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ABSTRACT: While mechanisms of cytotoxicity and cytosta-
ticity have been studied extensively from the biological side,
relatively little is currently understood regarding areas of
chemical space leading to cytotoxicity and cytostasis in large
compound collections. Predicting and rationalizing potential
adverse mechanism-of-actions (MoAs) of small molecules is
however crucial for screening library design, given the link of
even low level cytotoxicity and adverse events observed in
man. In this study, we analyzed results from a cell-based
cytotoxicity screening cascade, comprising 296 970 nontoxic,
5784 cytotoxic and cytostatic, and 2327 cytostatic-only compounds evaluated on the THP-1 cell-line. We employed an in silico
MoA analysis protocol, utilizing 9.5 million active and 602 million inactive bioactivity points to generate target predictions,
annotate predicted targets with pathways, and calculate enrichment metrics to highlight targets and pathways. Predictions identify
known mechanisms for the top ranking targets and pathways for both phenotypes after review and indicate that while processes
involved in cytotoxicity versus cytostaticity seem to overlap, differences between both phenotypes seem to exist to some extent.
Cytotoxic predictions highlight many kinases, including the potentially novel cytotoxicity-related target STK32C, while cytostatic
predictions outline targets linked with response to DNA damage, metabolism, and cytoskeletal machinery. Fragment analysis was
also employed to generate a library of toxicophores to improve general understanding of the chemical features driving toxicity.
We highlight substructures with potential kinase-dependent and kinase-independent mechanisms of toxicity. We also trained a
cytotoxic classification model on proprietary and public compound readouts, and prospectively validated these on 988 novel
compounds comprising difficult and trivial testing instances, to establish the applicability domain of models. The proprietary
model performed with precision and recall scores of 77.9% and 83.8%, respectively. The MoA results and top ranking
substructures with accompanying MoA predictions are available as a platform to assess screening collections.

Profiling compound libraries through phenotypic and high
throughput screening (HTS) cascades is a well-established

process, originating commonly from a single-concentration
assessment of a compound collection, with subsequent hits
from this primary screen profiled through a series of follow-up
potency, selectivity, and specificity assays.1 The size, content,
and quality of a screening library are intrinsic to the value of the
screen output, influencing the future direction of projects and
the likelihood of candidate success or attrition.2 Poor decisions
with respect to the identification of good starting points from
compound collections can disadvantage the progression of a
compound through the drug discovery process and/or lead to
the best compounds not being progressed.3

Pharmaceutical companies have considered novel ways to
improve the chemical equity of compound collections
throughout the years, expanding coverage of chemical space

in order to tackle emerging targets.4 Many have invested in
altering the chemical composition of screening libraries in order
to improve physicochemical properties, such as reduced average
molecular weight and c log-P, alleviating many problem hits
driven by size and lipophilicity.5 Current collections are often
considered to be of “high-quality.”6

Despite the concentrated investment into library optimiza-
tion, the pharmaceutical industry has however continued to
experience high attrition rates due to poor efficacy and the
discovery of adverse effects during preclinical animal safety
profiling and clinical trials.7 Safety-related attrition represents a
leading cause of project failures at AstraZeneca, where
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unacceptable toxicity profiles were the single most important
reason for failure between 2005 and 2010 and accounted for
82% of preclinical project closures.8 Attrition continues to
dominate phase 1 and phase 2 studies, accounting for 62% and
30% of closures, respectively. One reason for high attrition is
due to a lack of sufficient consideration for toxicity during
compound selection.9 Indeed, even low-level cytotoxicity can
be linked to late-stage adverse effects in subsequent clinical
trials, underlining the requirement of considering the toxic
tendencies of compounds earlier, even when assembling an
HTS library.
Cytotoxicity has been extensively studied from a biological

perspective and is broadly recognized via the mutually exclusive
categories of “accidental cell death” (ACD) and “regulated cell
death” (RCD).10 ACD can be elicited via the detergent
properties of small molecules causing cell membrane damage
and necrotic lysis, a process lacking specific modulation of
cellular targets, rendering it virtually insensitive to biological
intervention. In comparison, RCD comprises the biological
mechanisms of apoptosis, a genetically encoded process of
programmed cell death; autophagy, a survival mechanism
involving self-cannibalization of organelles; and regulated
necrosis, a phenotype exhibiting neither apoptotic nor
autophagic characteristics, wherein cells lose membrane
integrity and die rapidly.11

While RCD processes have conventionally been split into
these three mutually exclusive cellular states, how these
processes converge to elicit cytotoxicity is less clear.12 It

seems that a balanced interplay between apoptosis, autophagy,
and regulated necrosis dictates the cellular end point in a
specific situation, comprising several central death effector
molecules functioning as pro-survival or pro-death mediators.13

Nevertheless, there are specific targets and pathways more
often associated for each of the three conventional processes,
although it is nontrivial to review all mechanisms implicated in
the phenotype here, due to the complex and interconnected
relationships influencing the response.10−15 Broadly, targets can
be split into various general categories (Table 1).
The situation becomes even more complex when considering

the cytostatic properties of compounds. Cytostatic compounds
do not kill cells but instead invoke the inhibition of cell
proliferation and growth. Identified mechanisms comprise
DNA damage, DNA polymerase inhibition, increased onco-
genic signaling, oxidative stress, and cytoskeletal inhibition.16

Various investigations have attempted to discern the
cytotoxic and cytostatic effects in cells, where it is argued that
either property is dependent on the dose used, time-point
measured, phase of the cell cycle upon compound admin-
istration, and cellular context.16 For example, cytostaticity can
be evoked in both the S and G2-M cell cycle phases, while
lethality is shown in the S phase, given that DNA synthesis
machinery is often targeted in cytotoxicity.17 Furthermore,
small molecules that are considered cytotoxic are frequently
characterized as being cytostatic due to the close overlap of
processes. For example, microtubule-targeting agents are
inherently cytostatic, since the interference of microtubule

Table 1. Literature-Reviewed Important Targets and Pathways Implicated in Small-Molecule Induced Apoptosis and Regulated
Necrosis25,28,49,a

apoptosis regulated necrosis

morphology cytoplasmic shrinkage translucent cytoplasm
chromatin condensation swelling of organelles
nuclear fragmentation increased volume
blebbing of plasma membrane permeabilization of plasma membrane
shedding of apoptotic bodies mild chromatin condensation, nuclei intact

mechanism of
death

intrinsic apoptosis necroptosis
extrinsic apoptosis ferroptosis

MPT-medicated regulated necrosis
broad
pathways

death receptor pathway mitotic catastrophe
mitochondrial apoptotic
pathway

fidelity of DNA regulation/repair

TOR pathway inhibition ER stress
cytochrome c/apaf-1/caspase-9
apoptosome complex

FAS pathway

TRAIL receptor activation TNF pathway
molecular
targets

caspases/effectors apoptotic
factors

DNA regulation/
repair/expression

phosphorylating
proteins

ion channels cytoskeletal proteins receptors

•caspases •APAF-1 •HDACS •EGFR •chloride
channel 3

•tubulin, complex
associated protein 6

•toll-like
receptor 2

•interleukins •TNFR-1 •TOP1 •RAS •M-phase
phosphoprotein 1

•integrin,
B3

•interferon •BCL-2 •TOP2 •RAF
•procaspase-9 •polymerase (RNA/

DNA)
•MEK

•cytochrome P450 •tyrosyl-tRNA
synthetase 2

•MAK

•CHEK1
•JAK
•SRC

aGiven that some biological processes are more easily modulated by small molecules than others, we could identify in the current study which of
those processes are of relevance for the design of small molecule screening libraries. Molecular targets are examples of well studied proteins and are
not exhaustive.
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dynamics leads to stasis in mitosis.16 However, mitotic arrest is
a condition that is poorly tolerated by cells, which is often
resolved by cell death (Table 1). Thus, cytotoxic activity is
regularly observed after long time points from primarily
cytostatic agents.
Although well studied from a biological viewpoint, the links

between biological (cytotoxic and cytostatic) space and
chemical space are poorly understood.18 The discontinuous
and complex nature of cytotoxicity, due to the multitude of
biological processes involved, is often characterized by regions
of structure−activity cliffs, with areas of high structural
similarity frequently exhibiting low activity similarity.19 Various
studies have utilized machine learning techniques in an attempt
to predict the toxic tendencies of small molecules,18,20 where
activity cliff regions are known to be discarded as outliers, cause

overfitting, or increase the prediction error while generating
models.21 Cell-line specific cytotoxicity represents an additional
parameter of consideration, with small molecules frequently
expressing differential toxicity between cell lines.22 Protocols
are often incapable of maintaining their predictive power
outside cell-line training data, which narrows the applicability
domain (AD) of models.
The consistency of publicly reported cytotoxicity data has

also been shown to be unreliable in many cases, where the mis-
annotation of compounds is known to confound the perform-
ance of algorithms.23 AstraZeneca data obtained through single
well controlled and large scale experimentation could be
considered of better quality, since toxicity and the associated
biological target data to be analyzed are obtained under
standardized conditions, from the same compound stocks,

Figure 1. Phenotypic screening cascade of the compound collection. Screen A comprises single-concentration AlamarBlue assessment of 388 000
compounds. Subsequent profiling of 25 000 compounds is conducted in screen B via a follow-up dose−response AlamarBlue screen. A final CellTox
Green membrane integrity screen C is used to profile hits from screen B. A total of 296 970 nontoxic compounds with activity values less than 4.949
are extracted from the primary screen A. A total of 6844 toxic compounds were extracted from dose−response screen B after filtering activity values
over 4.949 as a cutoff to define cytotoxicity. Compounds with activity values over 4.949 from screen C are applied as an additional filter to improve
the confidence of cytotoxic molecules, producing a library of 5784 CytoToxic and CytoStatic (CTCS) compounds. CTCS compounds are further
split into a cytostatic library by filtering for actives from screen B and inactives from screen C, producing a library of 2327 cytostatic compounds.

Figure 2. Flow of data through the MoA protocol. Nontoxic, cytotoxic, and cytostatic data sets were extracted from the results of the cytotoxicity
experiments. The nontoxic and cytotoxic data sets were passed to the MoA prediction protocol to obtain enriched target and pathway enrichments
for a cytotoxic phenotype. The cytostatic and cytotoxic data set were employed for a second MoA prediction step, to obtain enriched cytostatic
targets and pathways when compared to cytotoxicity bioactivity profiles.
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within the same laboratories. AstraZeneca data are therefore
expected to provide better performance than alternative
publicly available data sets assimilated for cytotoxicity
analyses.24

In order to improve the links between chemical and
biological spaces, we analyzed the results of a phenotypic
screening cascade from an AstraZeneca diversity-based screen-
ing library evaluated on the THP-1 cell line, shown in Figure 1.
AstraZeneca work has shown that a cell health assay using
THP-1 can identify compounds that later go on to cause
specific organ toxicity. Organ specific cell lines such as HepG2
do not predict specific organ toxicity,22 so the THP-1 cell line is
employed in-house as a first-pass assay to identify compounds
with the potential to cause cytotoxicity.
The screening initiative presented here comprises a single

concentration cytotoxicity assessment of a 388 000 compound
collection in an AlamarBlue cell viability assay (screen A),
assessing the intracellular reducing potential of living THP-1
cells. The 25 000 most potent hits from this primary screen
were subsequently profiled through a follow-up dose−response
AlamarBlue (Screen B). A total of 6844 hits from screen B were
then assessed in the CellTox Green membrane integrity assay
(Screen C) to identify cytotoxic compounds by measuring
DNA staining in cells with compromised cell membranes.
Data sets of CytoToxic and CytoStatic (CTCS) compounds

and cytostatic-only compounds were extracted from screening
data via filtering and analyzed via in silico mechanism-of-action
(MoA) analysis (Figure 2). Computational MoA protocols have
previously been applied for the rationalization of toxicity
libraries, where the extension of enriched targets with pathway
information was found to underline the pathways implicated in
cell death and improve the explanatory power of predic-
tions.25,26 Furthermore, we have in this work performed
fragment analysis, enabling us to generate a library of structural
alerts for further filtering of the undesirable liabilities of
compounds. Finally, a CTCS classification model has been
developed to support better understanding of the MoA of
cytotoxic compounds, and to provide guidance into which
compounds to add, remove, or flag in a HTS library. The MoA,

cytotoxic substructures and toxicity classification protocols will
be employed in AstraZeneca for future HTS triage processes.

■ RESULTS AND DISCUSSION

Enriched Targets and Pathways for the Cytotoxic and
Cytostatic Phenotypes. The 5784 CTCS compounds
identified from the THP-1 screening cascade were subjected
to bioactivity prediction, annotated with pathways using
WikiPathways,27 and the subsequent calculation of enrichment
metrics when compared to noncytotoxic compound predic-
tions. The predictions from this analysis are shown in Tables 2
and 3, although these are not exhaustive since targets remain
significantly enriched (Prediction Ratio less than 0.1 and Fisher’s
exact test p values below a significance level of 5%) outside the
top 15 (a comprehensive list of enriched targets is available in
the Supporting Information Table 1).
We observe that the most enriched targets and pathways

have biological links to the phenotype at different absolute
frequencies, a trend that has been previously observed when
using in silico pathway enrichment, which highlights the need to
normalize predictions using an enrichment metric.25 For
example, “Cyclin-Dependent Kinase 13 (CDK13)” (ranked
second) comprises a cytotoxic hit rate of 1.43%, while “Dual
Serine/Threonine and Tyrosine Protein Kinase (DSTYK)”
(ranked third) has a prediction rate of 6.29%.
Table rankings highlight a mixture of apoptotic (8), necrotic

(5), and autophagic (1) targets, where 14 of the top ranking
targets can be attributed to cell-death via literature evidence.
These results find little overlap compared with previous
attempts to rationalize cytotoxicity, overlapping only for the
cytotoxic effector Wee1.25,28 This may be due to the dissimilar
chemical space encompassed by public screening libraries and
industry compound collections, or the number of targets and
bioactivity data points available for modeling in every case.
Despite the differences for specific targets, the results find

overlap to previous findings when considering target classi-
fications, since the highest enriched targets are dominated by
many kinases (13). The two nonkinase targets, “Interferon,
Gamma (IFNG)” and “Insulin-Like Growth Factor 1
(Somatomedin C) (IGF1),” are expected to originate from

Table 3. Top Enriched Pathways for the Cytotoxic Compounds versus Non-Toxic Compoundsa

WikiPathways ID name biological link CTCS hit rate (%) prediction ratio Fisher exact test p value

WP3390 uptake and function of anthrax toxins kinase activity 0.054 0.11 0.00 × 1000

WP1861 mRNA Capping gene expression 0.058 0.13 0.00 × 1000

WP405 eukaryotic transcription initiation gene expression 0.059 0.14 0.00 × 1000

WP453 inflammatory response pathway immune response 0.061 0.15 0.00 × 1000

WP2760 signaling by BMP cytokine activity 0.083 0.16 0.00 × 1000

WP2752 MyD88-independent TLR3 cytokine activity 0.150 0.16 0.00 × 1000

WP3351 RHO GTPases activate PAKs cell cycle 0.136 0.16 0.00 × 1000

WP2732 interleukin-2 signaling cytokine activity 0.125 0.17 0.00 × 1000

WP1845 MAPK targets kinase activity 0.063 0.17 1.77 × 10−266

WP3305 NoRC negatively regulates rRNA expression gene expression 0.072 0.17 9.52 × 10−303

WP1808 DSCAM interactions cell recognition 0.137 0.17 0.00 × 1000

WP1906 RNA polymerase II transcription gene expression 0.103 0.17 0.00 × 1000

WP1799 co-stimulation by the CD28 family cytokine activity 0.302 0.17 0.00 × 1000

WP2654 mitotic prophase cell cycle 0.139 0.18 0.00 × 1000

WP2768 nonhomologous end joining DNA repair 0.318 0.19 0.00 × 1000

aThe highest enriched pathways have biological links to the phenotype at different prediction rates. Pathways can be classified into processes
implicated in cell cycle, DNA repair, gene expression, and kinase mediated events. WP3390 and WP1808 are examples of tangential signals that
should be interpreted with caution. Prediction percentage is calculated from the number of pathway hits normalized by the sum of pathway
predictions. Fisher’s test p values of “0.00 × 1000” indicate scores that are less than the smallest numerical value allowed in Python.
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models comprising functional assay data. For example, bioactive
training compounds for IFNG may be annotated active due to
IFNG production measured in a functional assay, rather than
actual biochemical affinity for the isolated protein. The real
targets involved in these circumstances are likely to be proteins
that influence either their production or associated signaling.
Examples of apoptotic targets among the top rankings

include “SNF Related Kinase (SNRK)” and “Dual Serine/
Threonine and Tyrosine Protein Kinase (DSTYK),” while
examples of necrotic targets include “Calcium/Calmodulin-
Dependent Serine Protein Kinase (CASK)” and “Male Germ
Cell-Associated Kinase (MAK),” which is reviewed in Table 1.
The autophagic target identified in the table is “Serine/
Threonine Kinase 32A (STK32A),” which is implicated in
mitophagy (degradation of mitochondria by autophagy) in
response to mitochondrial depolarization. “Serine/Threonine
Kinase 32C (STK32C)” is a highlighted kinase related to
STK32A, which does not appear to comprise known links to
cytotoxicity. This potentially novel cytotoxicity-related target
has unknown function but is highly expressed in the brain and
has links to depression.29 This finding illustrates the potential
for in silico methods to highlight lesser studied targets.
The main groups of enriched pathways can be split into

broad processes including cytokine activity (4), gene expression
(4), cell cycle (2), and kinase activity (2), with links to lethality
through modulation of these cellular processes.11 Pathways
range from generic processes such as “Mitotic Prophase
(WP2654)” to ones with higher granularity, including
“MyD88-independent TLR3 (WP2752).” Processes show
overlap to the pathways reviewed in Table 1, for example, the
pathways “NoRC negatively regulates rRNA expression
(WP3305)” and “mRNA Capping (WP1861)” highlight the
importance of the gene regulation processes, whereas the links
to “Signaling by BMP (WP2760),” “MyD88-independent

TLR3 (WP2752),” and “Interleukin-2 signaling (WP2732)”
suggests the importance of cytokines. “Nonhomologous end
joining (WP2768)” is the only DNA-repair process implicated
in the results from this analysis. This pathway is essential for
genomic integrity since it is the principle double-strand break
repair pathway in mammalian cells, and perturbation of this
pathway is central to cytotoxic action of various anticancer
drugs.30

Although pathway analysis can provide a broader context for
further interrogation of other markers associated with the
cytotoxic phenotype, there is still a need to rationalize the
associations driving links between targets and pathways and
their relation to cell death. For example, the highest-ranking
process, “Uptake and Function of Anthrax Toxins (WP3 390),”
was highlighted due to links with the hydrolysis of mitogen-
activated protein kinases through the action of the anthrax
lethal factor endopeptidase,31 while “DSCAM interactions
(WP1808)” was highlighted due to the high enrichment of
mitogen-activated protein kinases and PAK1 present in the
pathway. Both of these pathways could be considered tangential
signals, since the first is quite specific and the latter lacks a
direct implication to cytotoxicity.
Aside from the potentially novel cytotoxicity-related target

STK32C, MoA analysis fails to highlight many novel targets or
pathways lacking unforeseen implications in cytotoxicity within
the highest ranked positions, which, due to the amount of work
that has been performed around cytotoxicity, is perhaps
unsurprising. This indicates one should look further down
the rankings when searching for more novel associations with
unanticipated cytotoxic targets. For example, when consulting
the entire list (Supporting Information Table 1), “EPH
Receptor B6 (EPHB6; Prediction Ratio = 0.063, ranked 64)”
and “NLR Family, Pyrin Domain Containing 3 (NLRP3;
Prediction Ratio = 0.106, ranked 113)” represent two examples

Figure 3. Euclidean biclustering of top 100 enriched target prediction profiles with accompanying Prediction Ratio scores. Compound hits are shown
in the matrix; accompanying Prediction Ratio scores are shown above target labels, scaled from dark gray (increased enrichment) to light gray
(decreased enrichment). UPGMA Euclidean distance was calculated for the targets (x axis) and compounds (y axis). Dendrogram structure
highlights that similar protein families cluster together due to similarities in prediction profiles. Clusters also exhibit correlation with Prediction Ratio
enrichment; hence, similar prediction profiles often produce similar enrichment profiles.
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of enriched targets within the top ranking 10% that lack
literature links to cytotoxicity, which would be suitable
candidates for future experimental studies.
We next performed hierarchical biclustering of the enriched

CTCS bioactivity profiles to analyze the polypharmacological
trends of predictions (Figure 3). Clustering shows target
families, such as the “MAP-Kinases” (“Mitogen-Activated
Protein Kinase Kinase 2 (MAP2K2),” “Mitogen-Activated
Protein Kinase Kinase 4 (MAP2K4)” and “Mitogen-Activated
Protein Kinase Kinase 5 (MAP2K5)”), are frequently
positioned together in bioactivity space due to similarity of
predictions between these targets. The Rio kinases represent
one enriched target family which has not clustered together,
with “Rio Kinase 2 (RIOK2)” separating into a distinct branch
from the highly associated “Rio Kinase 1 (RIOK1)” and “Rio
Kinase 3 (RIOK3)” subcluster. The dispersed topology for such
family classes may result from biases in bioactivity space, or
selectivity due to protein structure diversity within families.
Clustering also shows correlation with areas of enrichment

(Prediction Ratio indicated in the row above the dendrogram),
where highly enriched clusters such as “Relaxin/Insulin-Like
Family Peptide Receptor 3 (RXFP3),” “Mitogen-Activated
Protein Kinase 7 (MAPK7),” “p21 Protein (Cdc42/Rac)-
Activated Kinase 2 (PAK2),” and “p21 Protein (Cdc42/Rac)-
Activated Kinase 1 (PAK1)” can be contrasted with
comparatively lower enriched clusters, for example, “SH3
Domain Binding Kinase Family, Member 3 (SBK3),” “Cyclin-
Dependent Kinase 15 (CDK15),” “Myosin IIIB (MYO3B),”
and “Myosin IIIA (MYO3A)”. Thus, we frequently observe that
similar prediction profiles can often comprise similar Prediction
Ratio scores.
The potentially novel cytotoxicity-related target STK32C is

positioned within a subcluster of targets comprising “Hormo-
nally Up-Regulated Neu-Associated Kinase (HUNK),” “Male
Germ Cell-Associated Kinase (MAK),” “Protein odd-skipped-
related 1 (OSR1),” “Mitogen-Activated Protein Kinase Kinase
Kinase 6 (MAP3K6),” “Cyclin-dependent kinase-like 5
(CDKL5),” and “Mitogen-activated Protein Kinase Kinase
Kinase 15 (MAP3K15).” The STK32C node is the most
distinct within this highly enriched cluster and illustrates the
somewhat unique bioactivity profile generated for this target.
We next visualized the distribution of the cytotoxic,

cytostatic, and noncytotoxic compounds in chemical space,
via the 2D-RBS plot as shown in Figure 4. Visualization shows
that the areas’ chemical space occupied by compound sets is
complex, with small islands of cytotoxic and cytostatic
compounds clustering together toward the center of the plot.
This 2D representation indicates that the cytotoxic and
cytostatic compounds are more frequently similar to each
other than to inactive compounds but suggests that areas of
cytotoxicity and cytostaticity can be separated to some extent.
In order to better discern the cytostatic properties of

compounds, we next conducted additional MoA analysis using
a library of cytostatic compounds. These compounds were
subjected to target and pathway enrichment versus cytotoxic
compounds, with the enriched target and pathway results
shown in Tables 4 and 5. Fewer numbers of targets and
pathways are shown in this analysis, since smaller numbers
comprise low Prediction Ratio and Fisher’s exact test p-values,
which can therefore be considered significant. The reason for
the comparatively low enrichment is due to high similarity in
chemistry between the two sets, and therefore a high degree of
overlap between static and toxic bioactivity profiles. This

overlap may not be surprising, since it is the entry points into
these shared processes that are likely to dictate the fate of a
cell.16

Enrichment highlights a mixture of enzymes (2), protease
(1), lyase (1), ion channel (1), oxidoreductase (1), and
imidazoline receptor (1) targets, which can be attributed to
cytostasis via literature evidence. In comparison to the cytotoxic
enrichment results, enriched cytostatic targets do not comprise
kinases, which is likely due to the high degree of overlap for
predictions, or frequent lethality of this target class. “Bone
Morphogenetic Protein 1 (BMP1)” is identified as the highest
ranking cytostatic target, which has previously been identified
as responsible for meditating a cytostatic response to
rapamycin.32 “Tyrosinase (TYR)” is the second ranking target
highlighted for the analysis, where it has been demonstrated
that functional mutations in either tyrosinase or tyrosinase-
related protein 1 (TYRP1) are less sensitive to the cytostatic
effects of deoxyArbutin and its derivatives.33 Another cytostatic
target highlighted in the list is “Nischarin (NISCH),” known to
be implicated with cell migration and cytoskeleton reorganiza-
tion by binding to alpha-5-beta-1 integrin,34 which can be
linked to mitotic arrest and stasis through the interference of
microtubule dynamics.16

In comparison to the CTCS pathways, the results from
cytostatic pathway enrichment, shown in Table 5, illustrate that
Prediction Ratio enrichment does not necessarily correlate with
Fisher’s test p values. For example, “Alanine and aspartate
metabolism (WP106)” comprises a Prediction Ratio of 0.34 and
a Fisher’s p value of 1.99 × 10−01. Hence, this pathway is
considered moderately significant when filtering using
Prediction Ratio but is not significant when filtering for a p
value at a 5% confidence level and, hence, is the only pathway
that is not significant using Fisher’s test p value in this table.

Figure 4. Visualization of cytotoxic, cytostatic, and non-toxic
compounds. Visualization shows that the relationship between the
areas’ chemical space occupied by compound sets is complex, with
small cytotoxic and cytostatic islands of compounds clustering
together within the distribution of nontoxic compounds. Thus,
cytotoxic and cytostatic are more frequently similar to each other
than to inactive compounds. Molecular descriptor used is SkelSpheres,
and nearest-neighbor threshold is set to 0.9.
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The top ranking pathways have links to the cytostatic
phenotype. “Collagen biosynthesis and modifying enzymes
(WP2725)” are highlighted due to the frequent prediction of
cytoskeletal enzymes (e.g., Nischarin) in the analysis, which are
essential for mitotic progression during cellular division.
“Melanin biosynthesis (WP3377)” has also been highlighted
in this analysis due to the high target enrichment of tyrosinase
and its importance in melanization.33 Despite an insignificant
Fisher’s test p value, “Alanine and aspartate metabolism
(WP106)” may have links to cytotoxicity via endoplasmic
reticulum (ER) stress. Interference of this metabolic process is
known to stimulate ER stress-induced cytostasis after failed
attempts to rectify unfolded proteins in the ER,35 although this
link should be extrapolated with caution.
Overall, while proteins and pathways involved in cytotoxicity

versus cytostaticity seem to be overlapping, the differences
between both types of biological processes indeed seem to
exist, and the chemical space modulating both functions is also
to some extent distinct, according to the analysis presented
here.

Compound Fragments Enriched for CTCS Com-
pounds. We next conducted fragment analysis of the CTCS
(actives from screen B and screen C) and noncytotoxic
compounds from screen A to identify substructures associated
with the cytotoxic end point. Substructures were filtered for
significant cytotoxicity count (binomial p values greater than
1.0 × 10−10) and 10-fold enrichment in the cytotoxic set
(Fragment Ratio less than 0.1), producing 978 fragments.
Target predictions were then generated for the fragment cores,
with predictions mapped to their respective target classification
class using the ChEMBL classification system. This step enables
an approximation for the fraction of fragments that may be
attributed to potential kinase-dependent versus kinase-
independent mechanisms of cytotoxicity.
The majority of enriched frameworks (612 of the 978

fragments) have target prediction hits comprising 10 or more
kinases, which indicates a targeting of kinases in about two-
thirds of the fragments involved with cytotoxicity. This high
frequency of kinase inhibitor-like fragments likely results from
the ubiquitous role kinases play in modulation of signaling
pathways and further reflects the kinase target focus of the
compound library through the decades. Ten representative
substructures with a kinase prediction rate greater than 36 are
shown in Table 6. Whether or not to filter screening libraries
for these types of substructures would depend on the purpose
of the library, as well as the target classes one intends to
develop ligands for.
A total of 366 fragments comprise an average kinase

prediction rate less than 10, where toxicity may be elicited by
nonkinase mediated events, and hence may be cause for
concern since this may be instigated via unknown mechanisms.
Table 7 features 10 representative substructures from this list,
and highlights their comparatively lower cytotoxic count when
compared to their kinase-like counterparts. Indeed, this analysis
fails to identify significant quantities of cytotoxic frameworks
that are not attributed to kinase inhibition. This finding is most
likely due to the careful selection and previous application of
published in-house filters placed on screening collections to
remove compounds with undesirable toxicity profiles.36 The
top ranking fragments made available in this study are useful as
off-target flags that can be employed to filter for predicted
kinase-(in)dependent mechanisms of cytotoxicity.T
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Cytotoxicity End Point Prediction. We next trained a
random forest (RF) model using ECFP_4 fingerprints on both
the public and proprietary parts of the CTCS data set, in order
to generate a predictive cytotoxicity model for both the entire
existing compound collection, as well as future library
enhancement initiatives. These models were validated via 5-
fold cross-validation (performance details included in Support-
ing Information Table 2) and prospectively validated using 988
novel compounds selected at different cytotoxicity probability
intervals and similarity to the training set to prospectively
explore the AD in vitro.
The 988 compounds selected for cell-based cytotoxicity

assessment via the AlamarBlue cell viability assay are visualized
in the 2D-RBS plot in Figure 5. Visualization shows testing
comprises both compounds predicted as cytotoxic with toxic
near-neighbors and compounds predicted to be noncytotoxic
with nontoxic near-neighbors. Testing also includes circum-
stances when nearest neighbors conflict with the prediction of
cytotoxicity, for example a cytotoxic near-neighbor predicted to
be nontoxic, or a toxic near-neighbor compound predicted to
be nontoxic. 2D-RBS shows highly connected clusters of
compounds toward in the center of the plot, comprising small
molecules with both toxic nearest neighbors and nontoxic
nearest neighbors intermingled throughout chemical space.
Relatively few compounds have a toxic nearest neighbor and
low RF cytotoxicity probabilities.
Overall, it was found that the proprietary model performs

with an averaged precision and recall of 77.9% and 83.8%, while
the public version performs with an overall precision and recall
of 77.0% and 83.6% (confusion matrix shown in Table 8 and
binned precision-recall curves shown in Supporting Informa-
tion Figure 1). The confusion matrix (Table 8) demonstrates
the tendency for models to overpredict compounds as toxic
(increased recall at the cost of precision). This is due to the
specification of sample weight parameters in Scikit-learn,37

which correct for imbalanced training data via penalizing the
misclassification of the CTCS minority class. This model
behavior is a desirable trait when filtering for cytotoxicity, since
short-listed false-negative compounds that may show toxicity
further into project timelines are potentially more detrimental
than the excessive filtering of compound libraries early in
discovery stages.
The AD of the proprietary model was investigated in Figure

6a for compounds confirmed to be toxic (top-left) and
nontoxic (top-right). The binned boxplot of train-to-test
Tanimoto coefficient (Tc) similarity (x-axis) and RF
probability distributions (y-axis) exhibits improvement with
increasing similarity between a Tc of 0.3 and 0.8, correlating
with an overall improvement of median cytotoxicity proba-

bilities (although there is a drop for the final bin). Inactive
compounds show a similar trend with increasing similarity,
where cytotoxicity predictions exhibit overall improvement
between 0.3 and 1.0 Tc bins, decreasing from 0.22 to 0.02,
respectively.
There is evidence of cytotoxicity activity-cliff results given the

distribution of predictions. One example is the unexpected drop
in the distribution for cytotoxicity probabilities and increasing
Tc similarity between the 0.8 and 0.9 similarity bins from 0.865
to 0.345, respectively. To further explore this trend, a scatter
plot of the underlying predictions is shown in Figure 6b,
separated by shape based on cytotoxic near-neighbor activity in
screen B (“x” marker) and nontoxic near-neighbor activity (“o”
marker) in screen B. Upon further analysis of the 0.9 Tc
similarity, we observe that the two false-negative predictions,
assigned cytotoxicity probability scores of 0.15 and 0.17, share
nontoxic near-neighbor activity and hence are located in areas
of chemical space considered activity cliffs. Conversely, activity-
cliff behavior that is correctly predicted by the model can be
observed within the 0.8 similarity bin, where the true-positive
prediction of a compound with a nontoxic near-neighbor is
correctly assigned a moderately high cytotoxic probability of
0.71.

Conclusion. MoA analysis of the 5784 CTCS and cytostatic
compounds was in this work able to highlight the targets and
pathways implicated in cytotoxicity and cytostaticity for a large
high-throughput screening collection. The bioactivity profiles
generated here can be used as a guideline for off-target activity
when considering which compounds to select for screening
collections. Review into the known MoAs for cytotoxicity
highlighted many kinases, including the potentially novel
cytotoxicity-related target STK32C, which illustrates the
potential for the MoA protocol to highlight even lesser studied
targets. Pathway analysis has highlighted processes implicated
in cytokine activity, gene expression, and cell cycle progression.
Analysis of the 2327 cytostatic-only compounds has further-
more enabled us to discern the cytostatic properties from the
cytotoxic phenotype. Results from this analysis highlighted
fewer targets that can be statistically associated with the
cytostatic effects of compounds due to proximity to (and often
overlap with) cytotoxic effects; however, some differences could
still be identified. In particular, enriched pathways for the
cytostatic compounds show links to the phenotype via DNA
damage reversal, metabolism, and cytoskeletal machinery.
Although the pathway enrichment approach presented in this

study gives an indication for the types of biology that targets are
implicated in, care should be taken when extrapolating
enrichments. First, the choice of enrichment metric has been
shown here to influence the signal of enriched targets, since a

Table 5. Top Enriched Pathways Comparing Cytostatic Compounds versus Cytotoxic Compoundsa

WikiPathways ID name biological link cytostatic hit rate (%) prediction ratio Fisher exact test p-value

WP2725 collagen biosynthesis and modifying enzymes cytoskeleton 0.17 0.17 2.58 × 10−02

WP106 alanine and aspartate metabolism metabolism 0.09 0.34 1.99 × 10−01

WP3377 melanin biosynthesis cell cycle 1.25 0.35 3.11 × 10−07

WP1872 neurotransmitter uptake and metabolism in glial cells metbolism 0.26 0.45 3.78 × 10−02

WP1804 DNA damage reversal DNA damage 0.69 0.46 9.64 × 10−04

aThe top enriched pathways have biological links to the cytostatic phenotype. Fewer pathways are shown compared to the CTCS vs. non-toxic
analysis, due to the lower enrichment values when comparing cytostatic vs. cytotoxic compounds. Enriched pathways are filtered for a Prediction
Ratio less than or equal to 0.5. Results show that a low Prediction Ratio does not necessarily correspond with low Fisher’s exact test values. For
example, a Fisher’s test does not find statistical significance for “alanine and aspartate metabolism (WP106)” at a significance level of 5%, although
this pathway has a moderately enriched Prediction Ratio of 0.34.
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low Prediction Ratio does not necessarily correlate with a low
Fisher’s test p value. Second, there are tangential biological
annotations within the top ranking pathways which are
indirectly related to the phenotype, and this area of ambiguity
is where other approaches could prioritize additional steps to
follow up on in the future.
One current limitation of the MoA protocol presented here

is that the statistical analysis of the target enrichments assumes
that target enrichments are equally meaningful across the
spread of models, which is not true in reality. For example,
there are some targets that are neglected in our analysis due to
little (or a complete lack of) training data. Additionally, the

coverage of chemical space, as well as the number of data
points, is different between the target models. This leads to
virtually every model behaving differently with respect to
sensitivity and specificity. Additionally, the input chemical space
has a certain distribution, in relation to the training set, which
influences the prediction of each target. An additional limitation
is the lack of information regarding the underlying modulation
of targets (for example, activating or inactivating mechanism
upon binding of compounds, which is lacking from the
localized MoA analysis). We aim to pursue this shortcoming via
the prediction of antagonism or agonism activity of compounds
using annotation of functional assays. Future work will

Table 6. The Top 10 Enriched Cytotoxic Fragments with High Kinase Prediction Ratesa

aFragments highlighted in this table would not necessarily require removal from a screening library since they have been historically selected to
identify a therapeutic window between efficacy and toxicity. Results show the need to normalize fragments to the number of fragments generated by
the toxic or non-toxic data sets. Toxic % and Non-Toxic % were calculated via Toxic Count and Non-toxic Count of fragments and divided by the
total number of fragments for that set (5784 CTCS fragments and 296 970 non-toxic fragments).
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concentrate on the prediction of compound MoA to better
understand underlying modulation of targets and pathways in
relation to complex end points like cytotoxicity.
Fragment analysis has furthered the understanding of the

chemical space linked to cytotoxicity induced by small
molecules. We have shown that cytotoxic compounds in
screening collections often (in the data analyzed here in about
two-thirds of the cases) involve kinase inhibitors, which is
corroborated by the kinase-dominated CTCS target prediction

profiles. The choice of whether to filter compounds containing
these fragments would depend on the use of the library. They
have been retained within the compound collection at
AstraZeneca since there is a possibility to identify a therapeutic
window between efficacy and toxicity. There are low numbers
of fragments with predicted kinase-independent activity, which
may be cause for concern when selecting which compounds to
add to a screening library, since these frameworks may elicit
toxicity through unidentified mechanisms. The relatively low

Table 7. Top 10 Enriched Cytotoxic Fragments with Low Kinase Prediction Rates
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frequency of such fragments may result from the structural
filters previously employed to select compounds with more
desirable chemistry on an empirical basis.
A proprietary random forest (RF) cytotoxicity classification

protocol was also developed using the CTCS and noncytotoxic
compounds, which was able to perform with a precision and
recall score of 77.9% and 83.8% on 988 untested compounds. It
was found that models have a tendency to overpredict
cytotoxicity, which is in practice preferred when compared to
the potential cost in attrition (higher false negatives) for the
under-prediction of toxicity. Predictions give indication for the
applicability domain of the model and occurrences of activity
cliffs.

While generation of further screening data will aid in the
refinement of these predictive models, it also remains to be
seen if these data set can be used to flag on-target liability with
novel targets as they progress through the early drug discovery
portfolio. Additionally, future improvements in the use of more
complex cell models may allow generation of data sets that are
better representative of a complex human system, and we
believe the data presented, along with in silico prediction tools,
will provide useful annotation to the drug discovery
community.
Overall, a decision whether to add a compound to a

screening library can be based on the target prediction profiles,
highlighted pathways, predictions for the likelihood of
cytotoxicity, or presence of substructure flags. Models will aid
library design for future large collection screening, by affording
better selection of which compounds to insert or remove from
compound collections, and as a method to shortlist candidates
in further studies. The top ranking targets, pathways, and
fragments are available for download and can be deployed as
bioactivity and structural flags during the selection of new
compounds.

■ EXPERIMENTAL SECTION
A depiction of the entire screening cascade of the compound
collection is outlined in Figure 1.

AlamarBlue Cytotoxicity Assay Protocol (Screen A and B).
Primary assay (A) test compounds were prepared in 100% v/v
dimethyl sulfoxide (DMSO) at 10 mM and screened at a final assay
concentration of 50 μM. Assay ready compound plates (ARPs) were
generated via acoustic dispensing using a Labcyte Echo 555
instrument. For the primary screen (A), 20 nL of compound was
transferred to each well of a 1536-well black plate (#781076, Greiner).
Ranges of volumes were dispensed for the concentration−response
screen (B), creating 10-point concentration−response curves with a
final compound concentration range between 100 μM and 5 nM in
384-well assay ready plates. Wells were backfilled with the appropriate
volume of DMSO to ensure a final screening concentration of 1% (v/
v) and a total volume of 400 nL. Maximum (0% inhibition of assay
response) and minimum (100% inhibition of assay response)
compounds controls were added to define relative activity and the
reproducibility of the data generated. The maximum control signal was
determined using 1% DMSO, with minimum signal controls defined
with 50 μM Puromycin for both screening stages.

The human monocytic THP-1 cell line sourced from American
Type Culture Collection (ATCC) was routinely cultured in
suspension in 1700 cm2 roller bottles (#UY-0183-05, Corning).
Growth media consisted of RPMI-1640 (#R7509, sigma), supple-
mented with 10% fetal calf serum (FCS; #A15−011, PAA) and 200
mM L-glutamine (#35050038, Invitrogen). Cell cultures were
maintained at 37 °C in a 95% humidified atmosphere of 5% (v/v)
CO2/95%(v/v) air on a rotating rack set to 140 rpm. Cells were
passaged every 2−3 days depending on cell density.

Cells were collected by centrifugation at 300g and washed in PBS
on the day of assay. The cell pellet was resuspended in growth media
with the addition of 100 units/mL of penicillin streptomycin (#P4333,
Sigma). The number of viable cells was counted using the Beckman
ViCell coulter counter to determine cell number per milliliter. Cells
were suspended at the required density of 250 000 cells/mL, and 4 μL
was transferred into the assay ready 1536-well black plates (#781076,
Greiner) or 40 μL for the 384 assay plates and incubated at 37 °C with
5% (v/v) CO2 for 48 h at 95% humidity. CellTiter-Blue Viability
reagent (#G3580, Promega) was diluted 1:6 in RPMI 1640 growth
media excluding penicillin streptomycin and 2 μL/well added to all
wells of the 1536 plates and 8 μL/well added to all wells of the 384
plates using a Multidrop Combi. The assay plate was incubated for a
further 2 h under the same conditions as the initial 48-h compound
incubation. Plates were then centrifuged at 300g prior to fluorescence

Figure 5. Similarity map of compounds for testing. Selected molecules
span areas with different toxicity probabilities (from 0.1 to 1.0), inhabit
varied chemical space often separated by islands, have diverse near-
neighbor toxicity (pIC50; ranging from activity values of 4.5 to 8.1 in
screen B), and comprise a mixture of compounds with near-neighbors
that are predicted as both toxic and nontoxic compounds (indicated
via marker shape and color). Molecular descriptor used is SkelSpheres,
and near-neighbor threshold is set to 0.90.

Table 8. Confusion Matrix of Cytotoxicity Predictionsa

proprietary model
predicted

public model
predicted

cytotoxic nontoxic cytotoxic nontoxic

actual class cytotoxic 264 181 253 192
nontoxic 19 524 16 527

aProprietary models exhibit superior prediction trends compared to
public models, with higher numbers of correct classifications (diagonal
boxes in bold). Proprietary models predict with an overall averaged
precision and averaged recall score of 77.9% and 83.8% (more
specifically, the cytotoxic class of compounds performs with a
precision and recall of 59.3% and 93.3%, respectively, whilst the
non-toxic class is predicted with a precision and recall of 96.5% and
74.3%). Public models have comparatively higher numbers of false-
negatives (toxic compounds predicted as non-toxic, top right) due to
the restricted coverage of training data.
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reading on a fluorescence plate reader at λex = 540 nm ± 20 and λem =
590 nm ± 20.
CellTox Green Express Cytotoxicity Assay Protocol (Screen

C). The 384-well assay ready plates were prepared with 200 nL of test
compound/DMSO to give a range of concentrations between 100 μM
and 5 nM. A total of 20 μL of cell suspension at 625 000 cell/mL was
added to each well of the lidded assay plates and incubated for 15 min
at RT to equilibrate the plate temperature before transferring to 37 °C,
in a 5% v/v CO2/95% v/v air humidified incubator for 48 h. After 48
h, a 2× diluted stock of CellTox Green reagent was prepared in assay
dilution buffer, and 20 μL of CellTox Green reagent was dispensed
into each well using a Multidrop Combi with a standard volume
Multidrop cassette on fast speed. Assay plates were shaken for 15 min
on an orbital shaker shielded from light for optimal staining of cells.
Assay plate(s) were read on a fluorescence plate reader at λex = 485 nm
±20 nm and λem = 535 nm ±20 nm.

■ METHODS
Mining AstraZeneca Collections for Active Bioactivity

Training Data. Bioactivity data sources available at AstraZeneca,38

comprising both in-house data and public repositories such as
ChEMBL, were mined for activity values (IC50/EC50/Ki/Kd) less
than or equal to 10 μM from “binding” or “functional” human protein
assays. The 10 μM cutoff for activity specified here is in accordance
with previously validated target elucidation methods,39,40 and assigns
both marginally and highly active compounds to targets. Homo-
loGene41 was used for the extrapolation of bioactivity data to
nonhuman orthologous targets to improve the coverage of chemical

space for 647 models.42 Compounds were subjected to preprocessing
and filtered for targets with more than 10 activities to ensure proteins
encompassing sufficient chemical space are retained for training. The
resulting data set includes 3 381 388 distinct compounds for 9 565 534
bioactivities spanning 2882 targets. The targets modeled comprise a
variety of target classifications; the top three include 488 kinases, 281
transporters, and 233 GPCRs (full list of target classifications and
number modeled shown in Supporting Information Table 3). Some
degree of care should be employed when extrapolating compound−
target associations, since the annotation of bioactivity data may reflect
a functional assay versus actual binding affinity. For example, an
interleukin annotation may actually reflect assay metadata measuring
interleukin production, rather than affinity measurement of the
isolated protein.

Mining Negative Bioactivity Training Data. AstraZeneca
Collections. The HTS bioactivity data from 420 AstraZeneca target-
based screens, spanning 400 different targets, was employed as a
resource of inactive bioactivity data. Inactive data have coverage for a
wide variety of targets, including 88 different GPCRs, 77 kinases, and
31 proteases (full table of target classifications covered by HTS screens
employed for inactive data shown in Supporting Information Table 4).
These screens were mined for activity values (Ki/Kd) greater than 10
μM. In cases where a compound has been measured more than once
for a target, it was defined as inactive if it was measured at least twice
as many times as inactive versus as active. The resulting compound−
target pairs were preprocessed, resulting in a data set of 189 965 064
inactive data points, comprising 2 827 651 distinct compounds for the
400 targets. A breakdown of the numbers of inactive data points added

Figure 6. Applicability domain analysis of the proprietary cytotoxicity model. (a) Distribution of RF cytotoxicity probabilities for tested compounds.
Predictions for cytotoxic compounds are shown on the top-left; predictions for noncytotoxic predictions are shown on the top-right. Distributions of
Tanimoto similarities (Tc) are split into seven bins, between Tc values of 0.3 and 1.0, at intervals of 0.1. The median predictions for cytotoxic
prediction increase with increasing similarity between the 0.3 and 0.9 bins, correlating increasing scores from 0.455 to 0.685. Nontoxic compounds
show a decrease in median cytotoxicity predictions showing overall improvement between 0.3 and 0.9 Tc bins, decreasing from 0.06 to 0.03. (b)
Underlying RF Predictions for the boxplot colored by near-neighbor activity and the identification of activity-cliff behavior. Individual compound
predictions are shown below, where the near-neighbor compound activity in the primary screen is indicated via marker shape (cytotoxic and
nontoxic near-neighbor activity indicated by “x” and “o,” respectively). This highlights instances of activity-cliff behavior and situations when the
model correctly and incorrectly classifies compounds. Many false-negative compounds below have nearest-neighbors to the nontoxic data set and are
considered cytotoxic activity cliffs.
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for each target classification from AZ collections is shown in
Supporting Information Table 5.
PubChem BioAssay. The NCBI BioAssay41 database was mined for

additional experimentally confirmed inactive data points in a similar
procedure to that of Mervin et al.,39 via the EUtils and PubChem PUG
REST APIs. This process involved “ESearch” and “ELink” EUtils
procedures to obtain a comprehensive list of all Entrez Gene IDs
(GIDs) and Protein IDs (PIDs) associated with a given GID. These
GIDs and PIDs were used to “ELink” to binding and functional assays
held in the NCBI BioAssay database. An additional “ELink” step was
used to link from these assays to Compound IDs (CIDs) with a
compound−target “activity_outcome” annotation that has been
manually declared as “inactive” upon upload of the screen. Finally,
inactive CIDs were mapped to SMILES using the PubChem Power
User Gateway (PUG) REST service. CIDs were subjected to
preprocessing, producing 419 121 152 inactive data points for
768 014 distinct compounds spanning 2,116 targets.
The AstraZeneca and PubChem inactive data sets were combined,

yielding 598 923 798 inactive data points spanning 2161 targets. The
active set of target−compound pairs was retained when conflicting
inactive bioactivities arose, since these data are calculated from dose−
response curves.
Sphere Exclusion and Undersampling of Negative Bio-

activity Data. A sphere exclusion algorithm was applied to 1500
targets with insufficient numbers of inactive data points, for both
public and proprietary data. In this procedure, compounds were
randomly sampled from PubChem with a Tanimoto coefficient (Tc)
similarity to actives lower than 0.4, ensuring that training data
comprise at least 10 000 inactive data points, or a ratio of 3:1 inactives
to actives per target. A total of 16 188 048 additional putative inactives
were sampled in this manner. Conversely, 1003 target models required
random undersampling to achieve a 50:1 maximum ratio of inactive to
active molecules. The putative inactives were combined with the
inactive data set, producing a final data set of 602 887 162 inactive
compounds.
Compound Preprocessing. Compound structures were stand-

ardized using an in-house script43 set to remove salts, normalize
charges, and tautomerize compounds. To ensure only drug-like
molecules are retained for training purposes, structures were filtered
for duplicates, heavy metals, a molecular weight between 100 and 1000
Da, and the presence of at least one carbon atom.
Target and Pathway Deconvolution. RDKit44 was used to

generate 2048 bit Morgan fingerprints45 with a radius of 2 bonds
(known as ECFP_4 fingerprints). This algorithm generates a binary
bit-string representation for the presence or absence (represented via a
“1” or “0,” respectively) of atom environment features in a molecule,
which can be interpreted by the Bernoulli Naiv̈e Bayes (NB)
algorithm. This procedure was conducted for each of the compounds
in the bioactivity training set. ECFP_4 fingerprints were selected since
they have been previously shown to be successful in capturing relevant
molecular information for in silico bioactivity prediction.46 The
Bernoulli Naiv̈e Bayes (NB) classifier, implemented by Scikit-learn,37

was trained using the binary matrix of the active and inactive
compound−target fingerprints on a per target basis. In this procedure,
a NB model is trained for a single target using the active and inactive
compounds annotated for that target. Such models generate a
posterior likelihood of activity by an input compound for that target.
The 2882 individual target models are deployed together when
performing target deconvolution, in order to generate the predicted
bioactivity spectra for the complete range of targets, which to our
knowledge is the largest in silico target deconvolution protocol
currently published.
The average precision and recall for target prediction models is

calculated over a stratified 5-fold split (Supporting Information Figure
2). Overall, target prediction models with positive hits performed with
an average precision and recall of 67.9% and 72.4%, respectively, with
the variation in target model size and structural diversity of
compounds describing each target class known to affect performance
of models.40 Pathway annotations were extracted from the WikiPath-

ways database47 and aggregated to describe the total pathways
predicted for a set of compounds.

Definition of Non-Toxic, Cytotoxic, and Cytostatic Testing
Sets. Results from a screening cascade were used to generate libraries
of cytotoxic and noncytotoxic compound sets (Figure 1), comprising a
single-concentration AlamarBlue cell viability assessment of 388 000
compounds (screen A), subsequent profiling of 25 000 top hits via a
follow-up dose−response AlamarBlue procedure (screen B), and
CellTox Green membrane integrity assessment of hits from the dose−
response screen (screen C).

A total of 296 970 compounds with activity values between −30%
and 30% were extracted from the primary screen A for use as a
nontoxic compound library (filtering between these values removes
false-positive fluorescent compounds). This extensive inactive
chemical space affords target prediction and pathway annotation of
targets and processes that are not correlated with toxicity and corrects
for model promiscuity and biases in bioactivity space. It is possible that
toxic compounds may test negative in this set, since these are unable to
penetrate into the cell to elicit cytotoxicity. Activity values (pIC50)
greater than 4.949 in screen B and screen C were used as a cutoff to
define cytotoxicity, producing a library of 5784 CytoToxic and
CytoStatic (CTCS) compounds. Compounds with activity values
(pIC50) greater than 4.949 in screen B and activity values (pIC50) less
than 4.5 in screen C were extracted as a library of 2327 cytostatic-only
compounds.

Enrichment Calculation of Targets and Pathways. An
enrichment calculation was performed to avoid the over- or under-
annotation of target predictions or pathway annotation, elucidating the
relationships that are more likely to be responsible for the phenotypic
response. The Prediction Ratio for a given selection of targets/
annotations is calculated by comparing the frequency of compounds
that are predicted as active for a given target in the CTCS or cytostatic
set (Ft) versus the frequency of compounds predicted as active for the
target in the nontoxic or cytostatic set (Fb) when normalizing for the
total number of compound−target predictions in each set (N). If Fb =
0, then the Prediction Ratio is assigned a score of 0, which indicates that
a target is perfectly enriched in the test set.

=
F N

F N
Prediction Ratio

/
/

t t

b b (1)

The Prediction Ratio is used to score the enrichment of the cytotoxic
targets and pathways with nontoxic compounds (t = CTCS, b =
nontoxic) or to compare cytostatic targets and pathways with cytotoxic
predictions (t = cytostatic, b = cytotoxic). The Fisher’s exact test was
calculated to indicate the probability of obtaining a prediction
distribution at least as extreme as the one observed. This statistical
measure was selected since it has been shown to be used for calculating
enrichment for the deconvolution of phenotypic screens.48

Cytotoxicity End point Modeling and 5-Fold Validation. A
random forest (RF) of 100 trees, with the number of features set to
“auto” and class weight set to “balanced,” was implemented in Scikit-
learn. The model was trained using ECFP_4 fingerprints generated in
RDKit (in the same manner as employed when training the target
prediction models) for the 5784 proprietary toxic compounds and
17 352 randomly under-sampled nontoxic compounds, while supply-
ing the f it method with the sample weights of the CTCS to nontoxic
compound ratio. Cytotoxic probabilities are defined as the majority
predicted class probabilities of the trees in the forest, where the class
probability for a tree is computed as the fraction of the same number
of class samples in a leaf.37 A second RF was trained on 3720 publicly
available cytotoxic compounds and 11 160 randomly under-sampled
nontoxic compounds. The proprietary model performs with average
precision and recall values of 88.0% and 93.1% during 5-fold stratified
cross-validation (Supporting Information Table 2).

Fragment Analysis of the CTCS Compounds. The CTCSs
were fragmented at single nonring carbon−carbon bonds, filtered
between 4 and 20 heavy atoms, producing 12 346 unique fragments.
The Fragment Ratio for the resulting fragments was calculated by
comparing the frequency of R-group fragment occurrences in the
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cytotoxic set (Ftox) versus the frequency of fragments in the
noncytotoxic set (Fnontox) when normalizing for the total number of
compounds in each set (N). If Fnontox = 0, then the Fragment Ratio is
assigned a score of 0, which indicates that a fragment is perfectly
enriched in the cytotoxic set.

=
F N

F N
Fragment Ratio

/
/

tox tox

nontox nontox (2)

Fragments are filtered for duplicate molecular frameworks, retaining
the first ratio ranking instance. Binomial probability was calculated to
correct for the probability that a fragment can occur by chance. Target
profiles are generated for fragment cores and mapped to the ChEMBL
protein classification system. Predictions are then averaged over all
fragment cores. The “other” category comprises targets that are not
currently assigned classification using internal methods. Representative
fragments highlighted in the tables are further filtered for an atom
count of less than or equal to 16.
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