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Abstract

Spoken dialogue systems allow humans to interact with machines using nat-
ural speech. As such, they have many benefits. By using speech as the
primary communication medium, a computer interface can facilitate swift,
human-like acquisition of information. In recent years, speech interfaces have
become ever more popular, as is evident from the rise of personal assistants
such as Siri, Google Now, Cortana and Amazon Alexa. Recently, data-driven
machine learning methods have been applied to dialogue modelling and the
results achieved for limited-domain applications are comparable to or out-
perform traditional approaches. Methods based on Gaussian processes are
particularly effective as they enable good models to be estimated from lim-
ited training data. Furthermore, they provide an explicit estimate of the
uncertainty which is particularly useful for reinforcement learning. This arti-
cle explores the additional steps that are necessary to extend these methods
to model multiple dialogue domains. We show that Gaussian process rein-
forcement learning is an elegant framework that naturally supports a range
of methods, including prior knowledge, Bayesian committee machines and
multi-agent learning, for facilitating extensible and adaptable dialogue sys-
tems.

Keywords: Dialogue systems, Reinforcement learning, Gaussian process

1. Introduction

Spoken dialogue systems allow humans to interact with machines using
natural speech. As such, they have many benefits. By using speech as the
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primary communication medium, a computer interface can facilitate swift,
human-like acquisition of information. In recent years, systems with speech
interfaces have become ever more popular, as is evident from the rise of
personal assistants such as Siri, Google Now, Cortana and Amazon Alexa.
Statistical approaches to dialogue management have been shown to reduce
design costs and provide superior performance to hand-crafted systems par-
ticularly in noisy environments [1]. Traditionally, spoken dialogue systems
were built for limited domains described by an underlying ontology, which
is essentially a structured representation of the database of entities that the
dialogue system can talk about.

The semantic web is an effort to organise the large amount of information
available on the Internet into a structure that can be more easily processed
by a machine designed to perform reasoning on this data [2]. Knowledge
graphs are good examples of such structures. They typically consist of a set
of triples, where each triple represents two entities connected by a specific
relationship. Current knowledge graphs have millions of entities and billions
of relations and are constantly growing. There has been a significant amount
of work in spoken language understanding focused on exploiting knowledge
graphs in order to improve coverage [3, 4]. More recently there have also been
efforts to build statistical dialogue systems that operate on large knowledge
graphs, but limited so far to the problem of belief tracking [5, 6]. In this
article, we address the problem of decision-making in multi-domain dialogue
systems. This a necessary step towards open-domain dialogue management.
A previously proposed model for multi-domain dialogue management [7] as-
sumes a dialogue expert for each domain and the central controller which
decides to which dialogue expert to pass the control. The dialogue experts
are rule-based and the central controller is optimised using reinforcement
learning. A related work in [8] proposes a domain independent feature rep-
resentation of the dialogue state so that the dialogue policy can be applied
to different domains. Here, we explore multi-domain dialogue management
which retains a separate statistical model for each domain.

Moving from a limited domain dialogue system that operates on a rel-
atively modest ontology size to an open domain dialogue system that can
converse about anything in a very large knowledge graph is a non-trivial
problem. An open domain dialogue system can be seen as a (large) set of
limited domain dialogue systems. If each of them were trained separately
then an operational system would require sufficient training data for each in-
dividual topic in the knowledge graph, which is simply not feasible. What is
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more likely is that there will be limited and varied data drawn from different
domains. Over time, this data set will grow but there will always be topics
within the graph which are rarely visited.

The key to statistical modelling of multi-domain dialogue systems is there-
fore the efficient reuse of data. Gaussian processes are a powerful method
for efficient function estimation from sparse data. A Gaussian process is
a Bayesian method which specifies a prior distribution over the unknown
function and then given some observations estimates the posterior [9]. A
Gaussian process prior consists of a mean function - which is what we ex-
pect the unknown function to look like before we have seen any data - and
the kernel function which specifies the prior knowledge of the correlation of
function values for different parts of the input space. For every input point,
the kernel specifies the expected variation of where the function value will lie
and once given some data, the kernel therefore defines the correlations be-
tween known and unknown function values. In that way, the known function
values influence the regions where we do not have any data points. Also, for
every input point the Gaussian process defines a Gaussian distribution over
possible function values with mean and variance. When used inside a rein-
forcement learning framework, the variance can be used to guide exploration,
avoiding the need to explore parts of the space where the Gaussian process
is very certain. All this leads to very data efficient learning [10].

In this article, we explore how a Gaussian process-based reinforcement
learning framework can be augmented to support multi-domain dialogue
modelling focussing on three inter-related approaches. The first makes use
of the Gaussian process prior. The idea is that where there is little training
data available for a specific domain, a generic model can be used that has
been trained on all available data. Then, when sufficient in-domain data
becomes available, the generic model can serve as a prior to build a specific
model for the given domain. This idea was first proposed in [11].

The second approach is based on a Bayesian committee machine [12]. The
idea is that every domain or sub-domain is represented as a committee mem-
ber. If each committee member is a Bayesian model, e.g. a Gaussian process,
then the committee too is a Bayesian model, with mean and variance esti-
mate. If a committee member is trained using limited data its estimates will
carry a high uncertainty so the committee will rely on other more confident
committee members, until it has seen enough training data. This method was
proposed in [13]. It is similar to Products of Gaussians which have previously
been applied to problems such as speech recognition [14].
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Finally, we extend the committee model to a multi-agent setting where
committee members are seen as agents that collaboratively learn. This over-
arching framework subsumes the first two approaches and provides a practical
approach to on-line learning of dialogue decision policies for very large scale
systems. It constitutes the primary contribution of this article.

The remainder of the paper is organised as follows. In Section 2, the
use of Gaussian process-based reinforcement learning (GPRL) is briefly re-
viewed. The key advantage of GPRL in this context is that in addition
to being data efficient, it directly supports the use of an existing model as
a prior, thereby facilitating incremental adaptation. In Section 3, various
strategies for building a generic policy are considered and evaluated. We
then review the Bayesian committee machine in Section 4.1. Following that,
in Section 4.2, we present a multi-domain dialogue manager based on the
committee model. In Section 5, we describe how multi-agent learning can be
applied to the policy committee model. Then, in Section 6, we present the
experimental results. Finally, in Section 7, conclusions together with future
research directions are presented.

2. Gaussian process reinforcement learning

The input to a statistical dialogue manager is typically an N-best list
of scored hypotheses obtained from the spoken language understanding unit.
Based on this input, at every dialogue turn, a distribution of possible dialogue
states called the belief state, b ∈ B, an element of belief space, is estimated.
The belief state must accurately represent everything that happened prior to
that turn in the dialogue. The quality of a dialogue is defined by a reward
function r(b, a) and the role of a dialogue policy π is to map the belief state
b into a system action a ∈ A, an element of action space, at each turn so as
to maximise the expected cumulative reward.

The expected cumulative reward for a given belief state b and action a is
defined by the Q-function:

Q(b, a) = Eπ

(
T∑

τ=t+1

γτ−t−1rτ |bt = b, at = a

)
(1)

where rτ is the immediate reward obtained at time τ , T is the dialogue length
and γ is a discount factor, 0 < γ ≤ 1. Optimising the Q-function is then
equivalent to optimising the policy π.
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GP-Sarsa is an on-line reinforcement learning algorithm that models the
Q-function as a Gaussian process [15]:

Q(b, a) ∼ GP (m(b, a), k((b, a), (b, a))) (2)

where m(·, ·) is the prior mean function and the kernel k(·, ·) is factored into
separate kernels over belief and action spaces kB(b, b′)kA(a, a′).

For a training sequence of belief state-action pairs B = [(b0, a0), . . . , (bt, at)]T

and the corresponding observed immediate rewards r = [r1, . . . , rt]T, the pos-
terior of the Q-function for any belief state-action pair (b, a) is given by:

Q(b, a)|r,B ∼ N (Q(b, a), cov((b, a), (b, a))) (3)

where the posterior mean and covariance take the form:

Q(b, a) = k(b, a)THT(HKHT + σ2HHT)−1(r −m),

cov((b, a), (b, a)) = k((b, a), (b, a))−
k(b, a)THT(HKHT + σ2HHT)−1Hk(b, a)

(4)

where m = [m(b0, a0), . . . ,m(bt, at)]T, k(b, a) = [k((b0, a0), (b, a)), . . . , k((bt, at), (b, a))]T,
K is the Gram matrix [9], H is a band matrix with diagonal [1,−γ] and σ2

is an additive noise factor which controls how much variability in the Q-
function estimate is expected during the learning process. Since the Gaus-
sian process for the Q-function defines a Gaussian distribution for every belief
state-action pair (3), when a new belief point b is encountered, for each ac-
tion a ∈ A, there is a Gaussian distribution over Q-values. Sampling from
these Gaussian distributions gives Q-values Q̂(b, a) ∼ N (Q(b, a),ΣQ(b, a))
where ΣQ(b, a) = cov((b, a), (b, a)) from which the action with the highest
sampled Q-value can be selected:

π(b) = arg max
a

{
Q̂(b, a) : a ∈ A

}
. (5)

To use GPRL for dialogue, a kernel function must be defined on both the
belief state space B and the action spaceA. Here we use the Bayesian Update
of Dialogue State (BUDS) dialogue model [16]. The action space consists of a
set of slot-dependent and slot-independent summary actions. Slot-dependent
summary actions include requesting the slot value, confirming the most likely
slot value and selecting between top two slot values. Summary actions are
mapped to master actions using a set of rules and the kernel is defined as:

kA(a, a′) = δa(a
′) (6)
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where δa(a
′) = 1 iff a = a′, 0 otherwise. The belief state consists of the

probability distributions over the Bayesian network hidden nodes that relate
to the dialogue history for each slot and the user goal for each slot. The
dialogue history nodes can take a fixed number of values, whereas user goals
range over the values defined for that particular slot in the ontology and can
have very high cardinalities. User goal distributions are therefore sorted ac-
cording to the probability assigned to each value since the choice of summary
action does not depend on the values but rather on the overall shape of each
distribution. The kernel function over both dialogue history and user goal
nodes is based on the expected likelihood kernel [17], which is a simple linear
inner product. The kernel function for belief space is then the sum over all
the individual hidden node kernels:

kB(b, b′) =
∑
h

〈bh, b′h〉 (7)

where bh is the probability distribution encoded in the hth hidden node.

3. Distributed dialogue policies

hotel restaurant

venue

DH+DR

MV

hotel restaurant

venue

MV

MH

DH

MV

MR

DR

Figure 1: Training a generic venue policy model MV on data pooled from two subdomains
DR +DH (left); and training specific policy models MR and MH using the generic policy
MV as a prior and additional in-domain training data (right).

One way to build a dialogue manager which can operate across a large
knowledge graph is to decompose the dialogue policy into a set of topic
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specific policies that are distributed across the class nodes in the graph.
Initially, there will be relatively little training data and the system will need
to rely on generic policies attached to high level generic class nodes which
have been trained on whatever examples are available from across the pool
of derived classes. As more data is collected, specific policies can be trained
for each derived class1. An example of this is illustrated in Fig 1. On the left
side is the initial situation where conversations about hotels and restaurants
are conducted using a generic model, MV , trained on example dialogues
from both the hotel and restaurant domains. Once the system has been
deployed and more training data has been collected, specific restaurant and
hotel models MR and MH can be trained.2

This type of multi-domain model assumes an agile deployment strategy
which can be succinctly described as “deploy, collect data, and refine”. Its
viability depends on the following assumptions:

1. it is possible to construct generic policies which provide acceptable user
performance across a range of differing domains;

2. as sufficient in-domain data becomes available, it is possible to seam-
lessly adapt the policy to improve performance, without subjecting
users to unacceptable disruptions in performance during the adapta-
tion period.

In GPRL, the computation of Q(b, a) requires the kernel function to be
evaluated between (b, a) and each of the belief-action points in the training
data. If the training data consists of dialogues from subdomains (restau-
rants and hotels in this case) which have domain-specific slots and actions,
a strategy is needed for computing the kernel function between domains.

If domains are organised in a class hierarchy it is expected that they share
some of the slots. Calculating the kernel for shared parts of the belief state
is straightforward:

kB(bH, bR) =
∑

h∈H∩R

〈bHh , bRh 〉, (8)

where R and H are the considered subdomains. When goal nodes are paired

1cf analogy with speech recognition adaptation using regression trees[18]
2Here a model M is assumed to include input mappings for speech understanding,

a dialogue policy π and output mappings for generation. In this article, we are only
concerned with dialogue management and hence the dialogue policy component π of each
model.
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with differing cardinalities (eg name might have different cardinality for dif-
ferent domains), the shorter vector is padded with zeros. Pairing of non-
matching slots is achieved by treating them as abstract slots: slot-1, slot-2,
etc so that they become the same in both subdomains according to some
heuristics. Hence for example, food is matched with dogs allowed, and so on.
As with the case with shared slots, when goal nodes are paired with differ-
ing cardinalities, the shorter vector is padded with zeros. Other adaptation
strategies are also possible but may result in increasing the dimensionality
(see for example [19]).

4. Committee of dialogue policies

4.1. Bayesian committee machine

The Bayesian committee machine is an approach to combining estimators
that have been trained on different datasets. It is particularly suited to
Gaussian process regression [12]. Here we apply the method to combine the
outputs of multiple estimates of Q-values Qi with mean Qi and covariance ΣQ

i

as given by Eq. 4. Each estimator is trained on a distinct set of rewards and
belief-state action pairs ri,Bi for i ∈ {1, . . . ,M}, where M is the number of
policies in the policy committee. As an example, Fig 2 depicts a Bayesian
committee machine consisting of three estimators.

Following the description in [12], the combined mean Q and covariance
ΣQ are calculated as:

Q(b, a) = ΣQ(b, a)
∑M

i=1 ΣQ
i (b, a)−1Qi(b, a),

ΣQ(b, a)−1 = −(M−1) ∗ k((b, a), (b, a))−1 +
∑M

i=1 ΣQ
i (b, a)−1.

(9)

4.2. Multi-domain Dialogue Manager

Section 3 introduced the notion of a generic policy, which can be trained
from data coming from different domains, and a specific policy that can
be derived from a generic policy using additional in-domain data. In order
to produce a generic policy that works across multiple domains, a kernel
function must be defined on belief states and actions that come from different
domains. In that case, domains are organised in a class hierarchy so it is
reasonable to assume that there are shared portions of the belief for different
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MR

MLDH

DR

DL

Figure 2: Bayesian committee machine: Committee members consist of estimators trained
on different datasets Di. At every turn their estimated Q-values, Qi, are combined to
determine the final Q-value estimate.

domains. These portions relate to shared slots and are directly mapped to
each other and for slots which are different, the mapping can be defined either
manually or by using some similarity metric.

When using a Bayesian committee machine, it is possible to have two do-
mains which have no shared slots. Therefore, a different approach is required
for building policies that can operate (and be trained on) belief states and
actions that come from different domains. The approach is as follows. The
slots from each domain are divided into semantic classes3. We have three
semantic classes:

name slot refers to the name of the entity in the database;

requestable slots are the ones the user can specify to constrain a search,
for instance slot food or slot batteryrating;

informable slots are the ones the user can request further information,
such as slot phone or slot dimension.

Then, the following steps are taken:

1. For each semantic class and for each slot in that semantic class, the

3In our case this was performed manually. For larger ontologies this could be induced
from the ontology or another automatic method would be needed which is out of scope of
this article.
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normalised entropy η is calculated by

η(s) = −
∑
v∈Vs

p(s = v) log(p(s = v))

|Vs|
, (10)

where s is a slot that takes values v from a set Vs and where p(s = v) is
the empirical probability that an entity in the database with slot s takes
value v for that slot. For example, if all entities in the database for
the restaurant domain have area=centre, then that slot has a normalised
entropy equal to 0. The measure is normalised so that slots that take
different numbers of values can be compared. This measure provides
an indicator of how useful each slot is in the dialogue. For instance,
in this case it is not useful for the system to ask the user about their
preference for slot area since the answer provides no information gain.

2. For each domain, and for each semantic class, the slots are sorted based
on their normalised entropy and given abstract names slotc1, slot

c
2, . . .

so that η(slotci) ≥ η(slotcj) for i ≤ j for semantic class c.

3. The kernel function between belief states and actions which come from
different domains M and N , is calculated in the following way:

• Iteratively, for each slotci where i ≤ min{|Mc|, |Nc|}, index of the
ordered list, in semantic class c where |Mc| denotes the number of
slots in semantic class c in domain M :
match the corresponding elements of belief space and actions,
padding with zeros as necessary.

• Otherwise disregard the elements of the belief state relating to
unpaired slots j and if one of the actions relates to slotj, consider
the action kernel to be 0.

This slot matching process is illustrated in Figure 3.

This approach has three important properties:

1. Once semantic classes are defined, the further process does not require
human intervention to define the relationship between slots that come
different domains;

2. it provides a well-defined computable relationship between any two
domains; and

3. the kernel function that is defined in step 3 is positive definite so the
Gaussian process is well-defined.
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Slot                                    

1. allowedforkids                       
2. pricerange                          
3. near                                    
4. goodformeal                      
5. food                                       
6. area                                      

         Entropy   #Values

           0.53                  2
           0.32                  3
           0.10                  9
           0.03                  4
           0.01                59
           0.00              155

Slot                                    

1. isforbusinesscomputing
2. batteryrating                      
3. pricerange                          
4. driverange                            
5. warranty                          
6. weightrange                        
7. family                          
8. platform                            
9. utility                                    
10. processorClass                    
11. sysmemory                        

0

driverange

slot4

goodformeal

slot4

           Entropy   #Values

            0.46               2
            0.33               3
            0.33               3
            0.32               3
            0.32               3
            0.32               3
            0.24               4
            0.04               5
            0.03               7
            0.03             10
            0.02               7

Figure 3: Slot matching for slots that come from different domains for requestable slots
semantic class. In this cases requestable slots for both domains are sorted according to
their normalised entropy and then driverange is being matched with goodformeal. Since
they have different number of values the shorter vector is padded with zeros.

5. Multi-agent learning in the policy committee framework

In the standard reinforcement learning framework there is a single agent
that is trying to solve a specific task in a given environment. However, for
complex tasks it has been shown [20] that it is more effective to decompose
the problem into sub-tasks and introduce a distinct agent to solve each sub-
task. In this case, each agent needs to take into account only part of the state
space and this can significantly speed up the learning process. Learning in
such multi-agent systems is typically performed in three steps [20]. First,
each agent proposes an action. Second, a gating mechanism, which can be
either handcrafted or optimised automatically, is deployed to select the actual
system action. Finally, the reward is distributed among the agents and they
each re-estimate their policy.

The multi-agent framework can be seen as an extension of the policy
committee model (see Figure 4). In fact, the first two steps are exactly the
same: each committee member estimates its own Q-function and then Eq. 9
is used as the gating to automatically combine the output. The multi-agent
framework, however, includes a third step which is to distribute the reward
so that each agent (i.e. committee member) can learn from every dialogue.
Intuitively, the reward should be given to the agent for the domain that
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MR
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Figure 4: Multi-agent policy committee model

the dialogue is currently in. However, in practice it can be very difficult to
identify a specific domain especially since the user can switch domains within
the same dialogue. To avoid these issue, three strategies for distributing the
reward are investigated:

näıve approach: The total reward that the system obtains is directly fed
back to each committee member [20].

winner-takes-all approach: The total reward that the system obtains is fed
back to the committee member that proposed the highest Q-value for
the action that was finally chosen by the gating mechanism [21].

reward scaling approach: The total reward is redistributed to each com-
mittee member in such a way as to reflect its contribution to the final
action chosen by the gating mechanism [20].

6. Experimental results

6.1. Experimental set-up

In order to investigate the effectiveness of the methods discussed above, a
variety of experimental contrasts were examined using an agenda-based sim-
ulated user operating at the dialogue act level [22, 23]. The reward function
allocates −1 at each turn to encourage shorter dialogues, plus 20 at the end
of each successful dialogue. The user simulator includes an error generator
and this was set to generate incorrect user inputs 15% of time.
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The proposed methods were also incorporated into a real-time spoken di-
alogue system in which policies were trained on-line using subjects recruited
via Amazon Mturk. Each user was assigned specific tasks in a given subdo-
main and then asked to call the system in a similar set-up to that described
in [24, 25]. After each dialogue, the users were asked whether they judged
the dialogue to be successful or not. Based on that binary rating, the sub-
jective success was calculated as well as the average reward. An objective
rating was also computed by comparing the system outputs with the assigned
task specification. During training, only dialogues where both objective and
subjective score were the same were used.

In order to examine the ability of the proposed methods to operate on
multiple domains, four different domains were used:

SFR consisting of restaurants in San Francisco

SFH consisting of hotels in San Francisco

L6 consisting of laptops with 6 properties that the user can specify

L11 same as L6 but with 11 user-specifiable properties.

A description of each domain with slots sorted according to their normalised
entropy is given in Table 1.

6.2. Generic policy performance in simulation

In order to investigate the effectiveness of the generic policies discussed
in Section 3, generic policies were trained and then tested in two domains
– SFR and SFH using equal numbers of restaurant and hotel dialogues. In
addition, in-domain policies were trained as a reference.

For each condition, 10 policies were trained using different random seeds
and varying numbers of training dialogues. Each policy was then evaluated
using 1000 dialogues in each subdomain. The overall average reward, success
rate and number of turns is given in Table 2 together with a 95% confi-
dence interval. The most important measure is the average reward, since the
policies are trained to maximise this.

As can be seen from Table 2, all generic policies perform better than
the in-domain policies trained only on the data available for that subdomain
(i.e. half of the training data available for the generic policy in this case) and
this is especially the case when training data is limited. This suggests that
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Table 1: Slots for each domain. The first section is slot name which appears in each domain.
The next section represents requestable slots, these are slots that can be specified by the
user to constrain a search. The remainder are informable slots which can be queried by
the user regarding a specific entity.

SFR SFH L6 L11

name name name name

allowedforkids dogsallowed isforbusiness isforbusiness

pricerange pricerange batteryratings batteryrating

near near pricerange pricerange

goodformeal takescreditcards driverange driverange

food hasinternet weightrange weightrange

area area family family

- - - platform

- - - utility

- - - processorclass

- - - sysmemory

addr addr price weight

price phone drive battery

phone postcode dimension price

postcode - - dimension

- - - drive

- - - display

- - - graphadaptor

- - - design

- - - processor
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Table 2: Comparison of generic vs in-domain policies. Performance in each domain is
measured in terms of reward, success rate and the average number of turns per dialogue.
Results are given with a 95% confidence interval.

Strategy #Dialogs Reward Success #Turns
SFRestaurant

in-domain 250 3.26± 0.21 60.02± 0.97 8.65± 0.08
in-domain 500 5.00± 0.21 68.17± 0.91 8.55± 0.07
generic 500 4.48± 0.21 67.35± 0.92 8.89± 0.08
in-domain 2500 7.95± 0.17 83.02± 0.75 8.55± 0.07
in-domain 5000 8.68± 0.15 86.67± 0.67 8.54± 0.07
generic 5000 8.58± 0.15 86.21± 0.68 8.52± 0.07

SFHotel
in-domain 250 3.58± 0.21 62.07± 0.96 8.75± 0.07
in-domain 500 4.83± 0.21 69.08± 0.92 8.89± 0.08
generic 500 5.27± 0.20 70.01± 0.90 8.64± 0.07
in-domain 2500 8.40± 0.16 84.90± 0.71 8.46± 0.06
in-domain 5000 8.92± 0.15 87.48± 0.65 8.45± 0.06
generic 5000 8.89± 0.15 87.19± 0.66 8.44± 0.06
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the provision of generic policies in a large multi-domain will indeed provide
robustness against the user moving into a domain for which there is very
little training data.

6.3. Adaptation of in-domain policies using a generic policy as a prior in
simulation

We now investigate the effectiveness of using a generic policy as a prior
for training an in-domain policy as in the right hand side of Fig. 1. In order
to examine the best and worst case, the generic priors (from the 10 randomly
seeded examples) that gave the best performance and the worst performance
on each sub-domain trained with 500 and 5000 dialogues were selected. This
results in four prior policies for each subdomain: generic-500-worst, generic-
500-best, generic-5000-worst and generic-5000-best.

In addition, a policy with no prior was also trained for each subdomain
(i.e. the policy was trained from scratch). After every 1000 training dialogues
each policy was evaluated with 1000 dialogues. The results are given in
Fig. 5 and 6 with a 95% confidence interval. Performance at 0 training
dialogues corresponds to using the generic policy as described in the previous
section, or using a random policy for the no prior case.

Table 3: Performance of best generic prior when adapted using 50K additional dialogues.
Results are given with 95% confidence intervals.

SFR
Name Reward Success #Turns
best prior 8.66± 0.35 85.40± 2.19 8.32± 0.20
adapted 9.62± 0.30 89.60± 1.90 8.24± 0.19

SFH
best prior 9.76± 0.31 88.80± 1.96 7.95± 0.21
adapted 10.27± 0.27 92.50± 1.64 8.20± 0.21

The results from Figs. 5 and 6 demonstrate that the performance of the
policy in the initial stages of learning are significantly improved using the
generic policy as a prior, even if that prior is trained on a small number
of dialogues and even if it was the worst performing prior from the batch
of 10 training sessions. These results also show that the use of a generic
prior does not limit the optimality of the final policy. In fact, the use of
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Figure 5: Training policies with different priors – SFR domain without prior and with
different policies as prior. After every 1000 dialogues the policies were evaluated with
1000 dialogues and the average reward with a 95% confidence interval is given on the
figure.

a prior can be seen as resetting the variance of a GP which may lead to
better sample efficiency [26]. This may be the reason why in some cases, the
no-prior policies never catch up with the adapted policies - as in Figure 6.

In Table 3, the performance of the best performing generic prior is com-
pared to the performance of the same policy adapted using an additional
50K dialogues. The results show that additional in-domain adaptation has
the potential to improve the performance further. So when enough training
data is available, it is beneficial to create individual in-domain policies rather
than continuing to train the generic policy.

6.4. Adaptation in interaction with human users

To examine performance when training with real users, rather than a sim-
ulator, two training schedules were performed in the SFR subdomain – one
training from scratch without a prior, and the other performing adaptation

17



0 10000 20000 30000 40000 50000
Training dialogues

0

2

4

6

8

10

12
Re

w
ar

d

no-prior
generic-500-worst
generic-500-best
generic-5000-worst
generic-5000-best

Figure 6: Training policies with different priors – SFH domain without prior and with
different policies as prior. After every 1000 dialogues the policies were evaluated with
1000 dialogues and the average reward with a 95% confidence interval is given on the
figure.

using the best generic prior obtained after 5000 simulated training dialogues.
For each training schedule three sample runs were performed and the results
were averaged to reduce any random variation. Fig. 7 shows the moving av-
erage reward as a function of the number of training dialogues. The moving
window was set to 100 dialogues so that after the initial 100 dialogues each
point on the graph is an average of 300 dialogues (3 sample runs × window
size). The shaded area represents a 95% confidence interval. The initial parts
of the graph exhibit more randomness in behaviour because the number of
training dialogues is small.

The results show an upward trend in performance particularly for the
policy that uses no prior. However, the performance obtained with the prior
is significantly better than without a prior both in terms of the reward and
the success rate. Equally importantly, unlike the system trained from scratch
with no prior, the users of the adapted system are not subjected to poor
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Figure 7: Training in interaction with human users on SFR – moving average reward.
Plots are average of three sample runs.

performance during the early stages of training.

6.5. Policy committee evaluation with simulated user

In the previous section, the benefit of training generic models was demon-
strated when training data is sparse. Here we investigate whether the use of a
Bayesian committee machine can improve robustness further. The contrasts
studied were as follows:

INDOM In-domain policy – trained only on in-domain data, other data
is not taken into consideration, action-selection is based only on the
in-domain policy. This is the baseline.

GEN Single generic policy – one policy trained on all available data (as
in Section 3).

MBCM Multi-policy Bayesian committee machine – as described in
Section 4.1. There is one committee member for each domain and
each committee member is trained only on in-domain data. However,
for action-selection, the estimates of all committee members are taken
into account using Eq 9, both during training and testing.
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GOLD Gold standard – this is the performance of the single policy where
all training data comes from the same domain i.e. for N domains,
GOLD has N times the number of in-domain dialogues for training
as provided to INDOM.

We examine two cases: when the training data is limited, with only 250
dialogues available for each domain, and when there is more training data
available, 2500 for each domain. In the evaluation of generic policies in
Section 6.2, the test domains were relatively similar. Here, we consider more
diverse domains:

• Multi-domain system for SFR, SFH and L6, where the domains have
different slots but each domain has the same number of slots, and

• Multi-domain system for SFR, SFH and L11, where not only are the
slots different, but also one of the domains, L11, has many more slots
than the others.

For each contrast described above, 10 policies were trained on the sim-
ulated user using different random seeds. Each policy was then evaluated
using 1000 dialogues in each domain. The overall average reward, success
rate and number of turns are given in Table 4 together with 95% confidence
intervals. We do not report results on SFH domain as policies on this domain
behave similarly to the ones on SFR domain (see Fig. 5 and 6).

There are several conclusions to be drawn from the results given in Ta-
ble 4. First, as shown in Section 6.2, generic policies make use of data that
comes from different domains and this improves performance over an in-
domain baseline, even in the case presented here where the domains are very
different. The multi-policy MBCM results in performance which is either sig-
nificantly better than other methods or statistically indistinguishable from
other methods. In the case of limited training data, its performance is at least
as good as the gold standard4. Another advantage of MBCM is that it does
not require storing a separate generic policy model but only ever produces
in-domain models that have the ability to contribute to action-selection for
other domains.

4Single generic policy (GEN) was not investigated on a larger training set since the
main reason for having a generic policy would be to boost the performance when there
is limited data available. In that case, the multi-policy Bayesian committee machine
(MBCM) performs better.
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Table 4: Comparison of strategies for multi-domain adaptation. In-domain performance is
measured in terms of reward, success rate and the average number of turns per dialogue.
Results are given with 95% confidence intervals.

Strategy Reward Success #Turns

L6 trained on 750 dialogues from SFR, SFH, L6
INDOM 7.92± 0.20 72.64± 0.87 6.56± 0.07
GEN 9.34± 0.19 79.43± 0.80 6.49± 0.06
MBCM 9.89± 0.18 82.95± 0.74 6.68± 0.07
GOLD 9.25± 0.19 80.35± 0.79 6.77± 0.07

L6 trained on 7500 dialogues from SFR, SFH, L6
INDOM 10.62± 0.16 86.04± 0.68 6.50± 0.06
MBCM 11.60± 0.14 90.32± 0.58 6.42± 0.06
GOLD 11.98± 0.13 92.36± 0.53 6.42± 0.06

SFR trained on 750 dialogues from SFR, SFH, L11
INDOM 5.73± 0.21 68.17± 0.92 7.89± 0.08
GEN 6.32± 0.21 72.04± 0.89 8.05± 0.08
MBCM 7.37± 0.20 76.60± 0.83 7.92± 0.08
GOLD 7.34± 0.20 76.97± 0.83 8.01± 0.08
SFR trained on 7500 dialogues from SFR, SFH, L11
INDOM 9.03± 0.17 85.16± 0.70 7.97± 0.08
MBCM 9.67± 0.17 88.28± 0.66 7.96± 0.08
GOLD 9.65± 0.16 88.80± 0.62 8.05± 0.08

L11 trained on 750 dialogues from SFR, SFH, L11
INDOM 6.46± 0.22 67.59± 0.92 7.02± 0.08
GEN 7.18± 0.21 70.91± 0.89 6.97± 0.08
MBCM 8.52± 0.20 77.09± 0.82 6.88± 0.07
GOLD 8.68± 0.20 77.26± 0.83 6.74± 0.07
L11 trained on 7500 dialogues from SFR, SFH, L11
INDOM 10.05± 0.17 84.58± 0.71 6.84± 0.07
MBCM 10.73± 0.16 87.23± 0.66 6.70± 0.07
GOLD 11.17± 0.15 88.89± 0.62 6.57± 0.06
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Unlike domain-independent policy models [8], MBCM allows flexible se-
lection of committee members. The usefulness of each committee member in
the MBCM multi-policy model is explored in Table 5 for the SFR domain.
As can be seen from the results, all committee members contribute to per-
formance gains. However not all committee members are equally important.
In this case, for good performance on the SFR domain, the SFH committee
member is more useful than the L11 committee member.

Table 5: Selection of committee members for multi-policy Bayesian committee machine
for SFR domain. The committee policy is trained on 7500 dialogues equally spread across
three domains.

MBCM – SFR
Committee Reward Success #Turns
members
SFR 7.32± 0.22 79.97± 0.82 8.51± 0.10
SFR+SFH 9.20± 0.18 86.51± 0.70 8.05± 0.09
SFR+L11 8.73± 0.19 84.56± 0.73 8.12± 0.09
SFR+SFH+L11 9.67± 0.17 88.28± 0.66 7.96± 0.08

6.6. Policy committee evaluation with human users

In order to fully examine the effectiveness of the proposed adaptation
scheme, policies were also trained in direct interaction with human users.
We compare two set-ups: one where an in-domain L6 policy is trained on-
line and another where a multi-policy Bayesian committee machine is trained
from scratch using data from the SFR, SFH and L6 domains, which produces
a policy committee which can operate on all three domains. To the best of
our knowledge, this is the first time a dialogue policy has been trained on
multiple domains on-line in interaction with real users.

Fig. 8 shows the moving average reward as a function of the number of
training dialogues for the L6 domain comparing the in-domain (INDOM)
policy and the multi-policy Bayesian committee machine (MBCM) as de-
fined in Section 4.2. The performance of the MBCM policy was only shown
on training dialogues that came from the L6 domain, but in fact it was also
trained on SFR and SFH domains in parallel. The training data across the
domains was equally distributed. Each plot is an average of three sample
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runs. The moving window was set to 100 dialogues so that after the initial
100 dialogues each point on the graph is an average of 300 dialogues. The
shaded area represents a 95% confidence interval. The initial parts of the
graph exhibit more randomness in behaviour because the number of training
dialogues is small. The results show that the multi-policy Bayesian com-
mittee machine consistently outperforms the in-domain policy. The caveat
is that the computational complexity linearly increases with the number of
committee members. Therefore this method would require a technique that
selects and removes committee members as needed. An exploration of such
a method goes beyond the scope of this article.
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Figure 8: Training in interaction with human users on L6 domain – moving average reward.
Plots are average of three sample runs.

6.7. Multi-agent simulation results

Finally, we examine the effectiveness of extending the policy committee
model to multi-agent learning. The contrasts studied were as follows:

NAÏV Näıve approach – The total reward is given to each committee
member during every interaction regardless of the current domain.

WINN Winner-takes-all approach – The total reward is given to the
policy member which on average gave the highest Q-value Q-variance
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ratio during the whole dialogue, ΣQ
i (b, a)−1Qi(b, a) from Eq. 9, for each

action taken by the system.

SCALE Scale received reward according to all committee members’
Q-value estimate – the total reward is distributed to each policy
committee member in proportion to the average Q-value Q-variance
ratio, ΣQ

i (b, a)−1Qi(b, a) from Eq. 9, for each action that the system
took relative to the Q-value Q-variance ratios of the other committee
members for the taken action.

MBCM Multi-policy Bayesian committee machine – Each committee
member is trained only on in-domain data, so the reward is passed
only to the committee member which is specific to that domain (see
Section 4.2 for details).

We consider a multi-domain system for SFR, SFH and L11. Two scenarios
are examined: (a) when the training data is limited, with only 250 dialogues
available for each domain, and (b) when there is more training data available,
2500 for each domain.

For each method described above, 10 policies were trained on the sim-
ulated user using different random seeds. Each policy was then evaluated
using 1000 dialogues on each domain. The overall average reward, success
rate and number of turns are given in Table 6 together with 95% confidence
intervals. We do not report results on SFH domain as policies on this domain
behave similarly to the ones on SFR domain (see Fig. 5 and 6).

Conclusions that can be drawn from these results are the following. First,
on a smaller dataset the WINN approach, which chooses the winning com-
mittee member to pass the total reward to, is less effective than the ap-
proaches which distribute the reward. This is expected, as in the latter case
the agent’s policy learns from a larger set of dialogues, which is particularly
useful in the early stages of the optimisation process. On larger datasets,
the winner-takes-all approach gives similar or better performance to the ap-
proaches which distribute the reward. This means that if large amount of
data is available one can afford to use the model which chooses a which sub-
set of data to optimise the policy. In this case that is the data which has the
most accurate reward estimate. If we average results across the domains and
the sizes of the training data, however, we can see that it is generally more
effective to use the approaches which distribute the reward.
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Table 6: Comparison of strategies for multi-domain adaptation. In-domain performance is
measured in terms of reward, success rate and the average number of turns per dialogue.
Results are given with 95% confidence intervals.

Strategy Reward Success #Turns

SFR trained on 750 dialogues from SFR, SFH, L11

NAÏV 7.00± 0.20 73.66± 0.86 7.70± 0.08
WINN 6.84± 0.21 75.81± 0.84 8.29± 0.09
SCALE 7.06± 0.21 75.29± 0.85 7.98± 0.09
MBCM 7.37± 0.20 76.60± 0.83 7.92± 0.08
L11 trained on 750 dialogues from SFR, SFH, L11

NAÏV 8.82± 0.20 77.40± 0.82 6.63± 0.07
WINN 7.23± 0.22 72.35± 0.88 7.20± 0.09
SCALE 8.11± 0.21 74.61± 0.85 6.78± 0.08
MBCM 8.52± 0.20 77.09± 0.82 6.88± 0.07

SFR trained on 7500 dialogues from SFR, SFH, L11

NAÏV 9.45± 0.22 87.98± 0.85 8.14± 0.11
WINN 9.67± 0.18 89.24± 0.68 8.15± 0.09
SCALE 9.41± 0.17 88.08± 0.66 8.18± 0.09
MBCM 9.67± 0.17 88.28± 0.66 7.96± 0.08
L11 trained on 7500 dialogues from SFR, SFH, L11

NAÏV 10.92± 0.16 86.80± 0.70 6.42± 0.07
WINN 11.25± 0.18 88.51± 0.76 6.43± 0.08
SCALE 11.24± 0.17 88.55± 0.69 6.44± 0.07
MBCM 10.73± 0.16 87.23± 0.66 6.70± 0.07

Averaged across domains and size of training data

NAÏV 8.94± 0.10 80.49± 0.42 7.13± 0.04
WINN 8.46± 0.10 80.37± 0.42 7.58± 0.05
SCALE 8.83± 0.10 81.17± 0.40 7.38± 0.04
MBCM 9.06± 0.09 82.17± 0.38 7.35± 0.04
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It is also important to understand behaviour when a new domain is added
alongside a set of existing agents which themselves are not yet fully trained.
We are interested in both the performance in the new domain as well as the
existing domains. To investigate this, two agents operating in the SFR and
SFH domains were pre-trained with 250 dialogues each using SCALE reward
distribution mechanism. Performance was then evaluated in the SFR and
the new as yet untrained L11 domain. The L11 agent was then trained with
250 dialogues in that domain. Again, the performance was tested in both
L11 and SFR. Finally training continued with another 250 dialogues for each
of the three domains - SFR, SFH and L11 and the performance in the SFR
and L11 domains tested for a final time. The results are shown in Table 7.

Table 7: Performance when adding a new agent for the L11 domain to a multi-domain
dialogue manager using SCALE training with two partially trained agents for the SFR
and SFH domains.

Performance in L11 domain
Training data Reward Success Turns

250 SFR+ 250 SFH −10.89± 0.40 39.89± 0.96 16.65± 0.21
+250 L11 4.18± 0.28 62.18± 0.95 7.89± 0.11

+250 SFR+250 SFH+250 L11 7.26± 0.22 70.47± 0.94 6.79± 0.08
Performance in SFR domain

250 SFR+ 250 SFH 6.12± 0.22 70.22± 0.91 7.90± 0.08
+250 L11 6.75± 0.21 73.54± 0.86 7.93± 0.08

+250 SFR+250 SFH+250 L11 8.05± 0.20 79.38± 0.83 7.79± 0.08

The performance of the dialogue manager in the L11 domain when trained
only with SFR and SFH dialogues is very poor, which is expected as these
are very different domains. However with the addition of 250 L11 dialogues,
the performance dramatically improves. What is more, adding these L11 di-
alogues does not impede performance in the SFR domain, in fact it improves
slightly. With an additional 750 dialogues spread across all three domains,
the performance significantly improves in both the L11 and SFR domains.

6.8. Multi-agent human user evaluation
To ensure that the benefits of the proposed reward distribution approach

suggested by the above simulation results carry over into systems trained on-
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line, two systems were also trained in direct interaction with human users.
First, a multi-policy Bayesian committee machine (MBCM) was trained from
scratch using data from the SFR restaurant, the SFH hotel and the L6 lap-
top domains. This MBCM policy committee machine operates on all three
domains but is dependent on the knowledge of the current domain for pol-
icy updating. This is compared to the committee reward scaling (SCALE)
machine, presented in Section 6.7, which distributes the reward to every
committee member for each dialogue regardless of the domain. The system
was deployed in a telephone-based set-up, with subjects recruited via Ama-
zon MTurk and a recurrent neural network model was used to estimate the
reward [27].

Fig. 9 shows the moving average reward as a function of the number of
training dialogues for the L6 domain comparing the MBCM and SCALE
committee approaches. The committees were also trained on SFR and SFH
domains in parallel. The training data across the domains was equally dis-
tributed. As in Section 6.6 each plot is an average of three sample runs. The
moving window was set to 100 dialogues so that after the initial 100 dialogues
each point on the graph is an average of 300 dialogues. The shaded area rep-
resents a 95% confidence interval. As can be seen from the reward graph
for the SCALE approach, the results confirm that it is not necessary for the
committee to be aware of the domain. On the contrary, distributing reward
to each committee member according to their contribution can even produce
better performance than only sending the reward signal to the committee
member dedicated to the current domain.

7. Conclusion

This paper has described three models which support dialogue system do-
main extension. First, a distributed multi-domain dialogue architecture was
proposed in which dialogue policies are organised in a class hierarchy aligned
to an underlying knowledge graph. The class hierarchy allows a system to
be deployed by using a modest amount of data to train a small set of generic
policies. As further data is collected, generic policies can be adapted to give
in-domain performance. Using Gaussian process-based reinforcement learn-
ing, it has been shown that it is possible to construct generic policies which
provide acceptable in-domain user performance, and better performance than
can be obtained using under-trained domain specific policies. To construct
a generic policy, a design consisting of all common slots plus a number of
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Figure 9: Training using the MBCM and SCALE approaches in interaction with human
users in the L6 laptop domain – moving average reward. Plots are average of three sample
runs.

abstract slots which can be mapped to domain-specific slots works well. It
has also been shown that as sufficient in-domain data becomes available, it
is possible to seamlessly adapt to improve performance, without subjecting
users to unacceptable disruptions in performance during the adaptation pe-
riod and without limiting the final performance compared to policies trained
from scratch.

An alternative to hierarchically structured policies is the distributed com-
mittee model which uses estimates from different policies for action selection
at every dialogue turn. The results presented have shown that this model
is particularly useful for training multi-domain dialogue systems where the
data is limited and varied. As shown in both simulations and in real user
trials, the Bayesian policy committee approach gives superior performance
to the traditional one-policy-approach across multiple domains and allows
flexible selection of committee members during testing.

Finally, the basic policy committee model was extended using ideas from
multi-agent learning to distribute the reward signal among the committee
members. This model is particularly useful in real-world scenarios where the
domain is a priori unknown and indeed, may change during a dialogue. In
simulations, the proposed approach achieves a performance which is close to
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that which relies on explicit domain information to assign reward, while in a
real human trial, it produced better performance.

For future work, these methods will be applied to a dialogue manager
operating over a large knowledge graph in order to demonstrate that they
do indeed scale and offer a viable approach to building truly open domain
spoken dialogue systems which learn on-line in interaction with real users.
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