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Abstract  25 

The environmental impacts of ammonia (NH3) in ambient air have become more evident in the recent decades, 26 

leading to intensifying research in this field. A number of novel analytical techniques and monitoring 27 

instruments have been developed, and the quality and availability of reference gas mixtures used for the 28 

calibration of measuring instruments has also increased significantly. However, recent inter-comparison 29 

measurements show significant discrepancies, indicating that the majority of the newly developed devices and 30 

reference materials require further thorough validation. There is a clear need for more intensive metrological 31 

research focusing on quality assurance, intercomparability and validations. MetNH3 (Metrology for ammonia in 32 

ambient air) is a three-year project within the framework of the European Metrology Research Programme 33 

(EMRP), which aims to bring metrological traceability to ambient ammonia measurements in the 0.5 – 34 

500 nmol/mol amount fraction range. This is addressed by working in three areas: 1) improving accuracy and 35 
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stability of static and dynamic reference gas mixtures, 2) developing an optical transfer standard and 3) 36 

establishing the link between high-accuracy metrological standards and field measurements. In this article we 37 

describe the concept, aims and first results of the project. 38 

1 Introduction 39 

 The average background concentration of ammonia in ambient air is in the range of 0.1-5 nmol/mol 40 

(0.1 – 5 ppb), and it increases up to the order of 100 nmol/mol in the direct vicinity of agricultural facilities or 41 

activities. Despite the low amount fractions, measuring ammonia in ambient air is a key issue in environmental 42 

science. Ammonia can have harmful effects on ecosystems and biodiversity  by affecting the acidity of natural 43 

waters and soils, providing excess nitrogen input to ecosystems[1], and on human health through influencing 44 

secondary aerosol formation [2][3]. Critical levels of ammonia have been defined for sensitive ecosystems [4]. 45 

These levels are established by experimental evidence as 1 µg/m3 (~1.4 nmol/mol, annual mean concentration) 46 

for ecosystems dominated by lichens and bryophytes and 3 µg/m3 (~4.2 nmol/mol) for other ecosystems.  47 

The first international regulation to control ammonia emissions was the "multi-pollutant" protocol to 48 

Abate Acidification, Eutrophication and Ground-level Ozone (called the Gothenburg protocol, agreed in 49 

November 1999 [5]) under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) signed by 50 

Central and Eastern European countries, the EU, the United States and Canada. Annex IX of the protocol 51 

defines the measures to control ammonia emissions from agricultural sources and reduce emissions under the 52 

emission ceilings determined for each country by 2010. A revision of the Gothenburg protocol was settled in 53 

2012 [6] to continue emission reductions until 2020. In the European Union the Gothenburg Protocol is 54 

implemented through the National Emissions Ceiling Directive (NEC, 2001/81/EC, [7]). In addition national and 55 

local ammonia levels are also relevant for EU Habitats Directive [8]. 56 

 The European Monitoring and Evaluation Programme (EMEP [9]), directed by the United Nations Economic 57 

Commission for Europe (UNECE) was founded to support governments and subsidiary bodies under the CLRTAP 58 

convention. A broad network of scientists and experts contribute to the collection, analysis and reporting of 59 

emission data. Further national monitoring networks with higher spatial resolution (e.g. Measuring Ammonia in 60 

Nature (MAN [10]) Network in the Netherlands, and the National Ammonia Monitoring Network (NAMN) in the 61 

UK) provide additional data to assess ambient ammonia concentrations and trends. Besides these long-term 62 

monitoring activities, shorter measurement campaigns with higher temporal resolution are organized as well to 63 

address specific questions [11][12][13]. Countries currently adopt a variety of approaches; there is no European 64 

standard for ammonia monitoring.  65 

 Despite the clear need set by regulations, the majority of analytical techniques, which underpin or validate 66 

ammonia emission estimates lack thorough uncertainty analyses and quality assurance. Measurements are 67 

challenging due to the low concentrations of ammonia in ambient air and the relatively high concentrations of 68 

potential interfering atmospheric components. Furthermore, the highly adsorptive properties of gas-phase 69 

ammonia raise difficulties in the construction of sampling inlets for analyzers, as well as for the preparation of 70 

reference gas mixtures. Inter-comparison measurements have shown significant discrepancies between 71 

different analytical methods [11], and the agreement even between reference materials provided by National 72 

Metrology Institutes (NMIs) is unsatisfactory [14].  73 



3 

 MetNH3 [15] (Metrology for ammonia in ambient air) is a three-year project that started in June 2014 74 

within the framework of the European Metrology Research Programme (EMRP). The project aims to improve 75 

comparability and reliability of ambient ammonia measurements via the development of metrological 76 

standards. These standards include both reference gas mixtures and standard analytical methods with the aim 77 

of providing traceable ammonia amount fractions in the environmentally relevant range of 0 – 500 nmol/mol. 78 

Traceability is a property of the measurement results (in this case the ammonia amount fractions), meaning 79 

that the results can be related to the primary metrological standards (in the end to the definition of the SI 80 

units) through an unbroken chain of calibrations. This chain of calibrations, linking the measurement results to 81 

the highest metrological standards, ensures their reliability. Furthermore, within the chain of calibrations, the 82 

measurement uncertainty introduced by each step is carefully determined, in compliance with the guidelines of 83 

the ISO-Guide 98-3 “Evaluation of Measurement Data – Guide to the Expression of Uncertainty in 84 

Measurement” (GUM) [16]. These well-defined uncertainties and the uniform uncertainty assessment ensure 85 

comparability of measurement results originating from different sources.  86 

 In this article we first give an overview on the topics studied in the MetNH3 project (Section 2), thereafter 87 

we show selected results in two fields: studying adsorption losses in static and dynamic systems (Section 3.1), 88 

and achieving traceability in the spectroscopic detection of ammonia (Section 3.2). 89 

 Parts of this work have been presented at the International Congress of Metrology (CIM 2015, held 90 

between 21st and 25th September 2015 in Paris, France) [17]. 91 

2 Topics studied in the MetNH3 project  92 

This section describes the main topics studied in the MetNH3 project. The first topic is the preparation of 93 

reference gas mixtures with the aim of achieving traceability and reducing uncertainties in both static reference 94 

gas mixtures prepared in cylinders (Section 2.1) and reference gases provided by dynamic generators (Section 95 

2.2). The second topic deals with optical measurement methods (Section 2.3) with the aim of developing an 96 

optical transfer standard, i.e., a spectrometer that is suitable for the calibration and validation of other 97 

instruments. A commercial extractive spectrometer and a self-developed sampling-free spectrometer are 98 

examined within the project from a metrological point of view and their applicability as optical transfer 99 

standards is evaluated. Selected reference gas mixture(s) and optical transfer standard(s) will be used for the 100 

third main objective, the dissemination of the results to field measurement techniques through inter-101 

comparison and validation experiments. Two test facilities are described in Section 2.4, which will serve as the 102 

infrastructure for these experiments. A further important point, the study of adsorption of ammonia on 103 

different material surfaces (Section 2.5) plays a role in all afore mentioned activities.  104 

The project partners are involved in the different topics as follows (see explanation of the abbreviations in 105 

the affiliations): VSL, NPL, METAS, BAM and UH are developing the reference gas mixtures and performing 106 

adsorption studies, PTB, DFM, MIKES-VTT and NERC are working on the standard optical methods for ammonia 107 

detection, the two test facilities are being developed at UBA and NPL and all partners are involved in the 108 

dissemination of the results to field measurements. 109 

2.1. Static reference gas mixtures in cylinders 110 
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Ammonia reference gas mixtures with amount fractions down to a few µmol/mol can be produced 111 

following the approach for gravimetric preparation of gas mixtures (as detailed in ISO 6142 [18]). Although this 112 

amount fraction range is at least two orders of magnitude higher than typical ambient values, these mixtures 113 

offer a simple and widely used tool for the calibration of analytical instrumentation when combined with an 114 

appropriate dilution system. Figure 1 shows an experimental set-up, which allows calibration over a range of 115 

ammonia amount fractions of typically one to two orders of magnitude, depending on the flow rates of the 116 

reference gas mixture and the diluting matrix gas.  117 

 118 

Figure 1: Typical set-up for the calibration of an analytical instrument using a gas mixture in a cylinder, 119 

and usual uncertainty components. 120 

CY: gas cylinder containing the reference gas mixture, PR: pressure regulator, GH: gas handling tubes, MG: 121 

ammonia-free matrix gas used to dilute the mixture, FC1 and FC2: flow control units, AI: analytical instrument 122 

to be calibrated. 
cyu : uncertainty in the ammonia amount fraction in the gas mixture, 

1fcu  and 
2fcu : 123 

uncertainty in the gas flow rates set by the flow control units, 
mgu : uncertainty added by the presence of 124 

ammonia impurities in the matrix gas; and uncertainties caused by adsorption–desorption processes cy

adsu : in 125 

the cylinder, pr

adsu : in the pressure regulator, 1fc

adsu  and 2fc

adsu : in the flow control units, gh

adsu : in the gas handling 126 

tubes and ai

adsu : in the analytical instrument. 127 

Typical uncertainties of ammonia amount fractions in commercial reference gas mixtures are 5-10 %, 128 

while certified reference gas mixtures provided by national metrology institutes (NMIs) often achieve an 129 

uncertainty (expanded uncertainty, k = 2, referring to 95 % confidence level) down to 1 %. The stability of the 130 

gas mixtures is usually guaranteed by the manufacturer for 12-24 months. These uncertainties are appropriate 131 

for certain applications; however, uncertainties added by the user while diluting the mixture are not negligible 132 

and must be accounted for. Uncertainties added by the accuracy of the flow control units (e.g. mass flow 133 

controllers or critical orifices) are typically in the range of 1 %, provided that the flow control units are regularly 134 

calibrated. Ammonia impurities in most matrix gases are in the sub-nmol/mol range. As an example the 135 

ammonia impurity in the matrix gas used in our experiments was found to be 0.05 ± 0.05 nmol/mol. This value 136 

is negligible, when preparing mixtures in the amount fraction range above 20 nmol/mol, but might be the 137 

dominant uncertainty component at lower amount fractions. For comparison, this matrix gas impurity has a 138 

relative contribution of 2 % to the final NH3 amount fraction uncertainty, when diluting a mixture of 139 

10 µmol/mol NH3 in N2 to 20 nmol/mol (assuming 1 % relative uncertainty of the NH3 amount fraction in the 140 
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cylinder, and 1 % relative uncertainty of the flow rates), and a relative contribution around 90 % when diluting 141 

the same mixture to 1 nmol/mol. Artefacts introduced by the adsorption-desorption processes on the surfaces 142 

of the pressure reducer, sampling lines, flow control units and the analytical instrument itself have to be 143 

considered and minimized as well. The magnitude of this effect is highly dependent on the experimental 144 

conditions; in the case of a properly designed gas handling system this uncertainty component is negligible, 145 

while even a short tubing or device constructed of an adsorbing material might lead to losses up to 30 %.  146 

The efforts of the gas metrology community in the field of gravimetric preparation and certification of gas 147 

mixtures are aptly summarised in the report of the international key comparison CCQM-K46 [14]. In this 148 

comparison exercise, mixtures with nominal amount fraction over the range of 30-50 μmol/mol were 149 

distributed to the participating NMIs, who in turn certified these mixtures using their own in-house reference 150 

standards and methods. Whilst a certain level of agreement between the different methods used to certify the 151 

mixtures could be observed, the overall discrepancies were also obvious. Despite of the fact that the stated 152 

uncertainties were typically below 2 %, differences up to 5 % have been found between the results obtained by 153 

different methods. This disagreement was attributed to a number of reasons, including the different cylinder 154 

passivation techniques used by the participating NMIs to produce their own reference mixtures, and the 155 

different analytical techniques used to perform the analysis. For instance, it was discussed that the dynamic 156 

preparation by permeation and subsequent dilution where a continuous gas flow is maintained over several 157 

hours compared against measurements on gas cylinders done over much shorter periods of time can lead to 158 

discrepancies due to adsorption effects. The lack of consensus amongst NMIs may result in poor instrument 159 

calibration and would affect the comparability of national measurement networks. The MetNH3 project aims 160 

to achieve uncertainties below 1% in reference gas mixtures prepared at the 10 µmol/mol and 100 µmol/mol 161 

level. Gas mixtures are prepared by different project partners, in cylinders from different manufacturers, with 162 

different surface passivation treatments. Besides decanting studies to evaluate adsorption losses, stability of 163 

the gas mixtures will be monitored during the lifetime of the project. The results obtained so far are presented 164 

in Section 3.1. A further key comparison (CCQM K-117) is also planned and will be organized by VSL and NIST in 165 

2016-2017, where individual project partners will participate.  166 

2.2. Dynamic reference gas generators 167 

An alternative to reference gas mixtures in cylinders is offered by dynamic reference gas generators, 168 

which provide the opportunity to prepare reference gas mixtures in the environmentally relevant amount 169 

fraction ranges (0.5-500 nmol/mol). State of the art commercially available mobile gas mixture generators use 170 

a method based on the specific temperature-dependent permeation of the reference substance through a 171 

membrane into a flow of purified matrix gas, e.g., nitrogen or air, as described in the ISO 6145-10 standard 172 

[19]. These devices consist of a temperature controllable permeation chamber, in which a reference substance, 173 

stored in a permeation device, is placed. The substance permeating through the membrane into the carrier gas 174 

(matrix gas) stream causes a continuous mass loss in the permeation device, which can be quantified by 175 

periodic weighting. By precise measurement of the temperature dependent mass loss over time as well as of 176 

the gas flow, the amount fraction of the analyte added to the carrier gas can be calculated. If necessary, the 177 
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obtained gas mixture is further diluted to the required amount fraction range by the application of mass flow 178 

controllers or critical orifices.  179 

Permeation is a widely used approach for the dynamic generation of gas mixtures of different analytes in 180 

the amount fraction range of nmol/mol to µmol/mol; devices from several manufacturers are commercially 181 

available [20][21][22][23] and used for the calibration of on-line analysers in laboratories and in the field. 182 

However, despite of their widespread use triggered by their flexibility, ease of operation and reliability, from 183 

the metrological point of view, commercially available devices show one significant deficiency: they are not 184 

purpose-built for the generation of reference gas mixtures traceable to SI-standards. They lack traceability 185 

foremost in temperature and flow measurements but also in the parameters controlling the permeation rate, 186 

i.e., time, mass and pressure which impedes the precise assessment of an uncertainty of the generated gas. We 187 

estimate the typical relative expanded uncertainty of NH3 amount fractions in gas mixtures provided by 188 

commercial permeation generators to be 10-20 %.   189 

MetNH3 aims to generate ammonia CRM according to ISO/IEC Guide 99:2007 [24] in ambient NH3 190 

amount fractions of 0.5 – 500 nmol/mol with a relative expanded uncertainty below 3 %. Two different mobile 191 

reference gas generators are developed with the purpose of becoming essential for the calibration of on-site 192 

analytical instrumentation of e.g. national monitoring networks. Due to strong demand and to promote 193 

technical diversity, two portable gas generators are developed within the project. The devices have a different 194 

design and comprise of different individual parts unless there is technical superiority of one supplier. Amount 195 

fractions as low as 0.5 nmol/mol can only be generated when the base mixture from the permeation chamber 196 

is further diluted by at least two additional dilution steps. For this purpose, a commercially available 197 

permeation oven has been combined with thermal mass flow controllers.  198 

 The NH3 amount fraction in the generated mixture (xNH3) can be calculated according the following 199 

equation: 200 
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where PR(T) ≡ m(T)/t is the permeation rate, i.e., the temperature-dependent mass loss (m(T)) of the 202 

permeation device per unit time (t), 
3

/ NHM MVK   is the ratio of the molar volume of gas (VM) and the 203 

molar mass of ammonia (
3NHM ), Q1 is the flow rate through the permeation chamber,  D1 and D2 are the 204 

dilution ratios in the two additional dilution steps after the permeation chamber (determined from the flow 205 

rates through the mass flow controllers used for the dilution) and xCG is the residual ammonia amount fraction 206 

in the carrier gas (matrix gas). In order to generate traceable ammonia amount fractions, all input parameters 207 

needed for the calculation of the ammonia amount fraction have to be traceable to NMI standards. This 208 

requires the accessibility of the temperature sensor in the permeation oven, mass flow and pressure 209 

controllers and the permeation device for calibration purposes. In order to achieve the ambitious aim of 210 

expanded uncertainty below 3 %, precision and stability of the individual components have to be assured. As 211 

an example, the individual expanded uncertainties of the two most important parameters, i.e., the permeation 212 

rate (PR(T)) and the dilution rates (D1 and D2) must not exceed 1.7 % and 0.6 %, respectively. The low 213 
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uncertainty in the permeation rate can be achieved by weighting the permeation device using a magnetic 214 

suspension balance where the temperature dependent mass loss per unit time can be monitored continuously 215 

and under highly stable conditions. Considerable uncertainty, particularly at lower amount fractions is added 216 

by residual NH3 in the carrier gas (approximately 0.05 ± 0.05 nmol/mol). 217 

 2.3. Spectroscopic detection of ammonia 218 

During the construction of a spectrometer the first crucial point is the spectral line selection. Ambient 219 

ammonia amount fraction is typically one to seven orders of magnitude lower than amount fractions of other 220 

atmospheric components (most importantly water vapour, carbon dioxide, ozone and methane), which results 221 

in severe spectral interference and cross sensitivities. Figure 2 gives an overview of the infrared spectrum of 222 

ammonia and common atmospheric components (data taken from the HITRAN 2012 database [25]).  223 

 224 

Figure 2: Simulated infrared spectrum of a) ammonia and common atmospheric interferers: b) water vapour, c) 225 

carbon dioxide, d) ozone and e) methane. The wavelength ranges commonly used for ammonia measurements 226 

are marked with grey shading. Normalized line strength refers to the line strengths multiplied by typical 227 

ambient concentrations (see legend). Data are taken from the HITRAN 2012 database [25]. 228 
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 Two wavelength ranges (indicated by grey shading in Figure 2) are frequently used for ambient ammonia 229 

analysis by spectroscopy, both having their advantages and disadvantages. The wavelength range around 1.51-230 

1.54 µm (6500-6600 cm-1) has been accessible over a decade using inexpensive, robust diode lasers produced 231 

for dense wavelength division multiplexing (DWDM) in the telecommunication industry. However, the rather 232 

small line strength of the ammonia lines in this range (< 2×10-21 cm/molecule) requires the use of extremely 233 

sensitive detection techniques. On the other hand, measurements using the strongest ammonia absorption 234 

lines in the mid-infrared (MIR) range around 9-11 µm (900-1100 cm-1) were, and to a certain extent still are, 235 

hindered by the limited availability of light sources, detectors and optical components for this wavelength 236 

range. Earlier, mainly line tuneable carbon dioxide lasers and lead salt diodes requiring cryogenic cooling were 237 

used in this wavelength range [26], while the rapid development of room temperature quantum cascade lasers 238 

makes measurements in this wavelength range much more feasible nowadays [27].  239 

 Besides spectroscopic aspects, another crucial part is the gas sampling system of the spectrometer. 240 

Extractive spectrometers are susceptible to bias and long response times caused by adsorption-desorption 241 

processes in the inlet line, and/or in the measurement cell itself. An open path or a sampling-free spectrometer 242 

does not suffer from such adsorption problems and has the potential to provide significantly shorter response 243 

times [27][28].  244 

 The MetNH3 project investigates two types of spectrometers, one operating in each of afore mentioned 245 

wavelength ranges. Commercial cavity ring-down spectrometers (Model G2103, Picarro Inc.) are being used by 246 

several project partners and are being characterized from a metrological point of view. These spectrometers 247 

use extractive sampling method, i.e., a gas sample is flown continuously through the measurement cell with 248 

~1 slm (standard litre per minute) flow rate. Spectroscopic detection is performed around 6548 cm-1using a 249 

diode laser light source. Besides, a sampling-free spectrometer is being developed and characterized in the 250 

project. This spectrometer is based on an open multi-pass cell, where ambient air flows freely between the two 251 

mirrors, and uses a quantum cascade laser light source operating around 1103.5 cm-1. 252 

 To overcome the problem of limited accuracy and availability of calibration standards (as described in 253 

Sections 2.1. and 2.2.), many spectrometers target absolute amount fraction measurements based on the Beer-254 

Lambert law [27][29][30][31], however, only a few of them are thoroughly characterized and validated from a 255 

metrological point of view [31]. Our recent studies show that absolute spectroscopic measurement techniques 256 

(direct tuneable diode laser absorption spectroscopy (dTDLAS) [30][31], quantum cascade laser absorption 257 

spectroscopy (QCLAS) or cavity ring-down spectroscopy (CRDS)) have the potential to achieve traceability in 258 

spectroscopic amount fraction measurements without the need for regular calibration with gas standards. (Of 259 

course, validation , e.g., against a well characterized, traceable reference gas mixture is still necessary [31].) 260 

Absolute determination of the ammonia amount fraction (
3NHx ) is based on the Beer-Lambert law according to 261 

the following equation: 262 
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 266 

for dTDLAS and QCLAS. Traceability of the input parameters pressure (p) and temperature (T) of the gas sample 267 

and optical path length of the cell (L) have already been achieved [30]. The Boltzmann-constant (kB) is known 268 

with very high accuracy. The isotopic ratio (represented by the correction factor riso) of gas samples originating 269 

from natural sources can be estimated with sufficient accuracy based on natural abundances [32]. Usually the 270 

line intensity of the probed transition (ST) and the integrated absorption coefficient (int) or integrated 271 

absorbance (Aint) are the most challenging parameters.  272 

The quality of available spectral line data in literature is often not satisfactory, and frequently the limiting 273 

factor in absolute spectroscopic amount fraction measurements. As an example, until 2012 the HITRAN 274 

database [25], the most frequently used spectroscopic database in atmospheric science, did not contain any 275 

data of ammonia for wavelengths below 2 µm, and even in the latest edition of the database, uncertainties of 276 

the ammonia absorption line intensities are typically as high as 5-20 %. More detailed studies of individual, 277 

application-specifically selected absorption lines (e.g. in [33]) provide only slightly lower uncertainties for a very 278 

limited number of absorption lines. There is a clear need for more accurate and traceable spectral line data. 279 

This problem will be addressed in the MetNH3 project. A recent project showed that traceable measurement of 280 

spectral line data of different analytes can be achieved, providing also considerably lower uncertainties than 281 

currently existing spectral databases [34]. Recently, a robust and flexible method has been developed to 282 

achieve traceable line intensities using tuneable diode laser absorption spectroscopy. The measurements are 283 

performed in pure gases to reduce uncertainty in the analyte amount fraction, and at low pressures (below 284 

10 hPa) to decrease pressure broadening and ensure good separation of the absorption lines. Distributed 285 

feedback diode laser(s) are used as light source to provide high spectral resolution, combined with a single-pass 286 

gas cell to decrease alignment errors and provide the opportunity to perform measurements within a large 287 

wavelength range using the same set-up (limited only by the transmissivity of the cell windows). Applicability of 288 

the method for the measurement of CO2 and H2O line intensities with expanded uncertainties in the 1-3 % 289 

range has already been demonstrated [35][36]. A similar method will be applied to measure line intensities of 290 

the probed ammonia transitions. Similarly, pressure broadening coefficients have been measured [37] using a 291 

method which can also be applied for ammonia. It is also aimed to achieve traceability of the integrated 292 

absorption coefficient (int) or integrated absorbance (Aint). To achieve traceability and quantify uncertainties, a 293 

spectral fitting algorithm is being developed within the project. Details of this algorithm are given in 294 

Section 3.2. 295 

Based on such absolute, traceable spectroscopic techniques an optical transfer standard can be developed. 296 

Instead of regular calibration using gas standards, the individual components of the spectrometer, i.e., which 297 

give the input parameters of equation (1) and (2), have to be calibrated regularly against traceable references. 298 

This is in most cases (e.g. the calibration of pressure and temperature sensors) easier, provides longer stability 299 

and can be performed with higher accuracy than calibration of a complete spectrometer using gas standards. 300 

We note that validation using traceable reference gas mixtures is still necessary to ensure that no unrevealed 301 

sources of bias are present, but is not required as often as calibration in the case of non-absolute measurement 302 
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methods. Furthermore, validation of an absolute analytical instrument with a traceable reference gas 303 

generator provides more confidence in the reliability of both devices.  304 

An optical transfer standard offers therefore a third alternative besides gas cylinders with appropriate 305 

dilution systems and dynamic reference gas generators to calibrate or validate field instrumentation. Similarly 306 

to mobile reference gas generators, an optical transfer standard serves as an ideal transfer standard for 307 

extensive measurement networks, where calibrations with the same standard are preferred. Additionally, if gas 308 

mixture generators are not available, an optical transfer standard can be used for calibration with any kind of 309 

gas mixture (even ambient air); the reference ammonia amount fraction is provided by the optical transfer 310 

standard.  311 

2.4. Test facilities for inter-comparison measurements 312 

 To offer a suitable infrastructure for the validation and comparison experiments, two test facilities are 313 

being developed in the MetNH3 project. These facilities enable the distribution of gas mixtures provided from 314 

gas cylinders or dynamic generators (or even ambient air) to several ammonia monitoring devices (passive or 315 

active samplers or analytical instruments) without changing its composition, as schematically shown in 316 

Figure 3. Such test facilities are not necessarily compicated and bulky installations; e.g., in case only a few 317 

devices are to be compared, the test facility can be a very simple gas manifold made of a few tubes and fittings.  318 

Nevertheless, in this section we describe two test facilities, which are being developed within the MetNH3 319 

project and are designed for larger scale inter-comparison measurements involving different types of gas 320 

standards and analytical instruments.  321 

 322 

Figure 3: Schematics of an experimental set-up for validation experiments 323 

 The first facility, the Controlled Atmosphere Test Facility (CATFAC) is an aerodynamic wind tunnel 324 

constructed of borosilicate glass, which is designed to incorporate individual adjustment of parameters such as 325 

ammonia concentration, relative humidity, air temperature and air speed. Test atmospheres are generated by 326 

dynamically blending stable ammonia reference gas mixtures from cylinders with purified air using calibrated 327 

mass flow controllers. The test gas is continuously re-circulated and replenished in the facility by a freshly 328 

generated mixture of the same composition. The total replenishment flow rate is up to 30 slm. Stabilization 329 

time of the ammonia amount fraction in the chamber depends strongly on the composition of the gas mixture, 330 

and is typically in the range of a few hours. The specified conditions can easily be maintained over time 331 

intervals of a few hours to several weeks. The CATFAC is primarily designed for carrying out exposure tests with 332 

smaller devices, e.g., different types of ammonia samplers, which are placed inside the facility. Additionally, 333 

larger devices, e.g., active denuders or extractive spectrometers, can be connected to the facility to sample the 334 
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gas circulated in the facility. The first test measurements using a CRDS spectrometer [38] and DELTA denuders 335 

[39] have already been performed and showed good results. The agreement between calculated and measured 336 

ammonia amount fractions was better than 3 % at the 40 nmol/mol level. A photograph of the CATFAC, 337 

without its insulation, is shown in Figure 4.  338 

  339 

 340 

 341 

Figure 4: Photograph of the Controlled Atmosphere Test Facility (CATFAC) (colour online) 342 

   343 

The second facility is a proficiency test facility, developed for the characterization of the performance of 344 

extractive analytical instruments. The facility has been used for comparison experiments for common air 345 

pollutants like NO, NO2, SO2, CO and O3 [40], and is currently being adapted for experiments with NH3 mixtures 346 

under dry and humid conditions. The facility consists of a glass line with multiple sampling ports for the 347 

individual instruments. The installation operates under ambient temperature and pressure. Complex gas 348 

mixtures can be added to the gas line from up to 14 pressurized gas cylinders and a dilution system using mass 349 

flow controllers. Time-programmed step changes in the concentration of the individual mixtures can be 350 

applied, controlled by an industrial computer. Gas mixtures from cylinders prepared within the MetNH3 351 

project, as well as dynamic generators will be fed into the facility. In addition, an ambient air line can be used 352 

to provide air from outside the building to the connected instruments. The proficiency test facility will be used 353 

to test newly developed instruments with respect to potential interference gases, and to select the most 354 

suitable transfer standard for ambient measurements.  355 

2.5. Adsorption-desorption processes of ammonia on material surfaces 356 
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Due to the highly adsorptive nature and reactivity of ammonia, adsorption-desorption processes on 357 

different material surfaces crucially influence both the preparation of reference materials and the design of 358 

analytical instruments. Adsorption induces a negative, while desorption a positive bias in the measured 359 

ammonia amount fraction. Adsorption and desorption are opposite and largely reversible processes [43]. 360 

Consequently, the results of studies investigating the adsorption on different surfaces can be taken as a good 361 

estimate for desorption as well. The extent of adsorption of ammonia on glass, metal and polymer surfaces is 362 

known to be significantly different [41][42][43], which makes the choice of the gas wetted materials a central 363 

question in designing gas handling systems. Metal surfaces adsorb a large amount of ammonia, which can be 364 

decreased by about 50 % by electro-polishing the surface. A more significant reduction of adsorption can be 365 

achieved by adding an inert coating (e.g. SilcoNert 2000, trademark of SilcoTek Corporation [44]) on stainless 366 

steel, and polymer surfaces adsorb even less ammonia than coated metal surfaces. An example for the extent 367 

of ammonia adsorption on different material surfaces is given in Table 1 and Ref.[41]. 368 

Table 1. Adsorption of ammonia on some surface materials. The measurement conditions were the following: 369 

ammonia amount fraction 425 nmol/mol, gas flow rate 1000 cm3/min, pressure 176 hPa and temperature 370 

295 K (part of the data taken from [41]). 371 

Surface material Adsorption of ammonia  
/1012 molecule·cm-2 

Standard deviation (of 3 measurements)  

/ 1012 molecule·cm-2 

Stainless steel  316L 138 21 

Electropolished stainless steel 316L 72 11 

Dursan (SilcoTek Corp.) 101 5 

SilcoNert 1000 (SilcoTek Corp.) 15 1 

SilcoNert 2000 (SilcoTek Corp.) 6 1 

Teflon-perfluoroalkoxy (Teflon-
PFA) 

4 n/a 

 372 

The preferred materials for the inlet lines of analyzers are polymers including Teflon (PTFE), Teflon-373 

perfluoroalkoxy (Teflon-PFA) or polyvinylidene fluoride (PVDF). Gas cells, valves and flow control units, where 374 

better mechanical stability is required, are often made of coated stainless steel or pyrex. Similarly, most 375 

cylinder manufacturers apply internal passivation treatments or coatings on aluminium cylinders to reduce 376 

adsorption losses. Studies into using an “active passivation method” by entraining functionalized 377 

perfluoroalkane vapour into the inlet sampling stream are also currently under way to reduce the adsorption 378 

effects in spectroscopic analyzers; these are, however, still in the research phase [45]. Sampling-free analytical 379 

instruments are most preferred to overcome artefacts caused by adsorption-desorption processes. 380 

Humidity of the gas sample has a strong effect on the adsorption processes; however, the nature of this 381 

dependence still leaves open questions. For instance, the effect of humidity on ammonia adsorption, driven by 382 

the competitive adsorption between ammonia and water, is unclear. Vaittinen et al. [41] observed that 383 
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increased water vapour concentration causes a remarkable decrease in adsorption losses of ammonia, while 384 

experiments performed by Ellis et al. [46] show the opposite. We note that this inconsistency can be explained 385 

by different definitions of “dry samples” in the two publications. It has been observed that ammonia 386 

adsorption in gas samples with water vapour amount fraction below 100 µmol/mol is up to a factor of 5 higher 387 

than in the case of slightly elevated water vapour amount fractions (up to a few 1000 µmol/mol). At humidity 388 

levels > 10000 µmol/mol, ammonia losses in the sampling system increase again. This non-monotonic 389 

dependence of ammonia adsorption on humidity results in fundamentally different observations in 390 

experiments performed in slightly different humidity ranges.  391 

Elevated temperatures are known to decrease adsorption, thus heating the sampling lines or the 392 

measurement cell is a common method to prevent condensation and further decrease adsorption losses. 393 

However, in the case of ambient air measurements, there are concerns that elevated temperature leads to a 394 

partitioning of aerosol, such as NH4NO3, into NH3 and HNO3 in the gas phase, leading to a positive bias in the 395 

measurements [11]. The use of filters and impactors to remove aerosols from the air stream prior to entering 396 

the heated sampling line is a widespread method to reduce this positive bias, as well as to prevent 397 

contamination of the measurement cell. In this case it is important that filters are changed regularly to prevent 398 

reaction of gas phase ammonia with the aerosol phase captured on the filter, or volatilization of the captured 399 

aerosols.  400 

3 Results 401 

 This section presents results obtained during the first year of the MetNH3 project in two fields. In Section 402 

3.1 we present results of adsorption studies in gas cylinders and in gas handling lines made of different 403 

materials, and with different coatings. Section 3.2 describes first results obtained in the spectroscopic 404 

detection of ammonia with the Picarro G2103 spectrometer.  405 

3.1. Study of adsorption losses in static and dynamic set-ups 406 

 Adsorption of ammonia in material surfaces is an important issue in several parts of the measurement 407 

system. In this chapter two examples are presented: 1) adsorption on the walls of gas cylinders after different 408 

cylinder passivation treatments, which determines uncertainty in the prepared static gas mixtures and 2) 409 

adsorption in gas handling tubes made of different materials, which influences accuracy of dynamic systems.  410 

 An initial screening of a range of commercially available passivated gas cylinders was carried out by 411 

gravimetrically preparing a number of mixtures of ammonia in nitrogen at 100 and 10 µmol/mol. Two mixtures 412 

were prepared per amount fraction per cylinder type, which were then analysed on a non-dispersive infrared 413 

(NDIR) spectrometer or on a photoacoustic spectrometer (PAS). These measurements allowed the 414 

determination of the ammonia response factor for each mixture based on the instrument response and on the 415 

gravimetric amount fraction. The ammonia response factor for a mixture prepared in a cylinder that suffers 416 

from adsorption effects is lower than that of a mixture prepared in a cylinder in which adsorption occurs to a 417 

smaller extent: these measurements therefore allowed filtering out unsuitable cylinders that showed evident 418 

ammonia adsorption. The two analytical techniques have comparable uncertainties and were only used for 419 
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relative measurements (comparison of response factors of cylinders), which ensures comparability of the 420 

results obtained by either method.   421 

 Three cylinder types showed promising results and were subjected to further tests. These included two 422 

types of passivated aluminium cylinders, which are frequently used for commercial ammonia mixtures (Spectra 423 

SealTM; treatment trademark of BOC [47] with 10 l internal volume and AculifeTM treatment trademark of Air 424 

Liquide [48] with 5 l internal volume, both filled up to 140 bar). Aculife is the family name of a series of 425 

proprietary cylinder treatments that is utilized to enhance the stability of reactive gas mixtures. We note that 426 

AirLiquide has developed different types of Aculife cylinder treatments that are adopted for different 427 

components and concentration ranges; in particular, the treatment used in this study was the one 428 

recommended for ammonia mixtures at the time of measurement, but  a more suitable one has since become 429 

available. The third cylinder type was a commercially available stainless steel cylinder with internal surfaces 430 

coated with SilcoNert2000 [44] with 3.785 l internal volume and filled up to 120 bar pressure.   431 

 These three cylinder types underwent a series of decanting tests in order to quantify the extent of 432 

ammonia surface adsorption. For each cylinder type, two mixtures were prepared at 100 µmol/mol and two at 433 

10 µmol/mol (except for the SilcoNert2000 cylinders, which were only tested at 10 µmol/mol); these were 434 

certified against a dynamic dilution of ammonia mixtures at higher amount fractions using NDIR or PAS prior to 435 

decanting. Each parent mixture was then decanted into an evacuated daughter cylinder of the same type; and 436 

following the decanting, all parent and daughter mixtures were certified against the dynamic system.  437 

 The results of the decant tests are shown in Tables 2 and 3. In Table 2, direct comparison of the certified 438 

ammonia amount fractions of the parent mixtures pre-decant and those of the corresponding daughter 439 

mixtures provides a measure of the amount of ammonia adsorbed on the cylinder walls. Losses of 440 

~0.5 µmol/mol on average are observed for Spectra Seal and Aculife cylinders, whereas the same tests 441 

performed on SilcoNert2000-treated cylinders showed indiscernible losses (< 0.1 µmol/mol). The attribution of 442 

the ammonia losses observed in Spectra Seal and Aculife cylinders to the transfer line used for the decant at 443 

10 µmol/mol can be ruled out, as the same line was used for all cylinder types. In the light of the analytical 444 

uncertainty of the measurements (approximately 1 % at the k = 2 level for both amount fractions), the 445 

observed losses are only significant at the 10 µmol/mol level for Spectra Seal and Aculife cylinders. Therefore, 446 

at 10 µmol/mol, adsorption of ammonia molecules on cylinder walls is minimised when the internal surfaces of 447 

stainless steel cylinders are passivated using SilcoNert2000. In Table 3, direct comparison of the certified 448 

amount fraction of each parent mixture pre- and post-decant allows the detection of any effects arising from a 449 

50 % pressure drop: these are often observed in cylinders where adsorption of reactive or polar species to the 450 

internal walls occurs, as molecules start to desorb from the walls as the pressure is lowered. The observed 451 

variations in the ammonia amount fraction were found to be smaller than the analytical uncertainty of the 452 

measurements in all cases.  453 

 Stainless steel cylinders with SilcoNert2000 internal coating showed the least adsorption for NH3. However, 454 

Spectra Seal and Aculife cylinders have a larger internal volume, can be filled to higher pressures and are 455 

cheaper to produce, therefore these would be better suited for field calibration work once they have been 456 

accurately certified against standards, e.g., in SilcoNert2000 coated cylinders. 457 
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Table 2: Difference in certified ammonia amount fraction between parent mixtures pre-decant and daughter 458 

mixtures  459 

NH3 amount fraction change (µmol/mol) 

 Spectra Seala Aculifeb 
SilcoNert2000

a 

100 µmol/mol 

mixtures 

−0.50 ± 1.0 

−0.54 ± 1.0 

−0.86 ± 1.0 

−0.28 ± 1.0 

- 

- 

10 µmol/mol 

mixtures 

−0.70 ± 0.10 

−0.14 ± 0.10 

−0.49 ± 0.10 

−0.67 ± 0.10 

−0.02 ± 0.10 

+0.07 ± 0.10 

aanalyzed by NDIR, banalyzed by PAS 460 

Table 3: Difference in certified ammonia amount fraction of the parent mixtures pre- and post-decant  461 

NH3 amount fraction change (µmol/mol) 

 Spectra Seala Aculifeb 
SilcoNert2000

a 

100 µmol/mol 

mixtures 

+0.09 ± 1.00 

+0.17 ± 1.00 

+0.25 ± 1.00 

+0.53 ± 1.00 

- 

- 

10 µmol/mol 

mixtures 

−0.04 ± 0.10 

−0.06 ± 0.10 

+0.06 ± 0.10 

−0.02 ± 0.10 

0.00 ± 0.10 

+0.06 ± 0.10 

aanalyzed by NDIR, banalyzed by PAS 462 

In dynamic measurements, four different types of tubing have been tested in our experiments:Teflon -463 

PFA, uncoated electro-polished stainless steel, and electro-polished stainless steel with SilcoNert2000 coating 464 

(SilcoTek Ltd. [44]) and Supelco coating (Sigma Aldrich). Some of these materials were also included in the 465 

study by Vaittinen et al. [41]. As described in the caption of Table 1, the experiments of Vaittinen et al. [41] 466 

were performed at 176 hPa pressure. Although the amount of adsorbed molecules is not expected to show 467 

significant pressure dependence in this pressure regime, we found it reasonable to repeat the measurements 468 

at atmospheric pressure, which better represents the conditions of sampling inlets of analytical 469 

instrumentation, as well as gas handling lines in dynamic generators. Besides, the typically high uncertainties 470 

(standard deviation in Table 1 in the range of 5 to 15 %) observed in adsorption measurements justify 471 

repetition of the experiments to gain more confidence in the results. 472 

The experiments followed the procedure published by Vaittinen et al. [41]. The measurement system 473 

consisted of a gas generator applying the permeation method described in Section 2.2, which was connected to 474 

a CRDS analyser (Picarro G 2103). This set-up was continuously purged with a mixture of 330 nmol/mol NH3 in 475 
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N2 5.0. Alternatively, the gas stream can be directed to a test tube before reaching the analyzer, via two 476 

SilcoNert2000 coated manually-operated 3-way valves. Prior to exposure to the NH3 mixture, the test tube was 477 

flushed for 60 minutes with ambient air to remove residual adsorbed NH3, which process is facilitated by the 478 

humidity. The adsorbed water is thereafter removed by flushing the test tube for 30 minutes with N2 5.0 with 479 

water vapour content below 500 nmol/mol. The test tube was then exposed to the NH3 mixture. Adsorption on 480 

the surface of the test tube causes a sudden drop of NH3 measured concentrations, as shown in Figure 5, 481 

whereafter NH3 concentrations slowly recover; the timing of the recovery strongly depending on the material 482 

surface. The amount of adsorbed molecules is determined from the area of the observed dip in the measured 483 

NH3 amount fractions. The numbers of adsorbed NH3 molecules per unit surface area have been determined 484 

until NH3 amount fractions have recovered to 99 % of the initial values. The mean values and the relative 485 

standard deviations over 3 measurements of the different materials are as follows: PFA: 486 

(9.5 ± 5.4)·1012 molecules/cm2, SilcoNert2000: (14.2 ± 2.3)·1012 molecules/cm2, Supelco: 487 

(23.9 ± 7.1)·1012 molecules/cm2, Stainless Steel electro-polished: (152.8 ± 6.5)·1012 molecules/cm2. The 488 

experiments have been carried out at a flow rate of 1500 cm3/min, ambient pressure and 293 K temperature. 489 

Adsorption in pristine test tubes not previously exposed to ammonia might be higher than the numbers 490 

presented here. However, our repeated measurements show that after the first exposure the amount of 491 

adsorbed molecules is reproducible within the experimental uncertainty during each subsequent exposure.  492 

The measured numbers of adsorbed molecules per unit surface area were in the same order of 493 

magnitude as the results presented in Table 1 in Section 2.5 and confirmed the same relations between the 494 

three materials, which were included in both studies (Teflon-PFA, SilcoNert2000, stainless steel). We note that 495 

the differences of the results of this study from previous results shown in Table 1 are not significant and are 496 

most probably caused by different amount of residual humidity in the used gas mixtures. Teflon-PFA and 497 

SilcoNert 2000 coated stainless steel proved to be the best suited materials to reduce adsorption. Despite of 498 

the slightly higher adsorption, SilcoNert 2000 coated stainless steel tubing was found to be a better choice than 499 

Teflon-PFA polymer tubing, due to its higher mechanical stability and lower porosity and diffusion.  500 

 501 

Figure 5: Ammonia gas phase concentration as a function of time in an experiment where clean test tubes of 502 

different materials are abruptly exposed to 330 nmol/mol NH3 in N2. The sudden drop in the signal is due to the 503 
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adsorption and gas exchange occurring in the tube. The results displayed are the averages over 3 identical 504 

experiments.   505 

3.2. Towards traceability in the spectroscopic detection of ambient ammonia 506 

 Traceability of ammonia amount fractions measured by a commercial Picarro G2103 spectrometer is 507 

addressed by the development of a novel data evaluation algorithm, which takes into account all revealed 508 

sources of bias. Special emphasis is put on determining uncertainties in the individual input parameters, 509 

aiming to give a reliable uncertainty figure for the final ammonia amount fraction as well.  510 

 Figure 6 shows a typical spectrum measured by the Picarro spectrometer in a gas mixture of 100 nmol/mol 511 

NH3 and 2 % H2O in nitrogen. The black symbols indicate the 36 wavenumbers within a spectral window of 512 

0.7 cm-1, where ring-down time measurements are carried out by the spectrometer. The number of 513 

measurement points is limited by the free spectral range of the cavity and cannot be increased without 514 

significant technical efforts to vary the cavity length during the measurement.  515 

 The internal evaluation algorithm of the spectrometer uses a complex spectral fitting algorithm to 516 

determine the peak height of the ammonia absorption lines. Ammonia amount fraction is calculated from the 517 

obtained peak heights. Similarly, heights of the water vapour peaks are determined and used for the 518 

calculation of water vapour amount fractions, which is necessary for the correction of cross-sensitivities 519 

originating from the overlapping absorption lines. We note that details of the fitting and data evaluation 520 

algorithm are (as in case of most commercial instruments) not fully revealed to the spectrometer user. To 521 

verify correctness of this data evaluation algorithm, an own algorithm is being developed within the MetNH3 522 

project to process the raw spectra. This involves a multi-line fitting algorithm based on our previous works 523 

[49][50], where ammonia amount fraction is calculated from the integrated absorption coefficient (int) of 524 

the ammonia lines using the Beer-Lambert law (equation (2)). The fitting algorithm takes into account six NH3 525 

lines, eight H2O lines and two CO2 lines, which have influence on the spectrum measured in this spectral 526 

window. Other common atmospheric components, e.g., CH4 or O3 have no measurable absorption lines in this 527 

wavelength range and are therefore not included in the fitting algorithm. Even the spectral influence of the 528 

CO2 lines has been found to be minor (less than 5∙10-6 relative change in the measured NH3 amount fraction 529 

per mol/mol change in the absolute CO2 amount fraction). Figure 6a and b show the fitted lines and 530 

residuals in a gas mixture containing 100 nmol/mol NH3 and 2 % H2O. 531 

 The uncertainty in the integrated absorption coefficient (int) has been found to be in the 0.5 – 9 % range, 532 

depending on the NH3 and H2O amount fractions. This uncertainty is dominated by three main effects: 1) the 533 

uncertainty in the measured ring-down times, 2) the limited number of measurement wavenumbers across 534 

the absorption lines and 3) the complexity of the measured absorption spectra. Besides, uncertainty of the 535 

line intensity (ST) is significant. Currently we use literature values, which have an absolute accuracy of 10 %. 536 

However, line intensity measurements, which will reduce the expanded uncertainty of S0 below 3 % (k = 2) 537 

are in progress, and first results are presented in [51]. The uncertainty contributions of the pressure, 538 

temperature and isotopic composition of the gas sample are negligible, provided that the sensors are 539 

regularly calibrated against a traceable reference and samples with natural isotopic composition are 540 

measured.  541 
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Figure 6: Measured raw data points with the fitted spectrum (a) and residuals (b) in 100 nmol/mol NH3 and 2 % 545 

H2O in N2. The measurements were performed using a Picarro G2103 spectrometer. (colour online) 546 

Two phenomena have been observed so far, where a newly developed data evaluation algorithm might 547 

excel over the data evaluation algorithm provided by the spectrometer manufacturer. As shown in Figure 6, the 548 

probed NH3 absorption lines strongly overlap with H2O absorption lines. Spectral interference is expected due 549 

to two reasons: a) direct spectral overlap of absorption lines and b) change in the width of the NH3 absorption 550 

lines due to varying H2O concentration in the matrix gas [52]. The cross-sensitivity is supposed to be corrected 551 

by the data evaluation algorithm of the spectrometer; however, we observed up to a few percent differences 552 

between the readings in dry and humid gas samples. Figure 7a shows two calibration lines obtained for the 553 

CRDS instrument: one in dry gas samples and one in humidified samples with relative humidity of 70 % at 20 °C 554 

(corresponding to ~1.65 % absolute H2O amount fraction, the samples were prepared in the CATFAC facility; 555 

see Section 2.4 for more details). The slope of the two calibration lines differ by ~4 %, which indicates cross-556 

sensitivity to H2O. The data evaluation algorithm is currently being further developed to account for this cross-557 

sensitivity [53]. 558 
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It has also been observed that the measured ammonia amount fractions are influenced by the 559 

composition of the matrix gas. Figure 7b illustrates this effect through measurements in air and nitrogen matrix 560 

gases in the 50-200 nmol/mol NH3 amount fraction range. Instrument response refers to the ratio of the 561 

measured and reference ammonia amount fractions, and has been normalized to the average of the 562 

measurements in air, to show relative changes caused by changing the matrix gas. Error bars in the Figure 563 

represent estimated expanded uncertainty of the measurements, dominated by uncertainty of the ammonia 564 

amount fraction in the reference gas (prepared by dynamic dilution from a commercial gas mixture of 565 

10 µmol/mol NH3 in N2). As it can be seen in Figure 7b, the data evaluation algorithm provided by the 566 

manufacturer results in ~10 % lower readings in nitrogen matrix gas, compared to air. The data evaluation 567 

algorithm developed within the MetNH3 project gives normalized instrument response close to one in both air 568 

and nitrogen matrix gases. The reason for this difference is that the manufacturer algorithm uses the height of 569 

the ammonia absorption peaks for amount fraction calculation, which, due to the matrix gas dependent 570 

pressure broadening coefficients of the absorption lines, gives accurate results only in a specific matrix gas, for 571 

which the algorithm was developed. The evaluation algorithm developed in MetNH3 uses the integrated 572 

absorbance (area under the measured absorption lines), which is, according to equation (2), independent of 573 

the matrix gas. We note that the manufacturer recommends using the spectrometer in air matrix gas, where it 574 

indeed provides correct readings. However, we would like to emphasise that it is a notable restriction during 575 

calibration or validation of the spectrometer, since reference gas mixtures are often prepared in nitrogen 576 

matrix gas. 577 
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Figure 7: a) Calibration curves of a Picarro G2103 instrument using dry (closed squares) and humidified (open 579 

circles) test gases of ammonia in air, and b) measurement results in air and nitrogen matrix gases, obtained by 580 

the manufacturer’s data evaluation algorithm (closed squares) and that developed in MetNH3 (open triangles), 581 

where instrument response is normalized to the average of the ratio of the measured and reference ammonia 582 

amount fractions in air and error bars refer to estimated expanded uncertainty.  583 

 Besides the spectroscopic aspects mentioned above, a possible bias and/or higher uncertainty introduced 584 

by sampling artefacts have to be investigated and quantified. In particular, response times of the analyzers are 585 

affected by adsorption-desorption processes, which have to be taken into account during measurements in 586 

rapidly changing gas mixtures. A significant decrease in the adsorption losses can be achieved by proper 587 
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selection of the materials of the gas handling system, heating of the gas sampling lines and applying a higher 588 

flow rate. In our experiments Teflon inlet lines and particle filters are used with a flow rate of at least 1 slm. 589 

Response times of the CRDS spectrometer under such conditions were found to be in the range of minutes (10-590 

90 % response time below 1.5 minutes, 1-99 % response time below 30 minutes). 591 

4 Conclusions 592 

 Previous studies revealed significant discrepancies between reference gas mixtures of NH3 in the µmol/mol 593 

amount fraction range, as well as between amount fractions measured in the nmol/mol range by different 594 

analytical techniques. The major reasons for this are the low ammonia amount fractions in ambient air, as well 595 

as the highly adsorptive and reactive nature of the ammonia molecule, which makes both the preparation of 596 

reference materials and accurate analytical measurements challenging. The MetNH3 project aims to improve 597 

the situation through developments in three major fields: 1) development of certified reference materials in 598 

cylinders and traceable dynamic gas mixture generators, 2) development and characterization of sampling-free 599 

and extractive spectroscopic instruments aiming to construct an optical transfer standard and 3) providing 600 

infrastructure for laboratory and field inter-comparison measurements to establish the link between high-601 

accuracy metrological standards and field measurement methods. First results of the project have been 602 

described in this article. The first significant results have been achieved in two major fields: the study of 603 

adsorption of ammonia on different material surfaces, and the spectroscopic detection of ammonia by cavity 604 

ring-down spectroscopy.  605 

 Decantation studies carried out in cylinders showed that ammonia adsorption on the walls of stainless 606 

steel cylinders coated with SilcoNert 2000 is insignificant, even lower than the amount of adsorption observed 607 

in aluminium cylinders with Spectra SealTM and AculifeTM surface passivation treatments, which are usually 608 

applied for the preparation of commercial ammonia reference gas mixtures. Adsorption studies in dynamic 609 

systems showed similar results: SilcoNert 2000 coated stainless steel tubes showed (similarly to Teflon-PFA 610 

tubing) up to 10 times lower adsorption than stainless steel tubing with other surface treatments (Supelco and 611 

electro-polishing).  612 

 To improve accuracy and reliability of the spectroscopic detection of ammonia with a Picarro G2103 613 

spectrometer, a novel data evaluation algorithm is being developed within the project. This algorithm is based 614 

on the determination of the integrated absorption coefficient by spectral fitting and calculation of the 615 

ammonia amount fraction according to the Beer-Lambert law. Two phenomena have been observed so far, 616 

where the novel algorithm might excel over the more simple evaluation algorithm provided by the 617 

spectrometer manufacturer. We have shown that dependence of the measured ammonia amount fraction on 618 

the matrix gas (which, e.g., leads to 10 % bias when using nitrogen instead of air as matrix gas) can be 619 

eliminated using the novel algorithm. Cross-sensitivity to water vapour has also been observed, which leads to 620 

a few % lower readings in gas samples with ambient humidity levels. Further development of the data 621 

evaluation algorithm to account for this cross-sensitivity is ongoing.  622 

 Research in further fields investigated by the MetNH3 project is progressing as well; however, first tangible 623 

results are expected later during the project. A sampling-free spectrometer based on an open multi-pass cell 624 

and a quantum cascade laser has been constructed and its metrological characterization is ongoing. It is 625 
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expected to be the first sampling-free spectrometer providing traceable ammonia amount fraction results 626 

without the need for calibration using gas standards. Two dynamic reference gas generators are being 627 

developed, which will be able to provide traceable reference gas mixtures with 0.5 – 500 nmol/mol ammonia 628 

amount fractions with lower than 3 % uncertainty (typical uncertainties in the NH3 amount fractions provided 629 

by commercial generators are >10 %). Two test facilities, an aerodynamic wind tunnel and a proficiency test 630 

facility are being characterized. These facilities will provide the infrastructure for the inter-comparison of 631 

ammonia analyzers and reference gases developed within the project, as well as for the testing and validation 632 

of further devices and samplers.    633 
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