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Abstract1

An enhanced model of a bowed string is developed,2

incorporating several new features: realistic damping,3

detailed coupling of body modes to both polarisations4

of string motion, coupling to transverse and longitu-5

dinal bow-hair motion, and coupling to vibration of6

the bow stick. The influence of these factors is then7

explored via simulations of the Schelleng diagram,8

to reveal trends of behaviour. The biggest influence9

on behaviour is found to come from the choice of10

model to describe the friction force at the bow, but11

the other factors all produce effects that may be of12

musical significance under certain circumstances.13

14

PACS numbers: 43.40.Cw, 43.75.De15

1 Introduction and historical16

background17

In an earlier paper [1], a review was presented of18

the physical ingredients necessary to give an accurate19

travelling-wave model of the motion of a stretched20

string in the linear range, for example as required to21

synthesise the motion of a plucked string. That model22

is now further developed to incorporate additional in-23

gredients relevant to the same string when excited24

by bowing, for example in a violin. A full model of a25

bowed string requires further aspects of linear-systems26

behaviour to be incorporated (such as the dynamics of27

bow vibration), and also requires an adequate model28

of the process of dynamic friction at the bow-string29

contact, a strongly non-linear phenomenon (see for30

example [2]). The full landscape of extra features is31

too complicated to cover within the length constraints32

of a single paper, and the discussion here is focussed33

primarily on the additional linear-system features. Is-34
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sues concerning the friction model are mainly deferred 35

to future work (currently in progress), but two al- 36

ternative models for friction from the existing litera- 37

ture will be included among the cases presented here. 38

Some sample results of simulations will be shown, to 39

begin the process of assessing the relative importance 40

of the many ingredients of the model. 41

Helmholtz [3] was the first to show that the usual 42

vibration of a bowed string is formed by a V-shaped 43

corner (or multiple corners) travelling back and forth 44

between the bridge and the finger. At each instant, 45

the sounding length of the string is divided by the cor- 46

ner(s) into two or more sections of straight lines. The 47

corners travel along the string at speed c0 =
√
T0/ms, 48

where T0 is the tension and ms is the mass per unit 49

length of the string. This leads to an expectation that 50

the period of such bowed-string motion will usually be 51

the same as that of the same string when plucked. 52

Helmholtz described the simplest case of bowed 53

string motion, with only one travelling corner. Every 54

time the corner passes the bow it triggers a transi- 55

tion between stick and slip: during the time that the 56

corner is on the finger-side of the contact point, the 57

bow and the element of the string beneath it are stick- 58

ing while during the shorter journey of the corner to 59

the bridge and back, the string is slipping across the 60

bow hairs. This vibration regime, called Helmholtz 61

motion, creates the normal “speaking” sound of the 62

violin, and it is the goal of the vast majority of bow 63

strokes. 64

The first systematic analysis of bowed string dy- 65

namics was made by Raman [4]. He assumed a per- 66

fectly flexible string terminated at both ends by real 67

reflection coefficients with magnitude less than unity 68

(physically speaking, dashpots). He also assumed 69

a velocity-dependent friction force due to the bow- 70

string interaction applied at a single point dividing 71

the string in a rational fraction. Working in the pre- 72

computer age he needed many simplifying assump- 73

tions, but he was remarkably successful in predicting 74
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and classifying the possible regimes of vibration for a75

bowed string. Raman was also the first to point out76

the existence of a minimum bow force [5] as well as77

the geometrical incompatibility of the ideal Helmholtz78

motion with uniform velocity across a finite-width79

bow during episodes of sticking [4], both of which were80

confirmed later and are still topics of active research81

[6].82

Using Raman’s simplified dynamical model, Fried-83

lander [7] and Keller [8] published two independent84

but similar studies. Their results indicated that if85

dissipation is not taken into account, all periodic mo-86

tions are unstable, including the Helmholtz motion.87

As explained later, [9, 10, 11] any small perturbation88

to the Helmholtz motion produces unstable subhar-89

monic modulation of the Helmholtz motion. In re-90

ality, because of the energy losses in the system this91

instability is usually suppressed, but under certain cir-92

cumstances these subharmonics can be heard, or seen93

in measurements of bowed-string motion [9].94

The next major development in modelling bowed95

string dynamics was introduced by Cremer and96

Lazarus in 1968. Acknowledging the fact that sharp97

corners are unlikely to occur on any real string due to98

dissipation and dispersion, they proposed a modifica-99

tion of the Helmholtz motion by “rounding” the trav-100

elling corner [12]. Cremer then developed a model of101

periodic Helmholtz-like motion, which revealed that102

when the normal force exerted by the bow on the103

string is high the corner becomes quite sharp, but104

as bow force is reduced, the corner becomes progres-105

sively more rounded [13, 14, 15]. Ideal Helmholtz mo-106

tion is completely independent of the player’s actions,107

except that its amplitude is determined by the bow108

speed and position. Thus, this mechanism gave a first109

indication of how the player can exercise some control110

over the timbre of a steady bowed note.111

In 1979, McIntyre and Woodhouse presented a com-112

putational model of the bowed string [16] which built113

on Cremer’s insight and was a precursor to the wider114

family of “digital waveguide models” later developed115

by Smith [17]. This model extended Cremer’s corner-116

rounding concept to include transient motion of the117

string, by representing the motion of a string as the118

superposition of left- and right-going travelling com-119

ponents. The string motion could then be simulated120

step-by-step in time, using the past history plus a121

model of the frictional interaction between bow and122

string.123

1. The incoming velocity waves arriving at the ex-124

citation point from the finger and bridge sides125

are calculated by convolving the history of the126

respective outgoing waves with appropriate im-127

pulse responses, known as “reflection functions”128

(see [1] for details). These incoming waves add129

together to form the unperturbed velocity at the130

excitation point (called vh, because it depends131

only on the past history of the string motion).132

2. The instantaneous response to the friction force
acting at the excitation point is added to vh to
calculate the actual velocity at that point, v:

v = vh +
F

2Z0
(1)

where F is the friction force exerted by the bow 133

on the string and Z0 =
√
T0ms is the string’s 134

characteristic impedance. 135

3. The early work used the same frictional model 136

as Friedlander and Keller [7, 8], in which friction 137

force is assumed to depend only on the normal 138

force and the instantaneous relative velocity be- 139

tween bow and string. The friction force F and 140

the velocity v are thus found by simultaneously 141

solving Eq. (1) with the friction curve F (v) [18]. 142

4. The incoming waves then generate new outgoing 143

waves, each wave being modified by the amount 144

F
2Z0

while passing the bow. 145

This model was successful in describing, at least 146

qualitatively, a number of aspects of the behaviour of 147

a bowed string [19]. However, the model used many 148

approximations: in particular, later results have cast 149

considerable doubt on the “friction curve” model of 150

dynamic friction. This statement is not only true in 151

the context of violin bowing: in many other areas fea- 152

turing vibration driven by friction, such as earthquake 153

dynamics, researchers have reported that a better fric- 154

tional constitutive model is needed, and a family of 155

“rate and state” models have been developed based on 156

a variety of empirical measurements (see for example 157

[2]). In the specific context of friction mediated by 158

violin rosin, Smith and Woodhouse [20], [21] argued 159

that the temperature of the rosin plays a central role 160

in the friction force exerted by the bow on the string: 161

rosin is a glassy material with a glass transition tem- 162

perature only a little above room temperature, and 163

partial melting of rosin is possible under normal play- 164

ing conditions. 165

Preliminary efforts have been made to develop a 166

temperature-based friction model and apply it to sim- 167

ulate the bowed string [22]. The thermal friction 168

model proved to be more “benign” in that the de- 169

sired Helmholtz motion was established faster and 170

more reliably than with the old friction-curve model, 171

at least with the particular set of parameters used in 172

the study. Galluzzo compared predictions from both 173

the friction-curve model and the thermal model with 174

results obtained experimentally using a bowing ma- 175

chine [23]. He concluded that neither model gave cor- 176

rect predictions of all aspects of string motion, but 177

that both captured some elements of the observed be- 178

haviour. 179

For the purpose of the present study the old 180

friction-curve model will be taken as the base case, 181

and the influence of a range of model variations will 182



Mansour et al.: Enhanced modelling of musical strings. Part 2 3

be explored, including a case using the thermal fric-183

tion model. This may seem a rather backward-looking184

choice, but there is an important reason relating185

to comparisons with theoretical work: although the186

present paper is concerned only with simulations, par-187

allel work [24] has examined a new formulation of188

minimum bow force prediction. To date, all such189

predictions from Raman and Schelleng onwards have190

only been possible in the context of the friction-curve191

model. To allow direct comparisons with the work192

reported here, it is useful to show a range of re-193

sults based around the friction-curve model. In any194

case, the main intention here is to reveal trends of195

behaviour: quantitative comparisons with measure-196

ments are kept for future work (currently in progress).197

As has been demonstrated previously by Guettler [25],198

one would expect the range of models studied here to199

reveal the main trends. However, it is clear that fur-200

ther research on friction models will be necessary in201

the future.202

2 Extending the model203

2.1 Scope and limitations204

Expert violinists are concerned with rather subtle de-205

tails of the transient response of their bowed strings.206

They may ask, for example, why one brand of string207

is “easier to play” than another fitted to the same vi-208

olin, or how they should set about performing a par-209

ticular bowing gesture in order to achieve the best210

and most reliable sound. If the motion of a bowed211

string is to be understood in sufficient detail to satisfy212

the demands of such experts, an accurate simulation213

model is needed. There are a number of physical de-214

tails that have not been included in previous models,215

which might prove to be important.216

The earlier paper [1] on plucked strings introduced217

several new factors, including: calibrated allowance218

for frequency-dependent string damping; influence of219

both polarisations of string motion; and calibrated220

coupling to body modes (for a particular cello). These221

factors are all incorporated in the bowed-string sim-222

ulations in this study. Some extra features necessary223

for a bowed-string model will now be introduced, and224

implemented in the simulation model. In Sec. 3 sam-225

ple simulation results will be shown, to explore the226

influence of the newly-added factors.227

The major limitations of the current study are as228

follows: it is assumed that the bow remains in con-229

tact with the string (i.e. it never bounces); that it230

is only in contact with one string at a time (exclud-231

ing double or triple stops); that the bow is in con-232

tact with the string at a single point (ignoring the fi-233

nite width of the bow), and that the contact point of234

the string on the bow is not dynamically updated (so235

that the string sees a non-changing bow impedance in236

both the transverse and longitudinal directions of the237

bow). Finally, as has already been mentioned, there 238

is considerable uncertainty about the correct model 239

for friction: the friction-curve model will be used here 240

for most cases. The omission of finite-width bowing 241

may cause some surprise, but this is deliberate. The 242

main qualitative consequences of finite-width bowing 243

have been explored in earlier work (see for example 244

[9, 26, 27, 28]), and the next challenge in that area 245

would be to seek quantitative accuracy compared to 246

experiments. However, in the view of the authors 247

there is little point in attempting that yet, until a 248

better friction model has been established, and the 249

best route for probing and improving friction models 250

is through the simpler case with a single-point “bow”. 251

Having established a model, with these restrictions, 252

a further limitation is that attention is mainly di- 253

rected here at quasi-steady motion of the bowed string 254

and the implications for the Schelleng diagram: the 255

model incorporates transient response, but attention 256

is not directed explicitly at transient bowing gestures. 257

It is freely accepted that all these restrictions limit the 258

applicability of the models and results presented here, 259

and they all deserve more attention: the decision on 260

what to include in this particular paper is driven en- 261

tirely by length constraints, and the desire to do a 262

thorough job on at least some aspects of the prob- 263

lem. Interestingly, in the parallel world of simulation 264

for the purposes of musical synthesis, efforts are al- 265

ready being made to relax many of these restrictions: 266

for example, recent work by Desvages and Bilbao [29] 267

discusses a model that allows bouncing-bow gestures. 268

2.2 Torsional motion 269

The friction force from the bow is applied tangentially 270

on the surface of the string, so it excites torsional vi- 271

bration of the string. Torsional waves are not effec- 272

tively coupled to the body of the instrument, and so 273

they are not likely to be responsible for a significant 274

portion of the radiated sound (except for the rare case 275

of “whistling” in the violin E5 string [30]). Torsional 276

waves are, however, coupled to the transverse waves 277

at the bowing point and can affect the sound and 278

the playability of the instrument by that route. Tor- 279

sional waves on a normal over-wound string are much 280

more heavily damped than the transverse waves, and 281

so their coupling to the transverse waves introduces 282

significant extra damping: they have been suggested 283

as a strong candidate to suppress the Friedlander in- 284

stability discussed above [9, 10, 11]. 285

Torsional waves at small amplitude satisfy the one- 286

dimensional wave equation with a torsional wave 287

speed of cR=
√
KR/IR and a characteristic torsional 288

impedance of Z0R = KRcR/r
2, where KR is the tor- 289

sional stiffness, r is the string radius, and IR is the po- 290

lar moment of inertia per unit length of the string [31]. 291

Most musical strings are over-wound, with a rather 292

complicated distribution of stiffness and mass (see [32] 293
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or [33] for example). The simple model suggests that294

torsional waves should be non-dispersive, and with a295

propagation speed that is not directly influenced by296

the string’s tension. However, Loach and Woodhouse297

found empirically that the natural frequencies of tor-298

sional waves reduce to some extent when the tension is299

increased, probably because the windings of the string300

open up slightly and reduce the torsional stiffness [32].301

Woodhouse and Loach also measured the Q factor for302

the first few torsional modes of selected cello strings.303

The Q factors remained almost constant over different304

modes and were averaged to 45, 20, and 34 for nylon-,305

gut-, and steel-cored strings respectively.306

Once torsion is taken into account, the effective307

characteristic impedance of the string seen by the bow308

should be modified from Z0 to Ztot defined as309

1

Ztot
=

1

Z0
+

1

Z0R
. (2)

Most of the transverse-to-torsional conversion hap-310

pens in the sticking phase, when rolling of the string311

on the bow can occur: it creates a mechanism for the312

otherwise-trapped waves on either side of the bow to313

pass to the other side. In this regard, the inclusion of314

the torsional motion is expected to affect details such315

as the “Schelleng ripples” [14, 34]. Using the same316

argument, torsional motion may be more influential317

during transients and when a high bow force is em-318

ployed [35]. Torsional motion is not normally excited319

in the case of a plucked or struck string unless the320

string has a discontinuity (such as a dent or a bend),321

or it is allowed to roll on the termination points, which322

breaks its rotational symmetry.323

To implement torsional waves into the model they324

can be treated in the same way as transverse vibra-325

tions, with two travelling waves that are filtered in326

each round trip to the finger or the bridge in a man-327

ner that reproduces the desired damping behaviour.328

There is no coupling to the body modes, and the val-329

ues of torsional waves are modified by the amount330

F
2Z0R

when passing to the other side of the bow. For331

friction calculation purposes, Z0 is replaced by Ztot332

defined in Eq. (2), and vh becomes the sum of four333

incoming wave terms, instead of two. Aside from the334

friction calculation part, Z0 remains in effect in the335

modelling of the transverse vibrations. For the open336

cello D3 string studied here the torsional fundamen-337

tal frequency is taken to be 758 Hz, the characteristic338

torsional impedance is 1.8 kg/s and a constant Q of339

34 is assigned to all torsional modes.340

2.3 The flexible bow341

Early bowed-string models ignored any flexibility of342

the bow, as if the string were bowed with a rigid rod.343

The stick and hair ribbon of a real bow are, of course,344

far from rigid. Some recent studies [28, 36] have made345

preliminary efforts to take into account the flexibil-346

Perpendicular-to-bow

vibrations of the string (Y)

Transverse vibrations 

of the bow hair (Y)

Figure 1: The geometry of the bow and string illus-
trating different polarisation directions of the string
and the bow-hair ribbon (after [39]).

ity of the bow-hair, but the treatment was relatively 347

crude. When a string is bowed, the time-varying fric- 348

tion force drives the string in the bowing direction, 349

but it also excites the bow-hair ribbon in its longitu- 350

dinal direction (see Fig. 1 for the definition). Such 351

vibrations of the bow-hairs change the effective bow 352

speed at the bowing point. The bow-hair ribbon also 353

has flexibility in its transverse direction. Vibrations 354

of the string and the bow-hair in the direction of the 355

player’s bow force can act to modulate the effective 356

bow force, and thus influence the detailed motion of 357

the string. There is relatively little published litera- 358

ture about the mechanics of bows. Pitteroff estimated 359

some properties of bow-hair [31], while Ablitzer et 360

al. [37, 38] have modelled the static deformations of a 361

bow in terms of its geometry, but they give little in- 362

formation of direct relevance to this dynamical study. 363

The most useful source here is the work of Gough [39]. 364

A typical cello bow-hair ribbon consists of around 365

290 strands, of which around 50 are in immediate 366

contact with the string. The diameter of each hair 367

strand is in the range 0.16–0.25 mm [31] and the typ- 368

ical length of the bow-hair bundle is around 59 cm. 369

As reported in [31], the Young’s modulus and den- 370

sity of the hair material are roughly 7 GPa and 1100 371

kg/m3 respectively. Assuming 50 active hair strands, 372

the characteristic impedance of the bow-hair ribbon 373

in the longitudinal direction becomes approximately 374

10 kg/s for a cello bow [31]. Wave speed in the lon- 375

gitudinal direction of the bow is approximately 2300 376

m/s [40], which results in the first bow-hair longitu- 377

dinal resonance around 1950 Hz. A typical bow-hair 378

ribbon is pre-tensioned to 70 N, which results in a first 379

transverse natural frequency of 75 Hz, and a charac- 380

teristic impedance of 0.79 kg/s. Gough estimated the 381

Q factor of bow-hair vibrations in transverse and lon- 382

gitudinal directions at 20 and 10, respectively [39]. 383

In reality damping of the bow-hair ribbon in both 384

directions is dominated by the dry friction between 385

individual strands, and so is likely to vary with am- 386
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plitude.387

The characteristic impedance of cello strings in388

their transverse direction ranges from 0.4 kg/s to 1.1389

kg/s, which is a relatively close match to the charac-390

teristic impedance of the bow-hair ribbon in its trans-391

verse direction, but is an order of magnitude smaller392

than the characteristic impedance of the bow-hair rib-393

bon in its longitudinal direction. This gives a guide-394

line for the strength of the coupling between the two395

systems. The strength of coupling at each particu-396

lar frequency also depends on where that frequency397

falls with respect to the resonances of both systems,398

and on where the contact point falls with respect to399

the nodes and antinodes of the closest bow-hair mode400

shapes.401

The bow-stick (i.e. the wooden part of the bow)402

also has some degree of flexibility, and is commonly403

regarded by players as having a profound effect on404

the sound and playability of a bowed string. Lit-405

tle evidence was found to support this claim in an406

experiment comparing the sounds produced by bows407

ranging from excellent to very poor qualities [41]. On408

theoretical grounds, too, it is hard to draw a direct409

link between the bow-stick properties and the string410

vibrations, given the weak coupling between the stick411

and the bow hair, and then from the bow hair to the412

string. This point was reinforced in a study by Gough413

[39], involving a thorough analysis on the modal prop-414

erties of a bow-stick and its coupling to the bow hairs.415

Perpendicular-to-bow vibrations of the string are416

coupled to the transverse vibrations of the bow-hair,417

so both effects should be incorporated into the model418

together. It will be assumed that all individual hairs419

are active in the transverse vibrations of the ribbon.420

For simplicity, the value of βbow (distance from the421

contact point to the frog divided by the full length of422

the hair ribbon) will be considered constant within the423

short period of simulation. To model a more realistic424

time-varying βbow is straightforward in principle, but425

it would require the loop filters to be recalculated at426

every time-step, or at least every few time-steps. For427

typical bowing speeds the variation in βbow is very428

small within a cycle of string vibration, but for de-429

tailed simulation of transient bowing gestures it might430

prove necessary to take this effect into account.431

Transverse vibrations of the bow-hair and the432

bowed string are coupled at the contact point: they433

share a common velocity and apply equal and oppo-434

site forces to one another (assuming they remain in435

contact). To find the unknown common velocity and436

the mutual force, the separate unperturbed velocities437

of the string and the bow are first calculated: these438

are called vhY and vbh respectively. It is then easy to439

show that the matched velocity (vM ) is given by440

vM =
vhY Z0 + vbh Zb0

Z0 + Zb0
, (3)

where Zb0 is the characteristic impedance of the bow-441

hair ribbon in its transverse direction. The resulting 442

fluctuating force in the contact region (FNF ) is 443

FNF = 2Z0 (vM − vhY ). (4)

This force is used to modify the relevant incoming 444

waves before they are passed to the other side of the 445

bowing point. Note that FNF is applied toward the 446

centre-line of the string and does not excite its tor- 447

sional motion, which is why Z0 rather than Ztot ap- 448

pears on the right-hand side of Eq. (4). This force 449

is also added to the nominal value of the bow force, 450

supplied by the player (FN ), to give the effective bow 451

force: 452

FNE = FN + FNF . (5)

Since the bow force is being dynamically updated for 453

each time-step, the friction force is re-scaled accord- 454

ingly. 455

Longitudinal vibrations of the bow-hair can also be 456

modelled using the travelling-wave approach, using 457

the framework already established for the transverse 458

vibrations of the string. In the presence of bow-hair 459

longitudinal vibrations, the nominal bow velocity will 460

be modulated by the velocity of the contact point on 461

the bow hair relative to the bow-stick. This relative 462

velocity can be found from 463

vbF = vbL1 + vbL2 +
F

2Zb0L
, (6)

and the effective bow speed can be calculated from 464

vbE = vb − vbF , (7)

where, as before, F is the instantaneous friction force 465

between the bow and the string, vb is the nominal 466

bow speed provided by the player, and vbL1 and vbL2 467

are the incoming longitudinal velocity waves, from the 468

tip and the frog respectively, arriving at the contact 469

point. Since the friction force is a function of bow 470

speed, it needs to be recalculated with vbE instead of 471

vb at each time-step. 472

In a similar fashion as discussed for the modelling 473

of the body [1], the stick modes can be taken into ac- 474

count using a set of independent resonators. Fourteen 475

modes are considered in this case, whose frequencies 476

(ranging from 50 Hz to 4221 Hz), modal masses, and 477

mode angles were all extracted from [39]. The flexi- 478

bility of the bow-stick was lumped at the tip side and 479

the frog was assumed to be rigid as it is more heavily 480

constrained by the grip of the player’s hand. Stick 481

modes are coupled to both transverse and longitudi- 482

nal vibrations of the hair ribbon. The excitation of 483

the stick modes can be calculated from 484

Fb,k = 2Zb0L vbL1 cos θbk + 2Zb0 vbT1 sin θbk , (8)
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Table 1: Summary of cello bow properties used in simulations

Hair strands T0b mb f0bL Zb0L QbL f0bT Zb0 QbT

290 70 N 0.0089 kg/m 1950 Hz 10 kg/s 10 75 Hz 0.79 kg/s 20

where θbk is the spatial angle of the kth stick mode485

with respect to the bowing direction (longitudinal di-486

rection of the bow), and vbL1 and vbT1 are the incom-487

ing longitudinal and transverse velocity waves coming488

from the tip respectively.489

2.4 Friction models490

As discussed earlier, for most of the simulations to be491

reported here the friction force between the bow and492

the string will be assumed to follow the friction-curve493

model: a function of the instantaneous relative sliding494

speed, and proportional to normal force. Empirical495

friction curves for violin rosin have been measured by496

Lazarus [42] and later by Smith and Woodhouse [21].497

In both studies, two rosin-coated surfaces were forced498

to rub against one another with a constant speed, and499

the friction coefficient was measured as a function of500

the imposed sliding velocity. The two studies found501

similar values. The fitted function suggested by Smith502

and Woodhouse is503

µ = 0.4e(v−vb)/0.01 + 0.45e(v−vb)/0.1 + 0.35, (9)

where µ is the velocity-dependent friction coefficient.504

This function will be used throughout the present505

work, except when the thermal friction model is used.506

The thermal model is described in detail in Smith507

and Woodhouse [21]. It assumes that the friction force508

is governed by a plastic yield process, with a yield509

strength that is a function of contact temperature.510

The form of the temperature dependence is fixed by511

requiring that under conditions of steady sliding, the512

friction force corresponds exactly to the friction-curve513

model of Eq. 9. All parameter values used here are514

identical to those used by Woodhouse [22].515

3 Simulation studies516

3.1 Methodology517

The simulations to be shown within this study relate518

to the Schelleng diagram, which encapsulates the abil-519

ity of a bowed string to sustain the Helmholtz motion520

when the bow force and the bow speed are kept con-521

stant. To address this question, “perfect” Helmholtz522

motion is initialised at the beginning of each simula-523

tion. The travelling waves corresponding to the trans-524

verse vibrations of the string in the bowing direction525

were initialised by the expected sawtooth waves of526

appropriate magnitude and phase. The model uses527

recursive (IIR) filters, both for the string and for the 528

body [1], which also need to be initialised properly. 529

This has been achieved by imposing ideal Helmholtz 530

motion on all filters for a few cycles before the actual 531

simulation starts. 532

The detailed vibration of the bowed string will be 533

different from the ideal Helmholtz motion due to ef- 534

fects such as damping, dispersion, and Schelleng rip- 535

ples. This inconsistency results in extra disturbances 536

within the first few periods of simulation, which may 537

disrupt an otherwise-stable Helmholtz motion. An- 538

other source for such unintended disturbances is that 539

the body motion and the other travelling waves in the 540

model, aside from the two associated with the vibra- 541

tions of the string in the bowing direction, start from 542

zero in the current initialisation of the model. 543

It is accepted that the transient response to these 544

particular disturbances may have some influence on 545

the precise outcome of a given run, and that dif- 546

ferent initial conditions might change things a little. 547

However, two things can be said in defence of what 548

has been done. First, the initial conditions are en- 549

tirely consistent over all cases, so that trends should 550

be shown in a fair way. Second, under conditions 551

when the string response is sufficiently “twitchy” for 552

such small effects to make a difference, that sensi- 553

tivity is probably pointing to an interesting physical 554

phenomenon in its own right. For example, Galluzzo 555

[43] has shown Guettler diagrams measured using a 556

bowing machine, which seem to show a significant de- 557

gree of “twitchiness” in a real cello string, perhaps 558

beyond the ability of a human player to control. 559

The steady-state vibration of an open D3 cello 560

string (146.8 Hz) is studied using a 100× 100 grid of 561

simulated data points in the β-FN plane, the Schel- 562

leng diagram. Each simulation is run for 1 s and out- 563

puts the force signal applied by the bowed string to 564

the bridge, and also a time history of the slip/stick 565

state at the bowed point. In addition, three metrics 566

are calculated for each simulation run, using only the 567

last 0.5 s to allow transient effects to settle first: 568

1. the increase in the slip-to-stick ratio as a percent- 569

age of its theoretical value; 570

2. the spectral centroid relative to the fundamental 571

frequency; 572

3. the amount of pitch flattening as a percentage of 573

the fundamental frequency. 574

The second and third metrics are directly relevant to 575

the experience of the listener; the first metric does not 576
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have a direct musical consequence, but sheds light on577

the underlying mechanics of the string motion.578

The simulated data is processed by a waveform579

identification algorithm that is a slightly enhanced580

version of the one introduced by Woodhouse [22] and581

further expanded by Galluzzo [23]. It classifies the re-582

sulting waveform into a number of categories of pos-583

sible motion. The options have been extensively dis-584

cussed in previous literature: in addition to the orig-585

inal “Helmholtz motion” there is “double/multiple586

slip”, typically occurring at low bow force; “decaying587

motion” at even lower force; “Raucous” and “Anoma-588

lous low frequency” (ALF) motions that typically oc-589

cur at very high bow force; and “S-motion” which590

sometimes occurs when the bow position is close to a591

simple integer subdivision of the string length. All592

these characteristic bowed-string vibration regimes593

have been described in detail in previous works (see594

for example [23]). One more regime has been dis-595

cussed in earlier literature, “double flyback motion”,596

but for the particular purpose here, to classify regimes597

initialised with Helmholtz motion, it was not neces-598

sary to take this into account because it never arose599

in this context. It is, however, an important regime600

when transient bowing gestures are considered [44].601

The data points are spaced logarithmically on the602

β axis from 0.016 to 0.19, and on the bow force axis603

from 1.28× 10−4/β2 N to 5 N. In this way a triangle604

of double-slip and decaying occurrences is excluded605

from the analysed range, giving increased resolution606

around the more important Helmholtz region. Note607

that an actual player cannot control, and thus utilise,608

a constant bow force below about 0.1 N [45], so that609

simulated cases with bow forces below this limit are610

primarily of research interest.611

3.2 The base case612

The base case was chosen to be an open D3 cello613

string which is only allowed to vibrate in a single614

transverse polarisation. Realistic damping, stiffness615

and torsional motion are included in the simulations.616

The string is terminated at a realistic multi-resonance617

bridge whose properties were discussed earlier [1].618

This base case can be thought of as representing a real619

cello string, bowed by a rosin-coated rod (as in Gal-620

luzzo’s experiments [23]). The friction-curve model621

is assumed. It is fully accepted that this base case,622

and the variations on it to be shown shortly, can only623

give a snapshot of some possible effects of the vari-624

ous model ingredients. For example, in many cases625

it may make a big difference whether there is or is626

not a coincidence of frequencies between components:627

a transverse string frequency might or might not fall628

close to a torsional frequency, a bow-stick frequency629

or a bow-hair frequency. To explore each of these pos-630

sibilities in detail would require a prohibitive number631

of plots.632
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Figure 2: Schelleng diagram calculated for the base
case.

Figure 2 shows the Schelleng diagram calculated 633

for the base case. Only instances of Helmholtz mo- 634

tion, S-motion and ALF are shown in the plot. In- 635

stances of decaying and double-slip regimes occur in 636

the empty area below the Helmholtz regime, and in- 637

stances of raucous regime occur in the empty area 638

above it. Those instances are omitted from the plot 639

for clarity. As expected, the S-motion occurrences 640

appear as columns for relatively large β values, ex- 641

tending into the raucous territory. For all β values 642

there are at least 10 simulated instances of double- 643

slip/decaying below the first instance of Helmholtz 644

motion. This margin was checked to make sure that 645

the predicted minimum bow force is not affected by 646

the selected range for simulations. 647

Figure 3 shows the three metrics defined in the pre- 648

vious subsection, for this base case. The values are 649

only shown for the data points identified as corre- 650

sponding to Helmholtz motion. The contour lines of 651

relative slip time are almost parallel to the minimum 652

bow force limit (with a slope of−2 on the log-log scale, 653

according to Schelleng’s formula [34]), with a slight 654

tendency towards extension of the slipping phase for 655

smaller β values making the slope steeper than −2. 656

The range of variation is relatively broad, up to three 657

times the theoretical value in the lower-left side of the 658

Helmholtz region. 659

The spectral centroid relative to the fundamental 660

frequency is plotted in Fig. 3b: the centroid has been 661

calculated here with a cutoff frequency of 10 kHz. The 662

contours are almost horizontal, and the values range 663

from about 6 towards the bottom of the plot to about 664

30 at its top. The overall appearance is more speckly 665

than the two other plots, which might be an artefact of 666

the post-processing routine. The strong dependence 667

of the spectral centroid on the bow force is in accor- 668

dance with experimental findings reported in [46]. 669

The last plotted metric is the percentage of pitch 670

flattening. Significant variations in this metric are 671
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Figure 3: Different metrics of waveforms for the base
case, in the β-FN plane. (a) The increase in the slip-
to-stick ratio as a percentage of its theoretical value
(unit ×100 s/s), (b) the spectral centroid relative to
the fundamental frequency (unit Hz/Hz), and (c) the
pitch flattening as a percentage of the fundamental
frequency (unit ×100 Hz/Hz). The theoretical slopes
for the minimum and maximum bow force are shown
in (a) by thick diagonal lines to guide the eye.

concentrated near the maximum bow force limit, in672

accordance with the experimental results reported in673

[46]. Interestingly, they also observed the maximum674

amount of flattening at some intermediate value of675

β. Note that the static increase of mean tension is676

also taken into account to calculate the values shown677

in Fig. 3c (see [24] for details). Without this, the678

instances in the top-left corner of the Helmholtz re-679

gion would have an even larger amount of flattening.680

An interesting structure seen in Figs. 3a and 3c is a681

rather regular modulation along the β axis, spaced by682

around 0.015 (note that the axis is plotted on a log-683

arithmic scale). A similar structure was reported in684

experimental results of [46] (see their Fig. 8). Curi-685

ously, the modulation was found to disappear if the686

torsional motion of the string or its stiffness (or both)687

was excluded from the model. This suggests that the688

modulation is caused by an interaction between the689

string’s torsional motion and its bending stiffness.690

3.3 Effects of model variations 691

Simulation can be used to investigate the influence 692

of each physical detail of the model. Nine particular 693

variations of the model are shown here: the first four 694

represent additions to the base case, the next four 695

represent restrictions to it, and the final case uses the 696

thermal friction model in place of the friction-curve 697

model. 698

• “Finger-stopped” is the same as the base case, 699

except the intrinsic damping of the string is in- 700

creased to reflect the added damping by the fin- 701

ger of the player (see [1] for the damping of a 702

finger-stopped string). 703

• “Hair long. vib.” is the same as the base 704

case, but vibration of the bow-hair in its longi- 705

tudinal direction is included while the bow-stick 706

is considered rigid. The string’s contact point on 707

the bow is assumed fixed, at a relative position 708

βbow = 0.31. 709

• “Flexible bow-stick” is the same as the previ- 710

ous case, but now a flexible bow-stick is included. 711

• “Dual-polarisations” is the same as the base 712

case, but perpendicular-to-bow vibration of the 713

string, coupled to vibration of the bow-hair in its 714

transverse direction, is included. The bow-stick 715

is considered rigid for this case, with βbow = 0.31 716

again. 717

• “No torsion” is the same as the base case, but 718

torsional motion of the string is excluded. 719

• “No stiffness” is the same as the base case, but 720

the bending stiffness of the string is excluded. 721

• “No torsion/stiffness” combines the previous 722

two cases. 723

• “Rigid terminations” is the same as the base 724

case, but both termination points of the string at 725

the bridge and the nut are considered rigid. 726

• “Thermal” is the same as the base case, but 727

the thermal friction model is used in place of the 728

friction-curve model. 729

Figure 4 summarises the influence of these varia- 730

tions on the three metrics discussed above, and also 731

on the minimum and maximum bow forces. Note that 732

most of the plots have a broken vertical scale, to ac- 733

commodate a large range of values. The minimum 734

bow force is quantified by the difference in the com- 735

bined number of decaying and double/multiple slip 736

occurrences, while the maximum bow force shows the 737

difference in the combined number of raucous and 738

ALF occurrences. Only the instances for β ≤ 0.08 739

are used for this purpose: for larger β values, the dis- 740

tinction between the Helmholtz and decaying regimes, 741
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and between the Helmholtz and S-motion regimes,742

becomes highly sensitive to the parameters of the743

waveform identification routine, and thus ambiguous.744

Positive numbers in Figs. 4a and 4b correspond to745

larger maximum and minimum bow forces, respec-746

tively. The two plots are arranged to make it immedi-747

ately apparent how the Helmholtz region is shifted or748

expanded/contracted. The minimum bow force could749

not be evaluated for the “Rigid terminations” case750

(marked by N/A) as its actual value is very small, well751

below the limit of the grid of simulated data points.752

Each bar in Figs. 4c–e represents the average753

change in the value of that metric for the correspond-754

ing case, as a percentage its value for the base case.755

Only β-FN combinations that led to Helmholtz mo-756

tion, both in the target case and the base case, are757

included: this prevents variations in the size and po-758

sition of the Helmholtz region from biasing the cal-759

culated trend. Averaging over the full Helmholtz re-760

gion obviously loses sight of any variation within that761

region, but the detailed plots of the pairwise differ-762

ences were carefully reviewed to make sure that the763

reported trend is not misleading. The only two ob-764

served anomalies of this kind are reported below (see765

Fig. 5). As a side note, the trend and amplitude766

of change in all calculated metrics for the “No tor-767

sion/stiffness” case can be approximated by adding768

the changes when the torsion and stiffness are indi-769

vidually excluded from the model: no evidence was770

seen for significant interaction between the two, other771

than the modulation structure mentioned in the pre-772

vious subsection.773

The biggest change in every case, usually by a774

large margin, is associated with the change of friction775

model. In general terms, this is in accordance with776

expectations from earlier studies. However, quanti-777

tative comparisons of the kind shown here have not778

previously been made. The development of improved779

friction models for bowed-string simulation is an area780

of active research that lies outside the scope of the781

present article, but the results shown here suggest782

that any new models that may be proposed should783

be explored in a similar quantitative manner to as-784

sess their performance against a range of metrics.785

Turning to the details revealed by Fig. 4, consider786

first how the playable range varies. Increasing the787

damping of the string makes a minimal effect on the788

maximum bow force, but it significantly increases the789

minimum bow force. It seems that adding to the in-790

trinsic damping of the string acts in a similar way to791

increasing the resistive loss to the bridge. Adding the792

longitudinal vibrations of the bow-hair reduces both793

the minimum and maximum bow forces by a small794

amount. It is consistent with the expected reduc-795

tion in the effective characteristic impedance of the796

string. The compliance of the bow-hair in the bow-797

ing direction is arranged in parallel to the impedance798

of the string, in a similar way to the torsional mo-799
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Figure 4: The variation of (a) maximum bow force;
(b) minimum bow force; (c) increase in the slip-to-
stick ratio as a percentage of its theoretical value;
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tion. Adding flexibility to the bow-stick strengthens800

the effect of the compliant bow hair by only a small801

amount. Adding the second polarisation of the string802

motion significantly reduces the minimum bow force,803

accompanied by a small increase in the maximum bow804

force. Removing the torsional motion of the string805

moves the Helmholtz region upward, and removing806

the bending stiffness expands it on both sides. The807

maximum bow force is affected more strongly than the808

minimum bow force by the torsional motion. This re-809

sult may be interpreted in the light of recent findings810

presented elsewhere [24]: the effect of the string’s tor-811

sional motion on the impedance at the bowing point,812

which is closely related to both minimum and maxi-813

mum bow forces, only becomes noticeable at relatively814

high frequencies. The perturbation force that defines815

the minimum bow force mainly comes from the flexi-816

ble bridge and is usually dominated by low frequency817

modes of the body. On the contrary, the maximum818

bowforce is defined by the V-shaped corner that is, in819

fact, relatively sharp in the vicinity of the maximum820

bow force, and thus has more high-frequency content.821

Together, these effects make it more likely that the822

torsional motion influences the maximum bow force823

more than the minimum bow force. Finally, both824

minimum and maximum bow forces are increase con-825

siderably by switching to the thermal friction model.826

Looking at Fig. 4c, two trends can be observed: any827

factor that broadens the spread of the Helmholtz cor-828

ner results in a further extension of the slipping phase,829

and any factor that decreases the effective impedance830

at the bowing point (particularly at higher frequen-831

cies) allows the sticking phase to persist for a longer832

period of time, perhaps because it acts as a cushion833

against any disturbances arriving at the bow ahead of834

the main Helmholtz corner. Factors that influence the835

spread of the Helmholtz corner (the “corner round-836

ing”, as it was called in earlier literature [12]) are as837

follows: the thermal friction model and damping by838

the finger both lead to more rounding and a longer839

slipping phase; while removing the string’s bending840

stiffness and turning the bridge to a rigid termination841

results in a sharper corner and shorter slipping phase.842

For the effective impedance, adding the longitudinal843

vibration of the bow-hair, with or without a flexible844

bow-stick, shortens the slipping phase, and removing845

the torsional vibrations of the string further extends846

the slipping phase.847

Pitch flattening is associated with an interaction848

between the extent of corner rounding and a hys-849

teresis loop in the variation of friction force with850

relative sliding speed. Within the context of the851

friction-curve model, this was first explored by McIn-852

tyre and Woodhouse [16] who showed that the area853

of this loop depends on the magnitude of the jumps854

in friction force associated with resolving an ambi-855

guity first highlighted by Friedlander [7]. The ther-856

mal friction model does not predict jumps of the same857

kind: change is always more gradual, leading to the in- 858

creased corner-rounding noted above. Figure 4e shows 859

that the inclusion of longitudinal bow-hair vibration 860

results in more flattening while removing the torsional 861

motion of the string results in less flattening. This is 862

consistent with the earlier discussion: both the com- 863

pliance of the bow-hair in the bowing direction and 864

the torsional motion of the string reduce the effective 865

impedance at the bowing point, which creates larger 866

frictional jumps and thus more flattening. Exclusion 867

of the flexible body from the model has also reduced 868

the amount of flattening, perhaps because flexibility 869

of the body adds to the corner rounding. Somewhat 870

unexpectedly, adding to the intrinsic damping of the 871

string results in less flattening. 872

In absolute terms, the amount of pitch flattening 873

close to the maximum bow force boundary of the ther- 874

mal case (which is much higher than that of the base 875

case) reaches as high as 4% of the string’s nominal fre- 876

quency, which compares to around 1.8% for all other 877

cases. The magnitude of this effect is not fully re- 878

flected in the bar chart of Fig. 4e. The chart only ac- 879

counts for β-FN combinations that led to Helmholtz 880

motion both in the target case and the base case. 881

The cases with large flattening in the thermal case 882

typically fall above the maximum bow force of the 883

base case and thus are eliminated from the averaging. 884

There is very little published data on pitch flattening, 885

but for what it is worth, Schumacher [33] examined 886

a case similar to Fig. 3c and reported a maximum 887

flattening of the order of 1.8%, very close to the pre- 888

diction of the base case here. 889

Because the thermal friction model gave such a sig- 890

nificant increase in corner-rounding, it is no surprise 891

that it also lowered the spectral centroid by a large 892

amount. Among the other model variations shown 893

here, stiffness and torsion are the major influences 894

on pitch flattening, as seen in Fig. 4e. Among those 895

same variations, the stiffness of the string is also the 896

only thing to have a strong effect on the spectral 897

centroid. In interpreting these results one may note 898

that there are two competing mechanisms affecting 899

the pitch of a bowed note. On the one hand, hystere- 900

sis in the frictional behaviour results in flattening, as 901

mentioned above. On the other hand, effects such as 902

stiffness and coupling to body modes, which perturb 903

the linear resonant frequencies of the string, require 904

the non-linear self-excited system to seek a “compro- 905

mise” pitch among these non-harmonic overtones, as 906

first emphasised in the context of wind instruments 907

by Benade [47]. The systematic “stretching” of the 908

frequencies by stiffness thus leads to an expectation 909

of pitch sharpening, and indeed stiffness is seen to 910

decrease flattening because it contributes this com- 911

pensatory sharpening effect. In regards to the spec- 912

tral centroid, when the string frequencies are less har- 913

monic, high-frequency string resonances are expected 914

to be excited less strongly which leads to a lower cen- 915
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troid, which is consistent with what is observed (i.e.916

removing the bending stiffness has increased the spec-917

tral centroid).918

A detailed comparison of spectral centroid and919

flattening between the base case and the case with920

no bending stiffness reveals the interesting patterns921

shown in Figs. 5. For the reason mentioned above,922

the majority of data points in Fig. 5b show positive923

values and thus give a positive value for the aver-924

age in the “No stiffness” case in Fig. 4e. However,925

close to the maximum bow force where pitch flatten-926

ing is strongest, many of the data points have neg-927

ative values. The dark instances can be attributed928

to the modulation structure shown in Fig. 3c, which929

disappears in the “No stiffness” case, but even the930

data points between those dark instances mostly have931

negative values. This suggests that pitch flattening932

caused by the spatial spread of the corner on a stiff933

string outweighs the pitch sharpening caused by the934

string’s inharmonicity. It also suggests that pitch flat-935

tening becomes a more sensitive function of the nor-936

mal bow force when the bending stiffness of the string937

increases. Musically, this might make the undesirable938

effect of flattening more conspicuous to the player.939

A similar observation can be made in Fig. 5a: in ac-940

cordance with our earlier explanation of weaker exci-941

tation on higher modes of a stiff string, most of the β-942

FN combinations in 5a show positive values. However,943

closer to the upper bow force limit, the majority of the944

instances show negative values. The explanation, at945

least in the context of the friction-curve model, is that946

strong hysteresis always entails large jumps in friction947

force at stick/slip transitions. This force jump results948

directly in significant high-frequency content in the949

bridge force, and thus contributes to a higher cen-950

troid.951

Returning to the nine model variations, Fig. 6952

shows the effect on the occurrence of the S-motion953

and ALF regimes. The base case is also included954

in this plot. The vertical axis shows the total num-955

ber of occurrences for the corresponding regime, and956

the dashed line shows the result for the base case. It957

should be noted that the results for the thermal fric-958

tion model may be a little misleading here: because959

the maximum bow force was so much higher for that960

model, there are fewer available cases within the range961

of the simulations to give rise to S-motion or ALF,962

and that may be the main reason for the low num-963

bers seen in the figure. Otherwise, the most striking964

observation in Fig. 6a is that the exclusion of tor-965

sional motion significantly reduces the number of S-966

motion occurrences. The effect is even stronger if both967

torsional motion and bending stiffness are excluded.968

Conversely, turning the bridge to a rigid termination969

significantly increases the number of S-motion occur-970

rences.971

Looking at the number of ALF notes in Fig. 6b,972

the most significant deviation from the base case is973

B
o
w

 f
o
rc

e
 (

N
)

0.0035

0.02

0.13

0.8

5

-5

0 

5 

β

0.016 0.03 0.06 0.1 0.19

B
o
w

 f
o
rc

e
 (

N
)

0.0035

0.02

0.13

0.8

5

-0.7

0   

0.7 

(a)

(b)

Figure 5: Spectral centroid relative to the fundamen-
tal frequency (a) and the percentage of pitch flatten-
ing (b) for the “No stiffness” case relative to the same
metric for the base case.

for the “No torsion/stiffness” case with almost double 974

the number of ALF notes. The longitudinal compli- 975

ance of the bow-hair, especially if coupled with the 976

flexible bow-stick, acts as a cushion against untimely 977

disturbances, thus making the ALF notes more stable. 978

This is consistent with what Mari Kimura, the vio- 979

linist best-known for using ALF notes, suggests:“The 980

first secret is maintaining loose bow hair [. . . ]. You 981

don’t want a lot of tension [. . . ]. You need enough 982

elasticity on the bow hair that you can really grab the 983

string” [48]. 984

3.4 Fluctuations of the bow force and 985

the bow speed 986

It was suggested earlier that the main effect of the 987

longitudinal and the transverse flexibility of the bow- 988

hair is to add a fluctuating component to the nomi- 989

nal bow speed and bow force respectively. This sec- 990

tion offers a closer look at the amplitude of those 991

fluctuations, their frequency content, and their dis- 992

tribution across the β-FN plane. Figures 7a and 7b 993

show the amplitude of fluctuations as a percentage of 994

the nominal values for the bow force and bow speed. 995

The figure is calculated based on the data from the 996

“Dual-polarisations” and “Hair long. vib.” cases from 997

above. Amplitude of fluctuation is defined here as half 998

the peak-to-peak value within the last period of the 999

simulated data. 1000

To interpret these results it is useful to look at the 1001

chain of events leading to perpendicular-to-bow vibra- 1002

tion of the string, with associated bow force fluctua- 1003

tions. The force that a bowed string applies to the 1004

bridge is approximately a sawtooth wave, which ex- 1005
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Figure 6: Comparing the total number of S-motion
(a) and ALF note (b) occurrences for different cases
defined in the text.
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Figure 7: Region of the Schelleng diagram exhibiting
Helmholtz motion, with colour scales indicating the
amplitude of fluctuations as a percentage of the nomi-
nal values for (a) the bow force (unit ×100 N/N) and
(b) the bow speed (unit ×100 (m/s)/(m/s), based
on the data from the “Dual-polarisations” and “Hair
long. vib.” cases of an open D3 string. The stars
indicate the instances plotted in Fig. 8

cites the body modes. The vibration of the string in 1006

the Y direction is primarily driven by the motion of 1007

the bridge notch in that direction. Suppose the mth 1008

harmonic falls close to the frequency of a strong body 1009

mode, with a spatial angle with respect to the bowing 1010

direction θM . Note that the strength of the harmonic 1011

components in the bridge force is roughly inversely 1012

proportional to the harmonic number, which gives the 1013

higher harmonics a relative disadvantage. 1014

The frequency of the mth harmonic in the bridge 1015

force will be close to the frequency of the mth string 1016

mode in the perpendicular-to-bow direction, so the 1017

string vibration in the second polarisation is likely 1018

to occur predominantly in that mode. Keeping the 1019

vibration pattern of the mth string mode in mind, 1020

and given that m is likely to be small enough that 1021

β < 1/2m, the farther the bow is placed from the 1022

bridge, the larger the amplitude of the perpendicular- 1023

to-bow velocity of the string at the bowing point, and 1024

hence the amplitude of the bow force fluctuation, is 1025

likely to become. On the other hand, the initial ex- 1026

citation force at the bridge is inversely proportional 1027

to β, and so keeping all other parameters the same, 1028

playing farther from the bridge would tend to result 1029

in a smaller bow force fluctuation. These two effects 1030

tend to cancel each other out, but the second effect 1031

wins out so that increasing β while keeping the bow 1032

force the same reduces slightly the percentage of bow 1033

force fluctuation. The exact physical properties of the 1034

hair ribbon and the contact position on the bow also 1035

affect the magnitude of bow force fluctuations, but in 1036

general these effects are of minor importance in com- 1037

parison. 1038

Figure 7a also shows that the relative amplitude 1039

of bow force fluctuations increases with reducing bow 1040

force. This is not unexpected: the absolute amplitude 1041

of the bridge force is independent of the bow force to 1042

the first order of approximation, and so is the ampli- 1043

tude of bow force fluctuation. Percentage-wise, this 1044

results in an increase in the bow force fluctuation with 1045

decreasing nominal bow force. The maximum fluc- 1046

tuation amplitude obtained for the simulated string 1047

is around 10% of its nominal value (see colourbar of 1048

Fig. 7a). 1049

Figure 8a shows the effective bow force in the time 1050

domain for a sample from Fig. 7a with β = 0.016 1051

and FN = 3.5 N. It can be seen that the bow force 1052

fluctuation mostly corresponds to the 3rd harmonic 1053

of the bowed string (around 440 Hz). The coupling 1054

apparently happens through a relatively strong body 1055

mode at 433 Hz, with a spatial angle of θM = 19.27◦, 1056

a Q factor of 53, and an effective mass of 180 g. 1057

The analysis of the fluctuating bow speed is more 1058

straightforward. The bow hair is excited in its longi- 1059

tudinal direction by the fluctuating friction force act- 1060

ing between the string and the bow. The response of 1061

the bow-hair is a superposition of its forced and tran- 1062

sient responses to the perturbation force at the bow. 1063
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Figure 8: A sample of the effective bow force mod-
ulation for the “Dual-polarisations” case (a) and the
effective bow speed modulation for the “Hair long.
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Figure 8b shows the effective bow speed in the time1064

domain for a sample from Fig. 7b. The fluctuation1065

just after the stick-to-slip transition is indeed domi-1066

nated by the transient response of the bow-hair to the1067

sudden drop in the friction force, with a dominant fre-1068

quency around 1950 Hz. Based on the chosen β for1069

this particular simulation, the Schelleng ripples would1070

be expected to appear at a frequency of 9176 Hz.1071

The fluctuations just before the stick-to-slip transi-1072

tion mostly arise from the precursor waves preceding1073

the main Helmholtz corner arriving from the finger1074

side, a consequence of the string’s bending stiffness.1075

Looking at Fig. 7b, the amplitude of fluctuations1076

generally increases with increasing bow force. It is1077

striking how large the fluctuations are compared to1078

the nominal bow speed. Their amplitude is at least1079

three times the nominal bow speed for any bow force1080

larger than 4 N, and the effective bow speed experi-1081

ences negative values within every cycle for virtually1082

all instances with β < 0.03. It is somewhat surpris-1083

ing how small an impact this seems to have made1084

on the Schelleng diagram of the “Hair long. vib.”1085

case, compared to the base case. The fluctuations of1086

the effective bow speed scale with the characteristic1087

impedance of the string, so one would expect even1088

larger fluctuations when a heavier string is bowed.1089

3.5 Effect of the nominal bow speed1090

So far the nominal bow speed has been held at a con-1091

stant value 5 cm/s, towards the low end of bow speeds1092

used in normal playing. Based on Schelleng’s argu-1093

ment [34], both the minimum and the maximum bow 1094

forces would be expected to scale proportional to the 1095

bow speed. A small deviation from proportionality 1096

may be expected because of the variations in the dy- 1097

namic friction behaviour, but this effect would be ex- 1098

pected to be very small, only becoming noticeable at 1099

large β values. However, in conflict with that predic- 1100

tion, Schoonderwaldt et al. [49] found in experiments 1101

on D4 and E5 violin strings that while the maximum 1102

bow force scaled with bow speed, the minimum bow 1103

force did not. If anything, their results suggested that 1104

the minimum bow force remained almost unchanged 1105

for bow speeds 5, 10, 15, and 20 cm/s. 1106

Simulations have been performed to investigate 1107

whether this surprising independence of the mini- 1108

mum bow force from the bow speed is captured by 1109

the bowed-string model presented here. The simu- 1110

lated data, not reproduced here, gave bow force lim- 1111

its that scaled closely with the bow speed: there was 1112

no trace of the unexpected trend observed in exper- 1113

iments. This observation therefore remains an open 1114

question for future research: possibly the experimen- 1115

tal results were influenced in some way by aspects of 1116

the frictional behaviour of the rosin not included in 1117

the model here? It should be noted that the experi- 1118

ments were performed with a real bow sitting on its 1119

full width over the strings, but it seems a little un- 1120

likely that the flexibility of the bow or its finite width 1121

could produce such a striking effect. 1122

4 Conclusion 1123

A computational model of a bowed string has been 1124

presented, incorporating a range of physical effects 1125

not previously explored in detail. The model can 1126

take accurate account of the measured stiffness and 1127

frequency-dependent damping of the string, its tor- 1128

sional motion, its motion in two transverse polari- 1129

sations, and its coupling to a realistically-modelled 1130

instrument body. Coupling to the three-dimensional 1131

dynamics of the bow-hair and bow-stick can be in- 1132

cluded. For the purposes of illustrative computations, 1133

parameter values were either drawn from earlier lit- 1134

erature, or were measured on a particular set of cello 1135

strings and a cello body, as described in a previous 1136

paper [1]. 1137

A major restriction to the current version of the 1138

model is that it assumes the bow-string contact to 1139

occur at a single point (rather than through a finite 1140

width of the bow-hair ribbon). More fundamentally, 1141

there is at present considerable uncertainty about the 1142

correct physical model to capture the dynamic friction 1143

force, even in this simplest case with a point contact. 1144

The studies reported here use two well-studied mod- 1145

els of friction drawn from earlier literature. One is 1146

the “friction-curve model”, in which friction force is 1147

assumed to be a nonlinear function of the instanta- 1148
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neous value of the relative sliding speed. The other1149

is a thermal model in which the yield strength of the1150

rosin interface is assumed to be a function of the con-1151

tact temperature: a heat-flow calculation is run in1152

parallel with the dynamic simulation to calculate the1153

time-varying contact temperature. Both models make1154

use of the same set of measured values of the friction1155

force from violin rosin as a function of steady sliding1156

speed, so that they are directly comparable to each1157

other in a certain sense.1158

Systematic simulations have been conducted, to ex-1159

plore the influence of various model details. The re-1160

sults shown here have concentrated on steady bowing,1161

and the string’s behaviour in the Schelleng diagram.1162

The regions where different regimes of string vibration1163

occurred in that diagram have been mapped, and the1164

variations of waveform within those regions explored1165

by computing various metrics relating to the physics1166

and the sound associated with the string motion. It1167

should be emphasised that the use of the model is by1168

no means restricted to this case of steady bowing, ini-1169

tialised with ideal Helmholtz motion: it can be used1170

to explore a wide range of transient behaviour [24].1171

The results show that by far the biggest variations1172

in detailed behaviour are associated with the choice1173

of friction model. This is consistent with the impres-1174

sion from earlier literature, but shown here in more1175

quantitative detail. Since the “true” friction model is1176

still unknown, this points towards a need for further1177

research. Leaving this question aside, the results indi-1178

cate trends of variation with the other new model fea-1179

tures. The sound of a bowed string is strongly depen-1180

dent on the “roundedness” of the Helmholtz corner,1181

and this is influenced by many of the factors explored1182

here. Increased string damping, from construction1183

and material or from the presence of the player’s fin-1184

ger, increases roundedness. There is also a significant1185

influence from the string’s bending stiffness, and from1186

coupling to torsional motion. In a similar way, influ-1187

ences on the minimum and maximum bow forces and1188

on the degree of pitch flattening have been mapped1189

out.1190

One of the more complicated interactions to pin1191

down concerns the influence of the second polarisation1192

of the string vibration. Vibration in the plane of bow-1193

ing excites modes of the instrument body, but these1194

will in general involve motion at the string notch in1195

the bridge which does not lie in that plane. In conse-1196

quence, string vibration in the perpendicular plane is1197

excited. This then interacts with transverse vibration1198

of the bow-hair, and via that with vibration of the1199

bow-stick. The combined effect is complicated, be-1200

yond the reach of simple analytical investigations and1201

requiring systematic simulation to explore it. Some1202

preliminary results have been shown here, but more1203

remains to be done on this question.1204
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