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Abstract: Three-dimensional (3D) bioprinting is on the cusp of permitting the direct fabrication of
artificial living tissue. Multicellular building blocks (bioinks) are dispensed layer by layer and scaled
for the target construct. However, only a few materials are able to fulfill the considerable requirements
for suitable bioink formulation, a critical component of efficient 3D bioprinting. Alginate, a naturally
occurring polysaccharide, is clearly the most commonly employed material in current bioinks. Here,
we discuss the benefits and disadvantages of the use of alginate in 3D bioprinting by summarizing
the most recent studies that used alginate for printing vascular tissue, bone and cartilage. In addition,
other breakthroughs in the use of alginate in bioprinting are discussed, including strategies to improve
its structural and degradation characteristics. In this review, we organize the available literature in
order to inspire and accelerate novel alginate-based bioink formulations with enhanced properties
for future applications in basic research, drug screening and regenerative medicine.

Keywords: alginate; 3D bioprinting; bioink; tissue engineering

1. Introduction

Three-dimensional (3D) printing aims to integrate living cells in three-dimensional biomaterials.
This revolutionary technology permits the automated and reproducible production of 3D functional
living tissues by depositing layer-by-layer biocompatible materials (usually containing biochemicals)
with a high-precision positioning of cells. This technique permits the fabrication of 3D, scalable and
precise geometries that are not offered by other strategies such as two-dimensional (2D) cell cultures
or standard 3D cell cultures [1]. There exist three different bioprinting strategies: extrusion, inkjet and
laser-assisted (see Figure 1). The uses of these 3D functional living tissues range from basic research [2]
(i.e., to study the cell-biomaterial interaction at the nanoscale level—crucial in understanding defects
in tissues, organ malfunctioning or nanoparticle-cell interactions [3,4]), drug testing or toxicological
studies [5], to real transplantation in animals [6]. Due to the increasing complexity needed for these
tissues, 3D bioprinting is facing several challenges in all the production processes. For example,
the cell-encapsulated materials are frequently exposed to chemical crosslinkers for extended periods
of time during storage prior to printing, which can damage the cells. During the deposition, the
mechanical stress caused by the printing itself can result in serious cell damage and loss of cell function
by cell extension or shearing [7]. Once the new tissue is printed, the supply of nutrients to cells
through the 3D construct is limited, in particular due to the small vascularity of printed materials [8].
In general, the list of requirements for a suitable bioink—or cell-containing dispensable biomaterial—is
exhaustive, including printability, biocompatibility, biomimicry and necessary structural/mechanical
properties. This is the reason why the vast majority of the manufacturers of commercially available 3D
bioprinters—especially those that are extrusion-based—recommend hydrogel bioinks [9].
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This is the reason why the vast majority of the manufacturers of commercially available 3D 
bioprinters—especially those that are extrusion-based—recommend hydrogel bioinks [9]. 

In this sense, hydrogels are undoubtedly the most extended biomaterials used as cell matrix in 
bioinks as they can be employed as cell matrix and be tailored to mimic or replace native tissue [10]. 
The chemical and physical properties of the hydrogels will determine the behavior of the cells. 
Hydrogels are jelly-like materials in which the liquid component is water. In fact, hydrogels are 
mostly water by weight, but exhibit no flow in the steady-state due to a 3D cross-linked polymer 
network within the fluid, which gives them unique properties comparable to those of human tissues. 
Due to their printability, different biocompatible hydrogels that support cell growth are employed 
for bioink fabrication: agarose, gelatin, hyaluronic acid, polyethylene glycol (PEG)-diacrylate and 
alginate, among others. 

 
Figure 1. The most widely used bioprinting approaches are shown at the top of the illustration: 
extrusion-based (performed by a piston, as in the illustration, or by a pneumatic method or a screw), 
inkjet-based (by a piezoelectric actuator or a heater that creates bubbles) and laser-assisted (with a 
laser pulse on an energy-absorbing layer that discharges bioink droplets from a donor slide). On the 
bottom, an illustration shows an alginate-based bioink (composed of the alginate hydrogel, cells, 
and—optionally—functional peptides to enhance the biological function of the cells, and other 
polymers forming the hydrogel that tune certain properties (i.e., mechanical or structural) of the 
bioink and/or the printed three-dimensional (3D) construct). 

Alginate is a naturally occurring, non-toxic, biodegradable and non-immunogenic linear 
polysaccharide composed of guluronic and mannuronic acids [11]. Apart from its high 
biocompatibility, it is a low-cost marine material—normally obtained from the cell walls of brown 
algae—that forms hydrogel under mild conditions. For these reasons, numerous materials scientists 
and bioengineers employ alginate as a component in the design and fabrication of bioinks. The 3D 
bioprinting of tissues [12] and alginate properties and applications [13] have been recently reviewed 
separately. Here we review the use of alginate (see Figure 1) in 3D bioprinting. 

Figure 1. The most widely used bioprinting approaches are shown at the top of the illustration:
extrusion-based (performed by a piston, as in the illustration, or by a pneumatic method or a screw),
inkjet-based (by a piezoelectric actuator or a heater that creates bubbles) and laser-assisted (with a
laser pulse on an energy-absorbing layer that discharges bioink droplets from a donor slide). On the
bottom, an illustration shows an alginate-based bioink (composed of the alginate hydrogel, cells,
and—optionally—functional peptides to enhance the biological function of the cells, and other polymers
forming the hydrogel that tune certain properties (i.e., mechanical or structural) of the bioink and/or
the printed three-dimensional (3D) construct).

In this sense, hydrogels are undoubtedly the most extended biomaterials used as cell matrix in
bioinks as they can be employed as cell matrix and be tailored to mimic or replace native tissue [10].
The chemical and physical properties of the hydrogels will determine the behavior of the cells.
Hydrogels are jelly-like materials in which the liquid component is water. In fact, hydrogels are
mostly water by weight, but exhibit no flow in the steady-state due to a 3D cross-linked polymer
network within the fluid, which gives them unique properties comparable to those of human tissues.
Due to their printability, different biocompatible hydrogels that support cell growth are employed for
bioink fabrication: agarose, gelatin, hyaluronic acid, polyethylene glycol (PEG)-diacrylate and alginate,
among others.

Alginate is a naturally occurring, non-toxic, biodegradable and non-immunogenic linear
polysaccharide composed of guluronic and mannuronic acids [11]. Apart from its high biocompatibility,
it is a low-cost marine material—normally obtained from the cell walls of brown algae—that forms
hydrogel under mild conditions. For these reasons, numerous materials scientists and bioengineers
employ alginate as a component in the design and fabrication of bioinks. The 3D bioprinting of
tissues [12] and alginate properties and applications [13] have been recently reviewed separately.
Here we review the use of alginate (see Figure 1) in 3D bioprinting.
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2. The Use of Alginate in Three-Dimensional (3D) Bioprinting

Alginate, also called algin or alginic acid, is a cheap biopolymer normally obtained from calcium,
magnesium and sodium alginate salts from the cell walls and intracellular spaces of different brown
algae [14]. Alginate is composed of (1–4)-linked β-D-mannuronic (M) and α-L-guluronic acids (G)
(see the monomers in Figure 2). Alginate is a polyanionic linear block copolymer made of longer M
or G blocks, separated by MG regions. Alginate is a polysaccharide that is negatively charged (it is
known that, generally, positively charged materials provoke an inflammatory response). This soluble
biopolymer supports cell growth and exhibits high biocompatibility. G blocks increase the gel forming
and MG and M blocks increase the flexibility; however, a high amount of M blocks could cause
immunogenicity [15]. Water and other molecules can be trapped by capillary forces in an alginate
matrix, whereas these molecules are still able to diffuse. This feature makes alginate hydrogels ideal
for bioink formulations.
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completely understood, it is believed that cations bind both G blocks and M blocks [16]. This way, 
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cells in the first therapeutic application of this strategy, in which Langerhan cells microencapsulated 
in sodium alginate were transplanted into diabetic rats [18,19]. Pore sizes in alginate range between 
5 and 200 nm [20], and the largest pores are found in high-G-block-content alginates. This property 
is important regarding the cell viability of the bioink (due to a limited diffusivity of nutrients) [21]. 

Each bioprinting methodology requires bioinks with certain rheological properties [9]. 
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method is very high (>95%). The viscosity of an alginate-based bioink depends on the alginate 
concentration, the molecular weight of the alginate used (length of the alginate chains), and the cell 
density and phenotype of the cells. These are the parameters that researchers must take into account 
in order to tune the viscosity of the alginate-based bioinks. Another important rheological feature of 
aqueous alginate solutions is the shear-thinning, where the viscosity decreases as the shear rate 
increases. The viscosity also depends on the temperature at which the printing was performed—the 
viscosity decreases as the temperature increases. In comparison to other polymers, alginate is 
reasonably easy to print, as it is easy to handle and extrude while protecting the encapsulated cells. 
Even though it is non-cell-adhesive by itself [22], in terms of cell encapsulation, alginate is nowadays 
one of the most utilized materials. 

Figure 2. Structural units of the alginate block types: (A) β-(1–4)-D-Mannuronic acid;
(B) α-(1–4)-L-Guluronic acid.

Some 3D bioprinting applications (such as extrusion) require a fast gelation process. By generating
ionic interchain bridges, alginate solutions offer fast gelling when mixed with multivalent cations
(as Ca2+). Though the gelation process in the presence of such cations is not completely understood, it is
believed that cations bind both G blocks and M blocks [16]. This way, cells can be easily and quickly
encapsulated and interlayer adhesion during the layer-by-layer printing process is avoided [17].
Prior to its use as a bioink, alginate was employed for encapsulating cells in the first therapeutic
application of this strategy, in which Langerhan cells microencapsulated in sodium alginate were
transplanted into diabetic rats [18,19]. Pore sizes in alginate range between 5 and 200 nm [20], and the
largest pores are found in high-G-block-content alginates. This property is important regarding the
cell viability of the bioink (due to a limited diffusivity of nutrients) [21].

Each bioprinting methodology requires bioinks with certain rheological properties [9].
Extrusion bioprinting permits the use bioinks of a wide range of viscosities: 30 mPa·s–6 × 107

mPa·s. The cell density within the bioink can be very high, but the shear stress during the extrusion
process decreases the cell viability (80%–90%). In inkjet-based bioprinting, the bioinks employed are
less viscous (<10 mPa·s) and have lower cell densities (<16 × 106 cells/mL). This method offers cell
viabilities of around 90%. The laser-assisted bioprinting requires bioinks with viscosities ranging
between 1 and 300 mPa·s and medium cell densities of around 108 cells/mL. The cell viability in
this method is very high (>95%). The viscosity of an alginate-based bioink depends on the alginate
concentration, the molecular weight of the alginate used (length of the alginate chains), and the
cell density and phenotype of the cells. These are the parameters that researchers must take into
account in order to tune the viscosity of the alginate-based bioinks. Another important rheological
feature of aqueous alginate solutions is the shear-thinning, where the viscosity decreases as the
shear rate increases. The viscosity also depends on the temperature at which the printing was
performed—the viscosity decreases as the temperature increases. In comparison to other polymers,
alginate is reasonably easy to print, as it is easy to handle and extrude while protecting the encapsulated
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cells. Even though it is non-cell-adhesive by itself [22], in terms of cell encapsulation, alginate is
nowadays one of the most utilized materials.

Once the material is printed, the hydrogel should degrade appropriately, permitting the cells
to produce their own extra cellular matrix. The alginate creates long-term persistent cell-laden
hydrogels, whereas its slow degradation kinetics can be tuned by oxidation (by sodium peroxide,
for instance) [23] or by modifying the molecular weight distribution (by gamma rays) of the alginate
itself [24]. Alginate lyases catalyze the degradation of the alginate [25]. The degradation of alginate is
slow and difficult to control, which is one of the major issues when using this material in 3D bioprinting.

The discharge of the hydrogels during extrusion bioprinting restricts the use to low-weight
alginate hydrogels, which, depending on the application, exhibit poor mechanical properties. However,
as we will see in further examples, the alginate structural and mechanical properties required for
each printed tissue, as well as the biomimicry properties needed in each case, can be tuned by
incorporating other biomaterials in the scaffold or by employing different hydrogel fabrication
methods. As an example, there already exists a commercially available bioink named CELLINK,
which, combining nanocellulose and alginate, presents shear-thinning and fast crosslinking features,
making it valuable for soft tissue engineering applications [9]. Moreover, extrusion-based commercially
available bioprinters such as Bioscaffolder® from Gesim, or Revolution from Ourobotics, recommend
the employment of alginate as a bioink.

In the next section, we will summarizes the most recent advances in 3D bioprinting that have
used alginate as (a component of the) bioink.

2.1. 3D Bioprinted Vascular Tissues

As isolated cells die in spaces of volumes less than 3 mm3 [26], the limited vascularity of the
printed materials is a major barrier for 3D organ bioprinting [27]. The creation of blood vessel–like
channels capable of transporting, e.g., oxygen and nutrients through the printed material is required
in order to fabricate large tissues or organs. To achieve this goal, a coaxial nozzle strategy for nutrient
delivery within the printed material was presented by Zhang et al. [28] for the fabrication of vessel-like
printable microfluidic channels. In this study, a pressure-assisted bioprinter with a coaxial needle was
used to print hollow alginate hydrogel filaments containing cartilage progenitor cells. Similarly,
Yu et al. [29] utilized a triaxial nozzle assembly to fabricate biocompatible cartilage-like tissues
containing tubular channels. Cartilage progenitor cells were encapsulated in alginate, the main
component of the bioink. Gao et al. [30] also obtained printed high-strength sodium alginate hydrogels
containing microchannels inside. In a similar fashion, the formation of perfusable vascular constructs
was also achieved via a multilayered coaxial nozzle with concentric channel extrusion in one-step
3D bioprinting [31], by blending sodium alginate with gelatin methacryloyl (GelMA) and 4-arm
poly(ethylene glycol)-tetra-acrylate (PEGTA). In this work, the crosslinking was made by calcium ions
and covalent photocrosslinking of GelMA and PEGTA—used to tune the mechanical and rheological
properties. In another study by Christensen et al. [32], vascular-like structures with bifurcations
(horizontal and vertical) were printed in sodium alginate and mouse fibroblast–based alginate bioinks.
Their inkjet printer was equipped with a calcium chloride solution as a crosslinker and as a supporting
material. The solution was used to give a supporting buoyant force for overhang regions in both
horizontal and vertical printing, as well as for spanning regions in horizontal printing.

We can conclude from this section that alginate-based bioinks are the most used in coaxial
needle–assisted vascular tissue bioprinting, due to the fast ionic crosslinking ability of the alginate.
The use of coaxial needles permits tuning the gelation kinetics of alginate-based bioinks with a
relatively high precision by adjusting the concentrations of the alginate and the crosslinker.

2.2. Bone Printing

Gelatin and alginate, as well as hydroxyapatite, were used to make a novel hydrogel composite for
bone printing [33]. A two-step process mixing the thermosensitive properties of gelatin and chemical
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crosslinking of alginate to achieve fast crosslinking and long-term structural integrity of the 3D-printed
constructs with human mesenchymal stem cells was performed during the printing. Hydroxyapatite
opens the window of the use of this bioink in bone tissue engineering. Polycaprolatone, which
exhibits excellent mechanical properties for bone tissue engineering, was combined with alginate
to create 3D osteochondral tissue bioprinting [34]. The combination of both materials reinforced
the mechanical properties, a requirement for bone tissue engineering, of the printed 3D construct
consisting of osteoblasts and chondrocytes. In a very recent work by Armstrong et al. [35], a bioink was
formulated using sodium alginate and a poloxamer as a sacrificial guest, getting bone and cartilage
3D constructs containing porous alginate with enhanced mechanical and rheological properties, even
in a microscopic printing definition. Bone-related SaOS-2 cells were 3D bioprinted with gelatin and
sodium alginate, and overlayed by agarose and calcium salt of plyphosphate, and they obtained a
high cell proliferation and caused an increase in the mineralization of the cells [36]. The same cell
phenotype was utilized in a study by Wang et al. [37], in which the effect of bioglass on the growth
and mineralization of the SaOS-2 cells was investigated in 3D-printed alginate/gelatin hydrogels.
Polyphosphate and biosilica increased the cell proliferation and mineralization. By mixing collagen,
polycaprolactone microfibers and nanofibers, and mesenchymal stem cell-laden alginate, Jang et al. [38]
fabricated 3D constructs using centrifugal melt-spinning, dip-coating, and bioprinting. The constructs
promoted osteogenesis after mastoid obliteration, even in in vivo experiments, accelerating new bone
formation. Daly et al. [39] recently presented an interesting strategy. They firstly made cartilage
templates using stem cells supported by gamma-irradiated alginate bioink with Arg-Gly-Asp adhesion
peptides. Then, the templates were reinforced by printed polycaprolactone, getting a ≈350-fold
increase in the compressive modulus which could suppose an advantage in bone tissue engineering.

The mechanical properties of the alginate for bone bioprinting are poor (for instance, the stiffness
during elastic deformations of the bone ranges between 15–25 GPa [40], whereas alginate’s is so much
lower: 150–550 kPa [41]). We can hereby conclude that the combination of alginate and other polymers
such as hydroxyapatite, polycaprolactone, or biosilica, among others, improves the mimicking of the
mechanical properties of bone in printed 3D constructs.

2.3. Cartilage Printing

Apart from the examples mentioned in the previous section, alginate has been widely employed
in cartilage 3D bioprinting. Researchers from the Atala Lab, Winston-Salem, NC, USA [42] designed a
combination of electro-spinning and 3D bioprinting, creating layered cartilage with better mechanical
properties than the 3D-bioprinted alginate hydrogels. Printed cells produced cartilage extracellular
matrix even in vivo. Electro-spinning of polycaprolactone fibers was combined with printing of
rabbit elastic chondrocytes encapsulated in a fibrin/collagen gel. In an investigation carried out by
Kundu et al. [43], polycaprolactone and alginate encapsulating chondrocyte cells were printed layer by
layer to form 3D constructs. Those hydrogels containing transforming growth factor-β (TGFβ) showed
a great cartilage-like extra cellular matrix formation. In a work by Markstedt et al. [44], 3D-bioprinted
human ears and sheep meniscus were printed using a bioink combining nanofibrillated cellulose
and alginate. Combining digital modeling and 3D bioprinting, a meniscus cartilage with a desired
pattern was printed in a single-step process [45]. The composite materials were made by combining
an alginate/acrylamide solution and an epoxy-based adhesive and extruded a posteriori. This mix
was finally cured by UV irradiation. In order to make alginate sulfate printable for cartilage tissue
engineering applications, it was combined with nanocellulose by Müller et al. [46], exhibiting good
printing properties. Nonetheless, when this bioink was extruded, the chondrocyte cell proliferation
was seriously affected when using small-diameter nozzles and valves which limit its application
to a low-resolution printing. Further advances in 3D cartilage printing were recently published by
Izadifar et al. [47]. The 3D hybrid polycaprolactone and embryonic chick primary cells impregnated
with alginate constructs were bioprinted in order to mimic the properties of cartilage.
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Alginate is a biostable hydrogel with slow biodegradability and appropriate mechanical properties
for cartilage bioprinting, such as PEG, agarose or methylcellulose [48].

2.4. Other Advances in 3D Bioprinting

In the previous sections we discussed the problems that the use of alginate presents, and different
strategies to face them depending on the application. This information is summarized in Table 1. In the
present section, further applications of alginate in 3D bioprinting will be explored.

Table 1. Problems and given solutions of using alginate as a bioink in different three-dimensional (3D)
bioprinting applications.

3D Bioprinting
Application Problem (of the Use of Alginate) Solution Reference

General Immunogenicity (low cell grow support) Use a low amount of D-mannuronic acid [15]

General Fast gelation needed Use multivalent cations 1 [16]

General Slow degradation kinetics Tune the weight percent [24]

General Slow degradation kinetics Oxidation [23,49]

Vascular tissue Lack of channels transporting oxygen and
nutrients to cells Use coaxial printing nozzles [28,29,31]

Bone Poor mechanical properties Combination with hydroxypatite [33]

Bone Poor mechanical properties Combination with polycaprolactone [34]

Bone Poor adhesion properties Addition of adhesion peptides (Arg-Gly-Asp) [39]

Cartilage Need of biomimetic ECM 2 Combination with polycaprolactone 3D constructs [42,47]

Cartilage Need of biomimetic ECM 2 Combination with nanofibrillated cellulose [44]

Cartilage Need of biomimetic ECM 2 Combination with acrylamide [45]

Cartilage Low printability of alginate sulfate Combination with nanocellulose [46]

Cartilage Low ECM 2 formation
Combination with polycaprolactone and growth

factors (TGFβ) [43]

1 As the widely used Ca2+; 2 ECM: extracellular matrix.

Back in 2009, in one of the earliest bioprinting applications, alginate was employed for bioprinting
endothelial cells in 3D [50]. In 2010, a direct 3D cell inkjet printer was developed, printing
multiple cells with alginate and fibrin hydrogels [51]. In these experiments, alginate showed better
mechanical properties but worse cell interaction properties (in terms of cell adhesion, proliferation and
differentiation) for tissue growth in comparison to fibrin hydrogel. One year later, sodium alginate
hydrogel was used for large tissue fabrication due its quick gelation properties by employing a
multinozzle bioprinting system [52]. Regarding other pioneering applications, alginate was employed
to constructing the first artificial 3D neural tissue [53]. Specifically, the authors utilized a mix of alginate,
carboxymethyl-chitosan, and agarose as a bioink which, once printed, is rapidly crosslinked to form
a porous 3D scaffold encapsulating stem cells for in situ expansion and differentiation. This group
printed human neural stem cells that were differentiated in situ to functional neurons, forming
synaptic contacts that established networks. In the first bioprinting of human-induced pluripotent
stem cells and human embryonic stem cells, alginate was also present [54]. The cell response to the
valve-based printing and post-printing differentiation into hepatocyte-like cells was investigated.
Another breakthrough of the use of alginate-based bioinks was recently published [55]. Complex
anatomical structures were made by embedding a printed hydrogel within another hydrogel support.
Using models from 3D optical, computed tomography, and magnetic resonance imaging data, femurs,
coronary arteries, human brains and trabeculated embryonic hearts (see Figure 3) were bioprinted.
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(C) a cross-section of the 3D model of the heart based on the confocal imaging data; (D) a 
cross-section of the 3D-printed heart in fluorescent alginate (green); (E) optical microscopy image of 
the bioprinted trabeculated embryonic heart. Figure modified from [55]. Scale bars, 1 mm (A and B) 
and 1 cm (D and E). 

With respect to basic research, in a work by Ning et al. [56], the flow behavior of alginate 
solutions containing living cells was studied. Rheological properties of alginate–Schwann cell, 
alginate–fibroblast cell, and alginate–skeletal muscle cell suspensions during shearing in the 
printing process were analyzed, confirming that the flow behavior effects on cells are critical for 
their viability and proliferation: in addition to temperature and the concentration of the biomaterial, 
the cell density affects the flow behavior of cell suspensions too. Three-dimensional bioprinting  
also offers the possibility of creating realistic tissue models for investigating in vitro 3D biology. 
Zhao et al. [57] 3D bioprinted a cervical tumor model, with HeLa cells and gelatin/alginate/fibrinogen 
hydrogel. Comparisons of 3D and 2D results revealed important differences in the biological 
response of the HeLa cells. By bioprinting alginate and Escherichica coli cells, Rodriguez-Revora et al. 
[49] fabricated a high-throughput drug-screening platform which valuated biochemical reactions in 
a picoliter-scale volume at a high speed rate and in a cheap way. 

One of the challenges of using alginate-based bioinks to bridge the bench-to-bedside translation 
gap consists of enhancing the biological functions of the bioprinted material. To face this problem, 
growth factors were incorporated into alginate-bioprinted constructs in an interesting work [58]. 
Sustained release of bone morphogenetic protein 2 (BMP-2) from the scaffold affected the 
osteogenicity of the printed tissues. BMP-2 loaded on gelatin microparticles exhibited better release 
properties in comparison with the direct inclusion of BMP-2 in alginate or bulk gelatin. Another 
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Figure 3. Method to bioprint a trabeculated embryonic heart using alginate-based bioinks. (A) Optical
microscopy image of an embryonic chick heart; (B) a confocal microscopy 3D image of an embryonic
chick heart stained for fibronectin (green), nuclei (blue), and F-actin (red); (C) a cross-section of the
3D model of the heart based on the confocal imaging data; (D) a cross-section of the 3D-printed heart
in fluorescent alginate (green); (E) optical microscopy image of the bioprinted trabeculated embryonic
heart. Figure modified from [55]. Scale bars, 1 mm (A and B) and 1 cm (D and E).

With respect to basic research, in a work by Ning et al. [56], the flow behavior of alginate
solutions containing living cells was studied. Rheological properties of alginate–Schwann cell,
alginate–fibroblast cell, and alginate–skeletal muscle cell suspensions during shearing in the printing
process were analyzed, confirming that the flow behavior effects on cells are critical for their viability
and proliferation: in addition to temperature and the concentration of the biomaterial, the cell density
affects the flow behavior of cell suspensions too. Three-dimensional bioprinting also offers the
possibility of creating realistic tissue models for investigating in vitro 3D biology. Zhao et al. [57]
3D bioprinted a cervical tumor model, with HeLa cells and gelatin/alginate/fibrinogen hydrogel.
Comparisons of 3D and 2D results revealed important differences in the biological response of the
HeLa cells. By bioprinting alginate and Escherichica coli cells, Rodriguez-Revora et al. [49] fabricated a
high-throughput drug-screening platform which valuated biochemical reactions in a picoliter-scale
volume at a high speed rate and in a cheap way.

One of the challenges of using alginate-based bioinks to bridge the bench-to-bedside translation
gap consists of enhancing the biological functions of the bioprinted material. To face this problem,
growth factors were incorporated into alginate-bioprinted constructs in an interesting work [58].
Sustained release of bone morphogenetic protein 2 (BMP-2) from the scaffold affected the osteogenicity
of the printed tissues. BMP-2 loaded on gelatin microparticles exhibited better release properties
in comparison with the direct inclusion of BMP-2 in alginate or bulk gelatin. Another issue of the
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native alginate is its limited degradation. In a work by Jia et al. [21], the use of oxidized alginates
with controlled degradation in 3D bioprinting was investigated. Oxidized alginate solutions with
varied biodegradability were printed with human adipose-derived stem cells with high definition.
These bioinks were capable of holding a homogeneous cell suspension and modulating proliferation
and spreading of the stem cells, but were very limited in terms of diffusion properties. A work by
Wu et al. [59] presented a useful method to solve the problem of the slow degradation of alginate
hydrogels by incubating the tissues with medium containing sodium citrate. The degradation time of
the alginate was tuned by the amount of sodium citrate added. To enhance the printability of alginate,
Chung et al. [60] combined gelatin and alginate, enhancing the 3D printability and print resolution of
the pre-crosslinked alginate alone, obtaining defined structures with consistent pore diameters which
highlighted a higher viscosity and storage modulus while maintaining similar mechanical properties
and cell growth.

3. Conclusions

Alginate is a low-cost biomaterial which in the form of hydrogel has demonstrated good
printability and excellent biocompatibility. It is widely employed in vascular, cartilage and bone
tissue printing. However, alginate shows minimal cellular adhesion and slow degradation properties,
which in some applications derives in poor cell proliferation and differentiation. Several growth factors
(e.g., TGFβ) have been combined to increase the cell proliferation. In order to enhance its cellular
adhesion, the addition of Arg-Gly-Asp adhesion peptides to alginate bioink exhibits great results.
Furthermore, the uses of oxidized alginate and/or sodium citrate seem to be promising strategies to
accelerate the slow degradation of the alginate in regenerative medicine applications. With regard
to the employment of alginate in cartilage printing, its combination with electro-spinning has been
used in successful works, as well as mixing the alginate with other biopolymers as polycaprolactone
or nanocellulose. With reference to the bioprinting of vascularized tissues, the employment of coaxial
(or triaxial) nozzle assemblies for printing alginate-based bioinks highlights excellent results. Regarding
the mechanical requirements needed for bone tissue engineering, notable improvements have been
made by combining alginate with other biomaterials such as gelatin, hydroxyapatite, polycaprolactone,
polyphosphate or biosilica. We hope this review will help other researchers improve alginate-based
bioinks by employing previous strategies summarized here, or to inspire new bioink formulations for
future 3D bioprinting studies.
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