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ABSTRACT

We investigate the reliability of mass estimators based on the observable velocity dispersion and half-light radius
Rh for dispersion-supported galaxies. We show how to extend them to flattened systems and provide simple
formulae for the mass within an ellipsoid under the assumption the dark-matter density and the stellar density are
stratified on the same self-similar ellipsoids. We demonstrate explicitly that the spherical mass estimators give
accurate values for the mass within the half-light ellipsoid, provided Rh is replaced by its “circularized” analog

-R 1h . We provide a mathematical justification for this surprisingly simple and effective workaround. It
means, for example, that the mass-to-light ratios are valid not just when the light and dark matter are spherically
distributed, but also when they are flattened on ellipsoids of the same constant shape.
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1. INTRODUCTION

Accurate estimates of the dark-matter content of dwarf
spheroidal galaxies (dSphs) are crucial for furthering our
understanding of galaxy formation and structure. Calculating
reliable mass estimates has historically been an awkward
problem as, with only line of sight (LOS) velocity measure-
ments, the mass profile of a spherical galaxy can only be
inferred by making an assumption about the degree of velocity
anisotropy, i.e., the ratio of radial to tangential motion.

Through comparisons to solutions of the Jeans equations, it
has been shown that the mass contained near the half-light
radius of a dispersion-supported galaxy is approximately
independent of the velocity anisotropy and the radial profile
of the dark and luminous matter and is simply related to the
half-light radius Rh and the luminosity-averaged LOS velocity
dispersion sá ñlos

2 . There exist several different forms for these
formulae in the literature (Walker et al. 2009; Wolf et al. 2010;
Amorisco & Evans 2012; Campbell et al. 2016) that may be
summarized as
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where <M rxsph ( ) is the mass contained within a sphere of
radius rx and G the familiar gravitational constant. Cx is a
constant that depends on the choice of radius rx. Walker et al.
(2009) proposed that if =r Rx h, then Cx=2.5 based on a
simple example of the stellar distribution following a Plummer
profile and the dark matter following a cored isothermal profile,
although this was validated through fuller testing. Wolf et al.
(2010) demonstrated that for »r Rx

4

3 h (approximately the 3D
spherical half-light radius for a range of observationally
motivated profiles) that Cx=4 reproduced the results from
full Jeans analyses and was also shown to be mathematically
true under the assumption of a near-flat velocity dispersion
profile.

Although spherical mass estimators have proved useful for
understanding dSphs, they cannot give the full picture as they
do not consider the fundamentally aspherical shape of these
galaxies. Our aim in this Letter is to find mass estimators
equivalent to Equation (1) applicable to flattened systems. We

begin by inspecting the validity of the spherical mass
estimators and go on to investigate the applicability of the
estimator when considering flattened systems in which the dark
and light matter are stratified on the same self-similar
ellipsoids. We give formulae similar to Equation (1) that may
be used when the 3D shape of the system is known. By
marginalizing over prior assumptions on the intrinsic shape and
alignment, we show how the mass can be estimated when the
intrinsic shape and alignment are not known.

2. SPHERICAL MASS ESTIMATORS

For a spherical stellar luminosity density j r( ) with a
constant mass-to-light ratio in a spherical mass density r rDM ( )
with mass profile M(r) sourcing potential F r( ), the potential
energy can be written in terms of the surface brightness S(R) as
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From the virial theorem, we know that the LOS velocity
dispersion is related to the total luminosity L by
sá ñ = -W L3los

2 , which gives the constant Cx as
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where p=J r L I r4 3( ) ( ) ( ). The constant Cx depends only on
the profile of the halo model rDM and the surface brightness
profile J(r).
We use this to test the validity of the spherical mass

estimator. In Figure 1, we show the result of Equation (4)
computed numerically for two models with differing ratios of
dark to stellar scale-lengths (r RDM h). They are an NFW dark-
matter profile r µ +- -r r r r1DM

1
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isothermal profile of the form
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The stellar tracer profile follows a Plummer law

 r µ + -r r r1 2 5 2( ) ( ( ) ) for which =R rh . The constant
Cx is computed at the two radii recommended by Walker et al.
(2009) and Wolf et al. (2010). The constants given by these
two authors are shown with horizontal lines along with the
uncertainty found by Campbell et al. (2016) from inspecting
cosmological hydrodynamical simulations. The variation of Cx

with respect to r RDM h is smallest for the NFW profile and is
consistent with the bracket found by Campbell et al. (2016). In
the cored isothermal profile with »r R 1DM h , both estimators
perform well. However, again, as r RDM h is increased, Cx

deviates significantly and so the estimators perform poorly
for >r R 2DM h .

We now explore how the mass estimators perform as the
parameters of a double power-law dark-matter density profile
are altered. We use a fixed Plummer profile for the stars with a
sech truncation at R10 h. In Figure 2, we show the mass profiles
of different dark-matter profiles that all produce the same
luminosity-averaged LOS velocity dispersion. The default
parameters are those of an NFW profile with =r R 1DM h and
a sech truncation at r10 DM. We alter the outer slope β, inner
slope γ, and the ratio r RDM h. We find that when varying the
inner and outer slopes the pinch point where the mass is the
same for all profiles is around R4

3 h, i.e., the radius
recommended by Wolf et al. (2010). Varying r RDM h produces
a pinch point further out. This helps explain why mass
estimators derived for use on realistic halos with >r RDM h can
constrain the mass at larger radii (e.g., Amorisco & Evans 2012;
Campbell et al. 2016).

3. FLATTENED MASS ESTIMATORS

We now turn to adapting the spherical mass estimators for
application to flattened systems. We work with models with

both the dark and stellar density stratified on the same
concentric self-similar ellipsoids labeled with the coordinate
m such that = + +m x a y b z c2 2 2 2 2 2 2 with > >a b c.
The axis ratios of the ellipsoids are p=b/a and q=c/a. We
view the model along the spherical polar unit vector defined by
the angles J j,( ), where ϑ is the co-latitudinal angle and j the
azimuthal angle defined with respect to a Cartesian coordinate
system aligned with the principal axes (see Figure 3). When
oblate and prolate spheroids are viewed “face-on,” they appear
round. The spherical mass estimator underestimates (over-
estimates) the mass within a sphere for the oblate (prolate) case,
as mass is added to (removed from) the sphere. Similarly, the
formulae give (smaller) under- and overestimates for the mass
within the corresponding ellipsoid. We seek an appropriate
modification to Equation (1) that is applicable to flattened
systems, namely,
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where <M mxell ( ) is the mass within an ellipsoid (that is the
same shape as the equidensity contours) with major axis
length rx. We imagine creating an ellipsoidal model by
deforming a spherical model that obeys the spherical mass
estimator formulae outlined in the previous section. The total
mass is conserved if abc=1 and the mass within an ellipsoid
of major-axis length rx is identical to the mass within a sphere
of radius = =m r a r pqx x x

1 3( ) . However, to estimate this
parent spherical model mass from the spherical mass
estimator formulae, we must relate the observed LOS velocity
dispersion to the spherical velocity dispersion and the
observed half-light major-axis length to the intrinsic major-
axis length of the considered ellipsoid. Assuming the total
velocity dispersion (the average of the dispersions along the
principal axes) is conserved as we deform the model1, the
factor fσ accounts for the relationship between the LOS
velocity dispersion and the total dispersion of the ellipsoidal
model. The factor fr accounts for the relationship between the
observed major-axis length and the intrinsic major-axis length
of the equivalent ellipsoid (and that of the parent spherical
model).

3.1. Velocity Scaling

For triaxial systems, the velocity scaling s s= á ñ á ñsf tot
2

los
2 is

given by

J J j J j
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For dSphs in which the stellar and dark-matter density profiles
are stratified on the same self-similar ellipsoids, rij depends
only on the shape of the ellipsoids (Roberts 1962; Binney &
Tremaine 2008). That is to say, it is independent of the “radial”
density profile of the light and dark matter. Therefore, fσ is a

Figure 1. Constant Cx in the spherical mass estimator formula against the ratio
of the dark-matter scale radius to the stellar half-light radius for a Plummer
model embedded in an NFW (upper panel) and cored isothermal (lower) halo.
The blue inverted triangles show Cx at the radius =r Rh, for which Walker
et al. (2009) advocate a value of =C 2.5x (shown with a solid blue horizontal
line). The green triangles show the Cx at the radius =r R4

3 h, for which Wolf
et al. (2010) advocate a value of =C 4x (green line). The bands show the
uncertainties from Campbell et al. (2016).

1 To leading order in the flattening, the ratio of the total dispersion of the
flattened model to the spherical model with the same mass is
s sá ñ á ñ » - - - - - + -p p q q1 1 1 1 1tot

2
flat tot

2
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function of p, q, and the viewing angles: J j=s sf f p q, , ,( ).
Expressions for Wij are given in Table 2.2 of Binney &
Tremaine (2008).

3.2. Radial Scaling

We decompose the radial scaling into two components,
=f f fr 1 2. f2 describes the relationship between the ellipsoidal

major-axis length and the parent spherical radius so (as
described above) =f pq2

1 3( ) . The other factor f1 gives the
relationship between the observed major-axis length of the
half-light ellipse Rh and the intrinsic major-axis length of the
corresponding ellipsoid rmaj. In the spherical case, these
quantities are equal. In the ellipsoidal case, the relationship
between these quantities depends on the viewing angles and the
intrinsic shape J j=f f p q, , ,1 1 ( ). We approximate f1 by the
relationship between the major-axis length of an ellipsoid and
the major-axis length of its projected ellipse. This neglects any
subtleties related to the extended nature of the true density
distribution. However, if the 3D stellar light profile falls off
sufficiently rapidly, then our relationship is a good
approximation.
To derive our approximation for f1, we use a coordinate

system ¢ ¢ ¢x y z, ,( ) related to the intrinsic coordinate system by
(see Figure 3)

j J j J j
j J j J j
J J

=- ¢ - ¢ + ¢
= ¢ - ¢ + ¢
= ¢ + ¢

x x y z

y x y z

z y z

sin cos cos sin cos

cos cos sin sin sin

sin cos . 9( )

We consider the set of points where the ellipsoidal surface is
tangential to ¢ẑ which results in a rotated ellipse in the ¢ ¢x y,( )
plane. We diagonalize the resultant quadratic surface to find the
major axis length Rh as

= = --f R r C A B2 , 101
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As given in Weijmans et al. (2014), the observed ellipticity ò
satisfies - = - +A B A B1 2( ) ( ) ( ).

Figure 2. Spheroidal mass profile for a stellar Plummer profile embedded in a double power-law dark-matter halo with varying outer slope β, inner slope γ, and scale
radius rDM. All models have the same luminosity-averaged LOS velocity dispersion and half-light radius Rh. The masses are normalized with respect to the Wolf mass
estimate. The default parameters are g = 1, b = 3 (NFW), and =r R 1s h . The black points show the results of two mass estimators and the vertical dashed line shows
the point of minimum variance in the logarithm of the mass for each set of curves. The spheroidal mass estimates using the mass estimator proposed in this Letter are
given for an edge-on oblate (q=0.6, orange triangles) and edge-on prolate model ( = =p q 0.6, pink triangles).

Figure 3. Relationship between the observed half-light radius and the radius
used in our mass estimator formula. An ellipsoid is observed at spherical polar
angles J j,( ) with respect to its intrinsic Cartesian coordinates x y z, ,( ) aligned
with the principal axes. The resulting projection is an ellipse (shown below)
with major-axis length Rh that lies in the ¢ ¢x y,( ) plane of the observed Cartesian
coordinate system ¢ ¢ ¢x y z, ,( ). Above the ellipsoid, we show the sphere with the
equivalent volume as the ellipsoid. The major axis of the ellipse is related to the
major axis of the ellipsoid by the factor f1 1, which is shown in the lower two
panels for a prolate spheroid with = =p q 0.5 (left) and an ellipsoid with axis
ratios p=0.85 and q=0.5 (right).
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For an oblate spheroid (p= 1), Equation (10) simplifies to
=R rh maj. For a prolate spheroid p=q, so we find

J J j j= + +-f qcos sin cos sin . 121
2 2 2 2 2 2( ) ( )

In Figure 3, we show the major axis length for a prolate figure
and a triaxial figure as a function of the viewing angle.

The ellipsoidal half-light radius mh is well approximated by
f Rr

4

3 h, which should be compared to the radius of -R 14

3 h

that is empirically used (e.g., Koposov et al. 2015; Sanders
et al. 2016) as -R 1h approximately reproduces the
circularly averaged half-light radius of the dSph.2

3.3. Near-spherical Limits

Using Equation (10), we can find the modification factor sf fr
for the simple cases of viewing down the principal axes of a
near-spherical triaxial ellipsoid and compare to the alternative
factor -1 . When viewing down the major axis
(J p j= =2, 0), we find

» + - - -sf f p q1 1 1 . 13r
2

5

3

5
( ) ( ) ( )

The observed ellipticity  = - p q1 so the circularized factor

- » + - - -p q1 1 1 11

2

1

2
( ) ( ), which is a close

approximation to our factor sf fr. Similarly, for viewing down
the intermediate axis, we find

» + - - -sf f p q1 1 1 , 14r
1

5

3

5
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while - = » - -q q1 1 11

2
( ). Finally, viewing down

the minor axis, we find

» - - + -sf f p q1 1 1 , 15r
3

5

1

5
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while - = » - -p p1 1 11

2
( ). We note that the

flattening in the LOS direction (e.g., p in the intermediate axis
case) has a smaller contribution to the factor sf fr. This

demonstrates that the simple factor -1 goes a long way to
account for the velocity and radial scalings we propose.

3.4. Results

In Figure 2, we show the mass estimates using our formulae
for an oblate and prolate model viewed edge-on. The models
have the same ellipsoidal mass profile as the spherical model
shown. The factors we have introduced correctly deproject the
observed quantities producing an unbiased mass estimate.
Figure 4 shows the constant in the half-light ellipsoid mass
estimator (Equation (6)) for three models of flattened Plummer
profiles embedded in equivalently flattened NFW halos with

 =m m 5DM . We show an oblate, prolate, and triaxial
= +p q11

2
( ) model. Simply using the spherical mass

estimator with Rh underestimates/overestimates the ellipsoidal
mass for the oblate/prolate case viewed face-on (down the
minor/major axis). Similarly, the edge-on case (major for
oblate, minor for prolate) produces overestimates of the mass
for both oblate and prolate models. For the triaxial model the

spherical mass estimator produces an overestimate when
viewing down the major axis and (for this particular case) is
largely unbiased when viewing down the minor axis. The
results using the correction factors fσ and fr are unbiased
estimates of the mass within the ellipsoid =m m4

3
and using

the spherical mass estimator with the “circularized” radius
-R 1h produces very similar results to the corrected

version. This echoes a result in Sanders et al. (2016), who
demonstrated that the correction to the D-factor (important for
interpreting dark-matter decay signals) is almost independent of
the flattening for edge-on systems. The near-spherical expan-
sions of Section 3.3 are also shown, which replicate the trends
over the full q range.
Our proposed modifications correctly reproduce the mass

within ellipsoids. However, this relies on knowing the intrinsic
shape and alignment of the dSph. Such information is not
accessible, but we can put priors on possible models that
reproduce the observables. We choose to put priors on the
triaxiality = - -T p q1 12 2( ) ( ), flattening q, and the view-
ing angles J j,( ). We consider three priors:

1. Flat prior— ~T 0, 1( ), ~q 0.05, 1( ), J ~cos 0,(
1), j p~ 0, 2( ).

2. Major-axis prior— ~T 0, 1( ), ~q 0.05, 1( ), J ~
 p 2, 0.1 rad( ), j ~ 0, 0.1 rad( ).

Figure 4. Mass estimator constant for the half-light ellipsoid against the
flattening q for Plummer models embedded in equivalently flattened NFW
halos. The top panel shows an oblate model, the middle panel a prolate model,
and the bottom panel a triaxial model with = +p q11

2
( ). The left half of the

plot corresponds to viewing down the major axis while the right half
corresponds to viewing down the minor axis. The corrected green filled
triangles show the constant from the mass estimator formula given in this
Letter, the uncorrected orange empty triangles show the constant using the
spherical mass estimator (i.e., =sf f 1r ), and the purple circles show the
constant using the spherical mass estimator with the circularized radius

-R 1h (not shown in the panels where  = 0). The horizontal solid line
shows the Wolf et al. constant and the dashed line shows the constant from the
spherical model for this exact case. The other gray solid lines show the small

- q1( ) expansion of sC f fx r (i.e., the uncorrected constant).

2 For example, a flattened ( = -q 1 ) Plummer surface profile
produces a circularly averaged half-light radius equal to

+ + + +R q q q1 1 14h
1

6
2 2 4( ) , which for small flattenings is

 - +R 1h
1

2
4( ( )) so well approximated by -R 1h .
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3. Fixed-shape prior— ~T 0.55, 0.04( ), ~q 0.49,(
0.12), J ~cos 0, 1( ), j p~ 0, 2( ).

The final prior is taken from a fit to the shapes of the Local
Group dSphs from Sánchez-Janssen et al. (2016). The major-
axis prior is inspired by the observation from simulations that
the major axes of subhalos point toward the center of the host
halo (e.g., Barber et al. 2015). We sample from the priors
folded with a normal distribution on the observed ellipticity
with width s = 0.05 (using emcee; Foreman-Mackey
et al. 2013) and for each sample compute the mass within the
half-light ellipsoid from Equation (6). The results for a range of
observed ellipticities are shown in Figure 5. We show the mass
estimates over the spherical mass estimator using the
“circularized” radius. We see that using the spherical mass
estimator in this way reproduces the mass within the half-light
ellipsoid over the full range of ellipticities.3 The uncertainty in
the estimator increases with increasing ellipticity but is only
∼10%–20% for  ~ 0.4 (a typical dSph flattening). There is the
tendency for the mass within the half-light ellipsoid to be
overestimated for large ò, but only by ~5%. We also show the

distribution of -f 1r for each prior assumption (i.e., the
ratio of the size of the ellipsoid to the -R 1h approx-
imation). For the uniform prior, this ratio is unity (within
∼10%–20%) so the “size” of the dSphs are well approximated
by -R 1h . For the other two priors, the ratio increases with
ellipticity as the intrinsic ellipsoids are on average more
elongated along the LOS so larger than -R 1h .
We have demonstrated that the mass within the half-light

ellipsoid can be accurately estimated using the spherical mass
estimator formulae. Although we do not know the shape or
orientation of this half-light ellipsoid, we can say with
confidence the mass within it. Therefore, we can accurately
estimate the mass-to-light ratio using the mass within the half-
light ellipsoid and half the total luminosity L. We conclude that
using the spherical mass estimators (Walker et al. 2009; Wolf
et al. 2010) with the “circularized” half-light radius produces
accurate estimates of the mass-to-light ratio of dSphs,
irrespective of flattening, provided the light and dark matter
are stratified on the same self-similar concentric ellipsoids.

4. CONCLUSIONS

This Letter has answered the question: how should the mass
of a flattened, dispersion-supported galaxy like a dwarf
spheroidal be estimated? If the galaxy were spherical, then
the answer is well established. Accurate mass estimators
depending on the observable half-light radius and the velocity
dispersion of the stars have been devised by a number of
investigators (Walker et al. 2009; Wolf et al. 2010; Amorisco &
Evans 2012; Campbell et al. 2016).
We have shown how to modify the spherical mass estimators

so that they work for flattened systems in which the light and
dark matter are stratified on the same concentric self-similar
ellipsoids. This represents a limiting case as simulations
indicate the dark-matter distribution is in fact rounder than
the light (Abadi et al. 2010; Zemp et al. 2012) due to baryonic
feedback effects, particularly for the more massive dSphs. The
modifications require knowledge of the intrinsic shape and
alignment of the triaxial figure and reproduce the mass within
ellipsoids by deprojecting the half-light radius and LOS
velocity dispersion. The resulting mass estimates are indepen-
dent of details of the radial profile and are as accurate as the
corresponding spherical formulae.
This would be of little use if we require knowledge of

intrinsic properties. However, we have also shown that, when
averaging over triaxial configurations that are consistent with
the observed ellipticity ò, major-axis half-light length Rh, and
LOS velocity dispersion, the mass within the half-light
ellipsoid is well approximated by the spherical mass estimate
using the “circularized” half-light radius of -R 1h . The
scatter in the estimate increases with ellipticity but is only
10%–20% for  ~ 0.6. In turn, this observation implies that
mass-to-light ratios using spherical estimators, together with a
luminosity of =L L 21 2 , are accurate and insensitive to the
flattening of the dSph. This therefore provides a surprisingly
simple, flexible, and effective way to account for the effects of
flattening.
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