastal storms and river floods - on changing landforms and landscape systems and 

their human inhabitants. The aim of the FTWG has been to bring together world-

leading experts in this field, combining state of the art syntheses alongside empirical 

papers documenting the impact of particular extreme weather events, or cluster of 

events, on the physical and ecological landscapes; the approach has been an 

interlinked International Discussion Meeting, held at the Royal Geographical Society 

(with IBG) in London in May 2015, and this Special Issue of Earth Surface 

Processes and Landforms.    

 

When designing this Special Issue we identified five key ways in which 

geomorphological science contributes to a fuller understanding of the impacts of 

coastal storms and river floods. For the first theme, the fundamental role 

palaeogeomorphological studies play, both in extending the instrumental record and 

in improving flood risk estimates, is explored. The short length (generally ≤ 50 years) 

of systematic river flow records worldwide, most of which start in the mid-twentieth 

century, make forecasting hydrological extremes that have an annual exceedance 



probability of 0.01 or less highly problematic. Non-stationarity in flooding resulting 

from climate and catchment land-cover change also introduces further uncertainty in 

flood predictions based only on instrumental series. Coastal and fluvial sedimentary 

archives of past storms and floods with event-scale resolution are increasingly being 

used to extend flood records back over several centuries (Foulds and Macklin, 2016; 

Fruergaard and Kroon, 2016) and in some cases millennia (Toonen et al., 2016). 

These are providing new insights to the significant effects of short-term climatic 

variability on the incidence of extreme events which suggest that future flood 

estimation will need re-thought in the light of anthropogenic climate change. The 

second and third themes draw on research from both landform evolution and 

process traditions. In the second theme, current process and 

palaeogeomorphological research is used to examine how the magnitude and 

frequency of extremes influences the resilience and recovery of geomorphic systems 

to disturbances triggered by extreme storms and floods. The theme presents the 

empirical and theoretical dimensions of geomorphic responses to extreme events by 

characterizing and quantifying the shifts in boundary conditions generated by climate 

change (Yellen et al., 2016), anthropogenic disturbances (Brandon et al., 2016), or 

the cumulative effects of both (Slater, 2016).  In particular, these papers reveal the 

reach scale (Croke et al., 2016) and watershed scale processes (Dethier et al., 

2016) that dictate the suite of geomorphic responses to extreme events and the 

potential for large scale system changes to geomorphic perturbations (Phillips and 

Van Dyke, 2016). The third theme uses a series of empirical papers to demonstrate 

the critical role that catchment organisation plays in mediating water and sediment 

transport during extreme events (Boardman, 2015; Boardman and Vandaele, 2016; 

Rigon et al., 2016; Rickenmann et al., 2016; Rinaldi et al., 2016). The last two 



themes move into the realm of the process geomorphology tradition, employing 

novel technologies to gather empirical data and modelling to improve our predictive 

capacity. In the fourth group, a suite of empirical papers illustrate the fundamental 

role that near real-time, quantitative field measurements during extreme events can 

play in advancing our understanding of process-form responses in coastal (Brooks et 

al., 2016; Masselink et al., 2016; Naylor et al., 2016; Terry et al., 2016) and hillslope 

(Rinaldi et al., 2016)settings. Lastly, a series of papers (Smith et al., 2016; Dixon et 

al., 2016; Balke and Friess, 2016) demonstrate how geomorphological process 

knowledge, and particularly knowledge gained from physical and numerical 

modelling of water flows within and across estuarine and coastal landforms and 

associated ecosystems, can help to inform flood and erosion management 

approaches. Applied in this way, such knowledge has a direct impact on society; it 

points the direction towards practical solutions for the more sustainable and robust 

protection of human assets from the effects of extremes. 

 

Conclusion 

Geomorphology has an obligation to inform society as to what level of disturbance 

the Earth’s landforms and landscapes can (and cannot) absorb and over what time 

periods the landscape will respond to, and recover from, disturbance. We hope that 

this series of papers helps take this debate, and this responsibility, forward, in 

relation to one of the key emerging environmental challenges for contemporary 

society: flood hazard.  

. 
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